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Abstract

Traditional neural networks are simple to train but they typically produce overconfident
predictions. In contrast, Bayesian neural networks provide good uncertainty quantification
but optimizing them is time consuming due to the large parameter space. This paper
proposes to combine the advantages of both approaches by performing Variational Inference
in the Final layer Output space (VIFO), because the output space is much smaller than
the parameter space. We use neural networks to learn the mean and the variance of the
probabilistic output. Using the Bayesian formulation we incorporate collapsed variational
inference with VIFO which significantly improves the performance in practice. On the other
hand, like standard, non-Bayesian models, VIFO enjoys simple training and one can use
Rademacher complexity to provide risk bounds for the model. Experiments show that VIFO
provides a good tradeoff in terms of run time and uncertainty quantification, especially for
out of distribution data.

1 Introduction

With the development of training and representation methods for deep learning, models using neural networks
provide excellent predictions. However, such models fall behind in terms of uncertainty quantification and
their predictions are often overconfident (Guo et al., 2017). Bayesian methods provide a methodology for
uncertainty quantification by placing a prior over parameters and computing a posterior given observed
data, but the computation required for such methods is often infeasible. Variational inference (VI) is one of
the most popular approaches for approximating the Bayesian outcome, e.g., (Blundell et al., 2015; Graves,
2011; Wu et al., 2019). By minimizing the KL divergence between the variational distribution and the true
posterior and constructing an evidence lower bound (ELBO), one can find the best approximation to the
intractable posterior. However, when applied to deep learning, VI requires sampling to compute the ELBO,
and it suffers from both high computational cost and large variance in gradient estimation. Wu et al. (2019)
have proposed a deterministic variational inference (DVI) approach to alleviate the latter problem. The idea
relies on the central limit theorem, which implies that with sufficiently many hidden neurons, the distribution
of the output of each layer forms a multivariate Gaussian distribution. Thus we only need to compute the
mean and covariance of the output of each layer. However, DVI still suffers from high computational cost
and complex optimization.

Inspired by DVI, we observe that the only aspect that affects the prediction is the distribution of the output of
the final layer in the neural network. We therefore propose to perform variational inference in the final-layer
output space (rather than parameter space), where the posterior mean and diagonal variance are learned by
a neural network. We call this method VIFO. Like all Bayesian methods, VIFO induces a distribution over
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its probabilistic predictions and has the advantage of uncertainty quantification in predictions. At the same
time, VIFO has a single set of parameters and thus enjoys simple optimization as in non-Bayesian methods.

We can motivate VIFO from several theoretical perspectives. First, we derive improved priors (or regu-
larizers) for VIFO motivated by collapsed variational inference (Tomczak et al., 2021) and empirical bayes
(Wu et al., 2019). The new regularizers greatly improve the performance of VIFO. Second, we show that,
for the linear case, with expressive priors VIFO can capture the same predictions as standard variational
inference. On the other hand, with practical priors and deep networks VIFO exhibits limited expressiveness.
We propose to overcome this limitation by using ensembles that enable fast training and further improve
uncertainty quantification. Third, due to its simplicity, one can derive risk bounds for the model through
Rademacher complexity. Thus, VIFO was motivated as an effective simplification of VI and DVI, but the
ensembles of VIFO can be seen as a Bayesian extension of Deep Ensembles (Lakshminarayanan et al., 2017).
We discuss the connections to other Bayesian predictors below.

An experimental evaluation compares VIFO with VI and other state of the art approximation methods and
with non-Bayesian neural networks. The results show that (1) VIFO is much faster than VI and only slightly
slower than base models, and (2) ensembles of VIFO achieve better uncertainty quantification on shifted and
out-of-distribution data while preserving the quality of in-distribution predictions. Overall, VIFO provides
a good tradeoff in terms of run time and uncertainty quantification especially for out-of-distribution data.

2 VIFO

In this section we describe our VIFO method in detail. We start with a description of the non-Bayesian base
model. Given a neural network parametrized by weights W and input x, the output is z = fW (x) ∈ RK . The
base model provides probabilistic predictions by combining the output of the network with any prediction
likelihood p(y|z). Traditional, non-Bayesian models, minimize − log p(y|z) or a regularized variant.
Remark 2.1. The base model and VIFO are applicable with any likelihood function and our development
of VIFO below is general. To illustrate we discuss classification and regression. In classification, K is the
number of classes. The probability of being class i is defined as

p(y = i|z) = softmax(z)i = exp zi∑
j exp zj

. (1)

In regression, z = (m, l) is a 2-dimensional vector and K = 2. We apply a function g on l that maps l to a
positive real number. The probability of the output y is:

p(y|z) = N (y|m, g(l)) = 1√
2πg(l)

exp
(

− (y −m)2

2g(l)

)
. (2)

By fixing the weights W , base models map x to z deterministically. Bayesian inference puts a distribution
over W and marginalizes out to get a distribution over z from which predictions can be calculated. Since
exact marginalization is not tractable, variational inference provides an approximation which yields the well
known ELBO objective for optimization:

log p(D) ≥ Eq(W )

[
log p(W,D)

q(W )

]
=

∑
(x,y)∈D

Eq(W )[log p(y|W,x)] − KL(q(W )∥p(W )). (3)

As shown by Wu et al. (2019), by the central limit theorem, with a sufficiently wide neural network the
marginal distribution of z is Gaussian. DVI explicitly calculates an analytic approximation of the mean and
variance of the output of each layer (valid for specific activation functions) and avoids the sampling typically
used for optimization of the ELBO in other methods.

VIFO pursues this in a direct manner. It has two sets of weights, W1 and W2 (with potentially shared compo-
nents), to model the mean and variance of z. That is, µq(x) = fW1(x), σq(x) = g(fW2(x)), where g : R → R+

maps the output to positive real numbers as the variance is positive. Thus, q(z|x) = N (z|µq(x),diag(σ2
q (x))),

where µq(x), σ2
q (x) are vectors of the corresponding dimension. We will call q(z|x) the variational output

distribution. As in the base model, given z, y is generated from the likelihood p(y|z).
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(a) without auxiliary training (b) with auxiliary training

Figure 1: Predictive distribution of VIFO using an MLP. Blue points are training data generated from a
sinusoidal function, red points are the predicted mean, shaded area indicates the 1 standard deviation. More
details are in Appendix D.1.

Remark 2.2. VIFO in regression is different from the existing models known as the mean-variance estimator
(Kabir et al., 2018; Khosravi et al., 2011; Kendall & Gal, 2017). Instead, mean-variance estimators are the
base models that VIFO can be applied on. Applying VIFO to these models results in four outputs: µm and
µl, which are the means of m and l, and σ2

m and σ2
l , which are the variances of m and l. These variances

come from the variational output distribution. We sample m ∼ N (µm, σ
2
m) and l ∼ N (µl, σ

2
l ), then form

z = (m, l). Like all Bayesian methods VIFO computes a distribution over distributions which is lacking in
non-Bayesian predictions.

Unlike VI which puts a prior over W , VIFO models the distribution over z and therefore we put a prior
directly over z. We consider two options, a conditional prior p(z|x) and a simpler prior p(z). Both of these
choices yield a valid ELBO using the same steps:

log p(y|x) ≥ Eq(z|x)

[
log p(y, z|x)

q(z|x)

]
= Eq(z|x)[log p(y|z)] − KL(q(z|x)∥p(z|x)). (4)

The approach has some similarity to Dirichlet-based models (Sensoy et al., 2018; Charpentier et al., 2020;
Bengs et al., 2022). However, we perform inference on the output whereas, as discussed by Bengs et al.
(2022), these models implicitly perform variational inference on the prediction. In particular, in that work z
is interpreted as a vector in the simplex and q(z|x) and p(z) are Dirichlet distributions, whereas when using
VIFO for classification z has a Gaussian distribution and p(y|z) is on the simplex. In other words, we model
and regularize different distributions. We discuss related work in more details below.

Eq. (4) is defined for every (x, y). For a dataset D = {(x, y)}, we optimize W1 and W2 such that∑
(x,y)∈D

{
Eq(z|x)[log p(y|z)] − KL(q(z|x)∥p(z|x))

}
is maximized. We regard the negation of the first term Eq(z|x)[− log p(y|z)] as the loss term and treat
KL(q(z|x)∥p(z|x)) as a regularizer.

2.1 Auxiliary Training

As in prior work (Sun et al., 2019), to improve uncertainty quantification we introduce auxiliary input
xaux and include KL(q(z|xaux)∥p(z|xaux)) as an additional regularization term. We include corresponding
coefficients η and ηaux on the regularizers, as is often done in variational approximations (e.g., (Higgins et al.,
2017; Sheth & Khardon, 2017; Jankowiak et al., 2020; Wenzel et al., 2020; Wei et al., 2021; Wei & Khardon,
2022).). Then, viewed as a regularized loss minimization, the optimization objective for VIFO becomes:

min
W1,W2

∑
(x,y)∈D

{
Eq(z|x)[− log p(y|z)] + ηKL(q(z|x)∥p(z|x)) + ηaux

∑
xaux

KL(q(z|xaux)∥p(z|xaux))
}
. (5)
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Generally the loss term is intractable, so we use Monte Carlo samples to approximate it. In practice, since
auxiliary data is not available, we uniformly sample x(i)

aux ∼ Unif[x(i)
min − d

2 , x
(i)
max + d

2 ] where d = x
(i)
max − x

(i)
min

for each entry i. Figure 1 shows an example where an MLP is used to learn a complex function over 1
dimensional input space, illustrating that such regularization can improve uncertainty quantification in the
area where the data is missing.

2.2 Collapsed VIFO

Bayesian methods are often sensitive to the choice of prior parameters. To overcome this, Wu et al. (2019)
used empirical Bayes (EB) to select the value of the prior parameters, and Tomczak et al. (2021) proposed
collapsed variational inference, which defined a hierarchical model and performed inference on the prior
parameters as well. We show how these ideas are applicable in VIFO and derive empirical Bayes as a
special case of collapsed variational inference. In addition to z, we model the prior mean µp and variance
σ2

p as Bayesian parameters. Now the prior becomes p(z|µp, σ
2
p)p(µp, σ

2
p) and the variational distribution is

q(z|x)q(µp, σ
2
p). Then the objective becomes:

log p(y|x) ≥ Eq(z|x)q(µp,σ2
p)

[
log

p(y, z, µp, σ
2
p|x)

q(z|x)q(µp, σ2
p)

]
= Eq(z|x)[log p(y|z)] − Eq(µp,σ2

p)[KL(q(z|x)∥p(z|µp, σ
2
p))] − KL(q(µp, σ

2
p)∥p(µp, σ

2
p)). (6)

Similar to Eq. (5), we treat the first term as a loss and the other two terms as a regularizer along with a
coefficient η and aggregate over all data. Since the loss does not contain µp and σ2

p, we can get the optimal
q∗(µp, σ

2
p) by optimizing the regularizer and the choice of η will not affect q∗(µp, σ

2
p). Then we can plug in

the value of q∗ into Eq. (6). We next show how to compute q∗(µp, σ
2
p) and the final collapsed variational

inference objective. The derivations are similar to the ones by Tomczak et al. (2021) but they are applied
on z not on W . Recall that K is the dimension of z.

Learn mean, fix variance Let p(z|µp) = N (z|µp, γI), p(µp) = N (µp|0, αI). Then q∗(µp|x) is

arg min
q(µp)

Eq(µp)[KL(q(z|x)∥p(z|µp))] + KL(q(µp)∥p(µp)),

and the optimal q∗(µp|x) can be computed as:

log q∗(µp|x) ∝ − (µq(x) − µp)⊤(µq(x) − µp)
2γ −

µ⊤
p µp

2α ,

and q∗(µp|x) = N (µp| α
α+γµq(x), αγ

α+γ ). Notice that, unlike the prior, q∗(µp) depends on x. If we put q∗ back
in the regularizer of Eq. (6), the regularizer becomes:

1
2γ

[
1⊤σ2

q (x) + γ

γ + α
µq(x)⊤µq(x)

]
− 1

21⊤ log σ2
q (x) + K

2 log(γ + α) − K

2 . (7)

As in Tomczak et al. (2021), Eq. (7) puts a factor γ
γ+α < 1 in front of µq(x)⊤µq(x), which weakens the

regularization on µq(x). We refer to this method as “VIFO-mean”.

Figure 2, shows the learned prior for VIFO-mean and VI for the same example as in Figure 1. We observe
that VIFO-mean allows for diverse prior distributions and captures the data distribution well.

Other Regularizers The same approach can be used for a joint prior p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp) =

N (µp|0, 1
tσ

2
p), p(σ2

p) = IG(σ2
p|α, β), where IG is inverse Gamma, yielding a method we call “VIFO-mv”.

Similarly, the hierarchical prior in empirical Bayes models the variance but not the mean p(σ2
p) = IG(σ2

p|α, β),
p(z|σ2

p) = N (z|0, σ2
p) and yields “VIFO-eb”. Derivations are given in Appendix B.
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(a) VIFO-mean (b) VI-naive (c) VI-mean

Figure 2: Induced predictions by learned prior distribution for different methods. Note that VI has a prior
over weights and VIFO has a prior over z. For each method we sample values from the prior and calculate
predictions y based on the sampled values. We then plot the y values. As we can see, VI-naive induces a
uniform prior that does not capture the data distribution, VI-mean has an increased variance in areas where
data is missing and VIFO-mean does so to a larger extent. Details are given in Appendix D.1.

3 Expressiveness of VIFO

VIFO is inspired by DVI and it highly reduces the computational cost. In this section we explore whether
VIFO can produce exactly the same predictive distribution as VI. We show that this is the case for linear
models but that for deep models VIFO is less powerful. We first introduce the setting of linear models. Let
the parameter be θ, then the model is:

y|x, θ ∼ p(y|θ⊤x). (8)

For example, p(y|θ⊤x) = N (y|θ⊤x, 1
β ) where β is a constant for Bayesian linear regression; and p(y =

1|θ⊤x) = 1
1+exp(−θ⊤x) for Bayesian binary classification.

For simplicity, we assume θ ∈ Rd, where d is the dimension of x, and then the output dimension K = 1. The
standard approach specifies the prior of θ to be p(θ) = N (θ|m0, S0), and uses q(θ) = N (θ|m,S). Then the
ELBO objective, with a dataset XN = (x1, x2, . . . , xN ) ∈ Rd×N and YN = (y1, y2, . . . , yN ) ∈ RN , is

N∑
i=1

Eq(θ)[log p(yi|θ⊤xi)] − KL(q(θ)∥p(θ))

=
N∑

i=1
Eq(θ)[log p(yi|θ⊤xi)] − 1

2 [tr(S−1
0 S) − log |S−1

0 S|] − 1
2(m−m0)⊤S−1

0 (m−m0) + d

2 . (9)

As the following theorem shows, if we use a conditional correlated prior and a variational posterior that
correlates data points, then in the linear case VIFO can recover the ELBO and VI solution. We defer the
proof and discussion of K > 1 to Appendix A.1.
Theorem 3.1. Let q(z|x) = N (z|w⊤x, x⊤V x) be the variational predictive distribution of VIFO, where
w and V are the parameters to be optimized, and let p(z|XN ) = N (z|m⊤

0 XN , X
⊤
NS0XN ) and q(z|XN ) =

N (z|w⊤XN , X
⊤
NV XN ) be a correlated and data-specific prior and posterior (which means that for different

data x, we have a different prior/posterior over z). Then the VIFO objective is equivalent to the ELBO
objective implying identical predictive distributions.

However, as the next theorem shows, for the non-linear case we cannot produce the variational output
distribution q(z|x) as if it is marginalized over the posterior on W .
Theorem 3.2. Given a neural network fW parametrized by W and a mean-field Gaussian distribution q(W )
over W , there may not exist a set of parameters W̃ such that for all input x we have Eq(W )[fW (x)] = fW̃ (x).
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The proof is given in Appendix A.1. The significance of these results is twofold. On the one hand, we see from
Theorem 3.2 and the conditions of Theorem 3.1 that the representation is more limited, i.e., efficiency comes
at some cost. On the other hand, Theorem 3.1 shows the connection of VIFO to VI, which gives a better
perspective on the approximation it provides. Moreover, this facilitates the use of existing improvements in
VI for VIFO such as collaposed VI applied to VIFO.

In practice, a correlated and data-specific prior p(z|x) is complex, and tuning its hyperparameters would
be challenging. Hence, for a practical algorithm we propose to use a simple prior p(z) independent of x.
In addition, to reduce computational complexity, we do not learn a full covariance matrix and focus on the
diagonal approximation. These aspects limit expressive power but enable fast training of VIFO and hence
also ensembles of VIFO.

4 Rademacher Complexity of VIFO

In this section we provide generalization bounds for VIFO through Rademacher Complexity. We need to
make the following assumptions. These assumptions hold for classification and with a smoothed loss for
regression as shown in Appendix A.2.
Assumption 4.1. log p(y|z) is L0-Lipschitz in z, i.e., | log p(y|z) − log p(y|z′)| ≤ L0∥z − z′∥2.
Assumption 4.2. The link function g is L1-Lipschitz.

Recall that the Rademacher complexity of a set of vectors A ⊆ RN is defined as R(A) =
1
NEσ∼{−1,1}N [supa∈A

∑
i σiai]. The Rademacher complexity of the set of loss values induced by functions

f ∈ F over a dataset S has been used to derive generalization bounds for learning of the class F . We need
the following technical lemma, proved in Appendix A.2, that generalizes well known Lipschitz based bounds
(Shalev-Shwartz & Ben-David, 2014) to multi-input functions.
Lemma 4.3. Consider an L-Lipschitz function ϕ : R × R → R, i.e. ϕ(a1, b1) − ϕ(a2, b2) ≤ L(|a1 − a2| +
|b1 − b2|). For a, b ∈ RN , let ϕ(a, b) denote the vector (ϕ(a1, b1), . . . , ϕ(aN , bN )). Let ϕ(A × B) denote
{ϕ(a, b) : a ∈ A, b ∈ B}, then

R(ϕ(A×B)) ≤ L(R(A) +R(B)). (10)

Applying the previous lemma sequentially over multiple dimensions we obtain:
Corollary 4.4. Consider an L-Lipschitz function ϕ : Rd → R, i.e., for any x, x′ ∈ Rd, ϕ(x) − ϕ(x′) ≤
L∥x− x′∥1. Let ϕ(Ad) = {ϕ(a1:d,i) : a1,a2, . . . ,ad ∈ A ⊂ RN }, then R(ϕ(Ad)) ≤ LdR(A).

With the assumptions and technical lemma, we derive the main result:
Theorem 4.5. Let H be the set of functions that can be represented with neural networks with parameter
space W, H = {fW (·)|W ∈ W}. VIFO has two components, so the VIFO hypothesis class is H × H
= {(fW1(·), fW2(·)) |W = (W1,W2),W1,W2 ∈ W}. Let l be the loss function for VIFO, l(W, (x, y)) =
EqW (z|x)[− log p(y|z)]. Then the Rademacher complexity of VIFO is bounded as R(l ◦ (H × H) ◦ S) ≤
2(L0 max{1, L1}K) ·R(H ◦ S), where K is the dimension of z and S is training dataset.

The proof is in Appendix A.2 and it shows how reparamertization can facilitate computation of Rademacher
bounds for Bayesian predictors. The Rademacher complexity for VIFO is bounded through the Rademacher
complexity of deterministic neural networks. This shows one advantage of VIFO which is more amenable
to analysis than standard VI due to its simplicity. Risk bounds for VI have been recently developed (e.g.,
(Germain et al., 2016; Sheth & Khardon, 2017)) but they require different proof techniques. The Rademacher
complexity for neural networks is O

(
BW Bx√

N

)
(Golowich et al., 2018), where BW bounds the norm of the

weights and Bx bounds the input. The Rademacher complexity of VIFO is of the same order.

5 Related Work

VIFO is related to but distinct from a number of variational and one-pass methods. Dirichlet-based methods
(Sensoy et al., 2018; Charpentier et al., 2020; Bengs et al., 2022), discussed above, implicitly perform vari-

6



Published in Transactions on Machine Learning Research (09/2024)

ational inference on the prediction and the network output provides parameters of a Dirichlet distribution.
Like VIFO they provide Bayesian predictions in a single pass over the network, but their relation to the
standard variational inference in parameter space is non obvious. On the other hand, VIFO is a single pass
method clearly related to VI in parameter space which enables the benefits of collapsed variational inference.
Thus VIFO can be seen to bridge between Dirichlet methods and VI. DUQ (van Amersfoort et al., 2020)
provides an alternative approach using one pass on the network. It first embeds examples into a latent space,
similar to z, but computes classification prediction and uncertainty quantification through RBF distances
to centroids of classes in that space. Hence its predictions are very different. Another related line of work
(Sun et al., 2019; Tran et al., 2022) performs variational inference in function space. However, they focus
on choosing a better prior in weight space which is induced from Gaussian Process priors on function space,
whereas VIFO directly induces a simple prior on function space. Sharma et al. (2023) model the distribution
of the last layer by adding random noise as input and do not give an explicit form of the output distribution.

VIFO differs from other existing variational inference methods as well. The local reparametrization trick
(Tomczak et al., 2020; Oleksiienko et al., 2022) reduces the variance from sampling in VI. This is done by
performing two forward passes with the mean and variance at each layer before sampling the output for the
layer. Hence this modifies the sampling process of VI whereas VIFO only requires one pass on the network
and samples only the output of the last layer for prediction.

Last-layer variational inference (Brosse et al., 2020; Kristiadi et al., 2020; Daxberger et al., 2021; Liu et al.,
2020; Harrison et al., 2024) performs variational inference on the parameters of the last layer, while we
perform variational inference on the output of the last layer. Note that the last layer usually contains more
parameters than the output which has constant size. Last Layer Laplace Kristiadi et al. (2020); Daxberger
et al. (2021) reduces training complexity by first estimating the MAP solution, and then estimating the
covariance of the parameters in one pass. SNGP (Liu et al., 2020) is a variant of this method, that aims to
mimic the sensitivity of Gaussian processes to distances among examples, by incorporating Fourier features
at the one to last layer. Finally, VBLL (Harrison et al., 2024) still maintains a distribution on last layer
parameters, but approximates the expectation over these parameters in closed form (for specific likelihoods)
to reduce the complexity of training and prediction. Thus, all these methods are much closer to VI because
they maintain distributions over weights whereas VIFO produces distributions in output space.

VIFO shares some aspects with the model of Kendall & Gal (2017), where both use neural networks to
output the mean and covariance of the last layer. However Kendall & Gal (2017) use the cross entropy
loss, − logEq(z|x)p(y|z) instead of our loss in Eq. (5), they use dropout for epistemic uncertainty, and their
objective has no explicit regularization. Hence unlike VIFO their formulation does not correspond to a
standard ELBO. It is also interesting to compare VIFO to the Deep Variational information bottleneck
(Alemi et al., 2017). The model is motivated from a different perspective but its final optimization objective,
obtained after some approximations, is similar to our Eq. (4). In this sense the model is close to the VIFO-
naive. However, in their formulation, z is the output of a bottleneck layer which is not the final layer (because
it is meant to constrain the information that flows to the final layer), and p(z) which is the prior in our model
is a posterior on the marginal posterior on z. Nonetheless, our development of rich priors through collapsed
inference can help inform the choice of p(z) in that model, which is typically taken to be a standard Normal.

Various alternative Bayesian techniques have been proposed. One direction is to get samples from the true
posterior, as in Markov chain Monte Carlo methods Wenzel et al. (2020); Izmailov et al. (2021). Expectation
propagation aims to minimize the reverse KL divergence to the true posterior (Teh et al., 2015; Li et al., 2015).
These Bayesian methods, including variational inference, often suffer from high computational cost and
therefore hybrid methods were proposed. Stochastic weight averaging Gaussian (Maddox et al., 2019) forms
a Gaussian distribution over parameters from the stochastic gradient descent trajectory in the base model.
Dropout (Gal & Ghahramani, 2016) randomly sets weights 0 to capture uncertainty in the model. Deep
ensembles (Lakshminarayanan et al., 2017) use ensembles of base models learned with random initialization
and shuffling of data points and then average the predictions. These methods implicitly perform approximate
inference. In addition to these methods, there are also non-Bayesian methods to calibrate overconfident
predictions, for example, temperature scaling (Guo et al., 2017) introduces a temperature parameter to
anneal the predictive distribution to avoid high confidence. VIFO strikes a balance between simplicity and
modelling power to enable simple training and Bayesian uncertainty quantification. On the one hand, VIFO

7



Published in Transactions on Machine Learning Research (09/2024)

can be seen as a simplification of VI. On the other hand, it can be seen as an extension of the base model.
From this perspective, the use of ensembles of VIFO, which extend the ensembles of Lakshminarayanan et al.
(2017), are highly motivated as a practical algorithm.

6 Experiments

In this section, we compare the empirical performance of VIFO with VI and hybrid methods that use
the base model. In VIFO, W1 and W2 share all parameters except those in the last layer. VI candidates
include the VI algorithm (“VI-naive”(Blundell et al., 2015)) with fixed prior parameters, and other variations
from collapsed variational inference (Tomczak et al., 2021) and empirical Bayes (Wu et al., 2019). Non-
Bayesian and hybrid methods include the base model (“SGD”, because it uses stochastic gradient descent
as optimizer), stochastic weight averaging (“SWA”, which uses the average of the SGD trajectory on the
base model as the final weights) from Izmailov et al. (2018) and SWA-Gaussian (“SWAG”, which uses the
SGD trajectory to form a Gaussian distribution over the neural network weight space) from Maddox et al.
(2019). We use ensembles of the base models which are known as deep ensembles (Lakshminarayanan
et al., 2017), and the ensembles of SWAG models, which are the multiSWAG model of Wilson & Izmailov
(2020), both of which are considered strong baselines for uncertainty quantification (Ovadia et al., 2019). In
addition to these methods, we include other approximate Bayesian algorithms for comparison. These include
repulsive ensembles (“Repulsive”, (D’Angelo & Fortuin, 2021)), the Dirichlet-based model (“Dir”, (Sensoy
et al., 2018)), dropout ((Gal & Ghahramani, 2016)), last layer Laplace with prior optimization (“Laplace”,
(Daxberger et al., 2021)), and variational Bayes last layer (“VBLL”, (Harrison et al., 2024)). Our main goal
is to show:

• VIFO is much faster than VI and only slightly slower than base models;

• Ensembles of VIFO preserve the quality of in-distribution predictions;

• Ensembles of VIFO achieve better uncertainty quantification on shifted and out-of-distribution
(OOD) data than all baselines.

For our main experiments, we pick four large datasets, CIFAR10, CIFAR100, SVHN, STL10, together with
two types of neural networks, AlexNet (Krizhevsky et al., 2012) and PreResNet20 (He et al., 2016). The
regularization parameter η is fixed to 0.1 for both VIFO and VI, as this choice yields better performance
compared with the standard choice η = 1. Empirically we observe that using collapsed variational inference
in VI does not improve the performance. This is because Tomczak et al. (2021) used η = 1 to obtain
their results whereas we use η = 0.1 which provides a much stronger baseline. For auxiliary training, we
experiment with ηaux ∈ {0.0, 0.1, 0.5, 1.0}. Larger values of ηaux generally improve OOD data detection at
the cost of increased in-distribution loss, and there is no generic optimal value of ηaux. In our main paper,
we present only the case where ηaux = 0.1 because it provides a balance between in-distribution and OOD
performance, with performance of other choices of ηaux provided in the appendix. In addition, VIFO-mean
and VIFO-mv perform better than other variants of VIFO. Thus, we only list these variants in our main
paper and provide full results for other variants for VIFO and VI in the appendix. For each method we run
5 independent runs and report means and standard deviations in results. Complete details for the setup and
hyperparameters are given in Appendix D.2. Our code is available on https://github.com/weiyadi/VIFO.

6.1 Run Time

Ignoring the data preprocessing time, we compare the run time of training 1 epoch of VI, VIFO and the
base model. In Table 1 we show the mean and standard deviation of 10 runs of these methods. Different
regularizers do not affect run time, so we only show that of VI-naive for VI and VIFO-mean for VIFO. In
addition, as shown in Table 1, VIFO is much faster than VI and is slightly slower than the base model.
As shown in Fig. E.7, VIFO converges faster than, or as fast as VI. Consequently, the training time until
convergence for VIFO is shorter than for VI.
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Table 1: Running time (seconds) for training 1 epoch with batch size 512, AlexNet

dataset CIFAR10 CIFAR100 SVHN STL10
size 50000 50000 73257 500
VI 8.51 ± 0.41 8.27 ± 0.40 11.56 ± 0.39 1.75 ± 0.41

VIFO 2.18 ± 0.39 2.17 ± 0.43 2.72 ± 0.38 1.16 ± 0.40
base 1.97 ± 0.41 1.99 ± 0.43 2.46 ± 0.40 1.12 ± 0.38

Table 2: Test log loss (↓) of single VIFO and ensembles of VIFO.

VIFO-mean VIFO-mv
single ensemble single ensemble

CIFAR10 0.527 ± 0.015 0.345 ± 0.003 0.626 ± 0.010 0.324 ± 0.001
CIFAR100 2.253 ± 0.032 1.688 ± 0.006 2.688 ± 0.029 1.725 ± 0.003

STL10 1.333 ± 0.065 1.055 ± 0.008 1.531 ± 0.019 1.123 ± 0.008
SVHN 0.509 ± 0.029 0.351 ± 0.005 0.520 ± 0.027 0.298 ± 0.009

The differences in run time are dominated by sampling and forward passes in the network. Let P denote the
number of parameters in the base model and thus each forward/backward pass takes O(P ) time. The time
complexity for computing the loss for each output of the base model is O(1). The base model only needs 1
forward pass without sampling and thus the time complexity is O(P ). VIFO needs 1 forward pass and M
samples to compute the loss so the time complexity is O(P + M). VI needs M samples of the parameter
space and M forward passes, thus the time complexity is O(PM +M) = O(PM). The same facts apply for
predictions on test data, where the advantage can be important for real time applications.

6.2 Ensembles of VIFO

Theorem 3.2 points out that the expressiveness of VIFO is limited. To overcome this, we use ensembles of
VIFO, which independently train multiple VIFO models and average their predictions. Section 6.1 establishes
fast training of VIFO, allowing us to train VIFO models simultaneously while still maintaining the running
time advantage of VIFO. We investigate the impact of ensemble size on performance in Appendix E.5. While
increasing the ensemble size enhances performance, the improvement diminishes once the size exceeds 5.
Therefore, we choose an ensemble size of 5. Table 2 shows that with ensembles, VIFO with auxiliary training
achieves much better log loss than when using a single model. The same holds without auxiliary training.
This indicates that ensembles of VIFO are much more expressive than a single VIFO. In the following
experiments, we use ensembles of VIFO. For a fair comparison in the remainder of the paper, we
use ensembles for all methods except for VI (which is time-consuming) and repulsive ensembles (which
are themselves ensembles).

6.3 In-distribution Performance

In this section we use log loss and accuracy to measure the performance for in-distribution data.

Fig. 3 and Fig. E.2 in Appendix compare main methods in terms of log loss. First, we observe that repulsive
ensembles and the Dirichlet method have much worse log loss than all other methods and they tend to give
underconfident predictions. Second, we observe that using auxiliary training slightly increases the log loss
but the increase is negligible. Later we can see that auxiliary training improves the uncertainty quantification
for out-of-distribution data. We observe that VIFO is competitive with all methods in terms of log loss,
with relatively small differences between the top group of methods in each case. Fig. E.1 and Fig. E.3 show
accuracy on test data in the same experiments, revealing that in many cases VIFO outperforms VI and
it is competitive with all methods. Finally, there is no clear winner between VIFO-mean and VIFO-mv;
VIFO-mv provides a small advantage overall but might be more sensitive as illustrated by the performance
on CIFAR100 with PreResNet20.
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure 3: Test log loss (↓) on PreResNet20. Dashed lines indicate the best version of VIFO. The error bar
is three times of the standard deviation for better visualization and same for other figures.

6.4 Uncertainty Quantification

In this section we examine whether VIFO can capture the uncertainty in predictions for shifted and OOD
data. We measure performance using ECE, Entropy and AUC for detecting OOD data. These represent a
comprehensive set of measures from the literature. For datasets, for uncertainty under data shift, STL10
and CIFAR10 can be treated as a shifted dataset for each other, as the figure size of STL10 is different from
CIFAR10, and STL10 shares some classes with CIFAR10 so the labels are meaningful. For uncertainty under
OOD data, we choose the SVHN dataset as an OOD dataset for CIFAR10 and STL10, as SVHN contains
images of digits and the labels of SVHN are not meaningful in the context of CIFAR10.

Expected Calibration Error (ECE) ECE (Naeini et al., 2015; Ovadia et al., 2019) is often used to
measure the uncertainty quantification under data shift. We separate data into bins of the same size according
to the confidence level, calculate the difference between the accuracy and the averaged confidence in each bin
and then average the absolute differences among all bins. Better calibrated models have lower ECE. ECE
has its faults (for example the trivial classifier has zero ECE) but it is nonetheless informative. We selected
the number of bins to be 20.

Fig. 4 shows the ECE of each method under data shift. As we can see, both VIFO-mean and VIFO-mv
achieve the best performance compared to all other methods.

Entropy Entropy (Ovadia et al., 2019) of the categorical predictive distribution is used to measure the
uncertainty quantification for out-of-distribution (OOD) data as the labels for OOD data are meaningless.
We want our model to be as uncertain as possible and this implies high entropy and low confidence (the
maximum probability assigned to any class) in the predictive distribution. We summarize the averaged
entropy for the entire dataset in Fig. 5 and Fig. E.4. We can see that both VIFO-mean and VIFO-mv are
better than all other methods except repulsive ensembles and the Dirichlet method. However, as observed
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(a) CIFAR10→STL10, AlexNet (b) STL10→CIFAR10, AlexNet

(c) CIFAR10→STL10, PreResNet20 (d) STL10→CIFAR10, PreResNet20

Figure 4: ECE (↓) on AlexNet and PreResNet20 under data shift. Dashed line indicates the best performance
of VIFO. Numerical results are listed in the Appendix.

in Fig. 3 and Fig. E.2, repulsive ensembles and the Dirichlet method have poor performance in terms of
log loss due to underconfident predictions. Hence they achieve high entropy by sacrificing in distribution
performance whereas VIFO performs well. Further, we observe from Fig. 5 that auxiliary training greatly
improve the performance of VIFO on PreResNet20. Auxiliary training only has a small impact on VIFO
with AlexNet (see Fig. E.4) but VIFO already performs well without auxiliary training in this case.

AUROC We use maximum probability of the categorical predictive distribution as the criterion to separate
in-distribution and OOD data and compute the area under the ROC curve (Malinin & Gales, 2018). AUROC
overcomes the drawbacks of ECE and entropy because a trivial model cannot yield the best performance.
Detailed comparison plots are in given in Fig. E.5 and Fig. E.6 in the Appendix. We first note that, as above,
auxiliary training improves the performance on PreResNet20 but not significantly on AlexNet. We found that
there is no single method that consistently outperforms all other methods. Instead, for better visualization,
we show the comparison of VIFO-mean and VIFO-mv with other methods in Fig. 6. For each baseline, we
count the number of experiments that VIFO performs better and get the corresponding proportion. We
observe that overall, VIFO-mv is better than all other methods except the Dirichlet method and that it
ranks better than VIFO-mean. Though the Dirichlet method performs better than VIFO on OOD data, its
poor in-distribution performance makes it less desirable. On the other hand, VIFO outperforms all other
baselines for OOD and has strong in distribution performance and hence give better overall predictions.

7 Conclusion

In Bayesian neural networks, the distribution of the last layer directly affects the predictive distribution.
Motivated by this fact, we proposed variational inference on the final-layer output, VIFO, that uses a neural
network to directly learn the mean and variance of the last layer. We showed that VIFO can match the
expressive power of VI in linear cases with a strong prior but that in general it provides a less expressive model.
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(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure 5: Entropy (↑) on PreResNet20.

Figure 6: Comparison of VIFO with all other methods in terms of AUROC on OOD data. Y-axis is the
proportion of experiments that VIFO is better than other methods. Exact AUROC values are provided in
the appendix.

On the other hand the simplicity of the model enables fast training of ensembles of VIFO and facilitates
convergence analysis through Rademacher bounds. In addition, VIFO can be derived as a non-standard
variational lower bound, which provides an approximation for the last layer. This connection allowed us
to derive better regularizations for VIFO by using collapsed variational inference over a hierarchical prior.
Since VIFO treats each input separately, we can incorporate auxiliary inputs to help the model distinguish
in-distribution and out-of-distribution data. Empirical evaluation highlighted that ensembles of VIFO are
competitive with or outperform other methods in terms of in-distribution loss and out-of-distribution data
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detection. Hence VIFO gives a new attractive approach for approximate inference in Bayesian models. The
efficiency of VIFO also means faster test time predictions which can be important when deploying Bayesian
models for real-time applications. Future work could explore more informative auxiliary input to improve
the performance of VIFO, and investigate the connections to variational inference in functional space that
induces more complex priors.
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pseudo inverse and pseudo determinant. The VIFO objective is:
N∑

i=1

{
Eq(z|xi)[log p(yi|z)]

}
− KL(q(z|XN )||p(z|XN )) (11)

=
N∑

i=1

{
Eq(z|xi)[log p(yi|z)]

}
− 1

2 tr((X⊤
NS0XN )−1(X⊤

NV XN )) + N

2

+1
2 log |(X⊤

NS0XN )−1(X⊤
NV XN )| − 1

2(w⊤XN −m⊤
0 XN )(X⊤

NS0XN )−1(w⊤XN −m⊤
0 XN )⊤. (12)

First consider the loss term. Let L be the Cholesky decomposition of V , i.e. V = LL⊤. By reparametrization,
for ϵ ∼ N (0, Id), w⊤xi + x⊤

i Lϵ ∼ N (w⊤xi, x
⊤
i LL

⊤xi) and thus

Eq(z|xi)[log p(yi|z)] = Eϵ∼N (0,Id)[log p(yi|w⊤xi + x⊤
i Lϵ)]

= Eϵ∼N (0,Id)[log p(yi|(w + Lϵ)⊤xi)]
= Eθ∼N (w,LL⊤)[log p(yi|θ⊤xi)], (13)

where the last equality uses reparametrization in a reverse order. By aligning w = m and V = LL⊤ = S, we
recognize that Eq equation 13 is exactly the loss term in Eq equation 9. Thus the low-dimensional posterior
on z yields the same loss term as the high-dimensional posterior over W .

For the regularization, we use the pseudo inverse derivation from Eq (224) of Petersen & Pedersen (2012),
where for A = CD we have A+ = D⊤(DD⊤)−1(C⊤C)−1C⊤ to get

(X⊤
NS0XN )−1 = X⊤

N (XNX
⊤
N )−1S−1

0 (XNX
⊤
N )−1XN

and the same for V . Thus,

(X⊤
NS0XN )−1(X⊤

NV XN ) = X⊤
N (XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1XNX

⊤
NV XN

= X⊤
N (XNX

⊤
N )−1S−1

0 V XN ,

tr|X⊤
N (XNX

⊤
N )−1S−1

0 V XN | = tr|XNX
⊤
N (XNX

⊤
N )−1S−1

0 V |
= tr(S−1

0 V ),

and

(w⊤XN −m⊤
0 XN )(X⊤

NS0XN )−1(w⊤XN −m⊤
0 XN )⊤

=(w −m0)⊤XN (X⊤
N (XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1XN )X⊤

N (w −m0)
=(w −m0)⊤(XNX

⊤
N )(XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1(XNX

⊤
N )(w −m0)

=(w −m0)⊤S−1
0 (w −m0).

For the The log-determinant term we use the pseudo-determinant (Minka, 2001), which is the product of
non-zero eigenvalues. Let (λi, ui)d

i=1 be the set of eigenvalues and eigenvectors of S−1
0 V , i.e., S−1

0 V ui = λui,
and let X‡

N = X⊤
N (XNX

⊤
N )−1 denote the pseudo inverse of XN , then

(X‡
NS

−1
0 V XN )X‡

Nui = X‡
NS

−1
0 V ui = λX‡

Nui, (14)

thus (λi, X
‡
Nui)d

i=1 is the eigenvalues and eigenvectors of X⊤
N (XNX

⊤
N )−1S−1

0 V XN . Since the rank of this
matrix is at most d, other eigenvalues are 0 and the pseudo determinant is

∏d
i=1 λi, which is exactly the

determinant of S−1
0 V . Then the regularization term in equation 9 can be simplified to:

−KL(q(z|XN )||p(z|XN )) = −1
2 tr(S−1

0 V ) + 1
2 log |S−1

0 V | − 1
2(w −m0)⊤S−1

0 (w −m0) + N

2 . (15)

By aligning w = m,V = S, we can seet that equation 15 is exactly the regularizer in equation 9 ignoring
the constant.
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Note for the case K > 1: Let θ ∈ Rd×K . For VI, we make a mean field assumption with q(θk) =
N (θk|mk, Sk) and q(θ) =

∏K
k=1 q(θk), where θk is the k-th column of θ. For VIFO, using mean field let

q(zk|x) = N (zk|w⊤
k x, x

⊤Vkx) and q(z|x) =
∏K

k=1 q(zk|x). By aligning wk = mk and V = Sk, we can find
Eq(z|xi)[log p(yi|z1, . . . zK)] = Eq(θ)[log p(yi|(θ⊤

1 xi, . . . , θ
⊤
Kxi))], and

KL(q(θ)||p(θ)) =
∑

k

KL(q(θk), p(θk)) .=
∑

k

KL(q(zk|XN )||p(zk|XN )), (16)

where the second .= means equivalence ignoring a constant difference.

Proof of Theorem 3.2. Consider a neural network with one single hidden layer, denote the weights of the
first layer as u, and the weights of the second layer as w. Thus, the k-th output can be computed as:

z(k) =
I∑

i=1
wk,iψ

(
D∑

d=1
ui,dxd

)
,

where I is the size of the hidden layer, D is the input size and ψ(a) = max(0, a) is the ReLU activation
function. We further simplify the setting by considering the special case where only x1 is non-zero and I = 1.
Then the k-th output becomes:

z(k) = wk,1ψ(u1,1x1).

Consider a distribution q(wk,i) = N (w̄k,i, σ
2
w), q(ui,d) = N (ūi,d, σ

2
u). Then if x1 ≥ 0,

Eq(w)q(u)

[
z(k)

]
= Ew,u [wk,1ψ(u1,1x1)]

= w̄k,1

ū1,1 +
ϕ
(

− ū1,1
σu

)
1 − Φ

(
− ū1,1

σu

)σu

(1 − Φ
(

− ū1,1

σu

))
x1; (17)

if x1 < 0, then

Eq(w)q(u)

[
z(k)

]
= Ew,u [wk,1ψ(u1,1x1)]

= w̄k,1

ū1,1 −
ϕ
(

− ū1,1
σu

)
Φ
(

− ū1,1
σu

)σu

Φ
(

− ū1,1

σu

)
x1, (18)

where ϕ and Φ are the pdf and cdf of standard normal distribution and we directly use the expectation of
the truncated normal distribution. Now consider w̃ and ũ that aim to recover (17) and (18). If ũ1,1 ≥ 0,
it cannot successfully recover (18) because the ReLU activation will have 0 when x1 < 0 so that it cannot
recover (18); if ũ1,1 < 0, for the same reason it cannot recover (17).

A.2 Proofs in Section 4

Verifying Assumption 4.1: We next verify that Assumption 4.1 holds for classification and (with a
modified loss) for regression.

For K-classification, z is K-dimensional and the negative log-likelihood is

− log p(y = k|z) = − log exp(zk)∑K
i=1 exp(zi)

= −zk + log
K∑

i=1
exp(zi)

which is 1-Lipschitz in z.

For regression, z = (m, l) is 2-dimensional, and the negative log-likelihood is:

− log p(y|z) = 1
2(y −m)2 exp(−l) + 1

2 l.
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Neither the quadratic function nor exponential function is Lipschitz. But we can replace the unbounded
quadratic function (y−m)2 with a bounded version min{(y−m)2, B2

m}, and replace the exponential function
exp(−l) with min{exp(−l), Bl}, where B > 0, to guarantee the Lipschitzness. Now the negative log-likelihood
is:

− log p(y|z) = 1
2 min{(y −m)2, B2

m} min{exp(−l), Bl} + 1
2 l,

is (BmBl)-Lipschitz in m,
( 1

2 + 1
2B

2
mBl

)
-Lipschitz in l.

Verifying Assumption 4.2: For Assumption 4.2, we can use g(l) = log(1 + exp(l)) which is 1-Lipschitz.
If g(l) = exp(l) is the exponential function, we can use a bounded variant that satisfies the requirement
g(l) = max{exp(x), Bg}.

Proof of Lemma 4.3. We prove the lemma for L = 1. If this is not the case, we can define ϕ′ = 1
Lϕ, and use

the fact that R(ϕ(A×B)) ≤ LR(ϕ′(A×B)). Let Ci = {(a1+b1, . . . , ai−1+bi−1, ϕ
′(ai, bi), ai+1+bi+1, . . . , aN +

bN ) : a ∈ A, b ∈ B}. It suffices to prove that for any set A,B and all i we have R(Ci) ≤ R(A) + R(B).
Without loss of generality we prove the case for i = 1.

NR(C1) = Eσ

[
sup
c∈C1

σ1ϕ(a1, b1) +
N∑

i=2
σi(ai + bi)

]

= 1
2Eσ2,...,σN

[
sup

a∈A,b∈B

(
ϕ(a1, b1) +

N∑
i=2

σi(ai + bi)
)

+ sup
a′∈A,b′∈B

(
−ϕ(a′

1, b
′
1) +

N∑
i=2

σi(a′
i + b′

i)
)]

= 1
2Eσ2,...,σN

[
sup

a,a′∈A,b,b′∈B

(
ϕ(a1, b1) − ϕ(a′

1, b
′
1) +

N∑
i=2

σi(ai + bi) +
N∑

i=2
σi(a′

i + b′
i)
)]

≤ 1
2Eσ2...σN

[
sup

a,a′∈A,b,b′∈B

(
|a1 − a′

1| + |b1 − b′
1| +

N∑
i=2

σi(ai + bi) +
N∑

i=2
σi(a′

i + b′
i)
)]

= 1
2Eσ2,...,σN

[
sup

a,a′∈A

(
a1 − a′

1 +
N∑

i=2
σiai +

N∑
i=2

σia
′
i

)]

+ 1
2Eσ2,...,σN

[
sup

b,b′∈B

(
b1 − b′

1 +
N∑

i=2
σibi +

N∑
i=2

σib
′
i

)]
= NR(A) +NR(B).

Proof of Theorem 4.5. We show that the loss is Lipschitz in fW1(x) and fW2(x). Fix any x, and W,W ′. We
denote the mean and standard deviation of qW (z|x) by µ and s and the same for qW ′(z|x). We use · for
Hadamard product.

EqW (z|x)[− log p(y|z)] − EqW ′ (z|x)[− log p(y|z)]
=Eϵ∼N (0,I)[log p(y|µ′ + ϵ · s′) − log p(y|µ+ ϵ · s)]
≤Eϵ∼N (0,I) [L0∥(µ− µ′) + ϵ · (s− s′)∥2] (Lipschitz)

≤L0∥µ− µ′∥2 + L0Eϵ

[√
∥ϵ · (s− s′)∥2

2

]
≤L0∥µ− µ′∥2 + L0

√
Eϵ[∥ϵ · (s− s′)∥2

2] (Jensen’s Ineq)

=L0(∥µ− µ′∥2 + ∥s− s′∥2)
≤L0(∥µ− µ′∥1 + ∥s− s′∥1).
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For the 6th line note that Eϵ[∥ϵ·(s−s′)∥2
2] = Eϵ[

∑
i ϵ

2
i (si−s′

i)2] =
∑

i Eϵi∼N (0,1)[ϵ2i (si−si)2] =
∑

i(si−s′
i)2 =

∥s− s′∥2
2. The loss function is Lipschitz in µ, which is exactly fW1(x). Further, s is L1-Lipschitz in the logit

fW2(x), thus, the loss function is (L0 max{1, L1})-Lipschitz in the concatenation of fW1(x) and fW2(x), each
of which is of dimension K. The theorem now follows from Corollary 4.4.

B Derivations of Collapsed Variational Inference

As is shown by Tomczak et al. (2021), for priors and approximate posteriors from the exponential family,
we can derive the closed-form solution for the optimal q∗(µp, σ

2
p),

log q∗(µp, σ
2
p|x) ∝ log p(µp, σ

2
p) + Eq(z|x)[log p(z|µp, σ

2
p)], (19)

for optimizing q(µp, σ
2
p) for every single data. Our derivations follow the methodology of Tomczak et al.

(2021) but they are applied on the output z instead of the weights W .

B.1 Learn mean, fix variance

Let p(z|µp) = N (z|µp, γI), p(µp) = N (µp|0, αI). Recall that q(z|x) = N (µq(x),diag(σ2
q (x))). Then

log q∗(µp|x) ∝ log p(µp) + Eq(z|x)[log p(z|µp)]

∝ − 1
2αµ

⊤
p µp − 1

2γ [(µp − µq(x))⊤(µp − µq(x)) + 1⊤σ2
q (x)]

∝ −α+ γ

2αγ

(
µp − α

α+ γ
µq(x)

)⊤(
µp − α

α+ γ
µq(x)

)
.

Then q∗(µp) = N ( α
α+γµq(x), αγ

α+γ I). Pluging q∗ into the regularizer, the new regularizer becomes

1
2γ

[
1⊤σ2

q (x) + γ

γ + α
µq(x)⊤µq(x)

]
− 1

21⊤ log σ2
q (x) + K

2 log(γ + α) − K

2 .

B.2 Learn both mean and variance

Let p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp|σ2

p) = N (µp|0, 1
tσ

2
p), p(σ2

p) = IG(σ2
p|α, β), where IG indicates the inverse

Gamma distribution. Let q(µp) be a diagonal Gaussian and q(σ2
p) be inverse Gamma. Use µp,i and σp,i to

denote the i-th entry of µp and σp respectively, then

log q∗(µp,i, σ
2
p,i)

∝ log p(µp,i, σ
2
p,i) + Eq(z|x)[log p(z|µp, σ

2
p)]

∝ − (α+ 3
2) log σ2

p,i −
2β + tµ2

p,i

2σ2
p,i

− 1
2 log σ2

p,i − 1
2

(µp,i − µq,i(x))2

σ2
p,i

− 1
2
σ2

q,i(x)
σ2

p,i

∝ − (α+ 2) log σ2
p,i − 1

2σ2
p,i

(
2
(
β + t

2(t+ 1)µq,i(x)2 + 1
2σ

2
q,i(x)

)
+ (t+ 1)

(
µp,i − µq,i(x)

t+ 1

)2
)

follows the normal-inverse-gamma distribution. Thus q∗(µp|x) = N (µp| 1
t+1µq(x), 1

t+1σ
2
p) and q∗(σ2

p|x) =
IG(σ2

p|(α+ 1
2 )1, β + t

2(t+1)µq(x)2 + 1
2σ

2
q (x)). Then the regularizer becomes

(α+ 1
2)1⊤ log

[
β1 + t

2(1 + t)µq(x)2 + 1
2σ

2
q (x)

]
− 1

21⊤ log σ2
q (x). (20)
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B.3 Empirical Bayes

Let p(σ2
p) = IG(σ2

p|α, β), p(z|σ2
p) = N (z|0, σ2

pI), and let q(σ2
p) be a delta distribution. Then

KL(q(z|x)||p(z|σ2
p)) − log p(σ2

p)

=1
2

[
K log σ2

p − 1⊤ log σ2
q (x) −K +

1⊤σ2
q (x)
σ2

p

+ µq(x)⊤µq(x)
σ2

p

]
+ (α+ 1) log σ2

p + β

σ2
p

.

By taking the derivatives of the above equation with respect to σ2
p and solving, we obtain the optimal

σ2
p = µq(x)⊤µq(x)+1⊤σ2

q (x)+2β

K+2α+2 . If we plug this back into the KL term, we get the regularizer:

1
2

[
K log

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β

K + 2α+ 2 − 1⊤ log |σ2
q (x)|

]

− K

2 + 1
2

(K + 2α+ 2)(µq(x)⊤µq(x) + 1⊤σ2
q (x))

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β . (21)

However, if we include the negative log-prior term (α + 1) log µq(x)⊤µq(x)+1⊤σ2
q (x)+2β

K+2α+2 +
β K+2α+2

µq(x)⊤µq(x)+1⊤σ2
q (x)+2β

, adding them up we will have

1
2(K + 2α+ 2) log

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β

K + 2α+ 2 − 1⊤ log σ2
q (x) + const,

which highly reduces the complexity of the regularizer. This performs less well in practice and therefore we
follow Wu et al. (2019) and use equation 21.

C Optimizing the Variational Distribution for All Data

In the previous section we show the derivation of collapsed variational inference where q∗(µp, σ
2
p) is optimized

for every data point x. In this section we show how to optimize q(µp, σ
2
p) for all data and obtain different

regularizers to the ones mentioned in the above section. These perform less well in practice but we include
them here for completeness. The closed-form solution for q∗(µp, σ

2
p) for all data is

log q∗(µp, σ
2
p) ∝ 1

N

∑
(x,y)∈D

{
log p(µp, σ

2
p) + Eq(z|x)[log p(z|µp, σ

2
p)]
}
. (22)

C.1 Learn mean, fix variance, optimize for all data

Let p(z|µp) = N (z|µp, γ), p(µp) = N (µp|0, α). Given a dataset D = {(x, y)}, we can get one optimal q∗(µp)
for all data. According to equation 22,

log q∗(µp) ∝ 1
N

∑
(x,y)∈D

{
log p(µp) + Eq(z|x)[log p(z|µp)]

}

∝ − 1
2αµ

⊤
p µp − 1

2γN
∑

(x,y)∈D

((µp − µq(x))⊤(µp − µq(x)) + 1⊤σ2
q (x))

∝ −α+ γ

2αγ

µp − 1
N

∑
(x,y)∈D

µq(x)

⊤µp − 1
N

∑
(x,y)∈D

µq(x)

 .

22



Published in Transactions on Machine Learning Research (09/2024)

Then the optimal q∗(µp) = N ( α
α+γ

1
N

∑
x µq(x), αγ

α+γ I). Let µ̄q = 1
N

∑
x µq(x). The regularizer now is:

∑
(x,y)

{
Eq(µp)[KL(q(z|x)||p(z|µp, γ))] + KL(q(µp)||p(µp))

}

=
∑
(x,y)

{
Eq(µp)

[
K log γ − 1⊤ log σ2

q (x) −K + 1
γ

1⊤σ2
q (x) − 1

γ
(µq(x) − µp)⊤(µq(x) − µp)

]}

+ N

2

[
K log α+ γ

γ
−K +K

γ

γ + α
+ α2

(α+ γ)2 µ̄
⊤
q µ̄q

]
=
∑
(x,y)

{
1

2γ (1⊤σ2
q (x) + µq(x)⊤µq(x)) − 1

21⊤ log σ2
q (x)

}
− N

2

(
1
γ

− 1
α+ γ

)
µ̄⊤

q µ̄q + NK

2 log(α+ γ) − NK

2 .

(23)

We refer to this method as “VIFO-mean_all”.

C.2 Learn both mean and variance, optimize mean for single data, and variance for all data

Let p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp|σ2

p) = N (µp|0, 1
tσ

2
p), p( 1

σ2
p
) = IG( 1

σ2
p
|α, β). Consider that

log p(µp,i, σ
2
p,i) + Eq(z|x)[log p(z|µp,i, σ

2
p,i)] (24)

= log p(µp,i|σ2
p,i) + log p(σ2

p,i) + Eq(z|x)[log p(z|µp,i, σ
2
p,i)] (25)

∝ − t

2
µ2

p,i

σ2
p,i

− 1
2 log σ2

p,i − (α+ 1) log σ2
p,i − β

σ2
p,i

− 1
2 log σ2

p,i − 1
2σ2

p,i

((µp,i − µq,i(x))2 + σ2
q,i(x)) (26)

= − t

2
µ2

p,i

σ2
p,i

− log σ2
p,i − (α+ 1) log σ2

p,i − β

σ2
p,i

− 1
2σ2

p,i

((µp,i − µq,i(x))2 + σ2
q,i(x)), (27)

= − t+ 1
2σ2

p,i

(
µp,i − 1

t+ 1µq,i(x)
)2

−
tµ2

q,i(x)
2(t+ 1)σ2

p,i

− (α+ 2) log σ2
p,i − β

σ2
p,i

−
σ2

q,i(x)
2σ2

p,i

(28)

Then by extracting the µp part from equation 28, we have

log q∗(µp,i|σ2
p,i, x) ∝ − t+ 1

2σ2
p,i

(
µp,i − 1

t+ 1µq,i(x)
)2

,

and thus q∗(µp|x, σ2
p) = N (µp| 1

t+1µq(x), 1
t+1σ

2
p). Then we try to marginalize out µp to compute q∗(σ2

p).

log q∗(σ2
p,i) ∝ 1
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log
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(
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2
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and q∗(σ2
p) = IG(σ2

p|(α + 1
2 )1, β + t

2(t+1)
1
N

∑
x µq(x)2 + 1

2
1
N

∑
x σ

2
q (x)). Let µ̃q =

√
1
N

∑
x µq(x)2 and

σ̃q =
√

1
N

∑
x σq(x)2, then the regularizer becomes:

(α+ 1
2)N1⊤ log

[
β1 + t

2(1 + t) µ̃
2
q + 1

2 σ̃
2
q

]
−
∑
(x,y)

1
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q (x) (29)

+KN log Γ(α)
Γ(α+ 1

2 )
−NKα log β + NK

2 log t+ 1
t

− NK

2 . (30)

We refer to this method as “VIFO-mv_all”.

C.3 Empirical Bayes for all data

If we optimize σ2
p for all data, then we have∑

(x,y)∈D

{
KL(q(z|x)||p(z|σ2

p)) − log p(σ2
p)
}
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∑
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2

[
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p − 1⊤ log σ2
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and the optimal variance being µ̃⊤
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p+2β

K+2α+2 where µ̃q =
√

1
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∑
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objective is:
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2 log
2β + µ̃2

q + σ̃2
q

K + 2α+ 2 − 1
2
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1⊤ log σq(x)2 − NK

2

+1
2
K + 2α+ 2

2β + µ̃2
q + σ̃2

q

∑
x

(µq(x)⊤µq(x) + 1⊤σ2
q (x)).

This method is called “VIFO-eb_all”.

D Experimental Details

D.1 Experiments on Artificial Dataset

To generate Fig. 1 and Fig. 2, we generate 100 training data points y = 2 sin x + 0.1ϵ, ϵ ∼ N (0, 1), where
xtrain ∈ [− 3

4π,−
1
2π] ∪ [ 1

2π,
3
4π] and xtest ∈ [−π, π]. We use a multilayer perceptron neural network with 5

layers, each layer containing 50 hidden units to fit the data. For VI, we pick the prior standard deviation
to be 1.0 and for VIFO-mean, we select γ = 0.3, γ

α+γ = 0.05. For both models, we select the regularization
parameter η = 0.1 and for VIFO we choose ηaux = 1.0. For linear regression, we can explicitly compute the
predicted variance if we use exponential function as the link function. Suppose p(y|z) = N (y | m, exp(l))
and p(m | x) = N (m | µm, σ

2
m), p(l | x) = N (l | µl, σ

2
l ), then p(y | x) = N (y | µm, σ

2
m + exp(ml + σ2

l /2)).
See Appendix B.3 of Wu et al. (2019) for the derivation. To visualize the predictive distribution inducted
by the prior, we draw multiple z’s from prior, then draw multiple y’s from likelihood p(y|z) and plot them
in Fig. 2.

D.2 Experiments on Large Image Datasets

In this section we elaborate the experimental details, including the choice of hyperparameters, learning rates
and the number of training epochs.

Number of training epochs: We train all methods in 500 epochs.
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Learning rate: For all methods other than SGD, SWA and SWAG, we use the Adam optimizer with
learning rate 0.001.

VI and VIFO: We first list the choices of the variance for naive variational methods. The choice of prior
variance significantly affects the performance. For image datasets with complex neural networks, the total
prior variance of VI grows with the number of parameters so we have to pick a small variance and we use
0.05 following the setting of Wilson et al. (2022). Since VIFO samples in the output space which is small,
using 0.05 regularizes too strongly and we therefore set a larger value of 1 for the variance.

For collapsed variational inference, we pick γ = 0.3, αreg = γ
α+γ = 0.05 for learn-mean regularizer (VI-mean,

VIFO-mean, VIFO-mean-all) and α = 0.5, β = 0.01, δ = t
1+t = 0.1 for learn-mean-variance regularizer (VI-

mv, VIFO-mv, VIFO-mv_all), which exactly follows Tomczak et al. (2021). We pick α = 4.4798 and β = 10
for empirical Bayes (VI-eb, VIFO-eb, VIFO-eb_all). The choice of α in empirical Bayes follows Wu et al.
(2019) but the choice of β is unclear in Wu et al. (2019) so we just perform a simple search from {1, 10, 100}
and set β = 10 that yields the best result.

For both VI and VIFO, the regularization parameter η is fixed at 0.1.

Hybrid Methods: The hybrid methods (SGD, SWA and SWAG) are not very stable so we have to tune
learning rates carefully for each dataset. We choose the momentum to be 0.9 for all cases and list all other
information in Table D.1. Notice that it is hard to train the hybrid methods on SVHN using AlexNet, so we
initialize with a pre-trained model that is trained with a larger learning rate 0.1 to find a region with lower
training loss, and then continue to optimize with the parameters listed in Table D.1.

Dropout: For Dropout we add a Dropout layer following each activation layer in the base model and set
the Dropout probability p = 0.1.

Repulsive Ensembles: Repulsive ensembles run multiple copies of the base model with a kernel base
penalty to make sure the models are diverse. We use RBF kernel with lengthscale being the median of the
square of the norm.

Dirichlet: Dirichlet-based models are deterministic and they interpret the output of the last layer as
the parameters of dirichlet distributions, i.e., α(x) = g(fW (x)), where g maps the output to positive real
numbers. Hence we run the Dirichlet models with the setting of the base model. We next explain the setting
of hyperparameters. As discussed by Bengs et al. (2022), the models of Sensoy et al. (2018); Charpentier
et al. (2020) implicitly perform variational inference:

p ∼ Dir(α0), y|p ∼ Cat(p), (31)

and the ELBO becomes

log p(y|x) ≥ Eq(p|x)[log p(y|p)] − KL(q(p|x)||Dir(p|α0)), (32)

where q(p|x) = Dir(p|α(x)). In the experiments, following Sensoy et al. (2018); Bengs et al. (2022), we
use a uniform prior with α0 = [1, . . . , 1]. As in VI and VIFO, we pick the regularization parameter for KL
divergence to be 0.1.

Last layer Laplace: We first train a neural network to obtain a MAP solution with a prior variance of
0.05. Then, we use the code from Daxberger et al. (2021) to optimize the prior precision hyperparameter
through post-hoc marginal likelihood maximization.

VBLL: We adapt the code from Harrison et al. (2024) and utilize the default hyperparameters. We choose
the discriminative classification setting, as it yields the best OOD performance according to Harrison et al.
(2024).
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Table D.1: The parameters for running the hybrid algorithms. “lr”-learning rate, “wd”-weight decay,
“swag_lr”-the learning rate after we start collecting models in SWA and SWAG algorithms, “swag_start”-
the epochs when we start to collect models, “epochs”-the number of training epochs.

lr wd swag_lr swag_start epochs
CIFAR10 / CIFAR100 0.05 0.0001 0.01 161 500

SVHN∗ 0.001 0.0001 0.005 161 500
STL10 0.05 0.001 0.01 161 500

E Additional Plots

E.1 Accuracy on PreResNet20

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.1: Test accuracy (↑) on PreResNet20. Dashed lines indicate the best version of VIFO.
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E.2 Results on AlexNet

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.2: Test log loss (↓) of image datasets on AlexNet. Dashed lines indicate the best version of VIFO.
The error bar is three times of the standard deviation for better visualization and same for other figures.
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.3: Test accuracy (↑) on AlexNet. Dashed lines indicate the best version of VIFO.

(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.4: Entropy (↑) on AlexNet.
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E.3 AUROC Comparisons

(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.5: AUROC (↑) on AlexNet.

(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.6: AUROC (↑) on PreResNet20.
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E.4 Learning Curves

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.7: Learning curves for all datasets on AlexNet. We conducted 5 independent runs and report the
mean and standard deviation (which is very small). The results show that in all cases, VIFO-mean converges
as fast as, or faster than, VI.
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E.5 Ensembles

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.8: Test losses vs. size of ensemble. Results are shown for 5 independent runs on AlexNet.
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.9: Test losses vs. size of ensemble. Results are shown for 5 independent runs on PreResNet20.

32



Published in Transactions on Machine Learning Research (09/2024)

F Numerical Results

Table F.1: CIFAR10, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.388 ± 0.005 0.383 ± 0.002 0.382 ± 0.001 0.383 ± 0.002
VIFO-mean 0.338 ± 0.002 0.343 ± 0.002 0.344 ± 0.003 0.345 ± 0.004
VIFO-mv 0.315 ± 0.002 0.324 ± 0.000 0.315 ± 0.004 0.311 ± 0.002
VIFO-eb 0.347 ± 0.003 0.345 ± 0.001 0.345 ± 0.003 0.347 ± 0.002
VI-naive 0.329 ± 0.006
VI-mean 0.350 ± 0.010
VI-mv 0.315 ± 0.013
VI-eb 0.343 ± 0.004
SGD 0.375 ± 0.004
SWA 0.363 ± 0.006

SWAG 0.329 ± 0.002
Repulsive 0.785 ± 0.003

Dir 0.788 ± 0.002
Dropout 0.413 ± 0.013
Laplace 0.332 ± 0.009
VBLL 0.373 ± 0.003

Table F.2: CIFAR100, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.774 ± 0.008 1.840 ± 0.016 1.784 ± 0.008 1.811 ± 0.012
VIFO-mean 1.632 ± 0.003 1.687 ± 0.002 1.682 ± 0.017 1.683 ± 0.021
VIFO-mv 1.642 ± 0.011 1.716 ± 0.012 1.971 ± 0.053 2.250 ± 0.105
VIFO-eb 1.643 ± 0.008 1.651 ± 0.003 1.643 ± 0.004 1.649 ± 0.006
VI-naive 1.513 ± 0.024
VI-mean 1.642 ± 0.023
VI-mv 1.817 ± 0.022
VI-eb 1.441 ± 0.016
SGD 1.894 ± 0.024
SWA 1.768 ± 0.026

SWAG 1.768 ± 0.022
Repulsive 2.540 ± 0.016

Dir 3.218 ± 0.008
Dropout 2.024 ± 0.022
Laplace 1.738 ± 0.006
VBLL 1.649 ± 0.003
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Table F.3: STL10, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.113 ± 0.006 1.117 ± 0.005 1.112 ± 0.005 1.135 ± 0.008
VIFO-mean 1.030 ± 0.004 1.056 ± 0.005 1.066 ± 0.005 1.067 ± 0.011
VIFO-mv 1.078 ± 0.005 1.121 ± 0.002 1.112 ± 0.010 1.101 ± 0.008
VIFO-eb 1.141 ± 0.007 1.134 ± 0.008 1.127 ± 0.007 1.135 ± 0.002
VI-naive 0.975 ± 0.010
VI-mean 1.021 ± 0.013
VI-mv 1.095 ± 0.018
VI-eb 1.560 ± 0.054
SGD 1.419 ± 0.025
SWA 1.139 ± 0.011

SWAG 1.098 ± 0.005
Repulsive 1.388 ± 0.008

Dir 1.359 ± 0.003
Dropout 2.359 ± 0.045
Laplace 1.157 ± 0.007
VBLL 1.102 ± 0.008

Table F.4: SVHN, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.253 ± 0.001 0.256 ± 0.001 0.257 ± 0.001 0.251 ± 0.002
VIFO-mean 0.211 ± 0.002 0.214 ± 0.002 0.209 ± 0.001 0.208 ± 0.001
VIFO-mv 0.165 ± 0.002 0.169 ± 0.001 0.166 ± 0.001 0.170 ± 0.002
VIFO-eb 0.211 ± 0.001 0.214 ± 0.002 0.212 ± 0.002 0.214 ± 0.001
VI-naive 0.175 ± 0.002
VI-mean 0.219 ± 0.034
VI-mv 0.173 ± 0.003
VI-eb 0.182 ± 0.004
SGD 0.351 ± 0.002
SWA 0.251 ± 0.012

SWAG 0.238 ± 0.001
Repulsive 0.686 ± 0.007

Dir 0.692 ± 0.003
Dropout 0.211 ± 0.009
Laplace 0.244 ± 0.008
VBLL 0.177 ± 0.001
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Table F.5: CIFAR10, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.473 ± 0.005 0.487 ± 0.011 0.486 ± 0.010 0.479 ± 0.008
VIFO-mean 0.393 ± 0.010 0.433 ± 0.018 0.411 ± 0.013 0.430 ± 0.020
VIFO-mv 0.361 ± 0.010 0.371 ± 0.010 0.367 ± 0.006 0.363 ± 0.016
VIFO-eb 0.419 ± 0.014 0.429 ± 0.016 0.413 ± 0.007 0.425 ± 0.008
VI-naive 0.410 ± 0.028
VI-mean 0.415 ± 0.032
VI-mv 0.437 ± 0.029
VI-eb 0.429 ± 0.035
SGD 0.335 ± 0.013
SWA 0.336 ± 0.008

SWAG 0.307 ± 0.010
Repulsive 0.875 ± 0.007

Dir 0.961 ± 0.022
Dropout 0.423 ± 0.026
Laplace 0.324 ± 0.009
VBLL 0.366 ± 0.006

Table F.6: CIFAR100, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.880 ± 0.009 1.935 ± 0.020 1.864 ± 0.008 1.844 ± 0.011
VIFO-mean 1.632 ± 0.013 1.728 ± 0.005 1.686 ± 0.004 1.731 ± 0.018
VIFO-mv 2.726 ± 0.021 2.826 ± 0.008 2.899 ± 0.019 2.867 ± 0.014
VIFO-eb 2.076 ± 0.006 2.147 ± 0.004 2.340 ± 0.043 2.503 ± 0.034
VI-naive 1.642 ± 0.030
VI-mean 1.753 ± 0.086
VI-mv 1.804 ± 0.089
VI-eb 1.731 ± 0.097
SGD 1.445 ± 0.021
SWA 1.355 ± 0.023

SWAG 1.354 ± 0.019
Repulsive 2.948 ± 0.020

Dir 3.580 ± 0.009
Dropout 1.644 ± 0.045
Laplace 1.550 ± 0.014
VBLL 1.484 ± 0.017

35



Published in Transactions on Machine Learning Research (09/2024)

Table F.7: STL10, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.146 ± 0.012 1.159 ± 0.008 1.155 ± 0.015 1.145 ± 0.005
VIFO-mean 1.067 ± 0.009 1.066 ± 0.011 1.056 ± 0.007 1.069 ± 0.009
VIFO-mv 1.070 ± 0.017 1.078 ± 0.003 1.067 ± 0.019 1.073 ± 0.011
VIFO-eb 1.162 ± 0.015 1.164 ± 0.020 1.191 ± 0.014 1.180 ± 0.016
VI-naive 0.920 ± 0.032
VI-mean 1.000 ± 0.029
VI-mv 1.002 ± 0.036
VI-eb 1.018 ± 0.028
SGD 1.203 ± 0.008
SWA 1.100 ± 0.006

SWAG 1.100 ± 0.010
Repulsive 1.365 ± 0.009

Dir 1.418 ± 0.019
Dropout 1.665 ± 0.059
Laplace 1.130 ± 0.011
VBLL 1.072 ± 0.009

Table F.8: SVHN, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.391 ± 0.019 0.603 ± 0.057 0.486 ± 0.050 0.479 ± 0.018
VIFO-mean 0.341 ± 0.004 0.357 ± 0.004 0.385 ± 0.015 0.334 ± 0.015
VIFO-mv 0.269 ± 0.009 0.297 ± 0.010 0.323 ± 0.013 0.314 ± 0.009
VIFO-eb 0.359 ± 0.002 0.391 ± 0.008 0.452 ± 0.018 0.402 ± 0.028
VI-naive 0.314 ± 0.024
VI-mean 0.342 ± 0.040
VI-mv 0.359 ± 0.033
VI-eb 0.379 ± 0.057
SGD 0.337 ± 0.011
SWA 0.320 ± 0.009

SWAG 0.320 ± 0.009
Repulsive 0.822 ± 0.020

Dir 0.845 ± 0.031
Dropout 0.421 ± 0.068
Laplace 0.344 ± 0.017
VBLL 0.324 ± 0.008
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Table F.9: CIFAR10, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.914 ± 0.001 0.916 ± 0.001 0.915 ± 0.001 0.916 ± 0.001
VIFO-mean 0.916 ± 0.002 0.914 ± 0.001 0.914 ± 0.001 0.912 ± 0.001
VIFO-mv 0.914 ± 0.001 0.910 ± 0.001 0.912 ± 0.002 0.915 ± 0.002
VIFO-eb 0.914 ± 0.002 0.914 ± 0.001 0.913 ± 0.001 0.914 ± 0.002
VI-naive 0.893 ± 0.004
VI-mean 0.884 ± 0.004
VI-mv 0.901 ± 0.003
VI-eb 0.886 ± 0.003
SGD 0.907 ± 0.001
SWA 0.909 ± 0.001

SWAG 0.909 ± 0.001
Repulsive 0.915 ± 0.001

Dir 0.915 ± 0.001
Dropout 0.888 ± 0.003
Laplace 0.911 ± 0.001
VBLL 0.918 ± 0.001

Table F.10: CIFAR100, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.658 ± 0.003 0.651 ± 0.004 0.657 ± 0.003 0.644 ± 0.003
VIFO-mean 0.667 ± 0.002 0.654 ± 0.003 0.650 ± 0.007 0.658 ± 0.002
VIFO-mv 0.665 ± 0.002 0.638 ± 0.010 0.568 ± 0.038 0.558 ± 0.028
VIFO-eb 0.669 ± 0.002 0.671 ± 0.001 0.668 ± 0.003 0.664 ± 0.002
VI-naive 0.620 ± 0.003
VI-mean 0.608 ± 0.002
VI-mv 0.606 ± 0.002
VI-eb 0.629 ± 0.004
SGD 0.651 ± 0.002
SWA 0.652 ± 0.002

SWAG 0.652 ± 0.002
Repulsive 0.653 ± 0.002

Dir 0.654 ± 0.001
Dropout 0.596 ± 0.003
Laplace 0.622 ± 0.002
VBLL 0.660 ± 0.001
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Table F.11: STL10, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.670 ± 0.003 0.672 ± 0.002 0.674 ± 0.002 0.665 ± 0.001
VIFO-mean 0.680 ± 0.002 0.666 ± 0.003 0.669 ± 0.003 0.663 ± 0.003
VIFO-mv 0.678 ± 0.002 0.665 ± 0.002 0.665 ± 0.002 0.668 ± 0.002
VIFO-eb 0.662 ± 0.002 0.668 ± 0.002 0.670 ± 0.004 0.670 ± 0.002
VI-naive 0.661 ± 0.003
VI-mean 0.649 ± 0.009
VI-mv 0.644 ± 0.006
VI-eb 0.414 ± 0.025
SGD 0.614 ± 0.004
SWA 0.598 ± 0.006

SWAG 0.615 ± 0.003
Repulsive 0.675 ± 0.003

Dir 0.667 ± 0.004
Dropout 0.622 ± 0.004
Laplace 0.648 ± 0.004
VBLL 0.625 ± 0.003

Table F.12: SVHN, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.962 ± 0.001 0.962 ± 0.001 0.962 ± 0.000 0.962 ± 0.001
VIFO-mean 0.961 ± 0.001 0.962 ± 0.000 0.962 ± 0.001 0.963 ± 0.001
VIFO-mv 0.963 ± 0.001 0.962 ± 0.001 0.963 ± 0.000 0.962 ± 0.000
VIFO-eb 0.962 ± 0.000 0.961 ± 0.001 0.961 ± 0.000 0.961 ± 0.000
VI-naive 0.953 ± 0.002
VI-mean 0.945 ± 0.008
VI-mv 0.955 ± 0.001
VI-eb 0.950 ± 0.001
SGD 0.955 ± 0.001
SWA 0.954 ± 0.002

SWAG 0.957 ± 0.001
Repulsive 0.962 ± 0.001

Dir 0.964 ± 0.000
Dropout 0.949 ± 0.001
Laplace 0.961 ± 0.001
VBLL 0.960 ± 0.001
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Table F.13: CIFAR10, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.897 ± 0.003 0.896 ± 0.002 0.893 ± 0.003 0.899 ± 0.003
VIFO-mean 0.906 ± 0.002 0.900 ± 0.004 0.907 ± 0.002 0.904 ± 0.005
VIFO-mv 0.903 ± 0.001 0.902 ± 0.002 0.902 ± 0.001 0.903 ± 0.002
VIFO-eb 0.900 ± 0.003 0.900 ± 0.005 0.902 ± 0.002 0.901 ± 0.003
VI-naive 0.862 ± 0.009
VI-mean 0.867 ± 0.009
VI-mv 0.864 ± 0.010
VI-eb 0.859 ± 0.011
SGD 0.903 ± 0.003
SWA 0.902 ± 0.003

SWAG 0.907 ± 0.002
Repulsive 0.903 ± 0.002

Dir 0.901 ± 0.002
Dropout 0.866 ± 0.007
Laplace 0.899 ± 0.002
VBLL 0.904 ± 0.001

Table F.14: CIFAR100, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.631 ± 0.004 0.620 ± 0.005 0.631 ± 0.002 0.628 ± 0.002
VIFO-mean 0.642 ± 0.003 0.635 ± 0.003 0.643 ± 0.003 0.637 ± 0.006
VIFO-mv 0.436 ± 0.005 0.413 ± 0.007 0.398 ± 0.006 0.405 ± 0.004
VIFO-eb 0.579 ± 0.004 0.567 ± 0.009 0.535 ± 0.004 0.499 ± 0.017
VI-naive 0.620 ± 0.003
VI-mean 0.608 ± 0.002
VI-mv 0.606 ± 0.002
VI-eb 0.629 ± 0.004
SGD 0.638 ± 0.002
SWA 0.640 ± 0.002

SWAG 0.642 ± 0.002
Repulsive 0.610 ± 0.005

Dir 0.603 ± 0.003
Dropout 0.565 ± 0.010
Laplace 0.633 ± 0.004
VBLL 0.629 ± 0.003
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Table F.15: STL10, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.658 ± 0.004 0.658 ± 0.002 0.656 ± 0.001 0.656 ± 0.003
VIFO-mean 0.660 ± 0.003 0.663 ± 0.003 0.669 ± 0.004 0.663 ± 0.004
VIFO-mv 0.670 ± 0.004 0.663 ± 0.005 0.662 ± 0.005 0.662 ± 0.003
VIFO-eb 0.661 ± 0.004 0.661 ± 0.004 0.657 ± 0.003 0.660 ± 0.005
VI-naive 0.690 ± 0.009
VI-mean 0.674 ± 0.010
VI-mv 0.688 ± 0.009
VI-eb 0.638 ± 0.011
SGD 0.672 ± 0.002
SWA 0.673 ± 0.003

SWAG 0.679 ± 0.002
Repulsive 0.665 ± 0.005

Dir 0.668 ± 0.003
Dropout 0.621 ± 0.011
Laplace 0.680 ± 0.006
VBLL 0.665 ± 0.002

Table F.16: SVHN, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.930 ± 0.004 0.911 ± 0.014 0.912 ± 0.004 0.915 ± 0.008
VIFO-mean 0.933 ± 0.004 0.929 ± 0.001 0.930 ± 0.001 0.936 ± 0.009
VIFO-mv 0.934 ± 0.006 0.935 ± 0.005 0.928 ± 0.008 0.930 ± 0.002
VIFO-eb 0.929 ± 0.004 0.917 ± 0.005 0.905 ± 0.003 0.924 ± 0.007
VI-naive 0.914 ± 0.009
VI-mean 0.901 ± 0.015
VI-mv 0.902 ± 0.012
VI-eb 0.890 ± 0.019
SGD 0.929 ± 0.007
SWA 0.936 ± 0.006

SWAG 0.936 ± 0.006
Repulsive 0.931 ± 0.004

Dir 0.932 ± 0.002
Dropout 0.877 ± 0.023
Laplace 0.918 ± 0.005
VBLL 0.930 ± 0.003
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Table F.17: ECE:CIFAR10-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.042 ± 0.003 0.042 ± 0.002 0.047 ± 0.004 0.045 ± 0.003
VIFO-mean 0.056 ± 0.002 0.053 ± 0.003 0.055 ± 0.001 0.059 ± 0.002
VIFO-mv 0.067 ± 0.002 0.069 ± 0.002 0.068 ± 0.002 0.068 ± 0.003
VIFO-eb 0.039 ± 0.003 0.042 ± 0.002 0.038 ± 0.002 0.038 ± 0.002
VI-naive 0.108 ± 0.002
VI-mean 0.105 ± 0.007
VI-mv 0.131 ± 0.003
VI-eb 0.118 ± 0.004
SGD 0.152 ± 0.002
SWA 0.150 ± 0.001

SWAG 0.144 ± 0.001
Repulsive 0.246 ± 0.003

Dir 0.248 ± 0.002
Dropout 0.180 ± 0.002
Laplace 0.169 ± 0.007
VBLL 0.095 ± 0.002

Table F.18: ECE:STL10-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.053 ± 0.004 0.053 ± 0.004 0.040 ± 0.004 0.034 ± 0.004
VIFO-mean 0.065 ± 0.002 0.063 ± 0.003 0.055 ± 0.003 0.046 ± 0.002
VIFO-mv 0.075 ± 0.002 0.067 ± 0.003 0.078 ± 0.003 0.073 ± 0.002
VIFO-eb 0.081 ± 0.004 0.078 ± 0.002 0.066 ± 0.002 0.075 ± 0.004
VI-naive 0.072 ± 0.007
VI-mean 0.107 ± 0.007
VI-mv 0.155 ± 0.004
VI-eb 0.030 ± 0.006
SGD 0.238 ± 0.007
SWA 0.137 ± 0.016

SWAG 0.117 ± 0.007
Repulsive 0.197 ± 0.006

Dir 0.146 ± 0.004
Dropout 0.365 ± 0.007
Laplace 0.085 ± 0.004
VBLL 0.129 ± 0.007
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Table F.19: ECE:CIFAR10-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.029 ± 0.001 0.032 ± 0.003 0.032 ± 0.004 0.037 ± 0.004
VIFO-mean 0.036 ± 0.003 0.028 ± 0.005 0.032 ± 0.002 0.029 ± 0.003
VIFO-mv 0.058 ± 0.003 0.047 ± 0.004 0.052 ± 0.002 0.051 ± 0.002
VIFO-eb 0.024 ± 0.003 0.028 ± 0.005 0.031 ± 0.002 0.026 ± 0.002
VI-naive 0.126 ± 0.004
VI-mean 0.147 ± 0.002
VI-mv 0.159 ± 0.003
VI-eb 0.137 ± 0.005
SGD 0.092 ± 0.004
SWA 0.089 ± 0.001

SWAG 0.078 ± 0.003
Repulsive 0.259 ± 0.004

Dir 0.319 ± 0.007
Dropout 0.146 ± 0.002
Laplace 0.063 ± 0.002
VBLL 0.095 ± 0.001

Table F.20: ECE:STL10-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.021 ± 0.001 0.022 ± 0.002 0.025 ± 0.003 0.028 ± 0.004
VIFO-mean 0.029 ± 0.003 0.024 ± 0.005 0.019 ± 0.002 0.019 ± 0.003
VIFO-mv 0.088 ± 0.005 0.081 ± 0.003 0.081 ± 0.004 0.086 ± 0.002
VIFO-eb 0.051 ± 0.005 0.039 ± 0.002 0.030 ± 0.003 0.038 ± 0.002
VI-naive 0.129 ± 0.003
VI-mean 0.151 ± 0.004
VI-mv 0.171 ± 0.011
VI-eb 0.094 ± 0.005
SGD 0.112 ± 0.002
SWA 0.107 ± 0.003

SWAG 0.093 ± 0.004
Repulsive 0.185 ± 0.006

Dir 0.200 ± 0.005
Dropout 0.290 ± 0.007
Laplace 0.107 ± 0.003
VBLL 0.097 ± 0.009
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Table F.21: Entropy:CIFAR10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.357 ± 0.009 1.399 ± 0.023 1.286 ± 0.049 1.355 ± 0.033
VIFO-mean 1.344 ± 0.020 1.336 ± 0.021 1.313 ± 0.042 1.342 ± 0.039
VIFO-mv 1.344 ± 0.020 1.342 ± 0.018 1.354 ± 0.023 1.332 ± 0.017
VIFO-eb 1.330 ± 0.045 1.330 ± 0.026 1.323 ± 0.017 1.296 ± 0.027
VI-naive 1.238 ± 0.075
VI-mean 1.280 ± 0.157
VI-mv 1.053 ± 0.068
VI-eb 1.133 ± 0.069
SGD 0.633 ± 0.014
SWA 0.676 ± 0.014

SWAG 0.705 ± 0.011
Repulsive 1.990 ± 0.021

Dir 1.970 ± 0.002
Dropout 0.585 ± 0.033
Laplace 1.245 ± 0.025
VBLL 0.971 ± 0.049

Table F.22: Entropy:STL10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.772 ± 0.017 1.773 ± 0.015 1.779 ± 0.024 1.763 ± 0.011
VIFO-mean 1.840 ± 0.023 1.748 ± 0.012 1.818 ± 0.029 1.826 ± 0.015
VIFO-mv 1.889 ± 0.026 1.915 ± 0.031 1.848 ± 0.051 1.859 ± 0.018
VIFO-eb 1.764 ± 0.026 1.754 ± 0.018 1.798 ± 0.028 1.716 ± 0.012
VI-naive 1.601 ± 0.049
VI-mean 1.495 ± 0.018
VI-mv 1.345 ± 0.046
VI-eb 2.024 ± 0.019
SGD 1.127 ± 0.030
SWA 1.479 ± 0.047

SWAG 1.525 ± 0.010
Repulsive 2.208 ± 0.006

Dir 2.157 ± 0.008
Dropout 0.601 ± 0.037
Laplace 1.349 ± 0.007
VBLL 1.454 ± 0.044
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Table F.23: Entropy:SVHN-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.694 ± 0.008 1.711 ± 0.005 1.694 ± 0.003 1.693 ± 0.002
VIFO-mean 1.721 ± 0.013 1.735 ± 0.007 1.729 ± 0.009 1.742 ± 0.008
VIFO-mv 1.709 ± 0.014 1.738 ± 0.011 1.754 ± 0.014 1.758 ± 0.011
VIFO-eb 1.740 ± 0.015 1.749 ± 0.005 1.739 ± 0.007 1.773 ± 0.033
VI-naive 1.624 ± 0.048
VI-mean 1.711 ± 0.052
VI-mv 1.448 ± 0.036
VI-eb 1.577 ± 0.058
SGD 1.237 ± 0.009
SWA 1.323 ± 0.035

SWAG 1.465 ± 0.004
Repulsive 2.129 ± 0.003

Dir 2.121 ± 0.002
Dropout 1.206 ± 0.047
Laplace 1.696 ± 0.036
VBLL 1.466 ± 0.013

Table F.24: Entropy:SVHN-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.720 ± 0.007 1.734 ± 0.005 1.711 ± 0.004 1.708 ± 0.008
VIFO-mean 1.744 ± 0.007 1.756 ± 0.006 1.753 ± 0.011 1.756 ± 0.007
VIFO-mv 1.754 ± 0.012 1.763 ± 0.006 1.804 ± 0.017 1.790 ± 0.009
VIFO-eb 1.764 ± 0.016 1.776 ± 0.007 1.775 ± 0.017 1.765 ± 0.030
VI-naive 1.685 ± 0.056
VI-mean 1.772 ± 0.042
VI-mv 1.512 ± 0.041
VI-eb 1.631 ± 0.047
SGD 1.277 ± 0.009
SWA 1.371 ± 0.013

SWAG 1.507 ± 0.007
Repulsive 2.138 ± 0.004

Dir 2.132 ± 0.002
Dropout 1.272 ± 0.054
Laplace 1.702 ± 0.025
VBLL 1.508 ± 0.009
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Table F.25: Entropy:CIFAR10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.465 ± 0.007 1.516 ± 0.009 1.553 ± 0.006 1.540 ± 0.004
VIFO-mean 1.469 ± 0.009 1.553 ± 0.018 1.599 ± 0.005 1.580 ± 0.010
VIFO-mv 1.559 ± 0.013 1.611 ± 0.016 1.590 ± 0.017 1.543 ± 0.015
VIFO-eb 1.532 ± 0.011 1.540 ± 0.013 1.582 ± 0.018 1.548 ± 0.005
VI-naive 1.192 ± 0.025
VI-mean 1.097 ± 0.015
VI-mv 1.048 ± 0.019
VI-eb 1.174 ± 0.049
SGD 1.398 ± 0.009
SWA 1.398 ± 0.015

SWAG 1.586 ± 0.016
Repulsive 1.971 ± 0.006

Dir 2.246 ± 0.002
Dropout 0.995 ± 0.022
Laplace 1.523 ± 0.010
VBLL 1.252 ± 0.012

Table F.26: Entropy:STL10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.763 ± 0.008 1.770 ± 0.005 1.742 ± 0.009 1.728 ± 0.007
VIFO-mean 1.796 ± 0.006 1.908 ± 0.008 1.876 ± 0.002 1.862 ± 0.008
VIFO-mv 1.565 ± 0.007 1.607 ± 0.004 1.588 ± 0.005 1.574 ± 0.008
VIFO-eb 1.603 ± 0.005 1.637 ± 0.011 1.634 ± 0.008 1.656 ± 0.017
VI-naive 1.394 ± 0.020
VI-mean 1.323 ± 0.013
VI-mv 1.267 ± 0.030
VI-eb 1.517 ± 0.060
SGD 1.432 ± 0.022
SWA 1.462 ± 0.013

SWAG 1.579 ± 0.013
Repulsive 2.160 ± 0.005

Dir 2.194 ± 0.004
Dropout 0.830 ± 0.024
Laplace 1.313 ± 0.006
VBLL 1.481 ± 0.008
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Table F.27: Entropy:SVHN-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.531 ± 0.008 2.019 ± 0.026 1.942 ± 0.051 1.959 ± 0.039
VIFO-mean 1.515 ± 0.012 1.908 ± 0.080 1.850 ± 0.065 1.780 ± 0.028
VIFO-mv 1.568 ± 0.014 1.758 ± 0.051 1.848 ± 0.067 1.706 ± 0.057
VIFO-eb 1.539 ± 0.004 1.775 ± 0.038 1.898 ± 0.022 1.923 ± 0.015
VI-naive 1.213 ± 0.010
VI-mean 1.169 ± 0.017
VI-mv 1.080 ± 0.011
VI-eb 1.219 ± 0.029
SGD 1.384 ± 0.005
SWA 1.403 ± 0.002

SWAG 1.476 ± 0.005
Repulsive 2.006 ± 0.013

Dir 2.250 ± 0.001
Dropout 1.059 ± 0.019
Laplace 1.502 ± 0.008
VBLL 1.315 ± 0.007

Table F.28: Entropy:SVHN-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 1.529 ± 0.016 1.995 ± 0.042 1.860 ± 0.041 1.885 ± 0.054
VIFO-mean 1.543 ± 0.012 1.837 ± 0.070 1.875 ± 0.066 1.762 ± 0.052
VIFO-mv 1.588 ± 0.010 1.763 ± 0.061 1.875 ± 0.041 1.671 ± 0.039
VIFO-eb 1.544 ± 0.004 1.724 ± 0.045 1.895 ± 0.054 1.785 ± 0.028
VI-naive 1.222 ± 0.013
VI-mean 1.174 ± 0.016
VI-mv 1.078 ± 0.014
VI-eb 1.219 ± 0.024
SGD 1.375 ± 0.007
SWA 1.389 ± 0.011

SWAG 1.464 ± 0.005
Repulsive 2.014 ± 0.011

Dir 2.252 ± 0.002
Dropout 1.053 ± 0.014
Laplace 1.506 ± 0.008
VBLL 1.319 ± 0.006
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Table F.29: AUROC:CIFAR10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.860 ± 0.005 0.857 ± 0.008 0.833 ± 0.018 0.853 ± 0.018
VIFO-mean 0.873 ± 0.005 0.855 ± 0.008 0.858 ± 0.007 0.856 ± 0.008
VIFO-mv 0.893 ± 0.007 0.871 ± 0.004 0.873 ± 0.004 0.861 ± 0.006
VIFO-eb 0.860 ± 0.007 0.859 ± 0.007 0.864 ± 0.002 0.844 ± 0.010
VI-naive 0.898 ± 0.016
VI-mean 0.886 ± 0.029
VI-mv 0.893 ± 0.009
VI-eb 0.885 ± 0.010
SGD 0.851 ± 0.004
SWA 0.862 ± 0.009

SWAG 0.863 ± 0.005
Repulsive 0.857 ± 0.020

Dir 0.846 ± 0.006
Dropout 0.822 ± 0.011
Laplace 0.871 ± 0.006
VBLL 0.889 ± 0.003

Table F.30: AUROC:STL10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.787 ± 0.005 0.776 ± 0.009 0.781 ± 0.010 0.755 ± 0.015
VIFO-mean 0.789 ± 0.010 0.757 ± 0.006 0.768 ± 0.013 0.774 ± 0.006
VIFO-mv 0.798 ± 0.008 0.772 ± 0.010 0.764 ± 0.016 0.779 ± 0.013
VIFO-eb 0.793 ± 0.007 0.793 ± 0.010 0.769 ± 0.009 0.758 ± 0.005
VI-naive 0.818 ± 0.020
VI-mean 0.792 ± 0.011
VI-mv 0.775 ± 0.018
VI-eb 0.736 ± 0.044
SGD 0.750 ± 0.010
SWA 0.761 ± 0.010

SWAG 0.769 ± 0.005
Repulsive 0.799 ± 0.013

Dir 0.779 ± 0.004
Dropout 0.681 ± 0.017
Laplace 0.783 ± 0.006
VBLL 0.783 ± 0.015
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Table F.31: AUROC:SVHN-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.969 ± 0.001 0.968 ± 0.001 0.967 ± 0.001 0.967 ± 0.001
VIFO-mean 0.976 ± 0.001 0.974 ± 0.001 0.973 ± 0.001 0.973 ± 0.002
VIFO-mv 0.972 ± 0.001 0.973 ± 0.001 0.972 ± 0.000 0.973 ± 0.001
VIFO-eb 0.969 ± 0.001 0.971 ± 0.001 0.970 ± 0.001 0.973 ± 0.003
VI-naive 0.970 ± 0.002
VI-mean 0.963 ± 0.014
VI-mv 0.965 ± 0.003
VI-eb 0.967 ± 0.003
SGD 0.962 ± 0.001
SWA 0.963 ± 0.001

SWAG 0.968 ± 0.001
Repulsive 0.972 ± 0.002

Dir 0.976 ± 0.001
Dropout 0.952 ± 0.003
Laplace 0.971 ± 0.002
VBLL 0.970 ± 0.001

Table F.32: AUROC:SVHN-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.971 ± 0.000 0.972 ± 0.001 0.969 ± 0.001 0.971 ± 0.001
VIFO-mean 0.976 ± 0.000 0.976 ± 0.000 0.977 ± 0.001 0.977 ± 0.001
VIFO-mv 0.976 ± 0.001 0.975 ± 0.000 0.977 ± 0.001 0.976 ± 0.000
VIFO-eb 0.974 ± 0.001 0.974 ± 0.001 0.973 ± 0.001 0.977 ± 0.002
VI-naive 0.974 ± 0.003
VI-mean 0.968 ± 0.013
VI-mv 0.970 ± 0.002
VI-eb 0.971 ± 0.002
SGD 0.966 ± 0.001
SWA 0.968 ± 0.002

SWAG 0.972 ± 0.000
Repulsive 0.975 ± 0.002

Dir 0.979 ± 0.001
Dropout 0.958 ± 0.004
Laplace 0.975 ± 0.002
VBLL 0.973 ± 0.000
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Table F.33: AUROC:CIFAR10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.885 ± 0.004 0.880 ± 0.006 0.889 ± 0.005 0.898 ± 0.006
VIFO-mean 0.894 ± 0.004 0.889 ± 0.008 0.907 ± 0.007 0.896 ± 0.002
VIFO-mv 0.914 ± 0.002 0.919 ± 0.007 0.917 ± 0.001 0.915 ± 0.003
VIFO-eb 0.908 ± 0.002 0.912 ± 0.005 0.918 ± 0.002 0.913 ± 0.004
VI-naive 0.863 ± 0.008
VI-mean 0.868 ± 0.011
VI-mv 0.868 ± 0.008
VI-eb 0.858 ± 0.013
SGD 0.950 ± 0.001
SWA 0.950 ± 0.001

SWAG 0.963 ± 0.001
Repulsive 0.819 ± 0.004

Dir 0.962 ± 0.002
Dropout 0.837 ± 0.010
Laplace 0.957 ± 0.002
VBLL 0.902 ± 0.003

Table F.34: AUROC:STL10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.810 ± 0.005 0.810 ± 0.004 0.804 ± 0.004 0.803 ± 0.003
VIFO-mean 0.810 ± 0.001 0.835 ± 0.006 0.836 ± 0.004 0.820 ± 0.003
VIFO-mv 0.788 ± 0.004 0.794 ± 0.001 0.789 ± 0.003 0.784 ± 0.005
VIFO-eb 0.799 ± 0.004 0.800 ± 0.005 0.803 ± 0.002 0.803 ± 0.004
VI-naive 0.788 ± 0.014
VI-mean 0.784 ± 0.006
VI-mv 0.788 ± 0.015
VI-eb 0.728 ± 0.030
SGD 0.795 ± 0.008
SWA 0.837 ± 0.008

SWAG 0.877 ± 0.005
Repulsive 0.804 ± 0.005

Dir 0.812 ± 0.004
Dropout 0.689 ± 0.007
Laplace 0.810 ± 0.004
VBLL 0.810 ± 0.008
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Table F.35: AUROC:SVHN-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.890 ± 0.005 0.958 ± 0.003 0.934 ± 0.010 0.948 ± 0.004
VIFO-mean 0.893 ± 0.002 0.931 ± 0.010 0.925 ± 0.006 0.928 ± 0.014
VIFO-mv 0.912 ± 0.004 0.936 ± 0.005 0.927 ± 0.007 0.916 ± 0.006
VIFO-eb 0.916 ± 0.007 0.922 ± 0.002 0.923 ± 0.008 0.941 ± 0.009
VI-naive 0.870 ± 0.008
VI-mean 0.867 ± 0.016
VI-mv 0.866 ± 0.012
VI-eb 0.847 ± 0.026
SGD 0.909 ± 0.006
SWA 0.918 ± 0.005

SWAG 0.919 ± 0.006
Repulsive 0.843 ± 0.006

Dir 0.970 ± 0.003
Dropout 0.830 ± 0.028
Laplace 0.890 ± 0.006
VBLL 0.906 ± 0.004

Table F.36: AUROC:SVHN-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
VIFO-naive 0.894 ± 0.009 0.957 ± 0.009 0.934 ± 0.008 0.936 ± 0.010
VIFO-mean 0.896 ± 0.004 0.924 ± 0.013 0.914 ± 0.010 0.921 ± 0.009
VIFO-mv 0.917 ± 0.006 0.933 ± 0.008 0.928 ± 0.009 0.922 ± 0.001
VIFO-eb 0.911 ± 0.006 0.916 ± 0.005 0.923 ± 0.004 0.936 ± 0.006
VI-naive 0.870 ± 0.010
VI-mean 0.867 ± 0.016
VI-mv 0.865 ± 0.011
VI-eb 0.846 ± 0.027
SGD 0.907 ± 0.007
SWA 0.913 ± 0.008

SWAG 0.915 ± 0.007
Repulsive 0.847 ± 0.007

Dir 0.970 ± 0.003
Dropout 0.829 ± 0.029
Laplace 0.911 ± 0.007
VBLL 0.909 ± 0.003
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