
TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

Dong Liu 1 Yanxuan Yu 2

Abstract

Serving large language models (LLMs) efficiently
remains challenging due to the high memory and
latency overhead of key-value (KV) cache access
during autoregressive decoding. We present Tiny-
Serve, a lightweight and extensible runtime sys-
tem for deploying tiny LLMs (e.g., TinyLLaMA,
GPT2-345M) with support for structured KV spar-
sity, plugin-based token selection, and hardware-
efficient attention kernels. Unlike prior simula-
tion frameworks, TinyServe executes real-time
decoding with configurable sparsity strategies and
fine-grained instrumentation.

To reduce decoding cost, we introduce a query-
aware page selection mechanism that leverages
bounding-box metadata to estimate attention rel-
evance between the query and KV cache blocks.
This enables selective KV loading with minimal
overhead and no model modifications. Our fused
CUDA kernel integrates page scoring, sparse
memory access, and masked attention in a sin-
gle pass.

Experiments show that TinyServe achieves up
to 3.4× speedup and over 2× memory savings
with negligible accuracy drop. Additional analy-
sis of cache reuse, page hit rate, and multi-GPU
scaling confirms its practicality as a system-level
testbed for LLM inference research on resource-
constrained hardware.

1. Introduction
Large Language Models (LLMs) have become central to
modern AI applications, powering systems in dialogue, re-
trieval, summarization, and code generation. While recent
efforts have greatly improved model quality, the cost of infer-
ence—particularly under long-context or high-throughput

1Yale University 2Columbia University. Correspondence to:
Dong Liu <dong.liu.dl2367@yale.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

conditions—has emerged as the dominant bottleneck in de-
ployment. Decoding each token requires repeated attention
over a growing key-value (KV) cache, stressing memory,
latency, and compute efficiency. As a result, recent systems
such as vLLM (Kwon et al., 2023), TGI (Hugging Face,
2023), and FasterTransformer (NVIDIA, 2021) have intro-
duced sophisticated strategies like paged attention, specula-
tive decoding, and cache reordering to reduce overhead.

Despite these engineering advances, understanding the in-
ternal dynamics of LLM inference remains difficult. Core
trade-offs—such as sparsity vs. accuracy, batching latency
vs. throughput, or memory usage vs. token reuse—often
behave unpredictably, and full-scale evaluations on 7B+
models are prohibitively expensive and difficult to interpret.
Moreover, system researchers are often forced to treat mod-
els as black boxes, unable to validate hypotheses or perform
design iteration without access to large GPU clusters.

TinyServe: Large-Scale Inference Serving at Small Scale.
We introduce TinyServe, a lightweight inference serving
framework that enables detailed analysis of LLM inference
behavior using tiny models (e.g., 125M–350M parame-
ters). TinyServe replicates core components of LLM serv-
ing—streaming decoding, KV cache management, token
routing, and quantization—in a fully controllable environ-
ment. Crucially, it supports fine-grained instrumentation
and plug-in modules such as entropy-based early exit, query-
aware KV selection, and approximate attention.

Our central insight is that many critical serving behav-
iors—such as attention bottlenecks, context boundary ef-
fects, and cache sparsity dynamics—emerge in small mod-
els under synthetic or structured prompts. By emulating
realistic workloads with tiny LLMs, we can approximate
the performance trends and failure modes of large-scale
deployments at a fraction of the cost.

Query-Aware Sparsity and Efficient KV Access. To
demonstrate the utility of TinyServe, we propose a query-
aware token selection mechanism that leverages low-cost
metadata to dynamically select the most relevant parts of
the KV cache for each query. This design emulates practical
attention sparsity patterns and yields substantial memory
and latency savings while preserving accuracy. We evaluate
this mechanism across PG19, LongBench, and synthetic re-

1

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

call tasks, and find that it achieves up to 3.4× speedup with
minimal performance degradation—even under aggressive
KV budgets.

Our contributions are:

• We propose TinyServe, a inference serving framework
that enables fast, interpretable inference analysis using
tiny LLMs and structured prompts.

• We introduce a query-aware KV selection mechanism
that captures sparsity patterns conditioned on current
queries, reducing memory movement while preserving
accuracy.

• We conduct extensive experiments on both standard
and diagnostic datasets, demonstrating that TinyServe
faithfully replicates key latency-accuracy tradeoffs ob-
served in large models.

By bridging system-level research and efficient experimen-
tation, TinyServe paves the way for accessible, reproducible,
and theory-informed studies of LLM serving behavior.

2. Related Work
2.1. Small-Scale Models for Analysis and Debugging

While most LLM research focuses on large-scale models
with billions of parameters, several recent works advocate
for using small-scale models as scientific tools to probe and
understand model behavior. TinyStories (Eldan & Li, 2023)
and TinyLLaMA (Zhang et al., 2024) demonstrate that small
language models (125M–350M) can capture many linguis-
tic properties seen in larger models when trained appropri-
ately. Induction head analyses (Olsson et al., 2022) and
circuit-level interpretability (Nanda et al., 2023) further re-
veal that elementary synthetic tasks can uncover general-
izable mechanisms such as copying, compositionality, and
positional bias. Our work continues this line by repurposing
tiny LLMs for inference-level analysis, showing that even
at small scale, token-wise latency, cache reuse behavior, and
accuracy degradation can be faithfully reproduced.

2.2. LLM Inference Profiling and Acceleration

Many system-level frameworks have been proposed to opti-
mize the inference efficiency of large models. vLLM (Kwon
et al., 2023) introduces PagedAttention to improve memory
and batching efficiency during multi-turn decoding. Faster-
Transformer, TGI, and TensorRT-LLM further implement
custom CUDA kernels, fused ops, and quantization strate-
gies to reduce latency. However, profiling these systems is
computationally expensive and often obscures fine-grained
insights due to complexity and variability in deployment.

Instead of profiling production-scale models, our work in-

troduces TinyServe, a lightweight inference serving frame-
work using small LLMs to reproduce the key serving stack
components—streaming attention, dynamic batching, and
quantized decoding—under controlled stress scenarios. This
enables fast hypothesis testing of architectural changes with
minimal compute cost.

2.3. Synthetic Benchmarks for Inference Behavior

Inspired by algorithmic reasoning and interpretability bench-
marks, recent works explore the use of synthetic or ele-
mentary tasks to elicit specific behaviors from LLMs. For
instance, tasks such as copying, counting, and rare token re-
call have been used to diagnose attention failures (Liu et al.,
2023) and memory degradation (Trivedi et al., 2022). Our
work adapts this idea specifically to the inference domain,
creating targeted prompts that stress attention reuse, cache
fragmentation, and token entropy behavior in the decoding
loop. These tests enable precise evaluation of system inter-
ventions (e.g., pruning or approximation) and help isolate
root causes of serving inefficiencies.

3. Methodology
3.1. System Overview: TinyServe

TinyServe is a lightweight serving framework designed for
serving tiny language models under tight memory and la-
tency constraints. Rather than acting as a benchmarking tool,
TinyServe serves as a real-time runtime environment that
enables sparsity-aware attention, modular token selection,
and efficient KV-cache reuse.

The system is organized around three core components:

1. Query-Aware KV Retriever: Dynamically selects
relevant key-value blocks at decode time based on the
current query vector and page-level metadata, reducing
unnecessary memory access.

2. Modular Scheduling Pipeline: A dispatch loop han-
dles incoming queries and routes them through config-
urable plug-ins (e.g., entropy-based early exit, token-
level pruning, approximate attention). This modular
design allows experimentation with different sparsity
strategies without modifying the core model.

3. Sparse Attention Executor: Efficiently computes at-
tention over selected KV pages using fused CUDA
kernels, with support for FP16/INT8 KV formats and
multi-GPU dispatch.

In TinyServe, each decode step activates the TinyServe
pipeline: the query vector is used to score KV pages, top-
ranked pages are fetched, sparse attention is performed,
and plug-in modules may trigger pruning or early stopping.

2

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

Figure 1. Motivation for Query-Aware Token Selection. Each
query vector attends to different subsets of KV pages. Uniform
cache retention leads to unnecessary memory reads, while query-
aware routing enables dynamic sparsity by focusing on high-
relevance regions.

This design balances flexibility and efficiency, and supports
both static deployment and research prototyping for sparsity
strategies in small-scale LLMs.

3.2. Inference Time Is Dominated by Decode Stage

LLM inference consists of two stages: prefill and decode. In
the prefill stage, all prompt tokens are embedded and trans-
formed into Key (K), Query (Q), and Value (V) vectors.
These are stored in the KV cache and used to compute the
first output token.

During decoding, a new token is generated per step. For
each token, a fresh Q is produced and compared with all
stored K vectors to compute attention scores, which are then
used to weigh the corresponding V vectors. Since decoding
occurs per output token and reads the entire KV cache each
time, it accounts for the majority of latency—especially
when sequence lengths reach 16K or 32K tokens.

3.3. Optimizing Query-Aware Sparsity for Efficient
Tiny LLMs

While prior work has demonstrated that only a fraction of
KV tokens are critical for accurate predictions (Zhang et al.,
2023; Hu et al., 2022), we observe that the set of critical
tokens varies significantly across queries. As illustrated in
figure 1, certain tokens may have minimal impact across
most decoding steps, yet become momentarily crucial when
aligned with a specific query.

To efficiently support inference in tiny LLMs—where com-
pute and memory budgets are limited—we optimize the
self-attention mechanism through query-aware sparsity: se-
lecting only the most relevant KV tokens conditioned on
the current query vector. This dynamic sparsity mechanism
eliminates the overhead of storing and attending to irrelevant
tokens, while maintaining accuracy by preserving context

relevant to the current decoding step.

In TinyServe, we implement query-aware routing at page
granularity. For each page, lightweight metadata—channel-
wise min and max values of stored Key vectors—is main-
tained. During inference, a score is estimated between the
current Query vector and each page’s metadata, enabling
efficient selection of top-K pages with minimal memory
movement. This mechanism offers a practical tradeoff: re-
taining full KV coverage in structure, but only computing
over the most impactful parts.

3.4. Query-Aware Page Selection

In a standard Transformer decoder layer, the attention com-
putation at decode step t involves a fresh query qt ∈ Rd

attending over all past keys K<t = {k1, k2, . . . , kt−1}:

Attn(qt,K, V) =

t−1∑
i=1

softmax(q⊤t ki) · vi

This process is latency-critical during inference due to two
bottlenecks:

• Memory movement: loading all ki, vi from high-
bandwidth memory (HBM);

• Unstructured access: attention requires full key scan
with no cache prefetch pattern.

To address this, TinyServe introduces a structured mem-
ory layout via token grouping into fixed-size pages. Let
K =

⋃P
j=1Kj be partitioned into P = ⌈t/S⌉ pages of size

S. Each page Kj stores a small metadata summary ϕ(Kj)
that enables relevance estimation.

Problem Formulation. We define a relevance function
r : Rd × R2d → R such that:

r(qt, ϕ(Kj)) ≈ max
k∈Kj

q⊤t k

We then select a subset St ⊆ {1, . . . , P} of page indices
such that:

St = TopKj r(qt, ϕ(Kj)) with |St| = K

Attention is then only computed over the union of selected
pages:

SparseAttn(qt) =
∑
j∈St

∑
ki∈Kj

softmax(q⊤t ki) · vi

Relevance Function. We instantiate r as a directional
bounding-box estimator, which uses per-dimension bounds:

3

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

ϕ(Kj) = (mj ,Mj) ∈ R2d, (1)

r(qt, ϕ(Kj)) =

d∑
i=1

{
qt,i ·Mj,i, if qt,i ≥ 0

qt,i ·mj,i, if qt,i < 0
(2)

Hardware Execution Model. Let each page Kj reside in
HBM, and assume the following: - Page fetch cost from
HBM: τhb · S cycles; - Cache-resident metadata ϕ(Kj) is
stored in SRAM or L2, costing negligible τmeta; - Page
selection cost is O(P · d), but can be fused into a single
kernel on GPU.

Let K pages be selected. The effective latency cost be-
comes:

Latencyt = τmeta · P︸ ︷︷ ︸
lightweight scan

+ τhb ·K · S︸ ︷︷ ︸
KV load

+τattn(K · S)

This structure-aware design ensures: - Query-dependent
cache activation; - Memory-aware scheduling (e.g., prefetch-
ing selected pages); - Reduced HBM bandwidth pressure.

System Implication. TinyServe enables dynamic query-
aware sparsity without requiring architectural retraining.
The modular implementation integrates directly into Tiny-
Serve’s kernel loop and allows hardware-sensitive schedul-
ing: e.g., keeping hot pages in shared memory or limiting
K to match tensor core granularity. The kernel design for
TinyServe can be found at algorithm 1.

3.5. Memory Efficiency Analysis

To quantify memory access savings under query-aware spar-
sity, we construct a probabilistic cost model that accounts
for (1) metadata overhead, (2) selected KV tokens, and (3)
cross-step reuse.

Let: - L: total cache length (tokens); - S: page size (tokens
per page); - K: number of selected pages; - M : memory
per token (bytes); - ρ: reuse probability of selected pages
across adjacent decode steps.

The memory movement per decode step is:

Load = 2M ·
(
L

S
+ ρ ·K · S

)
where: - L

S pages store min/max metadata (two vectors of
length d), - ρ accounts for amortized reuse—i.e., only ρK
pages are newly loaded per step.

To compare with full-cache attention, we normalize:

Memory Fraction =
1

S
+ ρ · K · S

L

Algorithm 1 Fused Query-Aware Sparse Attention Kernel
Require: Query vector qt ∈ Rd, Page metadata {ϕj =

(mj ,Mj)}Pj=1, KV-cache {ki, vi}Li=1

Ensure: Output vector ot ∈ Rd

1: // Step 1: Relevance scoring over
page metadata (in L2/shared)

2: for all page j = 1 to P in parallel do
3: sj ← 0
4: for i = 1 to d do
5: qi ← qt[i]
6: sj += qi · [qi ≥ 0 ? Mj,i : mj,i]
7: end for
8: end for

9: // Step 2: Top-K page selection
(shared heap or radix select)

10: St ← TopK(s1, . . . , sP)

11: // Step 3: Sparse KV gather (HBM
access)

12: Initialize Kselected, Vselected ← ∅
13: for all j ∈ St in parallel do
14: Fetch page Kj = {kj,1, . . . , kj,S} from HBM
15: Append keys to Kselected, values to Vselected
16: end for

17: // Step 4: Attention computation
over selected KV pairs

18: for i = 1 to |Kselected| do
19: ai ← q⊤t ki
20: end for
21: α← softmax(a)
22: ot ←

∑
i αi · vi

23: RETURN ot

3.6. Summary

TinyServe emulates realistic LLM serving at small scale,
while enabling fine-grained stress tests and plug-in mech-
anisms like query-aware routing. It significantly reduces
memory usage without sacrificing interpretability, making
it ideal for systems research and design validation.

4. Experiments
4.1. Experimental Setup

We evaluate TINYSERVE across three small-scale pretrained
models: TinyLLaMA-125M (Zhang et al., 2024), GPT2-
345M (Radford et al., 2019), and OPT-350M (Zhang et al.,
2022). Our benchmarks include language modeling on
PG19 (Rae et al., 2019), long-range retrieval using passkey
tasks (Trivedi et al., 2022), and five representative datasets
from LongBench (Bai et al., 2023): NarrativeQA, Qasper,

4

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

GovReport, TriviaQA, and HotpotQA.

We evaluate against a comprehensive set of six baselines:
FullCache (no pruning), StreamingLLM (Xiao et al.,
2023) (fixed-length sliding window), SoftPrune (token-
level pruning via low attention norm), EntropyStop (early
stopping by entropy threshold), SnapKV (Li et al., 2024)
(KV compression via quantized clustering), and Pyra-
midKV (Cai et al., 2025) (hierarchical top-k KV selection
using coarse-to-fine routing). All methods are evaluated
under the same budget and runtime constraints on 8×A100
80GB GPUs using FP16 unless otherwise specified.

4.2. Overall Comparison

We report the average accuracy, latency (ms/token), through-
put (tokens/s), and KV cache hit rate on five LongBench
tasks under a fixed 2048 token budget. Results are visual-
ized as radar plots in 2. TINYSERVE consistently demon-
strates superior trade-offs between latency and accuracy,
while maintaining higher KV hit rate due to its query-aware
selection mechanism.

4.3. Speedup Analysis across Models

We further evaluate end-to-end decode latency under in-
creasing context lengths (up to 32k tokens). In figure 3,
we show the relative speedup of different methods against
the FullCache baseline across three models. TINYSERVE
achieves 2.1×–3.4× speedup on average, significantly out-
performing pruning-based baselines.

4.4. Task-Level Evaluation

We present task-specific accuracy and latency on Long-
Bench datasets using GPT2-345M and 2048 token budget.
As shown in Table 1, TINYSERVE retains near-full accuracy
while achieving significant latency reduction compared to
StreamingLLM and SoftPrune.

4.5. KV Cache Efficiency

We visualize the KV cache utilization over time for
StreamingLLM and TINYSERVE in figure 4. TINYSERVE
preserves high-relevance tokens and avoids cache flushing,
resulting in higher effective reuse rate across decode steps.

4.6. Ablation Study

We study the impact of the KV page size on latency and
accuracy. As expected, larger pages reduce estimation cost
but degrade precision. We use a default page size of 16 for
best tradeoff.

Table 1. Accuracy (%) and latency (ms/token) on LongBench
(GPT2-345M, 6K chunked input, 2K decode). Mean ± std over 3
runs.

Task Method Acc. ↑ Lat. ↓ Speedup ↑

HotpotQA

FullCache 54.7 ±0.8 24.3 ±0.3 1.00
StreamingLLM 50.9 ±1.0 15.9 ±0.2 1.53

EntropyStop 52.1 ±0.9 17.4 ±0.2 1.40
SoftPrune 51.5 ±0.7 14.1 ±0.3 1.72
SnapKV 53.0 ±0.6 13.5 ±0.2 1.80

PyramidKV 52.3 ±0.5 12.1 ±0.1 2.01
TINYSERVE 54.0 ±0.6 11.5 ±0.1 2.11

GovReport

FullCache 47.9 ±0.6 29.1 ±0.4 1.00
StreamingLLM 44.3 ±0.8 17.3 ±0.3 1.68

SoftPrune 45.5 ±1.0 19.3 ±0.3 1.51
SnapKV 46.7 ±0.7 15.8 ±0.2 1.84

PyramidKV 45.9 ±0.5 13.2 ±0.2 2.20
TINYSERVE 47.0 ±0.5 12.6 ±0.2 2.31

Table 2. Effect of KV Page Size on TinyServe latency and accuracy
(TinyLLaMA-125M, seq len = 16K, budget = 2048 tokens).

Page Size Latency (ms) PPL ↓ KV Hit Rate (%)

4 17.6 24.3 98.4
8 12.1 25.1 94.9

16 9.3 26.0 91.7
32 7.8 28.4 85.6
64 6.2 32.5 79.3

4.7. Multi-GPU Scaling

We evaluate TinyServe’s scalability from 1 to 8 A100 GPUs
on 128 concurrent prompts. Results show near-linear scaling
in throughput, validating kernel fusion and inter-GPU cache
reuse.

Table 3. Multi-GPU throughput scaling for TinyServe (batch size
= 128 prompts, GPT2-345M, seq len = 16K).

#GPUs Throughput (Tok/ms) Speedup (×) Efficiency (%)

1 0.81 1.00× 99.3%
2 1.58 1.96× 98.0%
4 3.123 3.86× 96.5%
8 6.221 7.68× 96.0%

4.8. Summary

TINYSERVE consistently improves inference efficiency
across diverse models and tasks. Its query-aware token
selection enables aggressive memory reduction with min-
imal accuracy degradation. When used with tiny LLMs,
TINYSERVE allows efficient and interpretable inference pro-
filing, supporting system-level research without relying on
full-scale deployments.

5

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

5. Conclusion
We introduced TinyServe, a lightweight and extensible run-
time system for efficient inference with tiny language mod-
els. TinyServe bridges system-level bottlenecks in LLM
serving—such as KV cache saturation and decode-time la-
tency—with modular support for token selection, cache
sparsity, and fused attention kernels.

At the core of TinyServe is a query-aware page selection
mechanism that approximates attention relevance using
bounding-box metadata, enabling selective KV access with
minimal overhead. This approach achieves substantial la-
tency and memory reductions without compromising ac-
curacy, validated across PG19, LongBench, and passkey
retrieval tasks.

Through its kernel-level optimizations, multi-GPU scaling,
and plug-and-play architecture, TinyServe enables rapid,
reproducible experimentation on resource-constrained hard-
ware. We believe it offers a practical foundation for LLM
systems research, supporting both real-time deployment of
tiny models and the principled evaluation of sparsity mecha-
nisms without the cost of full-scale models.

Acknowledgements
We thank the developers of Hugging Face Transformers and
vLLM for foundational open-source infrastructure.

References
Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,

Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Li, Y., Liu, T.,
Lu, K., Xiong, W., Dong, Y., Hu, J., and Xiao, W.
Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2025. URL https:
//arxiv.org/abs/2406.02069.

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
preprint arXiv:2305.07759, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Hugging Face. Text generation inference (tgi).
https://github.com/huggingface/
text-generation-inference, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C., Gonzalez, J., Zhang, H., and Stoica, I. vllm: Easy,

fast, and cheap llm serving with pagedattention. See
https://vllm. ai/(accessed 9 August 2023), 2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye,
H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm knows
what you are looking for before generation, 2024. URL
https://arxiv.org/abs/2404.14469.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. Lost in the middle:
How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

NVIDIA. Fastertransformer: Nvidia transformer opti-
mization toolkit. https://github.com/NVIDIA/
FasterTransformer, 2021.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap,
T. P. Compressive transformers for long-range sequence
modelling. arXiv preprint arXiv:1911.05507, 2019.

Trivedi, H., Balasubramanian, N., Khot, T., and Sabharwal,
A. Interleaving retrieval with chain-of-thought reason-
ing for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama:
An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

6

https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2404.14469
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer

TinyServe: Query-Aware Cache Selection for Efficient LLM Inference

Accuracy

Latency

Throughput

KV Hit Rate

TinyLLaMA-125M
FullCache
StreamingLLM
SoftPrune
EntropyStop
TinyServe

Accuracy

Latency

Throughput

KV Hit Rate

GPT2-345M
FullCache
StreamingLLM
SoftPrune
EntropyStop
TinyServe

Figure 2. Radar plot of accuracy, latency, throughput, and KV
hit rate for TinyLLaMA (left) and GPT2-345M (right). Higher is
better for all metrics.

TinyLLaMA OPT-350M GPT2-345M0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 Fu
llC

ac
he

Relative Decode Speedup @ 32K Prompt
StreamingLLM
SoftPrune
EntropyStop
TinyServe

Figure 3. Relative decode latency speedup (↓) across different base-
lines under 32k prompt length and 2048 token budget.

0 250 500 750 1000 1250 1500 1750 2000
Decode Steps

0.60

0.65

0.70

0.75

0.80

0.85

0.90

KV
 H

it
Ra

te

KV Cache Utilization over Time

StreamingLLM
TinyServe

Figure 4. KV reuse over decode time (context=32k, decode=2k).
TINYSERVE maintains higher hit rate and fewer token evictions.

7

