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ABSTRACT

Large Multimodal Models (LMMs) have demonstrated exceptional capabilities
and drawn increasing attention. However, their substantial computational cost
poses significant challenges for real-world applications. A considerable portion
of this arises from the lengthy sequences of image tokens, bringing quadratically
increasing computations due to the Transformer architecture. In light of this,
recent works have explored visual token pruning for higher efficiency. Despite
effective, they generally suffer from the inaccurate importance estimation (i.e.,
what to prune) and the suboptimal pruning layers (i.e., where to prune). This
leads to notable visual information loss and inferior performance. In this work, we
present an Unbiased Token Pruning (UTP) method to tackle these issues. For what
to prune, we introduce an Unbiased Relevance Estimation (URE) strategy, which
disentangles the interference of position embedding for more accurate importance
assessment of visual tokens. For where to prune, we propose an Unbiased Token
Retention (UTR) strategy, which solves the optimal pruning scheme by formulating
the objective of minimizing the information loss as an integer linear programming
problem. Extensive experiments demonstrate that our method outperforms existing
state-of-the-art works and exhibits favorable performance in various tasks, showing
its superiority for efficient inference of LMMs. Code will be publicly available.

1 INTRODUCTION

Recently, the field of computer vision has witnessed the significant advancements with the emergence
of Large Multimodal Models (LMMs) (Liu et al., 2024c;a; Bai et al., 2025; Comanici et al., 2025;
Zhu et al., 2025). These models integrate multi-modality input into the Large Language Models
(LLMs) (Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2025), thereby enabling them to process
diverse types of information. Typically, LMMs embed the image and sentence into visual and textual
tokens for LLMs. Leveraging the powerful generation and reasoning abilities of LLMs, they exhibit
superior performance across various tasks (Li et al., 2024a; Liu et al., 2023).

However, the remarkable capabilities of LMMs are accompanied with high computation and memory
costs (Jin et al., 2024), which impede their large-scale deployment in practical applications. Many
studies have explored reducing the model size for enhanced efficiency by training LMMs with smaller
LLMs (Shao et al., 2024; Hinck et al., 2024). However, these require considerable resource for
training and are not applicable to the off-the-shelf LMMs. Recent works have dedicated to pruning
visual tokens in the forward process during prefilling in a training-free manner, eliminating the
notable redundancy in visual input for acceleration (Chen et al., 2024b; Shang et al., 2024; Chen
et al., 2024a). In general, they consist of two steps: 1) estimating the relevance of visual tokens to the
text prompt and ranking them based on the metric, i.e., addressing what to prune, and 2) selecting the
pruning layers and numbers to filter out the lowest-ranked tokens, i.e., determining where to prune.
For example, FastV Chen et al. (2024b) adopts the attention scores of the last token to preceding
visual tokens as the importance metric and prunes less important tokens at a fixed layer in LLM.

While effective, existing approaches often face two generic drawbacks. First, regarding what to prune,
we observe that the attention-based importance metric used in prior works (Chen et al., 2024b) tends
to preserve tokens in certain positions, leading to an attention bias in estimating the relevance of
visual tokens. For instance, as shown in Fig. 1.(a), visualization results from FastV reveal that the
importance scores estimated based on LLM attention exhibit a strong correlation with token positions.
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Figure 1: (a) The importance scores of visual tokens calculated by the attention-based metric (Att) in
previous research, like FastV (Chen et al., 2024b) and our proposed metric (PA-Att), respectively.
We employ LLaVA-1.5-7B (Liu et al., 2024a) model and 100 random image-text pairs sampled from
various datasets for visualization. We observe that visual tokens positioned near the bottom right
corner typically exhibit higher importance in Att and our PA-Att can well eliminate such bias. (b) The
overlap frequency between important visual tokens in the to-be-pruned layer and those in other layers
given original LMM. We take pruning at the second layer for example following Chen et al. (2024b).
We examine various Top-K conditions to provide a comprehensive analysis. We note the subsequent
layers possess different important visual tokens from those of the to-be-pruned layer. (c) Comparison
between UTP and others. UTP achieves state-of-the-art performance, showing superiority.

Specifically, visual tokens near the bottom right corner consistently receive higher attention scores
compared with others. As a result, tokens in certain positions may be mistakenly preserved, even
if they don’t convey meaningful visual information. Secondly, regarding where to prune, existing
works (Chen et al., 2024b;a; Shang et al., 2024) typically assume that important tokens are similarly
distributed across layers, leading to pruning in a single fixed layer. Note that once a token is pruned
at a certain layer, it will not exist in subsequent layers. However, as illustrated in Fig. 1.(b), later
layers do not share the same important visual tokens as the selected layer for pruning. Consequently,
pruning at a fixed layer introduces layer bias, leading to notable visual information loss in subsequent
layers and ultimately suboptimal token retention.

In this work, we propose a training-free Unbiased Token Pruning (UTP) method to address these two
critical issues. First, to tackle the attention bias for what to prune, we introduce a novel unbiased
relevance estimation strategy based on the position-agnostic attention metric (PA-Att). Its core idea is
to eliminate the influence of the position information during the token relevance estimation. To this
end, we apply a uniform position embedding for all visual tokens, resulting in equal effects of position
when deriving the importance metric by attention score. This thus provides more accurate importance
assessment. Besides, for the mitigation of layer bias during determining where to prune, we propose
an unbiased token retention scheme to reduce the redundancy of visual token in the forward process of
prefilling while maintaining overall visual information as much as possible. It starts with measuring
the pruning loss tolerance to assess the degree of visual information loss at each layer. The challenge
of deriving token retention recipe is then reformulated as an integer linear programming problem
with the layer-wise pruning token number as the independent variable to minimize the disturbance
to the model. Using an integer programming solver (Huangfu & Hall, 2018), we can conveniently
derive the layer-wise pruning token numbers offline without the extra inference overhead. We conduct
extensive experiments and analyses across various benchmarks. As demonstrated in Fig. 1.(c), our
method significantly outperforms existing works, achieving state-of-the-art performance. Besides, it
accelerates inference speed notably, showing promising application potential.

2 RELATED WORK

Large multimodal models. The evolution of Large Multimodal Models (LMMs) signifies a further
unlocking of the potential of Large Language Models (LLMs), enhancing their generation and
reasoning capabilities for multimodal inputs (Bai et al., 2025; Zhu et al., 2025; Comanici et al., 2025).
Leveraging the LLMs such as GPT-4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023a;b; Dubey
et al., 2024), and Qwen (Bai et al., 2023a; Qwen et al., 2025; Yang et al., 2025), which are pretrained
on the extensive text corpora, LMMs like GPT4-V (Achiam et al., 2023), LLaVA (Liu et al., 2024c;a),
and Qwen-VL (Bai et al., 2023b; 2025), etc., have demonstrated exceptional performance across
various visual-language tasks (Fu et al., 2023; Li et al., 2024a; Yu et al., 2023).
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Efficient inference of LMMs. Despite achieving superior performance, existing LMMs generally
suffer from the intensive computational cost and memory footprint, which greatly hinder their efficient
deployment for practical scenarios. In light of this, many efforts have been directed to enhancing
the inference efficiency of LMMs (Li et al., 2024b; Hu et al., 2024). For example, LLaVA-Phi (Zhu
et al., 2024) and TinyLLaVA (Zhou et al., 2024) leverage the Phi-2 (Javaheripi et al., 2023) as
the language component for a compact yet powerful architecture. MobileVLM (Chu et al., 2023)
and MobileVLM-v2 (Chu et al., 2024) explore mobile-oriented architectural designs and training
scheme. Vary-toy (Wei et al., 2024) and MoE-LLaVA (Lin et al., 2024) incorporates enhanced vision
vocabulary and mixture of experts to enhance performance and efficiency, respectively.

Visual token pruning. Before the evolution of LMMs, there have been works (Rao et al., 2021; Bolya
et al., 2022; Liang et al., 2022) to explore visual token pruning for Vision Transformers (ViTs), which
show promising results and enhanced efficiency. For LMMs, a considerable portion of inference
burden comes from the large number of embedded visual tokens in input. For example, LLaVA (Liu
et al., 2024a) and Fuyu (Bavishi et al., 2023) introduce 576 and 1296 visual tokens for the image,
respectively. Therefore, recent works have investigated visual token pruning for accelerating LMM’s
inference (Chen et al., 2024b; Shang et al., 2024; Chen et al., 2024a; Ye et al., 2024; Yang et al., 2024;
Xing et al., 2024). For example, FastV (Chen et al., 2024b) leverages the attention score as the visual
token importance metric and filters out those with less information. LLaVA-PruMerge (Shang et al.,
2024) identifies spatial redundancy based on similarity for visual token reduction. Despite achieving
promising results, they generally suffer from inaccurate importance estimation and suboptimal token
retention, leading to notable information loss and inferior performance.

3 METHODOLOGY

Visual Token: 𝑻𝑣

Layer 1

Layer 𝑙-1

URE

Layer 𝑙

𝒓𝑙−1

Layer 𝑙+1

…

…

Text Token: 𝑻𝑡

UTR

𝒓𝑙

URE

importance metric 𝒂∗

Vision Encoder

Projector
Flatten

Figure 2: The overview of our UTP method.

In this section, we first delve into the basic im-
plementation of LMMs in Sec. 3.1. To address
the critical challenge of what visual tokens to
prune, we introduce the unbiased relevance esti-
mation in Sec. 3.2 to accurately assess their im-
portance, aiming to retain the most crucial ones.
Then, to decide where to prune visual tokens, we
present unbiased token retention in Sec. 3.3 to
select the optimal pruning scheme, thereby min-
imizing the impact of visual information loss on
model performance. The outcome of these ex-
plorations is our unbiased token pruning (UTP)
method for efficient inference of LMMs. Fig. 2
presents its overview.

3.1 PRELIMINARY

The architecture of Large Multimodal Models (LMMs) typically consists of three key components,
i.e., a visual encoder, a projector, and a Large Language Model (LLM). As shown in Fig. 2, given a
pair of image and text prompt, a visual encoder like CLIP-ViT (Radford et al., 2021), first extracts
visual features from the image into a set of visual tokens. To bridge the feature gap between the visual
and language component, these tokens are then transformed by the projector to be embedded into
the text feature space, which derives Tv for providing the visual context. Meanwhile, the tokenizer
of LLM generates discrete text embeddings Tt for the text prompt via the pre-defined vocabulary.
Then, the visual tokens Tv and text tokens Tt are fed into the LLM together to predict the answer in
an auto-regressive manner. Visual token pruning removes unimportant visual tokens in the forward
process during the prefilling stage to accelerate inference. Then, during the decoding stage, retained
tokens are attended to by the output token via the KV cache (Pope et al., 2023).

3.2 UNBIASED RELEVANCE ESTIMATION (URE)

Rethinking the attention-based estimation. To effectively perform visual token pruning for LMMs,
it is crucial to develop a metric that accurately assesses the relevance of visual tokens to the text

3
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prompt, allowing for a clear distinction of their importance. Once the tokens are ranked by importance,
the least significant ones can be pruned with minimal information loss. Previous research has utilized
attention scores of the final input token as a useful metric, as they reflect the attention directed toward
visual tokens during generation (Chen et al., 2024b; Dai et al., 2024; Li et al., 2024c). However, as
shown in Fig. 1.(a), we observe a significant attention bias in this attention-based metric. In many
cases, visual tokens closer to the bottom-right corner consistently receive higher attention scores than
others, regardless of their content.

To investigate this, we firstly examine the attention mechanism through which visual tokens are
processed. Specifically, for the i-th token in the input sequence, we denote its query feature, key
feature, and rotary position embedding (Su et al., 2024) as qi, ki, and Ri, respectively. The
attention scores that visual tokens received from the last token in the prompt can be derived by
ai =

exp(qT
nRi−nki)∑

j exp(qT
nRj−nkj)

, where n denotes the last token position and Ri−n = RT
nRi. We omit the

scaling factor in the calculation for brevity. Then, the averaged score across different heads can be
used to estimate the importance of visual tokens.

In the context of visual instructions, two-dimensional visual tokens are flattened to formulate one-
dimensional input sequence for LLM, resulting in visual tokens located near the bottom right corner
being positioned after in the sequence, as shown in Fig. 2. However, previous work (Su et al., 2024)
shows that with the same query and key features, the upper bound of ai gradually decrease as the
relative distance, i.e., n− i, increases. This is attributed to the rotary position embedding in attention,
which leads to the tendency for long-term decay. Consequently, visual tokens with small relative
distances to the target prompt token tend to have higher bounds on their attention scores.
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Figure 3: The variation of attention score for
different visual tokens under different posi-
tions. We uniformly obtain eight visual to-
kens from the visual position range [p1, p2]
for observation, i.e., the tokens with the posi-
tion of p1, p1+ ⌊p2−p1

7 ⌋, p1+ ⌊ 2(p2−p1)
7 ⌋, ...,

and p2. They are arranged in order from left to
right and from top to bottom. We observe that
the attention scores exhibit a notably positive
correlation with the position for different vi-
sual tokens, which is particularly pronounced
in the shallow layers.

To verify that such bias in position affects the cri-
teria of attention scores, we inspect the variation in
attention score of visual tokens when integrating po-
sitional embeddings at different positions. Formally,
we suppose that the positions of visual tokens range
from p1 to p2 and uniformly select eight tokens from
this interval for observation. For each token posi-
tioned at p, we employ each position p varying from
p1 to p2 to obtain its attention score ap by

ap =
exp(qT

nRp−nkp)∑
j ̸=p exp(qT

nRj−nkj) + exp(qT
nRp−nkp)

. (1)

As shown in Fig. 3, it can be observed that with the
same visual feature, the attention score shows an in-
creasing trend as the position p increases for various
visual tokens, especially noticeable in the shallow
layers. Such bias prevents the attention scores from
reliably indicating the relevance of visual informa-
tion to the instruction, rendering them an inaccurate
criteria for assessing the visual token importance.

Position-agnostic attention (PA-Att). Based on the observations presented above, we propose an
unbiased relevance estimation strategy to mitigate the bias inherent in attention-based importance
metrics. We introduce a position-agnostic attention mechanism designed to disentangle the interfer-
ence caused by position embeddings, allowing for more accurate relevance estimation. Specifically,
for all visual tokens with the position range of [p1, p2], we employ a uniform averaged position
p′ = ⌊p1+p2

2 + 1
2⌋, ending up with a consistent position embedding Rp′ . When deriving the at-

tention score between the query qn and visual tokens ki, the relative distance will be Rp′−n for
all visual tokens, ensuring being position-agnostic. The final formulation for the position-agnostic
attention-based importance estimation for visual tokens can be computed as follows:

a∗
i =

exp(qT
nRp′−nki)∑

j∈Tt

exp(qT
nRj−nkj) +

∑
j∈Tv

exp(qT
nRp′−nkj)

. (2)

Similarly, we visualize the proposed PA-Att metric in Fig. 1.(a). Our method effectively eliminates
position-related attention bias, thus enabling the focus of visual content of tokens and resulting
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in more accurate relevance estimation. As demonstrated in our experiments, PA-Att allows the
model to retain more informative visual tokens and enhances its ability to perceive visual context for
multimodal recognition and reasoning.

3.3 UNBIASED TOKEN RETENTION (UTR)

After establishing the importance metric for visual tokens, it is crucial to decide the pruning layers and
numbers to remove the less important tokens. We first follow Chen et al. (2024a) and introduce the
compression ratio as a measure of the extent of visual token pruning. Specifically, for the l-th layer,
we denote its number of visual tokens as Nl after pruning. The compression ratio (CR) can be derived
by CR = V ·L∑L

l=1 Nl
, where V means the original visual token count in the input and L is the layer

number of LLMs. A larger compression ratio indicates fewer visual tokens after pruning, resulting in
a higher inference speed. Given a target compression ratio, existing works typically manually select a
single fixed layer for pruning (Chen et al., 2024b;a). However, as shown in Fig. 1.(b), the importance
estimated in a single layer cannot adequately reflect the relevance distribution of visual tokens in
later layers. Therefore, they suffer from the layer bias, leading to notable visual information loss
in the forward process during prefilling. Here, we aim to prune the redundant visual tokens while
preserving the overall visual information as much as possible, enabling unbiased token retention.

We start with assessing the degree of visual information loss at each layer with a measurement
of pruning loss tolerance. Specifically, given a target compression ratio c, for the l-th layer, we
leverage the importance metric al−1 calculated in the previous layer by Eq. (2) (omitting superscript
∗ for brevity) to retain Top-rl important visual tokens Φl. In this scenario, the visual information
loss in the l-th layer stems from the pruned rl−1 − rl tokens, i.e., Φl−1 \ Φl. Note that during
prefilling, the rl tokens retained at the l-th layer should be included in the rl−1 tokens reserved at the
previous layer, which imposes the constraint of Φl ⊆ Φl−1. However, it is intractable to obtain the
visual information loss under arbitrary rl and rl−1. Considering that the attention scores reflect the
information capability of visual tokens (Liang et al., 2022), we thus introduce the assumption that
the visual information loss is proportional to the ratio of the attention received by the pruned tokens
Φl−1 \ Φl relative to all visual tokens. Based on this, we define the pruning loss tolerance tl as an

approximation of the visual information loss in the l-th layer by tl = ℓl · (
∑

{al
k|k∈Φl−1\Φl}∑

j∈Tv
al

j

), where

ℓl is the visual information loss when all visual tokens are pruned only at the l-th layer. Thus, the
objective to minimize whole visual information loss can be tackled by

argmin
r2,...,rL

L∑
l=2

tl, s.t.
L∑

l=2

rl =
V L

c
− V, (3)

where r1 = V due to the unavailable metric from the previous layer in the first layer.

Eq. (3) indicates that we can minimize the overall visual information loss by finding an optimal
pruning scheme, i.e., {r1, r2,...,rL}. To this end, we first need to quantitatively derive the ℓl, which,
however, is challenging and lacks the standard metric. Here, we follow previous model compression
techniques (Frantar & Alistarh, 2022; Frantar et al., 2022) to employ the output feature deviation to
assess ℓl. Specifically, we denote the output feature at the last layer for decoding the response as fl

when all visual tokens are pruned only at the l-th layer, i.e., ∀j ∈ [1, l), rj = V ;∀j ∈ [l, L], rj = 0.
Meanwhile, we obtain original output feature without visual token pruning as g. For the l-th layer,
we leverage the cosine similarity between fl and g as the metric for the output feature deviation to
evaluate ℓl by ℓl = arccos (

fT
l g

||fl||·||g|| ), where a larger ℓl indicates a greater impact on the model’s
generation ability.

Besides, to formulate the constraint of Φl ⊆ Φl−1, we introduce the binary variable xl
j ∈ {0, 1} to

indicate whether the j-th visual token at the l-th layer is retained. Therefore, we have rl =
∑

j x
l
j .

The objective can thus be transformed into an integer linear programming problem by

min

L∑
l=2

ℓl · (
∑

j(x
l−1
j − xl

j)a
l
j∑

j a
l
j

), s.t.
L∑

l=2

∑
j

xl
j =

V L

c
− V, (4)

∀ l ≥ 2 and j, xl
j ≤ xl−1

j , ∀ al−1
j1

≤al−1
j2

, xl−1
j1

xl−1
j2

(xl
j1 − xl

j2) ≤ 0. (5)
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Table 1: Comparison with SOTA methods on various benchmarks. CR denotes the compres-
sion ratio. * denotes the results with adaptive token numbers in different tasks for PruMerge and
PruMerge+, where the target CR cannot be specified.

Model Image CR VQAv2 GQA SciQA TextVQA POPE MME MMBench SEED MMVet Avg.

LLaVA-1.5-7B (Liu et al., 2024a) 3362 100% 78.5 62.0 69.6 58.2 85.9 1513.5 64.0 66.2 31.3 65.71
PruMerge (Shang et al., 2024) 3362 1600% 66.2 51.0 68.7 53.4 64.4 1233.2 54.3 52.7 23.8 55.13
PruMerge* (Shang et al., 2024) 3362 1511% 66.7 51.5 69.0 53.9 67.2 1242.3 54.6 53.2 24.2 55.82
UTP 3362 1600% 71.7 54.4 69.5 55.0 74.2 1368.8 60.7 57.5 29.4 60.09
PruMerge+ (Shang et al., 2024) 3362 400% 73.6 56.9 69.1 54.7 79.3 1379.5 60.1 59.9 30.3 61.43
PruMerge+* (Shang et al., 2024) 3362 374% 74.6 57.4 69.2 55.0 82.4 1382.8 61.5 61.7 30.5 62.38
FastV (Chen et al., 2024b) 3362 400% 72.4 55.2 68.9 56.6 70.4 1407.1 62.8 60.8 27.5 60.55
LLaVolta (Chen et al., 2024a) 3362 400% 70.3 57.4 68.8 49.8 73.9 1302.1 55.9 58.0 24.7 58.21
VisionZip (Yang et al., 2024) 3362 400% 76.0 57.9 68.9 57.0 83.4 1447.7 62.1 62.0 33.0 63.63
UTP 3362 400% 77.6 60.8 69.0 57.7 84.6 1515.5 63.8 64.8 33.3 65.26

LLaVA-1.5-13B 3362 1600% 80.0 63.3 72.8 61.2 85.9 1523.3 68.7 68.2 35.5 67.97
PruMerge (Shang et al., 2024) 3362 1600% 67.5 51.9 72.7 54.9 62.6 1236.9 58.7 55.2 28.5 57.09
PruMerge* (Shang et al., 2024) 3362 1511% 67.9 52.0 72.7 55.1 64.3 1261.5 59.3 56.2 26.4 57.44
UTP 3362 1600% 73.9 56.2 74.8 57.0 76.1 1438.5 65.8 61.0 31.5 63.14
PruMerge+ (Shang et al., 2024) 3362 400% 74.7 57.2 73.4 56.8 77.8 1427.2 64.3 62.5 29.1 63.02
PruMerge+* (Shang et al., 2024) 3362 374% 75.8 58.1 74.0 56.5 81.2 1447.1 65.5 63.6 32.6 64.41
FastV (Chen et al., 2024b) 3362 400% 75.9 58.9 74.2 59.1 76.5 1470.5 66.6 63.8 32.2 64.53
LLaVolta (Chen et al., 2024a) 3362 400% 73.4 59.7 71.6 53.1 79.8 1365.8 61.9 61.3 27.2 61.81
VisionZip (Yang et al., 2024) 3362 400% 77.0 58.5 73.8 59.1 83.4 1437.0 67.5 64.4 36.9 65.83
UTP 3362 400% 79.0 62.1 73.2 60.2 85.6 1549.8 68.1 67.5 36.1 67.70

Eq. (5) constraints that visual tokens retained in the later layers need to be reserved in the previous
layers and ensures the tokens left in each layer to be those ranked at the top based on the metric.
Solving xl

j can thus derive the optimal value of rl for each layer.

We note that in LMMs’ inference, rl for each layer cannot be obtained prior to the visual token
pruning in the forward process during prefilling. Therefore, we leverage random samples from the
training set of LMMs, like LLaVA-Instruct-158K (Liu et al., 2024a), for offline estimation. For a
given compression ratio c, we adopt the efficient integer programming solver (Huangfu & Hall, 2018)
to determine the optimal pruning recipe beforehand, i.e. {r1, r2,...,rL}. The solving process is quick,
with only nearly two minutes. The scheme of layer-wise retained token numbers is then applied to
the model for inference. In our experiment, we show that such an implementation is effective and
robust with small amount of samples, demonstrating the good generalization.

4 EXPERIMENTS

4.1 MAIN RESULTS

Implementation details. We perform evaluation for our method based on LLaVA-1.5 (Liu et al.,
2024a), following Chen et al. (2024b); Shang et al. (2024); Chen et al. (2024a). We conduct experi-
ments on diverse academic-task-oriented and visual instruction-following benchmarks for LMMs,
including VQAv2(Goyal et al., 2017), GQA(Hudson & Manning, 2019), ScienceQA-IMG (Lu et al.,
2022), TextVQA (Singh et al., 2019), POPE (Li et al., 2023), MME (Fu et al., 2023), MMBench (Liu
et al., 2023), SEED-Bench (Li et al., 2024a), and MM-Vet (Yu et al., 2023). Due to the spatial redun-
dancy in the output visual tokens of the visual encoder (Shang et al., 2024), we also follow Shang
et al. (2024) to leverage the attention scores of CLS token from the penultimate layer of the visual
encoder to prune redundant tokens before the LLM. The number of its retained tokens, i.e., r1, is
simply set to 4V

c . Besides, we empirically apply the URE strategy in the first three layers, which
well eliminates unimportant visual tokens with notable attention bias and incurs minimal overhead.
More details and analyses can be referred to the supplementary. We utilize 100 random samples for
estimation in UTR. For the average performance across all tasks, we normalize the score of MME
by its maximum value of 2000. To ensure a fair comparison, we evaluate baseline methods that are
applied directly to pretrained models without additional training, consistent with our method.

Results. As shown in Tab. 1, our method achieves the state-of-the-art performance across differ-
ent model scales and various benchmarks. For LLaVA-1.5-7B, compared with PruMerge+* and
FastV, our UTP achieves average performance improvements of 2.88% and 4.71% under the CR
of 400%, respectively. On the VQAv2 and GQA for visual question answering benchmarks, our
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Table 2: Ablation study with URE and UTR strategies.
Model URE UTR VQAv2 GQA SciQA TextVQA POPE MME MMBench SEED MMVet Avg.

Baseline 72.4 55.2 68.9 56.6 70.4 1407.1 62.8 60.8 27.5 60.55

UTP
✓ 75.3 57.2 69.0 57.6 77.1 1474.0 62.9 62.0 29.3 62.68

✓ 76.9 59.5 68.9 57.1 83.0 1488.9 63.8 64.2 30.9 64.31
✓ ✓ 77.6 60.8 69.0 57.7 84.6 1515.5 63.8 64.8 33.3 65.26

Table 3: Uniform pos.
Model GQA Text. MME Avg.

Base. 55.2 56.6 1407.1 60.7
URE-s 57.6 57.5 1465.3 62.8
URE-e 55.8 57.3 1439.6 61.7
URE 57.2 57.6 1474.0 62.8

Table 4: PA-Att.
Model GQA Text. MME Avg.

Base. 55.2 56.6 1407.1 60.7
No pos 53.5 56.6 1314.1 58.6
Feat cor 44.6 44.5 867.4 44.2
URE 57.2 57.6 1474.0 62.8

Table 5: Sample num.
Num GQA Text. MME Avg.

10 60.4 57.8 1498.9 64.4
50 60.6 57.8 1513.8 64.7
100 60.8 57.7 1515.5 64.8
200 60.7 57.8 1515.4 64.8

Table 6: Efficiency.
Method CR Avg. Latency

FastV 200% 64.3 13.2e−2s
PruMerge+ 200% 62.3 12.9e−2s
LLaVolta 200% 62.3 13.4e−2s
UTP 400% 64.8 8.7e−2s

UTP significantly outperforms VisionZip and LLaVolta by 1.6% and 3.4%, respectively. Besides, for
the benchmarks for instruction-following LMMs, our method effectively preserves the multimodal
reasoning capability and surpasses the advanced VisionZip by 1.7% and 2.8% on the MMBench
and SEED-Bench, respectively. Moreover, given a more aggressive CR of 1600%, our method
also exhibits superior performance, which obtains the average improvements of 4.96% and 4.27%
over PruMerge and PruMerge*, respectively. For the larger LMM model of LLaVA-1.5-13B, our
method also achieves the best overall performance compared with other methods under different CRs.
Notably, under the CR of 400%, our UTP only leads to the performance degradation of 0.27% on
average across all tasks, achieving competitive performance compared with the original model.

4.2 ABLATION STUDY

We analyze the effectiveness of each strategy in our method. We introduce the FastV as the baseline,
which leverages the attention scores towards visual tokens as the importance metric and prunes the
tokens at a fixed layer. We conduct experiments based on LLaVA-1.5-7B under the CR of 400%. As
shown in Tab. 2, each strategy contributes to a favorable performance enhancement. For what to prune,
our URE strategy can accurately assess the importance of visual tokens for instruction-following
ability and retain more crucial visual tokens, which leads to an average performance improvement of
2.13% over the baseline. For where to prune, our UTR can minimize the output disturbance caused
by token pruning and preserve the valuable visual information across layers more effectively, which
achieves the overall performance improvement of 3.76% compared with the baseline. Finally, our
UTP method can significantly outperform the baseline, achieving the performance improvement of
4.71% on average across all tasks, well demonstrating the effectiveness and superiority.

4.3 MODEL ANALYSES

We perform comprehensive analyses for our method, based on LLaVA-1.5-7B with the CR of 400%
across diverse tasks including GQA, TextVQA, and MME, by default.

Different uniform position embeddings. In URE, we employ the averaged position p′ = ⌊p1+p2

2 +
1
2⌋ for all visual tokens, where p1 and p2 denote their start and end positions, respectively. We
investigate the performance variation under different uniform position embeddings. Specifically, we
assign p1 and p2 as positions for all visual tokens, which are denoted as “URE-s” and “URE-e”,
respectively. As shown in Tab. 3, compared with the baseline, our URE with different uniform
position embeddings can consistently obtain performance improvements, showing its effectiveness.
Besides, we observe that “URE-e” obtains inferior results compared with “URE-s” and “URE”. It
can be attributed to the greater influence of position embedding on the attention score when using the
position p2 closest to the latest token, as shown in Fig. 3. It thus interferes the assessment of visual
token importance. In contrast, “URE-s” and “URE” achieve similar superior performance. Thus, we
simply adopt the averaged position p′.

Different position-agnostic metrics. Our PA-att leverages the uniform position for all visual tokens
in attention to eliminate the influence of positional information on the importance assessment. To
verify its effectiveness, we compare with other strategies that do not incorporate the positional
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(a) (b) (c) (d)

Figure 4: (a) The average performance under various CRs. Our UTP exhibits robust favorable
performance compared with “UTP-random” that randomly samples pruning layers and token numbers.
(b) Comparison results with others under different CRs. Our method enjoys superiority over others
in various scenarios. (c) The retained numbers of visual tokens in each layer in UTR. It shows that
LMM favors more visual tokens in shallow layers but notably fewer visual tokens in deep layers.
(d) The improved inference efficiency in different scenarios. The latency is measured on a Nvidia
RTX3090 GPU. Our method significantly improves the latency under various batch sizes.

information. Specifically, we introduce two baselines: 1) removing the position embedding in
the attention, i.e., ai =

exp(qT
nki)∑

j∈Tt
exp(qT

nkj)+
∑

j∈Tv
exp(qT

nkj)
. 2) using the feature correlation as the

importance metric, i.e., ai =
hT

nhi

||hn||·||hi|| , where h denotes the token feature before the attention.
They are denoted as “No pos” and “Feat cor”, respectively. As shown in Tab. 4, “No pos” and “Feat
cor” both obtain inferior results, which indicates the inaccurate importance assessment despite the
absence of positions. In contrast, our PA-attn leverages the attention-based importance evaluation. It
can well reserve the crucial visual tokens and enable URE to achieve superior performance.

Effect of sample data. We leverage random samples to derive the optimal pruning scheme for the
model in UTR. We inspect the performance of our method across varying sample sizes. As shown
in Tab. 5, we observe that only 10 samples are enough to obtain the satisfactory performance. It
indicates that our method works well with minimal sample data, showing its favorable robustness
and practicality. It also shows that the LMM favors similar distributions of visual token numbers for
different samples. Besides, the performance achieves a saturation point with 100 samples, which
serves as an adequate sample size.

Balance between performance and CR. To investigate the impact of our method on performance in
various scenarios, we inspect the performance variation under different CRs. We also introduce the
baseline “UTP-random”, which possesses 1000 randomly sampled pruning layers and token numbers.
We randomly sample 500 image-text pairs from GQA, TextVQA, and MME for evaluation due to
limited resources, respectively. As shown in Fig. 4.(a), our method maintains relatively stable and
satisfactory performance under various CRs. Compared with “UTP-random”, it exhibits more robust
performance and achieves better results in the majority of cases, showing the effectiveness of UTR.

Comparisons with others under various CRs. We present the comparison results between ours
and others under different CRs in Fig. 4.(b). The average performance is reported based on GQA,
TextVQA, POPE, and MME datasets. It can be observed that our method notably outperforms others
in various scenarios. These results well show our general efficacy and superiority over others.

Distribution of retained visual token numbers. We inspect the retained numbers of visual tokens in
UTR under different CRs in Fig. 4.(c). We observe that the shallow layers favor more visual tokens,
while the deeper layers retain notably fewer, and may even exclude visual tokens altogether. For the
intermediate layers, the number of retained visual tokens exhibits a slow downward trend. It shows
the gradual extraction of visual information in the front layers and the high redundancy of visual
tokens in the later layers. This inspires that the architecture with fewer visual tokens in deep layers
may be more suitable to LMMs.

Inference efficiency evaluation. To explore the improvement in inference efficiency of our method,
we measure the on-device latencies under different CRs. Following Shang et al. (2024); Chen et al.
(2024b), the image-text pair with 576 visual tokens and 64 text tokens is fed into the LMM for
analyses. We also follow Shang et al. (2024); Chen et al. (2024b) to employ LLaVA-1.5-7B for
inspection and report the prefill time to avoid the influence of output length. As shown in Fig. 4.(d),
our method can bring notable inference efficiency gains under different batch sizes and CRs. For
example, our method achieves speedups of 2.0× and 2.4× under the batch size of 1 and 2 with
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Image Layer 8 Layer 16 Layer 24 Image Layer 8 Layer 16 Layer 24

Question: What's the child wearing? 

Answer: The child is wearing a green shirt.

Question: What is the state of the traffic lights now?

Answer: The traffic lights are currently green, allowing the train to pass.

Figure 5: Visualization of the token pruning. The images are padded into the square shape in
preprocessing for the LMM and the mask indicates the corresponding discarded visual tokens. More
examples can be referred to the supplementary.

the CR of 400%, respectively. Along with such impressive efficiency improvements, our method
only results in the performance degradation of 0.45% on average across all tasks, as shown in Tab. 1.
Besides, our method can reduce the memory footprint during inference and avoid out-of-memory
under the batch size of 4 and 8. We also compare with other methods in Tab. 6. It can be observed
that our method achieves competitive performance with larger CR, leading to 33% ∼ 35% latency
reduction over others, showing the potential in practical applications.

Table 7: Results on other LMMs.
Model CR GQA TextVQA POPE MME Avg.

Qwen-VL 100% 54.4 60.6 85.9 1439.6 68.23
FastV 200% 50.3 50.9 81.2 1393.2 63.01
UTP 200% 53.0 57.1 85.0 1418.2 66.50
CogVLM 100% 58.6 79.2 88.1 1373.0 73.64
FastV 400% 47.0 51.7 73.5 1221.0 58.31
UTP 400% 56.4 73.9 86.9 1373.4 71.46
InternVL2 100% 60.3 77.8 84.4 1643.7 76.17
FastV 400% 56.3 69.6 79.8 1561.2 70.94
UTP 400% 58.9 72.3 82.2 1625.5 73.66
LLaVA-NeXT 100% 64.2 61.3 86.4 1520.3 71.98
FastV 400% 61.5 59.7 82.3 1447.2 68.97
UTP 400% 63.5 59.8 86.5 1486.8 71.04

Comparison on other LMMs. We present the
comparison results on Qwen-VL (Bai et al., 2023b),
CogVLM (Wang et al., 2025), InternVL2-8B (Chen
et al., 2024c), and LLaVA-NeXT-7B (Liu et al.,
2024b). We leave out others due to their incomplete
compatibility with these LMMs. For Qwen-VL, due
to its fewer visual tokens, we adopt the CR of 200%,
and for other models, we utilize the CR of 400%. As
shown in Tab. 7, our UTP exhibits superior perfor-
mance across different LMMs. For example, UTP
achieves notable improvements of 2.72% and 2.07%
on average over FastV for InternVL2-8B and LLaVA-
NeXT, respectively, showing the efficacy.

Table 8: Results on video benchmarks.

Model MSVD MSRVTT ActivityNet
Acc Score Acc Score Acc Score

Baseline 68.8 3.9 57.5 3.5 43.3 3.3
PruMerge 67.6 3.9 55.2 3.4 42.2 3.3
FastV 65.5 3.9 54.5 3.5 42.2 3.3
LLaVolta 60.8 3.7 51.8 3.4 41.1 3.3
UTP 68.5 3.9 56.4 3.5 43.1 3.3

Generalization on video modality. To explore
the generalization ability of our method to the
video modality, we perform evaluation on the video
understanding tasks. Experiments are conducted
on MSVD-QA (Chen & Dolan, 2011), MSRVTT-
QA (Xu et al., 2016), and ActivityNet-QA (Yu et al.,
2019), based on the Video-LLaVA-7B (Lin et al.,
2023) under the CR of 800%, following Chen et al.
(2024b); Shang et al. (2024). As shown in Tab. 8, our method exhibits superior performance over
others. Compared with the original model, it can achieve a significant reduction of the number of
visual tokens by 8×, with the minimal degradation of 0.3% and 0.2% accuracies on MSVD-QA and
ActivityNet-QA, respectively. This shows its favorable generalizability.

Visualization of token pruning. To qualitatively show the effectiveness of our method, we visualize
the pruned visual tokens in Fig. 5. We show the input image-text pair and the progressive sparsification
results. We find that our method can gradually remove the unimportant visual tokens and effectively
preserve the crucial visual information for the multimodal perception and reasoning, such as the
traffic lights. It also shows the favorable interpretability of our method, i.e., locating the important
visual regions which contribute most to the visual instruction following.

5 CONCLUSION

In this paper, we propose an Unbiased Token Pruning (UTP) method, to address the challenges of
what to prune and where to prune in visual token pruning for LMMs. We introduce the Unbiased
Relevance Estimation (URE) strategy to accurately estimate the visual token importance and present
the Unbiased Token Retention (UTR) strategy to select the optimal pruning scheme. Thanks to them,
our method exhibits competitive performance with favorable efficiency enhancement. Extensive
experiments show its superiority over the state-of-the-arts across various tasks.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We follow the evaluation settings of LLaVA (Liu et al., 2024c;a) and conduct all experiments on the
Nvidia 3090 GPU with the pytorch framework (Paszke et al., 2019) and transformers library (Wolf
et al., 2020). Besides, we utilize the widely adopted KV cache mechanism (Pope et al., 2023) for
inference of LMMs. During the prefilling process, only the key and value features of retained tokens
are saved in the KV cache of each layer in LLM. During decoding, the output tokens interact directly
with the KV cache to calculate the causal attention for generation, avoiding redundant computations
of previously processed tokens.

Following Shang et al. (2024); Chen et al. (2024b;a), we evaluate the performance of our method
on diverse academic-task-oriented and instruction-following benchmarks for LMMs. Regarding the
academic-task-oriented benchmarks, VQAv2 (Goyal et al., 2017) contains images collected from
COCO (Lin et al., 2014) and assesses the model’s capabilities in visual recognition, spatial reasoning,
and language understanding, etc. GQA (Hudson & Manning, 2019) consists of samples based on
the scene graph structure in Visual Genome (Krishna et al., 2017) and evaluates the performance
of models on visual and compositional reasoning. ScienceQA (Lu et al., 2022) includes scientific
questions and answers sourced from the textbooks and lectures, evaluating the zero-shot generalization
in reasoning pertaining to scientific knowledge. TextVQA (Singh et al., 2019) comprises images
embedded with rich textual information, requiring the model to recognize and reason about the textual
content. Besides, for visual instruction-following benchmarks, POPE (Li et al., 2023) incorporates
both positive and negative objects in the questions with images from COCO (Lin et al., 2014),
which requires the model to recognize positive samples and identify negative ones simultaneously.
It includes random, common and adversarial splits, with results reported as F1 scores. MME-
Perception (Fu et al., 2023) evaluates the overall capabilities of model on several subtasks in both the
coarse-grained and fine-grained dimensions. MMBench (Liu et al., 2023) assesses the robustness
of model answers with all-round shuffling on multiple choice answers. SEED-Image (Li et al.,
2024a) evaluates the generative comprehension ability of LMMs across multiple dimensions with
accurate human annotations. MM-Vet (Yu et al., 2023) assesses the performance of model on various
multimodal tasks across recognition, reasoning, and math, etc.

Besides, we follow Chen et al. (2024b); Shang et al. (2024) to conduct quantitative assessment on the
video question answering benchmarks for our method, including MSVD-QA (Chen & Dolan, 2011),
MSRVTT-QA (Xu et al., 2016), and ActivityNet-QA (Yu et al., 2019). Specifically, MSVD-QA
leverages the MSVD dataset (Chen & Dolan, 2011) which consists of sentence descriptions and video
snippets to generate the question-answer pairs with videos. Similarly, MSRVTT-QA utilizes the large-
scale open domain video captioning dataset MSRVTT (Xu et al., 2016) to evaluate model’s ability
to answer questions based on the videos. ActivityNet-QA derives the human-annotated question
answering pairs for videos from the ActivityNet dataset (Caba Heilbron et al., 2015), assessing the
model performance in the context of long-term spatial-temporal reasoning. Following Maaz et al.
(2023); Lin et al. (2023), we leverage the validation splits of MSVD-QA and MSRVTT-QA, and the
test split of ActivityNet-QA for evaluation. The pipeline follows previous works (Maaz et al., 2023;
Lin et al., 2023) and we leverage the GPT Assistant to assess the accuracy and score of the model’s
outputs. The score is on a scale of 1-5.

A.2 MORE MODEL ANALYSES

A.2.1 COMPARISON WITH PRUNING IN VISUAL ENCODER

In addition to pruning the visual tokens in each layer of LLM during inference, we also follow Shang
et al. (2024) to utilize the attention scores of CLS token from the penultimate layer of the visual
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Table 9: Comparison with pruning in visual encoder. CR denotes the compression ratio.

Model Image CR VQAv2 GQA SciQA TextVQA POPE MME MMBench SEED MMVet Avg.

LLaVA-1.5-7B 3362 100% 78.5 62.0 69.6 58.2 85.9 1513.5 64.0 66.2 31.3 65.71

CLS 3362 1600% 68.5 51.9 69.4 54.2 70.2 1283.4 58.8 54.8 27.6 57.73
UTP 3362 1600% 71.7 54.4 69.5 55.0 74.2 1368.8 60.7 57.5 29.4 60.09

CLS 3362 400% 76.1 58.3 68.0 57.0 83.5 1435.3 63.0 62.5 32.6 63.64
UTP 3362 400% 77.6 60.8 69.0 57.7 84.6 1515.5 63.8 64.8 33.3 65.26

Table 10: Comparison results with ToMe.
Model CR GQA TextVQA POPE MME Avg.

Baseline 100% 62.0 58.2 85.9 1513.5 70.44
ToMe 400% 58.4 53.3 83.9 1377.7 66.11
UTP 400% 60.8 57.7 84.6 1515.5 69.72

Table 11: URE layers. We inspect accuracy (%)
and latency (10−2s) under different first L layers.

Layer (L) 0 1 2 3 4 8 16 24 32

Accuracy 57.1 57.2 57.4 57.7 57.7 57.8 57.9 57.9 57.9
Latency 8.66 8.69 8.71 8.74 8.77 8.88 9.09 9.31 9.53

encoder to remove the redundant output tokens of the visual encoder before the LLM in the UTP.
Therefore, we introduce this method as a baseline to verify the effectiveness of our UTP. Specifically,
given a target compression ratio c, we sort the visual tokens according to the CLS token’s attention
scores of the penultimate layer in the visual encoder and directly retain the top V

c tokens for fed into
the LLM. We denote this method as “CLS”. We conduct experiments on various benchmarks based
on LLaVA-1.5-7B. As shown in Tab. 9, our UTP consistently outperforms the “CLS” method across
various tasks. It achieves the significant performance improvements of 2.36% and 1.62% on average
under the compression ratios of 1600% and 400%, respectively. These results well highlight the
effectiveness and superiority of our method.

A.2.2 COMPARISON WITH TOME

We also compare our UTP with previous methods for token pruning in Vision Transformers. We
present the comparison results with the advanced ToMe (Bolya et al., 2022) based on LLaVA-1.5-7B
in Tab. 10. It shows that our UTP also significantly outperforms ToMe across different benchmarks.
For example, UTP achieves the notable improvements of 2.4% and 4.4% accuracies on GQA and
TextVQA, respectively. The results further verify the efficacy of our method.

A.2.3 DIFFERENT LAYERS WITH URE

In URE, we employ the uniform position embedding for all visual tokens to mitigate the attention bias.
Intuitively, after decoupling the effect of positions on the importance assessment of visual tokens,
those tokens that contain less visual information but exhibit notable attention bias can be removed
in the initial few layers of LLM. This suggests that in our UTP, adopting URE in the early few
layers can yield effective results, meanwhile bringing minimal computational overhead of calculating
position-agnostic attention. Therefore, we suppose that the URE is leveraged in the first L layers with
the rest layers utilizing the normal attention score, and observe the model’s performance and latency
results under different values of L. L = 0 means the visual token pruning without the URE strategy,
which is the baseline method. We conduct experiments on TextVQA based on LLaVA-1.5-7B under
the compression ratio of 400%. As shown in Tab. 11, adopting the URE only in the first three layers
improves the performance by 0.6% compared with the baseline, while only incurring the latency
of 8×10−4s. Considering that further increasing L enhances performance with more additional
overhead for position-agnostic attention, we thus empirically incorporate URE in the first three layers
by default, for the better balance between performance and efficiency.

Moreover, we inspect the retained number of visual tokens at different positions with the URE strategy
adopted in the first three layers. We also compare this with the scenario where the URE strategy is
not employed. Specifically, we obtain 100 random samples and visualize the average proportion of
retained visual tokens across various positions. As shown in Fig. 6.(a), we can observe that without
URE, the proportion of retained visual tokens exhibits a clear positive correlation with their positions
due to the attention bias. This results in the retention of tokens that lack important visual information
yet are situated at specific positions. In contrast, in the scenario with URE, those tokens located
in the bottom right corner with large positions can be effectively removed, indicating the effective

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0-64 128-192 256-320 384-448 512-576
Visual token position

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n 
of

 re
ta

in
ed

 to
ke

ns w/ URE
w/o URE

(a)

0 5 10 15 20 25 30 35 40
Layer

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ai
ne

d 
ra

tio
 o

f v
is

ua
l t

ok
en

s LLaVA-1.5-7B
LLaVA-1.5-13B

(b)

Figure 6: (a) The proportion of retained visual tokens across different positions with and without the
URE strategy. It shows that our URE can effectively mitigate the interference of positions and retain
more middle regions that usually possess important visual signals. This highlights the efficacy of our
method. (b) The distribution of retained token numbers across layers in different samples. It shows
that LMMs exhibit similar layer-wise redundancy of visual tokens for different samples.

Image Layer 8 Layer 16 Layer 24

Question: What fruits are beneath the microwave? 

Answer: There are bananas beneath the microwave.

Question: What is the color of the mouse?

Answer: The color of the mouse is black.

Image Layer 8 Layer 16 Layer 24

Question: What's the number on the front of the bus?

Answer: The number on the front of the bus is 65.

Question: What is the man squeezing in his hand?

Answer: The man is squeezing a baseball in his hand.

Question: What's the number on the back of the player in red at the front?

Answer: The number on the back of the player in red at the front is 12.

Question: What's on the table between two beds? 

Answer: There is a telephone on the table between the two beds.

Question: What is flying in the sky?

Answer: A kite is flying in the sky.

Question: What is the speed limit on this road in km/h?

Answer: The speed limit on this road is 30 km/h.

Figure 7: Visualization of our method. The images are padded into the square shape in the pre-
processing for the LMM, and the masks indicate the pruned visual tokens. The results show that
our method incrementally discards less relevant tokens, allowing for the sharper focus on the most
pertinent visual regions.

mitigation of attention bias during the importance assessment. As a result, the tokens in the central
region, which typically contain more relevant visual information, can be reserved more frequently,
bringing better performance. The comparison further verifies the effectiveness of our strategy.

A.2.4 RETAINED TOKEN NUMBER DISTRIBUTION IN SAMPLES

We visualize the retained token number distribution across layers for different samples in UTR under
the CR of 400% in Fig. 6.(b). It shows that different samples possess similar layer-wise pruning
scheme. We attribute such phenomenon to the consistent visual token modeling process in LMM’s

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

layers, i.e., each layer functions similarly and thus exhibits comparable visual token redundancy
for different inputs. Furthermore, our UTR can effectively find such scheme with minimal cost,
facilitating the mitigation of visual information loss across layers and alleviating the interference of
pruning with performance.

A.3 MORE VISUALIZATION RESULTS

We present more visualization results of token pruning to qualitatively show the effectiveness of our
method. As shown in Fig. 7, our method can effectively remove the less relevant visual tokens and
retain the crucial visual information for LMM given the instructions. For example, with the first
question of “What is the speed limit on this road in km/h?”, our method can precisely locate the key
position of the speed limit sign and ensure its consistent maintenance. Given the last question of
“What is flying in the sky?”, our method can effectively identify the important tokens that capture the
visual information of the kite and retain them. Besides, in the scenario where the optical character
recognition capability is required, with the second question of “What’s the number on the front of the
bus?”, our method can protect the visual tokens corresponding to the digits and help LMM correctly
recognize the number. These qualitative results well highlight the efficacy of our method.

A.4 LIMITATION AND SOCIETAL IMPACT

Limitation. Due to limited resources, we do not investigate the performance of our method on
larger-scale multimodal models. Besides, exploring the efficacy of our method on models that support
other modalities such as audio is also promising and valuable, which we leave as the future work.

Societal Impact. The models accelerated by our method can be applied in various scenarios, including
image captioning and visual question answering, etc. We hope that our method can contribute to
these fields by improving efficiency. However, we also recognize the potential misuse of the models,
which we will make every effort to prevent.

A.5 THE USE OF LARGE LANGUAGE MODELS

We only use large language models (LLMs) for polishing writing. All ideation and experiments are
conducted by ours.
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