
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE SFT FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a simple, self-help online supervised finetuning (OSFT) method for
LLM reasoning. In this paradigm, the model generates its own responses and is
immediately finetuned on this self-generated data. OSFT is a highly efficient train-
ing strategy for LLM reasoning, as it is reward-free and uses just one rollout by
default. Experiment results show that OSFT achieves downstream performance
on challenging mathematical reasoning tasks comparable to strong reinforcement
learning (RL) methods such as GRPO. Our ablation study further demonstrates
the efficiency and robustness of OSFT. The major mechanism of OSFT lies in
facilitating the model’s own existing preference (latent knowledge) learned from
pretraining, which leads to reasoning ability improvement. We believe that OSFT
offers an efficient and promising alternative to more complex, reward-based train-
ing schemes.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

Math500
AMC
Olympiad

Minerva
AIME24
AIME25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Temperature

Pa
ss

@
8

(a) Pass@1 and pass@8 on base model via different
validation temperature (τeval).

0 100 200 300
Training Step

0.15

0.20

0.25

0.30

0.35

Pa
ss

@
1

0 100 200 300
Training Step

0.45

0.50

0.55

Pa
ss

@
8

OSFT
GRPO
Best (Base Model)

(b) Averaged pass@1 and pass@8 across six math
benchmarks for models trained by GRPO and OSFT.

Figure 1: Motivation and performance of Online SFT (OSFT) with Qwen2.5-Math-7B as the base
model. (a) The performance of the untuned base model is sensitive to different evaluation tempera-
tures (τeval). Pass@1 accuracy (left) peaks at low temperatures, while pass@8 (right) benefits from
moderate temperatures. This motivates a training approach that reinforces the model’s existing pref-
erence learned from pretraining, which leads to OSFT. (b) OSFT exhibits downstream performance
comparable to the baseline GRPO across six math reasoning benchmarks, and both improve over the
base model’s best performance. Here, the “Best (Base Model)” horizontal line represents the aver-
aged peak score on these six benchmarks of the untuned base model found by sweeping evaluation
temperatures τeval.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2024) have
emerged as a promising pathway toward achieving general artificial intelligence (Bubeck et al.,
2023). In particular, there has been a surge of interest in training LLMs with Chain-of-Thoughts
(CoT) (Wei et al., 2022) reasoning paths for complex mathematical tasks, which has driven notable
progress on challenge mathematical benchmarks, as demonstrated by models like OpenAI-o1 and
DeepSeek-R1 (Jaech et al., 2024; Guo et al., 2025). Consequently, developing efficient training
strategies for reasoning models has become an increasingly important research direction.

Background and Related Work. Due to the rapid growth of research on LLM reasoning, we
provide a non-exhaustive overview.

To improve LLM reasoning capabilities, reinforcement learning with verifiable reward (RLVR) has
become a popular approach (Guo et al., 2025). Many recent works aim to replicate RL’s success

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

-108

-125 -161
መ𝐴𝐴

𝑞

𝐵 ෠𝐵

-65

-62

𝐵 ෠𝐵

-40

-55

-109 -121
መ𝐴𝐴

𝑞

𝐵 ෠𝐵

-61

-53

𝐵 ෠𝐵

-49

Base Model OSFT Model

Base Model: πθ OSFT Model: πθ̂

log πθ(A|q)=−55 < log πθ(Â|q)=−53, log πθ̂(A|q)=−108 < log πθ̂(Â|q)=−62,

log πθ(B|q,A)=−109 < log πθ(B̂|q,A)=−61, log πθ̂(B|q,A)=−125 < log πθ̂(B̂|q,A)=−65,

log πθ(B|q,Â)=−121 < log πθ(B̂|q,Â)=−49, log πθ̂(B|q,Â)=−161 < log πθ̂(B̂|q,Â)=−40.

Figure 2: Given the same question q, the base model generates the reasoning steps [A,B] with B
being the wrong response (highlighted in light red, picked from one of all 8 wrong tries), while the
OSFT model generates the path [Â, B̂] with B̂ containing the correct response (highlighted in light
blue). It can be seen that OSFT facilitates the base model’s existing preference obtained from pre-
training, which largely widens the probability margin between the correct path and its counterparts,
leading to correct reasoning. The full question and responses are put in Appendix D. More detailed
analysis of this experiment result can be found in Section 4.2.1.

in reasoning; see, e.g., Face (2025); Pan et al. (2025); Luo et al. (2025); Yu et al. (2025); Liu et al.
(2025); Zeng et al. (2025); Hu et al. (2025a); Wang et al. (2025b). The core step of RL lies in using a
rule-based reward, e.g., the correct answer of the math question, to provide a training signal towards
fitting the correctly generated answer by the model itself. Common RL algorithms for reasoning
include GRPO (Shao et al., 2024) and PPO (Schulman et al., 2017). There are also many GRPO
variants such as DAPO (Yu et al., 2025), Dr. GRPO (Liu et al., 2025), and GSPO (Zheng et al.,
2025).

Beyond RL, the standard supervised finetuning (SFT) pipeline on reasoning data distilled from
strong reasoning models like R1 can also improve LLM’s reasoning ability; see, e.g., Muennighoff
et al. (2025); Ye et al. (2025); Li et al. (2025); Wen et al. (2025). The recent work (Guha et al., 2025)
thoroughly investigates the reasoning dataset for SFT.

There is also a wide range of work exploring other aspects of LLM reasoning, including the role
of RL in incentivizing reasoning (Yue et al., 2025), the 80/20 rule on tokens (Wang et al., 2025a),
analyses of models’ reasoning processes (Chen et al., 2025), the illusion of thinking (Shojaee et al.,
2025), rethinking reward signals (Shao et al., 2025), and entropy-based mechanisms (Cui et al.,
2025; Agarwal et al., 2025), improving reasoning ability with one training example (Wang et al.,
2025b), survey on efficient reasoning (Sui et al., 2025), among others.

Main contributions. In this work, our goal is to provide a simple, efficient, self-help SFT-based
algorithm, so that it can be used to improve the reasoning ability of models. Our main contributions
can be summarized below.

(C.1) We propose Online SFT (OSFT) training method for LLM reasoning. OSFT is an effi-
cient, reward-free, and self-help algorithm that improves the model by performing SFT on
the self-generated data. One factor contributing to OSFT’s efficiency is that it can use only
a single rollout, i.e., one sample per prompt, which we adopt as the default setting. To im-
prove the model’s reasoning ability, the mechanism of OSFT lies in enhancing the model’s
existing preference (latent knowledge) obtained from pretraining, as illustrated by Figure 2
and the analysis in Section 4.2.1.

(C.2) We conduct extensive empirical experiments showing that OSFT is a highly effective train-
ing strategy. In particular, we show that it achieves downstream performance comparable to
the strong baseline GRPO on both math-specific and general-purpose base models across
different mathematical reasoning benchmarks. Our ablation study confirms OSFT’s effi-
ciency and robustness. In summary, our experiment results indicate that OSFT is a simple
yet promising alternative for LLM reasoning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We provide preliminaries abut language modeling and training formulations for incentivizing LLM’s
reasoning ability in this section.

2.1 LANGUAGE MODELS

LLMs are autoregressive models that generate a sequence of tokens given an input. An LLM πθ

with parameters θ is usually modeled by the transformer architecture (Vaswani et al., 2017). Given
a prompt q, it generates an output sequence o = (o1, o2, . . . , oT) through the conditional probability
distribution πθ(o | q) in an autoregressive manner, namely,

πθ(o | q) =
T∏

t=1

πθ(ot | q, o<t), (1)

where o<t denotes the tokens preceding ot.

2.2 SUPERVISED FINETUNING (SFT)

SFT is a standard technique for adapting a pre-trained model πθ to specific tasks by training it on
a static dataset D of high-quality prompt-response pairs (q, o). The training objective of SFT is
formulated by minimizing the negative log-likelihood loss over D:

LSFT(θ;D) = −E(q,o)∼D

 |o|∑
t=1

log πθ(ot | q, o<t)

 . (2)

SFT is commonly applied for adapting a pre-trained model to follow human instructions or to man-
age specifc downstream tasks. In terms of incentiving the model’s reasoning ability, one can also
perform SFT on long CoT data distilled from strong reasoning models, where the response o con-
tains rich reasoning traces; see, e.g., Muennighoff et al. (2025); Ye et al. (2025); Li et al. (2025);
Wen et al. (2025); Guha et al. (2025).

2.3 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

For reasoning tasks where solutions can be programmatically verified, on-policy RL is a popular
approach for improving the model’s reasoning ability. A popular method in this domain is Group
Relative Policy Optimization (GRPO) (Shao et al., 2024). GRPO is to maximize the following
clipped surrogate objective derived from Proximal Policy Optimization (PPO):

J(θ) =Eq∼D,o∼πold(·|q)

[∑|o|

t=1
min

(
πθ(ot|q, o<t)

πold(ot|q, o<t)
Â(q, o),

clip

(
πθ(ot|q, o<t)

πold(ot|q, o<t)
, 1− ϵ, 1 + ϵ

)
Â(q, o)

)]
− β Eq∼D

[
DKL

(
πθ(·|q)∥πref(·|q)

)]
,

(3)

where Â(q, o) =
r(q,o)−r̄q

σq
is the advantage with r being reward and DKL is the KL divergence.

3 OSFT: ONLINE SUPERVISED FINETUNING

In this section, we introduce the Online Supervised Finetuning (OSFT) method, an iterative, reward-
free, self-help algorithm designed to improve LLM’s reasoning ability.

3.1 MOTIVATION: THE CORRELATION BETWEEN CERTAINTY AND PERFORMANCE

The initial motivation for our work comes from Figure 1a, where we analyze the performance of the
base Qwen2.5-Math-7B model across various sampling temperatures. It can be observed that for ev-
ery mathematical reasoning benchmark, the pass@1 performance is highest in the low-temperature

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Iterative Online Supervised Finetuning (OSFT)
Input initial model πθinit ; task prompts D; hyperparameters: sampling temperature τs, training temperature τt,
rollouts per prompt G
1: model initialization πθ ← πθinit

2: for step = 1, . . . , M do
3: πold ← πθ

4: Sample a batch of questions Db from D
5: Initialize an empty set for the training batch: DOSFT ← ∅
6: for each question q ∈ Db do
7: Sample G outputs {oi}Gi=1 ∼ πold(· | q, τs)
8: Add the generated pairs {(q, oi)}Gi=1 to DOSFT

9: for OSFT iteration = 1, . . . , µ do
10: Update the model πθ by minimizing the OSFT loss (Equation (4)) on DOSFT.

Output πθ

region (τeval ≤ 0.6) and degrades significantly as the temperature increases. For pass@8, peak per-
formance is observed in the mid-temperature range (τeval ≈ 0.4–0.8). This observation motivates us
to enhance the model’s certainty about its existing preferences obtained from pretraining, but only
to a reasonable extent, as pass@8 (i.e., exploration ability) declines at extremely low temperatures,
in order to improve LLM’s mathematical reasoning ability.

3.2 OSFT: A SIMPLE METHOD FOR LLM REASONING

Motivated by the above observations, we propose Online SFT (OSFT) for LLM reasoning. It is a
simple, reward-free, self-help algorithm designed to iteratively amplify the model’s certainty on its
existing preference obtained from the pretraining phase. The core loop, illustrated in Algorithm 1
(see also Figure 13 for a workflow), involves two steps:

1. Self data generation: Using the model itself to sample outputs with a low sampling tem-
perature τs.

2. SFT: The model is then updated by performing SFT with a temperature τt on these self-
generated data.

This online, self-help process lends itself to a natural comparison with RL algorithms like
GRPO, but their core dynamics are fundamentally different. As outlined in Section 2.3,
GRPO’s update is driven by a reward-based advantage, targeting at the importance sampling ra-
tio πθ(ot|q, o<t)/πold(ot|q, o<t). For this ratio to be a valid measure of policy/model change, the
sampling distribution πold and training distribution πθ are usually set to be comparable, as is done in
the VERL platform (Sheng et al., 2025). OSFT, in sharp contrast, is a reward-free algorithm. It has
no advantage term nor the importance sampling ratio. OSFT simply optimizes the SFT’s negative
log-likehood loss over the data generated by the old model, and hence the rationale for sampling and
training consistence (such as temperature coupling) is no longer required. Indeed, we will illustrate
below that the sampling and training distributions have to be different in OSFT, as otherwise the
learning signal will be null.

This major difference allows us to decouple the sampling and training distributions for specialized
roles. We formalize this by defining the OSFT loss with distinct sampling and training temperatures:

LOSFT = −Eq∼D,o∼πold(·|q;τs) [log πθ(o | q; τt)] (4)

While in principle τt can be tuned, we find that a standard, non-aggressive setting of τt = 1 is
sufficient for stable learning, which we adopt in our main experiments.

3.3 DISCUSSION ON DECOUPLED TEMPERATURE DYNAMICS IN OSFT

The decoupled temperature setting of OSFT is not an empirical accident but a direct consequence of
one-step gradient dynamics. We now discuss the interplay between τs and τt = 1 to show that the
condition

τs < τt (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is necessary for stable learning in OSFT by checking its one-step gradient.

The Unstable Regime (τs ≥ τt). In this regime, OSFT fails because the learning signal is either
directionless or actively destructive.

Case 1: Coupled Temperatures (τt = τs = τ). When temperatures are identical, the expected
parameter update is directionless. This is a direct consequence of the score-function identity (see
Appendix E.1):

Eo∼πθ(·|q;τ)[∇θ log πθ(o | q; τ)] = 0. (6)

This means E[θnew] = θold. Our experiment results also verify this observation; see Figure 7.

Case 2: Inverted Temperatures (τs > τt). This scenario creates a destructive mismatch. The sam-
pling process, governed by a higher τs > 1, is more stochastic and generates a diverse set of outputs
that have even worse performance; see Figure 1a. Therefore, the model is trained to behave more
randomly, leading to worse reasoning ability.

The Stable Regime (τs < τt). For one token response case, we have (see Appendix E.2)

Eo∼πθ(·|q;τs)[∇θ log πθ(o | q; τt)] =
1

τt
· Jθ [pτt − pτs] . (7)

This result extends to multiple tokens by summing up the per-token contributions. Here, Jθ =
∂z/∂θ is the Jacobian with z being the logits, pτt = softmax(z/τt) is the training distribution, and
pτs = softmax(z/τs) is the sampling distribution. By setting τs < τt and with the same logits in
both softmaxes, pτs is a shaper distribution than pτt . Consequently, the vector pτt − pτs is negative
for the model’s most preferred prediction, while it is typically positive on the others. Updating the
model by one gradient step enhances the certainty of the model’s existing preference.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

To evaluate the effectiveness of OSFT, we conduct a comparative analysis against GRPO, a popular
on-policy RL algorithm, to benchmark its self-help capabilities.

Datasets. Our primary training question/prompt set is DeepSclaR (Luo et al., 2025). We evaluate
all models on a suite of six challenging mathematical reasoning benchmarks: Math500 (Hendrycks
et al., 2021), AMC (Li et al., 2024), Minerva math (Minerva) (Lewkowycz et al., 2022), Olympiad-
Bench (Olympiad) (He et al., 2024), AIME24 (Li et al., 2024), and AIME25 (Li et al., 2024).

Template and Evaluation. To ensure a clean comparison, all experiments use the official Qwen2.5-
Math system prompt without any additional user prompts, as detailed in Figure 10. Unless otherwise
specified for ablation studies, the default evaluation temperature τeval is set to 1, which corresponds
to the model’s original output distribution. We evaluate performance using the pass@k metric.
To ensure a stable and reliable measurement, we employ both pass@1 and pass@8 performance
metrics, and the details are provided in Appendix A.2.

Hyperparameters. For OSFT, we use a decoupled temperature setting: The sampling temperature
is τs = 0.6 for the specialized Qwen math models and τs = 0.9 for other models, while the training
temperature is fixed at τt = 1. For the GRPO baseline, we follow standard practice and use a coupled
temperature setting of τs = τt = 1 (Sheng et al., 2025). An important difference highlighting
OSFT’s efficiency is the number of rollouts per prompt (G): Our default setting for OSFT is G = 1,
whereas for GRPO it is G = 8.

All experiments are conducted using the VERL framework (Sheng et al., 2025). Comprehensive
training and evaluation configurations are provided in Appendix A.

4.2 OSFT FOR LLM REASONING: ANALYSIS AND PERFORMANCE

4.2.1 PROBABILITY ANALYSIS OF EXISTING PREFERENCE AND THE ROLE OF OSFT

We analyze the performance of the base Qwen2.5-Math-7B model, πθ, and the OSFT-trained model,
πθ̂, on a math problem in the Math500 dataset. As shown in Figure 2, the base model consistently

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

generates the incorrect path [A,B]. The OSFT model, in contrast, learns to generate the correct path
[Â, B̂]. The full question and responses of both models are put in Appendix D. We observe that A
and Â (also B and B̂) are semantically similar.

The failure of the base model πθ stems from its uncertainty in its own existing preference obtained
from pretraining. First, while it generates path A, its own distribution actually shows a slight pref-
erence for the alternative prefix Â (log πθ(Â|q) = −53 vs. −55). The stochastic nature of sampling
leads it to select the slightly less probable, and suboptimal, starting path. Once committed to prefix
A, the model generates the incorrect suffix B despite assigning a far higher probability to the correct
suffix B̂ (log πθ(B̂|q, A) = −61 vs. −109). The base model already possesses the latent knowl-
edge that starting with Â provides a much clearer path to the correct answer (as shown by the high
probability of log πθ(B̂|q, Â) = −49), but it is unable to reliably follow this correct trajectory.

After training, the OSFT model πθ̂ learns to overcome this uncertainty by systematically reinforcing
the model’s existing latent knowledge. First, it promotes a large preference for the superior prefix Â

over A, significantly widening the log-probability gap from 2 to 46 (log πθ̂(Â|q) = −62 vs. −108).
This makes the correct start highly preferable. Second, OSFT largely increases the log-probability
margin between the correct and incorrect suffixes. For the chosen path starting with Â, the log-
probability gap between the correct suffix B̂ and the incorrect one B increases from 72 in the base
model to 121 after OSFT. This dynamic, which widens the margin to avoid the flawed paths, shares
similarity with contrastive alignment methods like DPO (Rafailov et al., 2023). OSFT thus succeeds
not by teaching the model new mathematical facts, but by aligning its generative process with the
superior reasoning paths that were already latent/existing within its own distribution obtained from
pretraining.

4.2.2 CERTAINTY METRICS: PERPLEXITY PERSPECTIVE

To quantify the model’s certainty, we compute the perplexity (PPL) on a per-benchmark basis. Let
Dbenchmark = {(qi, oi)}Ni=1 be the set of N generated prompt-response pairs using πθ for a single
benchmark. PPL is defined as

PPL(Dbenchmark;πθ) = exp

(
−
∑N

i=1

∑|oi|
t=1 log πθ(oi,t | qi, oi,<t)∑N

i=1 |oi|

)
.

PPL is a metric measuring the averaged probability of a generated response. A lower PPL score on
a given benchmark indicates higher model certainty on that specific task distribution.

In Figure 3, we display the PPL across all six test benchmarks for N = 16 data pairs per benchmark,
where the responses are generated by models trained using several algorithms. Interestingly, GRPO
and its variants also drive the PPL down, which suggests that GRPO might partially enhances the
model’s existing preference for improved reasoning. A detailed investigation is beyond the scope of
this work and is left for future work.

0 100 200 300
Step

1.0

1.1

1.2

1.3

Pe
rp

le
xi

ty

Math500

0 100 200 300
Step

1.0

1.1

1.2

1.3

1.4

AMC

0 100 200 300
Step

1.0

1.1

1.2

1.3

1.4
Olympiad

0 100 200 300
Step

1.0

1.1

1.2

1.3

Minerva

0 100 200 300
Step

1.0

1.1

1.2

1.3

1.4

1.5

AIME24

0 100 200 300
Step

1.0

1.1

1.2

1.3

1.4

1.5
AIME25

OSFT GRPO DrGRPO DAPO

Figure 3: PPL of models trained using OSFT, GRPO, DAPO, and Dr. GRPO, where the base model
is Qwen2.5-Math-7B.

4.2.3 QWEN-MATH SERIES PERFORMANCE

For downstream performance, we evaluate OSFT against the widely-used baseline GRPO (and its
variants) on the specialized Qwen2.5-Math models at both 1.5B and 7B scales; see Figure 4.

The first observation lies in that in most cases, both OSFT and GRPO surpasses the base model’s
peak performance obtained by sweeping the evaluation temperature. This demonstrates that these

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.2

0.3

0.4

0.5

0.6

0.7
Pa

ss
@

1

Math500

0.2

0.3

0.4

0.5
AMC

0.1

0.2

0.3

Olympiad

0.1

0.2

0.3

Minerva

0.05

0.10

0.15

0.20

AIME24

0.025

0.050

0.075

0.100

0.125

AIME25

0 100 200 300
Step

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
8

0 100 200 300
Step

0.5

0.6

0.7

0.8

0 100 200 300
Step

0.4

0.5

0.6

0 100 200 300
Step

0.3

0.4

0.5

0 100 200 300
Step

0.1

0.2

0.3

0.4

0.5

0 100 200 300
Step

0.1

0.2

0.3

OSFT-7B GRPO-7B Best-7B OSFT-1.5B GRPO-1.5B Best-1.5B

Figure 4: Performance of OSFT and GRPO on Qwen2.5-Math 1.5B (dashed lines) and 7B (solid
lines) models on six math reasoning benchmarks. Dotted horizontal lines represent the best per-
formance of the corresponding base models (before training) achieved by sweeping the evaluation
temperature. It can be observed that OSFT is highly competitive with GRPO across different model
scales on different math benchmarks.

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
1

Math500

0.2

0.3

0.4
AMC

0.2

0.3

Olympiad

0.1

0.2

0.3

Minerva

0.05

0.10

0.15

AIME24

0.02

0.04

0.06

0.08
AIME25

0 100 200 300
Step

0.75

0.80

0.85

0.90

Pa
ss

@
8

0 100 200 300
Step

0.5

0.6

0.7

0 100 200 300
Step

0.45

0.50

0.55

0.60

0 100 200 300
Step

0.3

0.4

0.5

0 100 200 300
Step

0.1

0.2

0.3

0 100 200 300
Step

0.1

0.2

0.3

OSFT GRPO Best (Base Model)

Figure 5: Performance of OSFT and GRPO on the Qwen2.5-7B base model across six math reason-
ing benchmarks. OSFT holds a comparable performance compared to GRPO.

online self-help algorithms provide essential and consistent performance gains over the base mod-
els. Additionally, OSFT exhibits a highly competitive mathematical reasoning performance with the
strong baseline GRPO. For the 7B model, OSFT often matches or slightly surpasses GRPO’s per-
formance, particularly on benchmarks like Math500, Olympiad, and Minerva. This trend indicates
that our simple, reward-free approach can achieve performance comparable to a more sophisticated
RL algorithm. For a complete comparison against other RL baselines like DAPO and Dr. GRPO,
please see Appendix B.1; they are excluded here to maintain visual clarity.

4.2.4 PERFORMANCE ON OTHER NON-MATH MODELS

To test OSFT’s general ability, we apply it to the Qwen2.5-7B base model, which is not specialized
for mathematical reasoning. The results are shown in Figure 5.

First, both OSFT and GRPO demonstrate the ability to improve the base model’s best performance,
with training curves rising well above the temperature-swept baselines (dotted lines) on MATH-500,
Olympiad, and Minerva benchmarks. Overall, OSFT’s performance curve is highly comparable to
that of the strong baseline GRPO. Even in the challenging AIME benchmarks, OSFT’s upward learn-
ing trend consistently mirrors that of GRPO. This validates that our simpler, reward-free method can
be as effective as the more complex RL counterpart on a general-purpose base model.

We also provide experiments on the Llama model (Llama3.1-8B-Instruct). The result is shown in
Appendix B.3. The conclusion is that OSFT can be comparable to GRPO on other model architec-
tures like Llama.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.4

0.6

0.8

Pa
ss

@
1

Math500

0.2

0.3

0.4

0.5
AMC

0.1

0.2

0.3

0.4

Olympiad

0.1

0.2

0.3

0.4
Minerva

0.05

0.10

0.15

AIME24

0.00

0.05

0.10

0.15

AIME25

0 100 200 300
Step

0.75

0.80

0.85

0.90

Pa
ss

@
8

0 100 200 300
Step

0.6

0.7

0.8

0 100 200 300
Step

0.4

0.5

0.6

0 100 200 300
Step

0.3

0.4

0.5

0 100 200 300
Step

0.2

0.3

0.4

0.5

0 100 200 300
Step

0.0

0.1

0.2

0.3

s (Color): 0.0 0.1 0.3 0.6 0.9 1.0 t (Style): Decoupled (t = 1.0) Coupled (t = s)

Figure 7: Ablation study on the decoupled temperature dynamics in OSFT. The figure illustrates
the impact of sampling temperature (τs, color) and the training temperature configuration (τt, line
style). The line style distinguishes the superior decoupled setting (τs < τt = 1) from the unstable
coupled setting (τs = τt), providing strong empirical validation for our discussion in Section 3.3.

4.2.5 OTHER TRAINING QUESTION SET

To evaluate the impact of the training data scope, we substitute the default dataset DeepScaleR with
the Openthoughts (Guha et al., 2025) math-only (OpenthoughtsMath) dataset. The best performance
achieved by each method within the first 300 training steps is shown in Figure 6. It can be seen that
the new question set provides slightly worse performance for both OSFT and GRPO. This reveals
that OSFT has a comparable level of generalization ability to different datasets relative to GRPO.

4.3 ABLATION STUDY

0.0

0.5

M
at

h5
00

Pass@1
-3.0% -3.1%

Pass@8
+0.0% -1.0%

0.0

0.5

AM
C +0.0% -3.9%

+1.2% -1.2%

0.0

0.5

M
in

er
va

-4.6% -1.4%
-1.5% +0.4%

0.0

0.5

Ol
ym

pi
ad

-2.3% -1.2%
-0.3% -0.9%

0.0

0.5

AI
M

E2
4

+1.7% -3.8%
+0.0% -3.3%

OSFT GRPO
0.0

0.5

AI
M

E2
5

-5.0% +0.4%

OSFT GRPO

-3.3% -3.3%

DeepScaleR OpenthoughtsMath

Figure 6: Performance impact of train-
ing data source. Peak scores (within 300
steps) are compared for models trained
on DeepScaleR (blue baseline) versus
Openthoughts math-only (orange). Per-
centages show the performance change
from using OpenthoughtsMath.

In this section, we conduct ablation studies on dif-
ferent hyperparameters, e.g., the different temperatures
τs, τt, τeval, and the number of rollouts G. All the ab-
lation study experiments in this subsection are conducted
by using Qwen2.5-Math-7B as the base model.

4.3.1 DIFFERENT SAMPLING
AND TRAINING TEMPERATURES FOR OSFT

The results shown in Figure 7 provide strong empirical
validation for our discussion in Section 3.3. The cou-
pled temperature setting (τt = τs, dashed lines) con-
sistently fails to provide meaningful improvement. This
confirms our discussion that when τt = τs, the learn-
ing signal degenerates into a random gradient noise up-
date with no consistent direction. In the decoupled setting
τs < τt = 1, we observe consistent improvement, while
the value of τs is important for the final performance.

4.3.2 ABLATION ON THE NUMBER OF ROLLOUTS PER PROMPT

We investigate the effect of the number of self-generated samples per prompt, denoted by G in
Algorithm 1, on OSFT’s performance. We compare our default data-efficient setting of G = 1
against a more data-intensive setting of G = 4.

The results, presented in Figure 8, reveals that G = 4 can indeed consistently improve the pass@1
performance of OSFT, while the pass@8 performance of these two settings remain nearly the same.
We use G = 1 as our default setting in the comparison with GRPO (G = 8) to ensure that OSFT is
much more time efficient.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.4

0.6

0.8

Pa
ss

@
1

Math500

0.2

0.3

0.4

0.5

AMC

0.1

0.2

0.3

0.4

Olympiad

0.1

0.2

0.3

0.4
Minerva

0.05

0.10

0.15

AIME24

0.05

0.10

AIME25

0 100 200 300
Step

0.75

0.80

0.85

0.90

Pa
ss

@
8

0 100 200 300
Step

0.6

0.7

0.8

0 100 200 300
Step

0.4

0.5

0.6

0 100 200 300
Step

0.3

0.4

0.5

0 100 200 300
Step

0.2

0.3

0.4

0 100 200 300
Step

0.1

0.2

0.3

G=1 (Default) G=4 (Ablation)

Figure 8: Ablation study on the number of self-generated samples (G) per prompt in OSFT.

4.3.3 ABLATION ON THE EVALUATION TEMPERATURE

We use the default τeval = 1 in the main experiments to isolate the effect of artificially added
certainty during inference, as τeval = 1 corresponds to the model’s original output distribution. We
now investigate the influence of different evaluation temperatures (τeval ∈ {0.1, 0.3, 0.6, 1}) on the
step-300 checkpoints obtained by both OSFT and GRPO.

The results are shown in Figure 9. The pass@1 performance still peaks at lower temperatures, while
pass@8 tends to benefit from higher temperatures (except for AIME24). The shift in pass@8’s
preference compared to Figure 1a is likely due to the trained models becoming more certain than the
base model. Interestingly, both OSFT and GRPO exhibit remarkably similar variation trends across
benchmarks. Despite their fundamentally different training schemes, both methods converge to final
models with highly similar output distributions in terms of solving downstream tasks. This further
illustrates that OSFT is a robust and comparable alternative to GRPO.

0.0 0.5 1.0
eval

0.7

0.8

0.9

Pa
ss

 R
at

e

Math500

0.0 0.5 1.0
eval

0.5

0.6

0.7

AMC

0.0 0.5 1.0
eval

0.4

0.5

0.6
Olympiad

0.0 0.5 1.0
eval

0.3

0.4

0.5

Minerva

0.0 0.5 1.0
eval

0.1

0.2

0.3

0.4

AIME24

0.0 0.5 1.0
eval

0.10

0.15

0.20

0.25

AIME25
OSFT Pass@1 OSFT Pass@8 GRPO Pass@1 GRPO Pass@8

Figure 9: Ablation study of evaluation temperature τeval for both OSFT and GRPO. Both OSFT and
GRPO exhibit remarkably similar variation trends across benchmarks

We conclude this section by noting that OSFT achieves downstream performance comparable to
GRPO across different models and training question sets. The ablation study further confirms the
efficiency of OSFT. In summary, we believe that OSFT presents a promising and competitive alter-
native for LLM reasoning.

5 CONCLUSION

In this work, we introduced the OSFT training strategy, a self-help algorithm for LLM reasoning.
OSFT is highly efficient, as it is reward-free and uses only one rollout by default. We discussed the
importance of temperature decoupling in OSFT. Our experiment results demonstrated that OSFT can
achieve downstream performance comparable to the strong RL baseline GRPO. The ablation studies
confirmed the importance of temperature decoupling and showed the efficiency and robustness of
OSFT.

Our discussion and analysis experiments illustrated that OSFT enhances the base model’s existing
preferences learned during pretraining, leading to improved reasoning ability. A similar trend of
increased certainty was also observed in GRPO and its variants. We leave deeper investigation into
the relationship between OSFT and GRPO in reasoning ability improvement as future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a comprehensive suite of materials. The
source code for our Online SFT (OSFT) algorithm and main experiments is available in the supple-
mentary materials as an anonymized package. Our method is formally described in Section 3, with
the core algorithm detailed in Algorithm 1. A thorough description of the experimental setup, in-
cluding datasets, models, and evaluation protocols, is provided in Section 4.1. All hyperparameters
and detailed configurations for both our method and the baselines are documented in Appendix A.
Additional analyses, including ablation studies and results on different model architectures, can be
found in Section 4.3 and Appendix B. Furthermore, to guide a successful replication effort, we
discuss crucial factors that can influence performance, such as verifier logic and system-level non-
determinism, in Appendix F.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712, 2023.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
language models. arXiv preprint arXiv:2505.22617, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hugging Face. Open R1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, and Aixin Liu. Deepseek-r1 incentivizes reasoning in llms through
reinforcement learning. Nature, 645:633–638, 09 2025. doi: 10.1038/s41586-025-09422-z.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
timodal scientific problems. arXiv preprint arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025a.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025b.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demon-
strations structure, not content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath, 2024. URL https://gi
thub.com/project-numina/aimo-progress-prize.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. URL https://pretty-radio-b75.notion.si
te/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scali
ng-RL-19681902c1468005bed8ca303013a4e2. Notion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero, 2025.
URL https://github.com/Jiayi-Pan/TinyZero. Accessed: 2025-01-24.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr. arXiv preprint
arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

11

https://github.com/project-numina/aimo-progress-prize
https://github.com/project-numina/aimo-progress-prize
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://github.com/Jiayi-Pan/TinyZero

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-R1: Curriculum sft, dpo and rl for long cot from scratch and
beyond. arXiv preprint arXiv:2503.10460, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries 3

2.1 Language Models . 3

2.2 Supervised Finetuning (SFT) . 3

2.3 Reinforcement Learning with Verifiable Rewards 3

3 OSFT: Online Supervised Finetuning 3

3.1 Motivation: The Correlation Between Certainty and Performance 3

3.2 OSFT: A Simple Method for LLM Reasoning . 4

3.3 Discussion on Decoupled Temperature Dynamics in OSFT 4

4 Experiments 5

4.1 Experiment Setup . 5

4.2 OSFT for LLM Reasoning: Analysis and Performance 5

4.2.1 Probability Analysis of Existing Preference and the Role of OSFT 5

4.2.2 Certainty Metrics: Perplexity Perspective 6

4.2.3 Qwen-Math Series Performance . 6

4.2.4 Performance on other Non-Math Models 7

4.2.5 Other Training Question Set . 8

4.3 Ablation Study . 8

4.3.1 Different Sampling and Training Temperatures for OSFT 8

4.3.2 Ablation on the Number of Rollouts per Prompt 8

4.3.3 Ablation on the Evaluation Temperature 9

5 Conclusion 9

A Detailed Experiment Setup 15

A.1 Training Configuration . 15

A.2 Evaluation Configuration . 15

A.3 Verifier . 16

A.4 Visualization . 16

A.5 Chat Template . 16

B Additional Experiment Results 17

B.1 Performance Curves on Other GRPO Variants . 17

B.2 Ablation on Sampling Temperature for the Base Model 17

B.3 Performance on Llama3.1-8B-Instruct . 18

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C Online SFT Workflow 19

D Full Question and Responses from Base and OSFT Models 20

E Missing Mathematical Derivations 22

E.1 Score-Function Identity . 22

E.2 Gradient Calculation . 22

F Factors Influencing Evaluation Performance 23

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

Throughout the writing process for this paper, we used Google’s Gemini 2.5 Pro and OpenAI’s
GPT-4o to polish writing. The AI model’s contributions were strictly limited to rephrasing and
polishing the text for grammar, clarity, and conciseness. All scientific ideas, experimental designs,
and analyses were conceived and executed by the human authors. The authors have reviewed and
take full responsibility for the entire content of this paper.

A DETAILED EXPERIMENT SETUP

A.1 TRAINING CONFIGURATION

General Parameters. All models are trained on a cluster of 8 NVIDIA A800 GPUs. For the 7B
and 8B models, we use a constant learning rate of 1e-7, while for the 1.5B model, we use 3e-7. All
training runs include a 10-step warmup period. We follow recent works (Hu et al., 2025b; Yu et al.,
2025; Liu et al., 2025), and to ensure a direct comparison of the core learning algorithms, the KL
divergence regularizer is disabled for all experiments.

Batching and Gradient Updates. All experiments share a common batching structure. The global
batch size is set to 128 prompts per training step. These prompts are processed over two gradient
updates, with a mini-batch size of 64 prompts per update. The micro-batch size is fixed at 32
sequences per GPU for each forward/backward pass. The total number of sequences per update and
the resulting number of gradient accumulation steps depend on the number of rollouts (G), which is
method-specific.

Method-Specific Configurations.

OSFT. Our method is configured for efficiency, using a single rollout per prompt (G = 1). Con-
sequently, each gradient update processes 64 × 1 = 64 sequences. This batch fits within a single
forward pass across all GPUs, so no gradient accumulation is needed. OSFT employs a decoupled
temperature scheme: The training temperature is fixed at τt = 1.0, while the sampling temperature
τs is set to 0.6 for specialized math models and 0.9 for general-purpose base models.

GRPO. The GRPO baseline uses the standard 8 rollouts per prompt (G = 8) and a coupled tem-
perature of τs = τt = 1.0. Each gradient update processes a total of 64 × 8 = 512 sequences.
Given the micro-batch size of 32 and 8 GPUs, this requires 2 gradient accumulation steps per update
(512/(32× 8) = 2).

GRPO Variants. For DAPO and Dr. GRPO, the batching logic and rollout number (G = 8) are
identical to the GRPO baseline. We follow the recommended hyperparameter settings from the
VERL framework. For DAPO, we set the clipping ratios to ‘clip-ratio-c=10‘, ‘clip-ratio-low=0.2‘,
and ‘clip-ratio-high=0.28‘. For Dr. GRPO, we disable standard deviation normalization and use the
‘seq-mean-token-sum-norm‘ method for loss aggregation.

A.2 EVALUATION CONFIGURATION

In our experiments, we report both pass@1 and pass@8 performance metrics using n = 8 generated
samples per prompt. For each prompt, pass@1 is computed as c/n, where c is the number of correct
responses. The final pass@1 score is then averaged over all prompts in the benchmark. Since n = 8,
pass@8 for a prompt is 1 if at least one response out of the 8 responses is correct, and 0 otherwise.
The final pass@8 score is also averaged over all prompts in the benchmark.

For our main experiments, we set the evaluation temperature to τeval = 1, except when conduct-
ing specific temperature sweep analyses. This standard setting is chosen to evaluate the model’s
performance based on its unaltered probability distribution. We note that using lower evaluation
temperatures may boost pass@1 accuracy; for instance, the released code of prior work (Shao et al.,
2025) has used value as low as 0. By using τeval = 1 as our default, we aim to provide a direct
assessment of the model’s original capabilities as learned during training, without post-hoc opti-
mization of decoding parameters. We also provide ablation study for τeval in Section 4.3.3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 VERIFIER

The selection of a verifier is an important factor for the final score. Various verifiers may use different
methods for parsing answers (parser) and assessing correctness (grader). Considering the trade-off
between response time and accuracy, we evaluated multiple verifiers and chose the math verifier
presented in Cui et al. (2025).

A.4 VISUALIZATION

To improve readability and highlight underlying trends in our training curves, most performance
plots are smoothed using an Exponential Moving Average (EMA) with a span of 10. The raw,
unsmoothed data points are shown transparently in the background to ensure a full disclosure of the
original performance dynamics.

A.5 CHAT TEMPLATE

To ensure proper model interaction and reproducibility, we adhere to the clean official chat template
for Qwen math model, while using each model family’s own special tokens to structure the con-
versational roles for the system, user, and assistant. The specific templates used for the Qwen and
Llama families are shown in Figure 10.

Qwen family

<|im start|>system
{System}<|im end|>
<|im start|>user
{User}<|im end|>
<|im start|>assistant

Llama family

<|begin of text|><|start header id|>system<|end header id|>

{System}<|eot id|><|start header id|>user<|end header id|>

{User}<|eot id|><|start header id|>assistant<|end header id|>

Figure 10: Chat template, including special tokens, for the Qwen-2.5 and Llama-3.1 series. The
system prompt is consistent across all models: “Please reason step by step, and put your final answer
within \boxed{}”. The user prompt is the math problem from the dataset, without any additional
artificially created user prompts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENT RESULTS

This section provides supplementary results and analyses that support the claims made in the main
paper.

B.1 PERFORMANCE CURVES ON OTHER GRPO VARIANTS

To provide a more comprehensive benchmark, we compare OSFT not only against the standard
GRPO but also against its popular variants such as DAPO and Dr. GRPO. The performance curves
for all four methods are shown in Figure 11.

A key observation from these results is that the performance of GRPO and its variants (DAPO,
Dr. GRPO) is similar under our experimental conditions. The learning trajectories for these three
RL-based methods are nearly indistinguishable across the benchmarks.

Our simple, reward-free OSFT method demonstrates a comparable performance. Its learning curves
consistently track alongside the cluster of GRPO methods, indicating that OSFT is a compelling and
efficient alternative for LLM reasoning.

0.3
0.4
0.5
0.6
0.7

Pa
ss

@
1

Math500

0.2

0.3

0.4

0.5
AMC

0.1

0.2

0.3

Olympiad

0.1

0.2

0.3

Pa
ss

@
1

Minerva

0.05

0.10

0.15

0.20

AIME24

0.05

0.10

AIME25

0.75

0.80

0.85

0.90

Pa
ss

@
8

Math500

0.6

0.7

0.8

AMC

0.4

0.5

0.6

Olympiad

0 50 100 150 200 250 300
Step

0.3

0.4

0.5

Pa
ss

@
8

Minerva

0 50 100 150 200 250 300
Step

0.3

0.4

0.5

AIME24

0 50 100 150 200 250 300
Step

0.1

0.2

0.3

AIME25

OSFT GRPO DAPO Dr.GRPO

Figure 11: Performance comparison of OSFT against GRPO and its variants (DAPO, Dr. GRPO)
on the Qwen2.5-Math-7B model. The plots show pass@1 (top 2 rows) and pass@8 (bottom 2 rows)
performance. The performance of GRPO, DAPO, and Dr. GRPO is similar in this setting. OSFT
achieves results comparable to all three RL methods.

B.2 ABLATION ON SAMPLING TEMPERATURE FOR THE BASE MODEL

As discussed in the main text, the sampling temperature (τs) is an important factor for OSFT’s final
performance. We use τs = 0.6 for Qwen Math models, while τs = 0.9 for other general-purpose
base models. We discuss here why we need a higher τs for general-purpose base models. For the
Qwen2.5-7B, Figure 12 provides an empirical validation of our selection of τs = 0.9, showing that
lower values lead to performance degradation in later training stages on the benchmarks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 100 200 300
Step

0.3

0.4

0.5

0.6

0.7
Pa

ss
@

1

Math500

0 100 200 300
Step

0.15
0.20
0.25
0.30
0.35
0.40

AMC

0 100 200 300
Step

0.025

0.050

0.075

0.100

0.125

0.150
AIME24

0 100 200 300
Step

0.02

0.04

0.06

0.08
AIME25

s = 0.6 s = 0.8 s = 0.9

Figure 12: Empirical validation for the choice of a higher sampling temperature (τs) on the general-
purpose non-math Qwen2.5-7B model. Pass@1 performance is shown for four representative bench-
marks. The setting used in the main paper, τs = 0.9, maintains stable improvement. In contrast,
lower values lead to performance degradation in later training stages.

B.3 PERFORMANCE ON LLAMA3.1-8B-INSTRUCT

To assess the generalizability of our method beyond the Qwen architecture, we applied OSFT and
GRPO to the Llama3.1-8B-Instruct model. We chose the instruction-tuned variant as the base model
exhibited difficulty in following the required problem-solving format.

The quantitative results are shown in Table 1, the peak performance difference between OSFT and
GRPO are comparable, suggesting that both methods perform similarly on model architectures other
than Qwen family.

The experiment results also suggest that while OSFT and GRPO can improve performance on dif-
ferent model architectures like Llama, their effectiveness is highly related to the foundational ca-
pabilities of the base model. The modest gains on Llama3.1-8B-Instruct, compared to the stronger
improvements on Qwen models, highlight that base model is also an important factor for achiev-
ing substantial reasoning improvement through RL techniques and OSFT. This aligns with recent
observations in other works; see, e.g., Liu et al. (2025).

Table 1: Quantitative comparison of peak performance for training Llama-3.1-8B-Instruct. The table
shows the highest scores achieved by OSFT and GRPO. The performance difference between the
two methods are comparable across all benchmarks.

Benchmark Metric Peak Score
∆ (OSFT - GRPO)

GRPO OSFT

Math500 pass@1 0.533 0.504 -0.029
pass@8 0.804 0.782 -0.022

AMC pass@1 0.244 0.255 +0.011
pass@8 0.578 0.542 -0.036

Olympiad pass@1 0.191 0.169 -0.021
pass@8 0.413 0.404 -0.009

Minerva pass@1 0.267 0.272 +0.005
pass@8 0.518 0.485 -0.033

AIME24 pass@1 0.092 0.087 -0.004
pass@8 0.333 0.333 +0.000

AIME25 pass@1 0.013 0.013 +0.000
pass@8 0.100 0.100 +0.000

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ONLINE SFT WORKFLOW

This section provides a visual depiction of OSFT training strategy, as illustrated in Figure 13. The
process is an iterative cycle consisting of two main phases: a self-generation step where the model
creates its own training data, followed by a SFT step where the model learns from that self-generated
data.

Initial Model

πθinit

Sample minibatch

𝒟b ⊂ 𝒟
Generate G output(s)

per q ∈ 𝒟b (uses τs)

Online SFT dataset

𝒟OSFT = {(q, o)}

Minimize OSFT loss

on 𝒟OSFT (uses τt)
Model

πθ

Inputs Training step

Task Prompts

𝒟

Figure 13: The iterative workflow of OSFT. The model alternates between generating its own train-
ing data and finetuning on it.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D FULL QUESTION AND RESPONSES FROM BASE AND OSFT MODELS

This section provides the full text for the case study visualized in Figure 2. Figure 14 details one
incorrect response chosen from all 8 wrong tries from the base model, while Figure 15 shows the
corresponding correct response generated after performing OSFT.

Example from Math500

Problem: The expression 2 · 3 · 4 · 5 + 1 is equal to 121, since multiplication is carried out
before addition. However, we can obtain values other than 121 for this expression if we are
allowed to change it by inserting parentheses. For example, we can obtain 144 by writing

(2 · (3 · 4)) · (5 + 1) = 144.

In total, how many values can be obtained from the expression 2 · 3 · 4 · 5 + 1 by inserting
parentheses? (Note that rearranging terms is not allowed, only inserting parentheses).

Response (Base Model)

To determine how many distinct values can be obtained from the expression 2 · 3 · 4 · 5 + 1
by inserting parentheses, we need to consider all possible ways of inserting parentheses into
the expression.
First, let’s evaluate the expression without any parentheses:

2 · 3 · 4 · 5 + 1 = 121

Now, we need to consider all possible ways of inserting parentheses.

There are five possible ways to insert one set of parentheses: 1. ((2 · 3) · 4) · 5 + 1 2.
(2 · (3 · 4)) · 5 + 1 3. (2 · 3) · (4 · 5) + 1 4. 2 · ((3 · 4) · 5) + 1 5. 2 · (3 · (4 · 5)) + 1
However, the first and fifth expressions will be the same, as will the second and fourth.
This leaves us with three unique ways of inserting parentheses, in addition to the original
expression without parentheses.
So we need to evaluate each of these expressions: 1. ((2 · 3) · 4) · 5 + 1 = (6 · 4) · 5 + 1 =
24 ·5+1 = 121 2. (2 ·(3 ·4)) ·5+1 = (2 ·12) ·5+1 = 24 ·5+1 = 121 3. (2 ·3) ·(4 ·5)+1 =
6 ·20+1 = 120+1 = 121 4. 2 ·((3 ·4) ·5)+1 = 2 ·(12 ·5)+1 = 2 ·60+1 = 120+1 = 121
5. 2 · (3 · (4 · 5)) + 1 = 2 · (3 · 20) + 1 = 2 · 60 + 1 = 120 + 1 = 121
From this, we see that all possible ways of inserting parentheses result in the value 121.
Therefore, the only distinct value we can obtain is 121.
Hence, the number of distinct values we can obtain from the expression 2 · 3 · 4 · 5 + 1 by
inserting parentheses is:

1

Figure 14: Full question and the incorrect response generated by the base model, corresponding to
the analysis in Figure 2. The soft blue and light gray backgrounds distinguish the initial reasoning
prefix (A) from the subsequent flawed suffix (B). This segmentation is because B contains the core
reasoning and calculation leading to the answer, while A represents the initial problem setup.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Example from Math500

Problem: The expression 2 · 3 · 4 · 5 + 1 is equal to 121, since multiplication is carried out
before addition. However, we can obtain values other than 121 for this expression if we are
allowed to change it by inserting parentheses. For example, we can obtain 144 by writing

(2 · (3 · 4)) · (5 + 1) = 144.

In total, how many values can be obtained from the expression 2 · 3 · 4 · 5 + 1 by inserting
parentheses? (Note that rearranging terms is not allowed, only inserting parentheses).

Response (OSFT Model)

To determine how many different values can be obtained from the expression 2 · 3 · 4 · 5+ 1
by inserting parentheses, we need to consider all possible ways to group the terms. Let’s
break this down step by step.
First, let’s list all the possible ways to insert parentheses in the expression 2 · 3 · 4 · 5 + 1:

1. (2 ·3 ·4 ·5)+1 2. 2 ·(3 ·4 ·5+1) 3. 2 ·3 ·(4 ·5+1) 4. 2 ·(3 ·(4 ·5+1)) 5. (2 ·3 ·4) ·(5+1)
6. (2 · 3) · (4 · (5 + 1)) 7. 2 · ((3 · 4) · (5 + 1)) 8. ((2 · 3) · 4) · (5 + 1) 9. (2 · (3 · 4)) · (5 + 1)
Now, let’s evaluate each of these expressions:
1. (2 · 3 · 4 · 5) + 1 = 120 + 1 = 121 2. 2 · (3 · 4 · 5 + 1) = 2 · (60 + 1) = 2 · 61 = 122 3.
2 ·3 ·(4 ·5+1) = 6 ·(20+1) = 6 ·21 = 126 4. 2 ·(3 ·(4 ·5+1)) = 2 ·(3 ·21) = 2 ·63 = 126
5. (2 · 3 · 4) · (5 + 1) = 24 · 6 = 144 6. (2 · 3) · (4 · (5 + 1)) = 6 · (4 · 6) = 6 · 24 = 144 7.
2·((3·4)·(5+1)) = 2·(12·6) = 2·72 = 144 8. ((2·3)·4)·(5+1) = (6·4)·6 = 24·6 = 144
9. (2 · (3 · 4)) · (5 + 1) = (2 · 12) · 6 = 24 · 6 = 144
From the evaluations, we see that the possible values are 121, 122, 126, and 144. Therefore,
there are 4 distinct values that can be obtained.
The final answer is 4 .

Figure 15: Full question and the correct response generated by the OSFT model, corresponding to
the analysis in Figure 2. The soft blue and light gray backgrounds distinguish the initial reasoning
prefix (Â) from the subsequent correct suffix (B̂). This segmentation is because B̂ contains the core
reasoning and calculation leading to the answer, while Â represents the initial problem setup.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E MISSING MATHEMATICAL DERIVATIONS

E.1 SCORE-FUNCTION IDENTITY

The following derivation is the standard score-function identity, which shows that one step update
of OSFT with τs = τt = τ is equivalent to a random gradient noise update.

Eo∼πθ(·|q) [∇θ log πθ(o | q)] =
∑
o

πθ(o | q) · ∇θπθ(o | q)
πθ(o | q)

=
∑
o

∇θπθ(o | q)

= ∇θ

∑
o

πθ(o | q)

= ∇θ1

= 0.

(8)

E.2 GRADIENT CALCULATION

We now derive the gradient displayed in (7). By chain rule, we have

∂L
∂θ

=
z

∂θ

∂L
∂z

= Jθ
∂L
∂z

,

where we have omitted θ in z for simplicity. By the definition of softmax, for a specific class/token
o in the vocabulary we have

pτt(o) =
ezo/τt∑
j e

zj/τt
, pτs(o) =

ezo/τs∑
j e

zj/τs
.

It follows that

log(pτt(o)) =
zo
τt

− log

∑
j

ezj/τt

 .

Taking derivative over the class k’s logit zk provides

∂ log(pτt(o))

∂zk
=

1

τt

(
1{k=o} − pτt(k)

)
.

Let us use eo to denote the unit vector with 1 at its o-th position. Then, the gradient over the whole
logits z is given by

∂ log(pτt(o))

∂z
=

1

τt
(eo − pτt) .

For the loss we have L = Eo∼pτs
[− log(pτt(o))]. Therefore, we can further compute

∇zL = Eo∼pτs

[
1

τt
(pτt − eo)

]
=

1

τt
(pτt − pτs).

This completes the derivation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F FACTORS INFLUENCING EVALUATION PERFORMANCE

The final reported performance metrics for all methods can be sensitive to several factors. These
can be categorized into the evaluation logic, the generation configuration, and sources of non-
determinism in the underlying system. We list several representative ones below.

1. Verifier Logic: The choice of verifier is an important factor the final score. Different
verifiers may employ distinct methods for parsing answers (parser) and judging correctness
(grader).

2. Sampling Parameters: The decoding strategy, governed by parameters such as tempera-
ture, top-p, top-k, and repetition penalty, shapes the output. While a deterministic strategy
(e.g., greedy decoding, by simply setting temperature to 0) will produce a consistent output,
whereas stochastic sampling introduces diversity/exploration.

3. Random Seed: The seed is important for reproducibility as it controls the stochastic sam-
pling process. A different seed will result in a different sequence of sampled tokens, leading
to a different generated output and thus a different final score.

4. Tensor Parallelism: The use of tensor parallelism introduces non-determinism, even with
a fixed seed. This is a known consequence of floating-point arithmetic, where summa-
tion across distributed devices via communication collectives (e.g., All-Reduce) is not
associative. Such differences in calculated logits can be sufficient to alter the final token
selection, causing inconsistency in generated sequences between runs with and without
tensor parallelism.

5. GPU Architecture: Different GPU hardware (e.g., NVIDIA A100 vs. H100) or underly-
ing library versions (e.g., cuDNN) may implement fundamental operations with slight al-
gorithmic variations. This can lead to small numerical discrepancies that propagate through
the model, yielding different results.

6. Order of Data: The order of prompts within a batch can alter calculation results, especially
in dynamic batching engines used in vLLM. This can lead to different outputs. Hence, we
fix the data order for the test benchmark datasets to ensure reproducible evaluations.

23

	Introduction
	Preliminaries
	Language Models
	Supervised Finetuning (SFT)
	Reinforcement Learning with Verifiable Rewards

	OSFT: Online Supervised Finetuning
	Motivation: The Correlation Between Certainty and Performance
	OSFT: A Simple Method for LLM Reasoning
	Discussion on Decoupled Temperature Dynamics in OSFT

	Experiments
	Experiment Setup
	OSFT for LLM Reasoning: Analysis and Performance
	Probability Analysis of Existing Preference and the Role of OSFT
	Certainty Metrics: Perplexity Perspective
	Qwen-Math Series Performance
	Performance on other Non-Math Models
	Other Training Question Set

	Ablation Study
	Different Sampling and Training Temperatures for OSFT
	Ablation on the Number of Rollouts per Prompt
	Ablation on the Evaluation Temperature

	Conclusion
	Detailed Experiment Setup
	Training Configuration
	Evaluation Configuration
	Verifier
	Visualization
	Chat Template

	Additional Experiment Results
	Performance Curves on Other GRPO Variants
	Ablation on Sampling Temperature for the Base Model
	Performance on Llama3.1-8B-Instruct

	Online SFT Workflow
	Full Question and Responses from Base and OSFT Models
	Missing Mathematical Derivations
	Score-Function Identity
	Gradient Calculation

	Factors Influencing Evaluation Performance

