Under review as a conference paper at ICLR 2025

POLICY GRADIENT WITH TREE EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient methods are notorious for having a large variance and high sample
complexity. To mitigate this, we introduce SoftTreeMax—a generalization of
softmax that employs planning. In SoftTreeMax, we extend the traditional logits
with the multi-step discounted cumulative reward, topped with the logits of future
states. We analyze SoftTreeMax and explain how tree expansion helps to reduce
its gradient variance. We prove that the variance depends on the chosen tree-
expansion policy. Specifically, we show that the closer the induced transitions are
to being state-independent, the stronger the variance decay. With approximate
forward models, we prove that the resulting gradient bias diminishes with the
approximation error while retaining the same variance reduction. Ours is the
first result to bound the gradient bias for an approximate model. In a practical
implementation of SoftTreeMax, we utilize a parallel GPU-based simulator for
fast and efficient tree expansion. Using this implementation in Atari, we show
that SoftTreeMax reduces the gradient variance by three orders of magnitude.
This leads to better sample complexity and improved performance compared to
distributed PPO.

1 INTRODUCTION

Policy Gradient (PG) methods (Sutton et al.|[1999) for Reinforcement Learning (RL) are often the
first choice for environments that allow numerous interactions at a fast pace (Schulman et al., 2017).
Their success is attributed to several factors: they are easy to distribute to multiple workers, require
no assumptions on the underlying value function, and have both on-policy and off-policy variants.

Despite these positive features, PG algorithms are also notoriously unstable due to the high variance
of the gradients computed over entire trajectories (Liu et al.l 2020} Xu et al.,[2020). As a result, PG
algorithms tend to be highly inefficient in terms of sample complexity. Several solutions have been
proposed to mitigate the high variance issue, including baseline subtraction (Greensmith et al., [2004;
Thomas & Brunskill, 2017; Wu et al.| [2018), anchor-point averaging (Papini et al., 2018]), and other
variance reduction techniques (Zhang et al.,|2021}; |Shen et al.,|2019; |Pham et al.| |[2020)).

A second family of algorithms that achieved state-of-the-art results in several domains is based on
planning. Planning is exercised primarily in the context of value-based RL and is usually implemented
using a Tree Search (TS) (Silver et al., 2016} |Schrittwieser et al., [2020). In this work, we combine
PG with TS by introducing a parameterized differentiable policy that incorporates tree expansion.
Namely, our SoftTreeMax policy replaces the standard policy logits of a state and action, with the
expected value of trajectories that originate from these state and action. We consider two variants of
SoftTreeMax, one for cumulative reward and one for exponentiated reward.

Combining TS and PG should be done with care given the biggest downside of PG—its high gradient
variance. This raises questions that were ignored until this work: (i) How to design a PG method based
on tree-expansion that is stable and performs well in practice? and (ii) How does the tree-expansion
policy affect the PG variance? Here, we analyze SoftTreeMax, and provide a practical methodology
to choose the expansion policy to minimize the resulting variance. Our main result shows that a
desirable expansion policy is one, under which the induced transition probabilities are similar for
each starting state. More generally, we show that the gradient variance of SoftTreeMax decays at
a rate of |\|%, where d is the depth of the tree and)\, is the second eigenvalue of the transition
matrix induced by the tree expansion policy. This work is the first to prove such a relation between
PG variance and tree expansion policy. In addition, we prove that the with an approximate forward
model, the bias of the gradient is bounded proportionally to the approximation error of the model.

Under review as a conference paper at ICLR 2025

To verify our results, we implemented a practical version of SoftTreeMax that exhaustively searches
the entire tree and applies a neural network on its leaves. We test our algorithm on a parallelized
Atari GPU simulator (Dalton et al.,|2020). To enable a tractable deep search, up to depth eight, we
also introduce a pruning technique that limits the width of the tree. We do so by sampling only the
most promising nodes at each level. We integrate our SoftTreeMax GPU implementation into the
popular PPO (Schulman et al.L|2017) and compare it to the flat distributed variant of PPO. This allows
us to demonstrate the potential benefit of utilizing learned models while isolating the fundamental
properties of TS without added noise. In all tested Atari games, our results outperform the baseline
and obtain up to 5x more reward. We further show in Section [6] that the associated gradient variance
is smaller by three orders of magnitude in all games, demonstrating the relation between low gradient
variance and high reward.

We summarize our key contributions. (i) We show how to combine two families of SOTA approaches:
PG and TS by introducing SoftTreeMax: a novel parametric policy that generalizes softmax to
planning. Specifically, we propose two variants based on cumulative and exponentiated rewards. (ii)
We prove that the gradient variance of SoftTreeMax in its two variants decays with its tree
depth. Our analysis sheds new light on the choice of tree expansion policy. It raises the question
of optimality in terms of variance versus the traditional regret; e.g., in UCT (Kocsis & Szepesvari,
2006). (iii) We prove that with an approximate forward model, the gradient bias is proportional to
the approximation error, while retaining the variance decay. This quantifies the accuracy required
from a learned forward model. (iv) We implement a differentiable deep version of SoftTreeMax
that employs a parallelized GPU tree expansion. We demonstrate how its gradient variance is reduced
by three orders of magnitude over PPO while obtaining up to 5x reward.

2 PRELIMINARIES

Let Ay denote simplex over the set U. Throughout, we consider a discounted Markov Decision
Process (MDP) M = (S, A, P, r,~,v), where S is a finite state space of size S, A is a finite action
space of size A, r : § x A — [0,1] is the reward function, P : § x A — Ag is the transition
function, v € (0, 1) is the discount factor, and v € R¥ is the initial state distribution. We denote
the transition matrix starting from state s by P, € [0,1]4%5 i.e., [Ps]a.« = P(s'|a, s). Similarly,
let R, = r(s,-) € R* denote the corresponding reward vector. Separately, let 7 : S — A 4 be a
stationary policy. Let P™ and R, be the induced transition matrix and reward function, respectively,
ie., P7(s'|s) = >, m(a|s)Pr(s'|s,a) and R(s) = >, m(a|s)r(s,a). Denote the stationary
distribution of P™ by p, € R¥ sit. ul P™ = P™, and the discounted state visitation frequency
by dr so that d] = (1 —) > 07w (P™)! Also, let V™ € R¥ be the value function of
defined by V™ (s) = E™ [Y_ i, 7' (s, m(s¢)) | so = s], and let Q™ € R9*4 be the Q-function
such that Q7 (s,a) = E™ [r(s,a) + vV " (s’)]. Our goal is to find an optimal policy 7* such that
V*(s) = V™ (5) = max, V™(s), Vs € S.

For the analysis in Section 4] we introduce the following notation. Denote by © € R the vector
representation of 6(s) Vs € S. For a vector u, denote by exp(u) the coordinate-wise exponent of
u and by D(u) the diagonal square matrix with « in its diagonal. For a matrix A, denote its i-th
eigenvalue by \;(A). Denote the k-dimensional identity matrix and all-ones vector by Iy, and 1,
respectively. Also, denote the trace operator by Tr . Finally, we treat all vectors as column vectors.

2.1 PoLiCcY GRADIENT

PG schemes seek to maximize the cumulative reward as a function of the policy 7y (a|s) by performing
gradient steps on 6. The celebrated Policy Gradient Theorem (Sutton et al., [1999) states that

0 x m
%VTV ¢ = ESNdﬂe,a~7r9(~|s) [v9 IOg 7T9(CL|S)Q 0 (57 a)] 5
where v and d,| are as defined above. The variance of the gradient is thus
Varsd, a~mo(1s) (Vologme(als)Q™ (s,a)) . (1)

In the notation above, we denote the variance of a vector random variable X by

Var, (X) = Tr {]EI {(X “E.X) (X - EmX)H :

Under review as a conference paper at ICLR 2025

similarly as in (Greensmith et al. [2004). From now on, we drop the subscript from Var in ([I])
for brevity. When the action space is discrete, a commonly used parameterized policy is softmax:
mo(als) x exp (6(s,a)), where § : S x A — R is a state-action parameterization.

3 SOFTTREEMAX: EXPONENT OF TRAJECTORIES

We introduce a new family of policies called SoftTreeMax, which are a model-based generalization
of the popular softmax. We propose two variants: Cumulative (C-SoftTreeMax) and Exponenti-
ated (E-SoftTreeMax). In both variants, we replace the generic softmax logits 0(s,a) with the
score of a trajectory of horizon d starting from (s, a), generated by applying a behavior policy
mp. In C-SoftTreeMax, we exponentiate the expectation of the logits. In E-SoftTreeMax, we first
exponentiate the logits and then only compute their expectation.

Logits. We define the SoftTreeMax logit ¢ ,(d; 6) to be the random variable depicting the score of a
trajectory of horizon d starting from (s, a) and following the policy :

t=0

d—1
gs,a(d; 9) = ’Y_d [Z ’ytrt + ’ng(sd)] . (2)

In the above expression, note that sg = s, ag = a, a; ~ 7p(+|s¢) Vt > 1, and 1 = r (8¢, a¢) .
For brevity of the analysis, we let the parametric score 6 in (2)) be state-based, similarly to a value
function. Instead, one could use a state-action input analogous to a Q-function. Thus, SoftTreeMax
can be integrated into the two types of implementation of RL algorithms in standard packages. Lastly,
the preceding v~ scales the parametrization to correspond to its softmax counerpart.

C-SoftTreeMax. Given an inverse temperature parameter 3, we let C-SoftTreeMax be
77579(a\s) x exp [BE™{, o(d; 0)]. 3)

C-SoftTreeMax gives higher weight to actions that result in higher expected returns. While standard
softmax relies entirely on parametrization €, C-SoftTreeMax also interpolates a Monte-Carlo portion
of the reward.

E-SoftTreeMax. The second operator we propose is E-SoftTreeMax:
ma.o(als) o E™ exp [(Bls.a(d; 0))] “)

here, the expectation is taken outside the exponent. This objective corresponds to the exponentiated
reward objective which is often used for risk-sensitive RL (Howard & Matheson, |1972; |Fei et al.
2021; |Noorani & Baras,2021). The common risk-sensitive objective is of the form log E[exp(d R)],
where ¢ is the risk parameter and R is the cumulative reward. Similarly to that literature, the exponent
in (@) emphasizes the most promising trajectories.

SoftTreeMax properties. SoftTreeMax is a natural model-based generalization of softmax. For
d = 0, both variants above coincide since @]) becomes deterministic. In that case, for a state-action
parametrization, they reduce to standard softmax. When 5 — 0, both variants again coincide and
sample actions uniformly (exploration). When § — oo, the policies become deterministic and
greedily optimize for the best trajectory (exploitation). For C-SoftTreeMax, the best trajectory is
defined in expectation, while for E-SoftTreeMax it is defined in terms of the best sample path.

SoftTreeMax convergence. Under regularity conditions, for any parametric policy, PG converges
to local optima (Bhatnagar et al.l [2009), and thus also SoftTreeMax. For softmax PG, asymptotic
(Agarwal et al.,[2021)) and rate results (Mei et al.,|2020b)) were recently obtained, by showing that
the gradient is strictly positive everywhere (Mei et al., 2020b, Lemmas 8-9). We conjecture that
SoftTreeMax satisfies the same property, being a generalization of softmax, but formally proving it is
subject to future work.

SoftTreeMax gradient. The two variants of SoftTreeMax involve an expectation taken over S%
many trajectories from the root state s and weighted according to their probability. Thus, during
the PG training process, the gradient Vy log 7y is calculated using a weighted sum of gradients over
all reachable states starting from s. Our method exploits the exponential number of trajectories to
reduce the variance while improving performance. Indeed, in the next section we prove that the
gradient variance of SoftTreeMax decays exponentially fast as a function of the behavior policy 7,

Under review as a conference paper at ICLR 2025

and trajectory length d. In the experiments in Section [6] we also show how the practical version
of SoftTreeMax achieves a significant reduction in the noise of the PG process and leads to faster
convergence and higher reward.

4 THEORETICAL ANALYSIS

In this section, we first bound the variance of PG when using the SoftTreeMax policy. Later, we
discuss how the gradient bias resulting due to approximate forward models diminishes as a function
of the approximation error, while retaining the same variance decay.

We show that the variance decreases with the tree depth, and the rate is determined by the second
eigenvalue of the transition kernel induced by 7. Specifically, we bound the same expression for
variance as appears in (Greensmith et al.| 2004, Sec. 3.5) and (Wu et al |2018| Sec. A, Eq. (21)).
Other types of analysis could instead have focused on the estimation aspect in the context of sampling
(Zhang et al., 2021} Shen et al.,[2019; [Pham et al., 2020). Indeed, in our implementation in Section E}
we manage to avoid sampling and directly compute the expectations in Eqs. (3) and {@). As we
show later, we do so by leveraging efficient parallel simulation on the GPU in feasible run-time. In
our application, due to the nature of the finite action space and quasi-deterministic Atari dynamics
(Bellemare et al., 2013), our expectation estimator is noiseless. We encourage future work to account
for the finite-sample variance component. We defer all the proofs to Appendix [A]

We begin with a general variance bound that holds for any parametric policy.

Lemma 4.1 (Bound on the policy gradient variance). Ler Vg log mg(-|s) € RAX1O) pe q matrix
whose a-th row is Vg log mp(a|s) ". For any parametric policy g and function Q™ : S x A — R,

Var (Vg log mg(al$)Q™° (s,a)) < max [Q™ (s, a)]2 max|| Vg log 779(|s)||%

Hence, to bound (T)), it is sufficient to bound the Frobenius norm ||Vg log 7y (-|s)|| 7 for any s.

Note that SoftTreeMax does not reduce the gradient uniformly, which would have been equivalent
to a trivial change in the learning rate. While the gradient norm shrinks, the gradient itself scales
differently along the different coordinates. This scaling occurs along different eigenvectors, as a
function of problem parameters (P, #) and our choice of behavior policy (73), as can be seen in
the proof of the upcoming Theorem[4.4] This allows SoftTreeMax to learn a good “shrinkage” that,
while reducing the overall gradient, still updates the policy quickly enough. This reduction in norm
and variance resembles the idea of gradient clipping|Zhang et al.|(2019), where the gradient is scaled
to reduce its variance, thus increasing stability and improving overall performance.

A common assumption in the RL literature (Szepesvari, [2010) that we adopt for the remainder of
the section is that the transition matrix P, induced by the behavior policy y, is irreducible and
aperiodic. Consequently, its second highest eigenvalue satisfies [A2(P™)| < 1.

From now on, we divide the variance results for the two variants of SoftTreeMax into two subsec-
tions. For C-SoftTreeMax, the analysis is simpler and we provide an exact bound. The case of
E-SoftTreeMax is more involved and we provide for it a more general result. In both cases, we show
that the variance decays exponentially with the planning horizon.

4.1 VARIANCE OF C-SOFTTREEMAX

We express C-SoftTreeMax in vector form as follows.
Lemma 4.2 (Vector form of C-SoftTreeMax). For d > 1, (3) is given by

c _oexp [B (Cs,d + Py (P)" @)}
N Py S

&)

where
d—1

D oyhmd Pyt

h=1

Coa=7%R, + P, Ry,

4

Under review as a conference paper at ICLR 2025

The vector C 4 € R* represents the cumulative discounted reward in expectation along the trajectory
of horizon d. This trajectory starts at state s, involves an initial reward dictated by R, and an
initial transition as per Ps. Thereafter, it involves rewards and transitions specified by R, and P™,
respectively. Once the trajectory reaches depth d, the score function 6(s,) is applied,.

Lemma 4.3 (Gradient of C-SoftTreeMax). The C-SoftTreeMax gradient is given by
VolognGy =B [Ia —La(n5,) "] Py (P™)" 1,
in RAXS where for brevity, we drop the s index in the policy above, i.e., W(ia = 71'5,9(- |s).

We are now ready to present our first main result:

Theorem 4.4 (Variance decay of C-SoftTreeMax). Forevery @Q : S x A — R, the C-SoftTreeMax
policy gradient variance is bounded by
c A5 7N 2(d—1)
Var (Vg log 7 (als)Q(s,a)) < QW\)\Q(P o) .

We provide the full proof in Appendix [A.4] and briefly outline its essence here.

Proof outline. Lemma [4.1] allows us to bound the variance using a direct bound on the gradient
norm. The gradient is given in Lemma[4.3]as a product of three matrices, which we now study from
right to left. The matrix P™ is a row-stochastic matrix. Because the associated Markov chain is
irreducible and aperiodic, it has a unique stationary distribution. This implies that P™ has one and
only one eigenvalue equal to 1; all others have magnitude strictly less than 1. Let us suppose that
all these other eigenvalues have multiplicity 1 (the general case with repeated eigenvalues can be
handled via Jordan decompositions as in (Pelletier}, 1998, Lemmal)). Then, P™ has the spectral
decomposition P™ = lsu,—:b + Zf=2 A\;iviu,, where); is the i-th eigenvalue of P™ (ordered in
descending order according to their magnitude) and u; and v; are the corresponding left and right
eigenvectors, respectively, and therefore (P™)4~! = 1gp] + S AT)

;-
The second matrix in the gradient relation in Lemma 3] P;, is a rectangular transition ma-
trix that translates the vector of all ones from dimension S to A : Ps1g = 14. Lastly, the

first matrix {IA — lA(wge)T} is a projection whose null-space includes the vector 14, i.e.,

[I a—1 A(wgﬂ)T] 14 = 0. Combining the three properties above when multiplying the three matri-

ces of the gradient, it is easy to see that the first term in the expression for (P™)9~! gets canceled,
and we are left with bounded summands scaled by \;(P™)91, Recalling that |\;(P™)| < 1 and
that [Az| > |As| > ... fori = 2,...,.S, we obtain the desired result. O

Theorem [4.4] guarantees that the variance of the gradient decays with d. More importantly, it also
provides a novel insight for choosing the behavior policy 7, as the policy that minimizes the absolute
second eigenvalue of the P™. Indeed, the second eigenvalue of a Markov chain relates to its
connectivity and its rate of convergence to the stationary distribution (Levin & Peres|,2017).

Optimal variance decay. For the strongest reduction in variance, the behavior policy 7, should be
chosen to achieve an induced Markov chain whose transitions are state-independent. In that case, P™
is a rank one matrix of the form 1g, , and A2(P™) = 0. Then, Var (Vg log m(a|s)Q(s, a)) = 0.
Naturally, this can only be done for pathological MDPs; see Appendix for a more detailed
discussion. Nevertheless, as we show in Section[5] we choose our tree expansion policy to reduce the
variance as best as possible.

Worst-case variance decay. In contrast, and somewhat surprisingly, when 7 is chosen so that the
dynamics is deterministic, there is no guarantee that it will decay exponentially fast. For example, if
P7™ is a permutation matrix, then Ao (P™) = 1, and advancing the tree amounts to only updating the
gradient of one state for every action, as in the basic softmax.

4.2 VARIANCE OF E-SOFTTREEMAX

The proof of the variance bound for E-SoftTreeMax is similar to that of C-SoftTreeMax, but more
involved. It also requires the assumption that the reward depends only on the state, i.e. r(s,a) = r(s).
This is indeed the case in most standard RL environments such as Atari and Mujoco.

SoftTreeMax
Gradient variance

Under review as a conference paper at ICLR 2025

102
» Figure 1: A comparison of the empirical PG
10771 variance and our bound for E-SoftTreeMax
10-10 4 on randomly drawn MDPs. We present three
cases for P™ : (i) close to uniform, (ii) drawn
10714 Permutation: Empirical variance randomly, and (iii) close to a permutation ma-
10-22 4 —— Permutation: Variance bound trix. This experiment verifies the optimal
-=- Random: Empirical variance - and worse-case rate decay cases. The vari-
107%® 1 —— Random: Variance bound RN ance bounds here are taken from Theorem 4.7]
10-34 | === Uniform: Empirical variance "= where we substitute &« = |Ao(P™)|. To ac-
— Uniform: Variance bound count for the constants, we match the values
é B e M 10 for the first pointin d = 1.
Depth d

Lemma 4.5 (Vector form of E-SoftTreeMax). Ford > 1, {4) is given by

whol(Js) = oot SPO)

= 1By exp(30) ©

where
d—1
Esq=Ps H (D (exp(ﬁvh_dR)) PT”’) .
h=1
The vector R above is the S-dimensional vector whose s-th coordinate is r(s).

The matrix E 4 € RA*5 has a similar role to Cs,q from (3, but it represents the exponentiated
cumulative discounted reward. Accordingly, it is a product of d matrices as opposed to a sum. It
captures the expected reward sequence starting from s and then iteratively following P™ . After d
steps, we apply the score function on the last state as in (6).

Lemma 4.6 (Gradient of E-SoftTreeMax). The E-SoftTreeMax gradient is given by

D (w5,) " EeaDlexp(50))
1XEs,d exp(ﬂ@)

Volognhy =B [Ia—1a(nhy) "] x RAXS,

where for brevity, we drop the s index in the policy above, i.e., 75 , = 75 ,(-|s).

This gradient structure is harder to handle than that of C-SoftTreeMax in Lemma4.3] but here we
also can bound the decay of the variance nonetheless.

Theorem 4.7 (Variance decay of E-SoftTreeMax). There exists o € (0, 1) such that,
Var (Vg log mh 4(als)Q(s, a)) € O (8a*?),
for every Q. Further, if P™ is reversible or if the reward is constant, then o = |A2(P™)|.

Theory versus Practice. We demonstrate the above result in simulation. We draw a random finite
MDP, parameter vector © € Ri, and behavior policy 7,. We then empirically compute the PG
variance of E-SoftTreeMax as given in (T)) and compare it to | A\o(P™)|<. We repeat this experiment
three times for different P™ : (i) close to uniform, (ii) drawn randomly, and (iii) close to a permutation
matrix. As seen in Figure(l| the empirical variance and our bound match almost identically. This
also suggests that & = |\o(P™)| in the general case and not only when P™ is reversible or when
the reward is constant.

4.3 BIAS WITH AN APPROXIMATE FORWARD MODEL

The definition of the two SoftTreeMax variants involves the knowledge of the underlying environment,
in particular the value of P and r. However, in practice, we often can only learn approximations
of the dynamics from interactions, e.g., using NNs (Ha & Schmidhuber, [2018; |Schrittwieser et al.,

Under review as a conference paper at ICLR 2025

&) . .
%=1 @—-.—»wwﬁi;)) Figure 2: SoftTreeMax policy. Our exhaus-
: lgts - tive parallel tree expansion iterates on all ac-

WD) tions at each state up to depth d (= 2 here).

_____________________ The leaf state of every trajectory is used as

w(sEP) input to the policy network. The output is
v then added to the trajectory’s cumulative re-

for a(:)n
: —>.—’ w(sZ) ward as described in (@). Le., instead of the

————————————————————— standard softmax logits, we add the cumula-

“n tive discounted reward to the policy network
W(Sr:'z) ~output. This policy is differentiable and can
w be easily integrated into any PG algorithm. In

for a2y
...W(gggﬂ) this work, we build on PPO and use its loss
function to train the policy network.

2020). Let P and 7 denote the approximate kernel and reward functions, respectively. In this section,
we study the consequences of the approximation error on the C-SoftTreeMax gradient.

Let 7%579 be the C-SoftTreeMax policy defined given the approximate forward model introduced
above. That is, let 7?579 be defined exactly as in (3), but using Rm PS, wa and]5”% instead of their
unperturbed counterparts from Section 2} Then, the variance of the corresponding gradient again
decays exponentially with a decay rate of A\o(P™). However, a gradient bias is introduced. In the

following, we bound this bias in terms of the approximation error and other problem parameters. The
proof is provided in Appendix [A.9]

Theorem 4.8. Let € be the maximal model mis-specification, i.e., let max{||P — P||,||r — #||} = e.
Then the policy gradient bias due to 7?579 satisfies

Haae (vTvie) = 2 (vTvs) H - 0 ((1 _17)25/3%6) .)

To the best of our knowledge, Theorem [.8]is the first result that bounds the bias of the gradient
of a parametric policy due to an approximate model. It states that if the learned model is accurate
enough, we expect similar convergence properties for C-SoftTreeMax as we would have obtained
with the true dynamics. It also suggests that higher temperature (lower 3) reduces the bias. In this
case, the logits get less weight, with the extreme of 5 = 0 corresponding to a uniform policy that has
no bias. Lastly, the error scales linearly with d : the policy suffers from cumulative error as it relies
on further-looking states in the approximate model.

5 SOFTTREEMAX: DEEP PARALLEL IMPLEMENTATION

Following impressive successes of deep RL (Mnih et al., 2015} [Silver et al.} [2016)), using deep NNs

in RL is standard practice. Depending on the RL algorithm, a loss function is defined and gradients
on the network weights can be calculated. In PG methods, the scoring function used in the softmax is
commonly replaced by a neural network Wy: mg(als) x exp (Wpy(s,a)) . Similarly, we implement
SoftTreeMax by replacing 6(s) in (2) with a neural network Wy(s). Although both variants of
SoftTreeMax from Section [3] involve computing an expectation, this can be hard in general. One
approach to handle it is with sampling, though these introduce estimation variance into the process.
We leave the question of sample-based theory and algorithmic implementations for future work.

Instead, in finite action space environments such as Atari, we compute the exact expectation in
SoftTreeMax with an exhaustive TS of depth d. Despite the exponential computational cost of
spanning the entire tree, recent advancements in parallel GPU-based simulation allow efficient

expansion of all nodes at the same depth simultaneously (Dalal et al.l 2021}, Rosenberg et al., 2022).

This is possible when a simulator is implemented on GPU (Dalton et al.l [2020; [Makoviychuk et al.

2021

[Freeman et al.|[2021)), or when a forward model is learned (Kim et al.}[2020;|Ha & Schmidhuber

2018

. To reduce the complexity to be linear in depth, we apply tree pruning to a limited width in all

levels. We do so by sub-sampling only the most promising branches at each level. Limiting the width

Under review as a conference paper at ICLR 2025

drastically improves runtime, and enables respecting GPU memory limits, with only a small sacrifice

in performance.

To summarize, in the practical SoftTreeMax algorithm we perform an exhaustive tree expansion with
pruning to obtain trajectories up to depth d. We expand the tree with equal weight to all actions, which
corresponds to a uniform tree expansion policy 7. We apply a neural network on the leaf states, and
accumulate the result with the rewards along each trajectory to obtain the logits in (2). Finally, we
aggregate the results using C-SoftTreeMax. We leave experiments E-SoftTreeMax for future work
on risk-averse RL. During training, the gradient propagates to the NN weights of Wy. When the
gradient Vg logmg g is calculated at each time step, it updates Wy for all leaf states, similarly to

Siamese networks (Bertinetto et al.,2016). An illustration of the policy is given in Figure 2}

6 EXPERIMENTS

We conduct our experiments on multiple games from the Atari simulation suite (Bellemare et al.}

2013). As a baseline, we train a PPO (Schulman et al.| 2017) agent with 256 GPU workers in parallel

(Dalton et al., 2020). For the tree expansion, we employ a GPU breadth-first as in (Dalal et al., 2021)).

We then train C-SoftTreeMax [ﬂ for depths d = 1...8, with a single worker. For depths d > 3,

we limited the tree to a maximum width of 1024 nodes and pruned trajectories with low estimated

weights. Since the distributed PPO baseline advances significantly faster in terms of environment

steps, for a fair comparison, we ran all experiments for one week on the same machine. For more

details see Appendix [B]

In Figure [3] we plot the reward and variance of SoftTreeMax for each game, as a function of depth.
The dashed lines are the results for PPO. Each value is taken after convergence, i.e., the average
over the last 20% of the run. The numbers represent the average over five seeds per game. The plot

conveys three intriguing conclusions. First, in all games, SoftTreeMax achieves significantly higher
reward than PPO. Its gradient variance is also orders of magnitude lower than that of PPO. Second,

the reward and variance are negatively correlated and mirror each other in almost all games. This

phenomenon demonstrates the necessity of reducing the variance of PG for improving performance.

Lastly, each game has a different sweet spot in terms of optimal tree depth. Recall that we limit the
run-time in all experiments to one week The deeper the tree, the slower each step and the run consists
of less steps. This explains the non-monotone behavior as a function of depth. For a more thorough
discussion on the sweet spot of different games, see Appendix

Asteroids

Breakout

10-7 600

400

5000
o
S
= 4000
<
3000
—e— SoftTreeMax Reward 5 2 6
---- PPO Reward Depth

—e— SoftTreeMax Variance

---- PPO Variance KungFuMaster

8

2 6

4
Depth

NameThisGame

8

60000

Reward

40000 [§ ==~ w=amgogog

-
107 50000

15000

10000

15000
1073

10000
10-°

10-7 5000

10-°
75000

107° 50000

1077 25000

Gopher

£}

9000

10-°

8000

10-°

s 10-7 7000
2 4 6 8 2 4 6
Depth Depth
Phoenix VideoPinball
800000
10-5
600000
400000
R Py
200000 1/ v
2 4 6 8 2 4 6
Depth Depth

Gradient variance

Gradient variance

Figure 3: Reward and Gradient variance: GPU SoftTreeMax (single worker) vs PPO (256 GPU
workers). The blue reward plots show the average of 50 evaluation episodes. The red variance plots
show the average gradient variance of the corresponding training runs, averaged over five seeds. The
dashed lines represent the same for PPO. Note that the variance y-axis is in log-scale.

'We also experimented with E-SoftTreeMax and the results were almost identical. This is due to the quasi-
deterministic nature of Atari, which causes the trajectory logits (2) to have almost no variability. We encourage
future work on E-SoftTreeMax using probabilistic environments that are risk-sensitive.

(log scale)

(log scale)

Under review as a conference paper at ICLR 2025

7 RELATED WORK

Softmax Operator. The softmax policy became a canonical part of PG to the point where theoretical
results of PG focus specifically on it (Zhang et al.|[2021; Mei et al.| [2020b; |Li et al.,[2021} Ding et al.}
2022). Even though we focus on a tree extension to the softmax policy, our methodology is general
and can be easily applied to other discrete or continuous parameterized policies as in (Mei et al.}
2020a; Miahi et al.| 2021} |Silva et al.| [2019). Tree Search. One famous TS algorithm is Monte-Carlo
TS (MCTS; (Browne et al.,2012))) used in AlphaGo (Silver et al.,[2016) and MuZero (Schrittwieser
et al.}2020). Other algorithms such as Value Iteration, Policy Iteration and DQN were also shown to
give an improved performance with a tree search extensions (Efroni et al.,[2019; Dalal et al., [2021).
Parallel Environments. In this work we used accurate parallel models that are becoming more
common with the increasing popularity of GPU-based simulation (Makoviychuk et al., 2021} |Dalton
et al., [2020; |[Freeman et al., [2021)). Alternatively, in relation to Theorem@ one can rely on recent
works that learn the underlying model (Ha & Schmidhuber, 2018 [Schrittwieser et al., [2020) and
use an approximation of the true dynamics. Risk Aversion. Previous work considered exponential
utility functions for risk aversion (Chen et al.| 2007; |Garcia & Fernandezl 2015; [Fei et al.| [2021)).
This utility function is the same as E-SoftTreeMax formulation from (), but we have it directly
in the policy instead of the objective. Reward-free RL. We showed that the gradient variance is
minimized when the transitions induced by the behavior policy 7}, are uniform. This is expressed by
the second eigenvalue of the transition matrix P7°. This notion of uniform exploration is common to
the reward-free RL setup (Jin et al.,|2020). Several such works also considered the second eigenvalue
in their analysis (Liu & Brunskill, 2018} | Tarbouriech & Lazaricl 2019).

8 DISCUSSION

In this work, we introduced for the first time a differentiable parametric policy that combines TS with
PG. We proved that SoftTreeMax is essentially a variance reduction technique and explained how to
choose the expansion policy to minimize the gradient variance. It is an open question whether optimal
variance reduction corresponds to the appealing regret properties the were put forward by UCT
(Kocsis & Szepesvaril, 2006). We believe that this can be answered by analyzing the convergence rate
of SoftTreeMax, relying on the bias and variance results we obtained here.

As the learning process continues, the norm of the gradient and the variance both become smaller.
On the face of it, one can ask if the gradient becomes small as fast as the variance or even faster can
there be any meaningful learning? As we showed in the experiments, learning happens because the
variance reduces fast enough (a variance of O represents deterministic learning, which is fastest).

Finally, our work can be extended to infinite action spaces. The analysis can be extended to infinite-
dimension kernels that retain the same key properties used in our proofs. In the implementation, the
tree of continuous actions can be expanded by maintaining a parametric distribution over actions that
depend on 6. This approach can be seen as a tree adaptation of MPPI (Williams et al., 2017).

REPRODUCIBILITY AND LIMITATIONS

In this submission, we include the code as part of the supplementary material. We also include a
docker file for setting up the environment and a README file with instructions on how to run both
training and evaluation. The environment engine is an extension of Atari-CuLE (Dalton et al., [2020)),
a CUDA-based Atari emulator that runs on GPU. Our usage of a GPU environment is both a novelty
and a current limitation of our work.

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22(98):
1-76, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional siamese networks for object tracking. In European conference on computer vision,
pp- 850-865. Springer, 2016.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor—critic
algorithms. Automatica, 45(11):2471-2482, 2009.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in
games, 4(1):1-43, 2012.

Samprit Chatterjee and Eugene Seneta. Towards consensus: Some convergence theorems on repeated
averaging. Journal of Applied Probability, 14(1):89-97, 1977.

Xin Chen, Melvyn Sim, David Simchi-Levi, and Peng Sun. Risk aversion in inventory management.
Operations Research, 55(5):828-842, 2007.

Gal Dalal, Assaf Hallak, Steven Dalton, Shie Mannor, Gal Chechik, et al. Improve agents without
retraining: Parallel tree search with off-policy correction. Advances in Neural Information
Processing Systems, 34:5518-5530, 2021.

Steven Dalton et al. Accelerating reinforcement learning through gpu atari emulation. Advances in
Neural Information Processing Systems, 33:19773-19782, 2020.

Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global optimum convergence of momentum-
based policy gradient. In International Conference on Artificial Intelligence and Statistics, pp.
1910-1934. PMLR, 2022.

Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. How to combine tree-search methods
in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 3494-3501, 2019.

Yingjie Fei, Zhuoran Yang, Yudong Chen, and Zhaoran Wang. Exponential bellman equation and
improved regret bounds for risk-sensitive reinforcement learning. Advances in Neural Information
Processing Systems, 34:20436-20446, 2021.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax-a differentiable physics engine for large scale rigid body simulation. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Javier Garcia and Fernando Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(9), 2004.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes. Management
science, 18(7):356-369, 1972.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pp. 4870—4879. PMLR,
2020.

10

Under review as a conference paper at ICLR 2025

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to
simulate dynamic environments with gamegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1231-1240, 2020.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282-293. Springer, 2006.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathemat-
ical Soc., 2017.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Softmax policy gradient methods can
take exponential time to converge. In Conference on Learning Theory, pp. 3107-3110. PMLR,
2021.

Yanli Liu, Kaiging Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. Advances in Neural Information Processing
Systems, 33:7624-7636, 2020.

Yao Liu and Emma Brunskill. When simple exploration is sample efficient: Identifying sufficient
conditions for random exploration to yield pac rl algorithms. arXiv preprint arXiv:1805.09045,
2018.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Adwaitvedant S Mathkar and Vivek S Borkar. Nonlinear gossip. SIAM Journal on Control and
Optimization, 54(3):1535-1557, 2016.

Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvari, and Dale Schuurmans. Escaping
the gravitational pull of softmax. Advances in Neural Information Processing Systems, 33:21130—
21140, 2020a.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In International Conference on Machine Learning, pp.
6820-6829. PMLR, 2020b.

Erfan Miahi, Revan MacQueen, Alex Ayoub, Abbas Masoumzadeh, and Martha White. Resmax: An
alternative soft-greedy operator for reinforcement learning. 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Erfaun Noorani and John S Baras. Risk-sensitive reinforce: A monte carlo policy gradient algorithm
for exponential performance criteria. In 2021 60th IEEE Conference on Decision and Control
(CDC), pp. 1522-1527. IEEE, 2021.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochas-
tic variance-reduced policy gradient. In International conference on machine learning, pp. 4026—
4035. PMLR, 2018.

Mariane Pelletier. On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic
processes and their applications, 78(2):217-244, 1998.

Nhan Pham, Lam Nguyen, Dzung Phan, Phuong Ha Nguyen, Marten Dijk, and Quoc Tran-Dinh. A
hybrid stochastic policy gradient algorithm for reinforcement learning. In International Conference
on Artificial Intelligence and Statistics, pp. 374-385. PMLR, 2020.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3, 2019.

Aviv Rosenberg, Assaf Hallak, Shie Mannor, Gal Chechik, and Gal Dalal. Planning and learning
with adaptive lookahead. arXiv preprint arXiv:2201.12403, 2022.

11

Under review as a conference paper at ICLR 2025

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604—-609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy
gradient. In International conference on machine learning, pp. 5729-5738. PMLR, 2019.

Andrew Silva, Taylor Killian, Ivan Dario Jimenez Rodriguez, Sung-Hyun Son, and Matthew Gombo-
lay. Optimization methods for interpretable differentiable decision trees in reinforcement learning.
arXiv preprint arXiv:1903.09338, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Csaba Szepesvari. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence
and machine learning, 4(1):1-103, 2010.

Jean Tarbouriech and Alessandro Lazaric. Active exploration in markov decision processes. In The
22nd International Conference on Artificial Intelligence and Statistics, pp. 974-982. PMLR, 2019.

Philip S Thomas and Emma Brunskill. Policy gradient methods for reinforcement learning with
function approximation and action-dependent baselines. arXiv preprint arXiv:1706.06643, 2017.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714-1721. 1IEEE,
2017.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. In International Conference on Learning Representations, 2018.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-
reduced policy gradient. In Uncertainty in Artificial Intelligence, pp. 541-551. PMLR, 2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Junyu Zhang, Chengzhuo Ni, Csaba Szepesvari, Mengdi Wang, et al. On the convergence and sample
efficiency of variance-reduced policy gradient method. Advances in Neural Information Processing
Systems, 34:2228-2240, 2021.

APPENDIX

A PROOFS

A.1 PROOF OF LEMMA [4.1]- BOUND ON THE POLICY GRADIENT VARIANCE
For any parametric policy g and function @ : S x A — R,

Var (Vo log mo(als)Q(s, a)) < max[Q(s, a)]” max ||V log mo(-|s) 7,

where Vg log mg(-|s) € RA*dm(®) js a matrix whose a-th row is Vg log 7y (als) .

12

Under review as a conference paper at ICLR 2025

Proof. The variance for a parametric policy 7y is given as follows:

Var (Vg log me(als)Q(a, s)) =Eswa,, ammo(-|s) [Vologmg(als) " Vg log mo(als)Q(s, a)?] —
Esnd,yanm(|s) [Vologme(als)Q(s, a)’ Esndy, anmo () [Vologmo(als)Q(s,a)]

where)(s, a) is the currently estimated Q-function and d ., is the discounted state visitation frequency
induced by the policy mg. Since the second term we subtract is always positive (it is of quadratic form
v v) we can bound the variance by the first term:

Var (Vg logmg(als)Q(a, s)) <Esa,, anme(|s) [V log mo(als) " Vg logmg(als)Q(s, a)’]
=3 dry(s) Z mo(als)Vglogme(als) " Vg logme(als)Q(s, a)?

s,a

<max {[Q(s a))* 7o(als] de)ZV(; log g (als) " Vg log me(als)

< max [Q(s, a)]” max Z Vo logmy(als) " Vg logmg(als)

s,a

= max [Q(s, a))? max [Vg log mo(]s) |

3

O
A.2 PROOF OF LEMMA [£.2]- VECTOR FORM OF C-SOFTTREEMAX
In vector form, (3) is given by
oo 5 (Cor s (1)
775,9(s) = T a1) (®)
Ly exp [6 (Cs’d + P (Pm) @ﬂ
where
d—1
Coa=7""Re+ P, | > 4" (P™)""| Rn,. ©)
h=1
Proof. Consider the vector £, . € RI“I. Tts expectation satisfies
d—
E™(,.(d;0) = E™ Z U +0(Sd)]
t=0
d—1
=77 R+ > 4 TIP(P™) T Ry, + P(P™) O
t=1
As required. O

A.3 PROOF OF LEMMA [£.3]—- GRADIENT OF C-SOFTTREEMAX
The C-SoftTreeMax gradient of dimension A x S is given by

VolognGy =B [Ia —1a(ny) "] P, (P™)*

where for brevity, we drop the s index in the policy above, i.e., 75, = 75, (-]5).

13

Under review as a conference paper at ICLR 2025

Proof. The (j, k)-th entry of V log 7§ , satisifes

dlog(rg 4(a’]s))
[Vologn§gljn = C90(sk)

D {exp {5 (Cs,d + P (P“”)d_l @)”a 8 [ps(pm,)d—q

a,k
= BIP(P™)" Mk — ’
o [5 (o 7216
= BIP(P™) Ny — B 7S olals) [PU(P™)],
a
= BIP(P™)" ;6 — B [(7G) T P(P™)7]
= BIP(P™)* Mk — B [La(mGe) T P(P™)]
Moving back to matrix form, we obtain the stated result. O

A.4 PROOF OF THEOREM [4.4]— EXPONENTIAL VARIANCE DECAY OF C-SOFTTREEMAX

The C-SoftTreeMax policy gradient is bounded by
A2 512 62
(1—n9)?

Proof. We use Lemma directly. First of all, it is know that when the reward is bounded in [0, 1],

the maximal value of the Q-function is %7 as the sum as infinite discounted rewards. Next, we

Var (V@ log Wsﬁ(a|s)Q(s, a)) <2 \)\Q(P”b)|2(d_1).

1
bound the Frobenius norm of the term achieved in Lemma.3] by applying the eigen-decomposition

on P
s

P™ = ISMT‘FZ/\i’U/iU;r, (10)
i=2
where o is the stationary distribution of P7*, and u; and v; are left and right eigenvectors correspond-
ingly.

S
18 (Iaa —1am ") Po(P™) 4 p = B|| (14,4 — 1an ") P (15,,LT + Z A?‘Wﬂj) | F
=2

s
(Ps is stochastic) = [(IA’A — 1A7TT) <1A,uT + Z)\f-llPSuiviT> IlF

=2

S
(projection nullifies 1ap") = B|| (Ia,a — 1a7") (Z /\f_lPsuiyiT> |7

i=2
s
(triangle inequality) < BZ I (IA,A - 1A7TT) (A?ilPsuivg—) |7
i=2
s
(matrix norm sub-multiplicativity) < BIA!| Z 1Ta.a — a7 ||p||Psll 7 llwiv) || 7
i=2

=BG TH(S = DllLaa = Lam "] P

Now, we can bound the norm |[74 4 — 147" || by direct calculation:

T
||IA7A—1A7TT||2F:TI‘ [(IA7A—1ATFT) (IA7A—1A7TT) :| (11)
=Tr [IA’A —an| — 7l + 7TT771A1H (12)
=A-1-14+Ar"n (13)
< 2A. (14)

14

Under review as a conference paper at ICLR 2025

From the Cauchy-Schwartz inequality,

1PIE =D [[Plas] ZII sla, ||2<Z|| sa,- 1l [Psla,[loo < A

So,
Var (Vg log 75(als)Q(s,a)) < max [Q(s, a)]” max [Vg log 75y -|s)|13
1
< ———|IB(Taa—1am") Py(P™)41)3
oyl) PP
1
< 52 Ao P 2(d—1)S2 2A2 ’
Ao (PP s 04
which obtains the desired bound. O

A.5 A LOWER BOUND ON C-SOFTTREEMAX GRADIENT (RESULT NOT IN THE PAPER)

For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that
this result does not translate to the a lower bound on the variance since we have no lower bound
equivalence of Lemma4.T]

Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:

Ve log 7§, (-|s)|F = C - BlAa(P™)[4=1). (15)

Proof. We begin by moving to the induced [, norm by norm-equivalence:

18 (Taa —1am ") Po(P™)Hp > 1B (Ta,a — 1am ") Po(P™)* 5.
Now, taking the vector u to be the eigenvector of the second eigenvalue of P™:
1B (Taa —1am ") Py(P™) 4 o > (|8 (Ia,a — 1am ") Po(P™)" 2
= B|| (Ia,a — 1am ") Poulls
= BA2(P™) V|| (Ia,a — 1am ") Pyulfo.
Note that even though Psu can be 0, that is not the common case since we can freely change 7, (and

therefore the eigenvectors of P™).

A.6 PROOF OF LEMMA [4.3]- VECTOR FORM OF E-SOFTTREEMAX

For d > 1, (@) is given by

E; 4exp(SO
E 5,4 €xp(8O)
= —SdOE) 16
Tao(:ls) 11 B, 4 exp(30) (16)
where
Esq=P; H (exp[By"~“R]) P™) a7
with R being the |S|-dimensional vector whose s-th coordinate is r(s).
Proof. Recall that
d—1
Coa(d;0) =7~ [r(s) + Y A'r(si) + vda(s(»] : (18)
t=1
and, hence,
d—1
exp(Bls,q(d; 8)] = exp lﬂ’y‘d <r(s) + Z yir(se) + 7d9(sd)>] . (19)
t=1

15

Under review as a conference paper at ICLR 2025

Therefore,

- it -
Elexp fls.a(d;0)] = E |exp | Sy~¢ (r(s) + Z’y%(sﬁ) E [exp [B (0(sa))]ls1, - - -, sdl]]
) -) (20)

_ .]
=E |exp |fy? (T(S) + ZV”’(M) Pﬂb('|5d—1)] exp(£0) 1)

d—2
—E [exp | g7 <o~<s> +Z¢r<st>>

exp[ﬁv_lr(Sd1)]P”b('|5d1)] exp(0).
' (22)

By repeatedly using iterative conditioning as above, the desired result follows. Note that
exp(By~9r(s)) does not depend on the action and is therefore cancelled out with the denomi-
nator. -

A.7 PROOF OF LEMMA [4.6] - GRADIENT OF E-SOFTTREEMAX
The E-SoftTreeMax gradient of dimension A x S is given by
-1
D(w5,) EeaD(exp(36))
IXES’d exp(B0O) ’

where for brevity, we drop the s index in the policy above, i.e., 75 , = 75 (-]s).

Vologmh =B [Ia—1a(mhy) "]

Proof. The (j, k)-th entry of Vg log 7y , satisfies

0log (o (a7]5))
(Vologmiglin = —— 5oy

00(s*)
0
— W (log[(Es,d)jT exp(8O)] — log[1£E57d exp(ﬁ@)})
_ B(Bsa)jnexp(B80(s*)) BLyE; aex exp(B86(sY))
(Es,d);‘r eXp(ﬂ@) llEs,d exp(ﬁ@)
_ B(Es aex exp(B0(s*))); B B1 4 E, qey, exp(B6(s*))
(Es.a)] exp(80) 1, E, 4exp(50)
el 1!
J A

=5 Es qex exp([%)(sk)).

e] Eaexp(BO) 1}E, sexp(530)
Hence,
[Vologmhigl. k= B [D(Es,dexp(ﬁe))—l — (1} Bsa exp(ﬁe))—llAlﬂ Ej aer, exp(86(s"))

From this, it follows that

1 r} Es,aD(exp(50))

Vologrli,=p|D (me) —1al . »
6logmg g 5[(i) AT E, dexp(50) >

The desired result is now easy to see. O

A.8 PROOF OF THEOREM [4.”]| — EXPONENTIAL VARIANCE DECAY OF E-SOFTTREEMAX

There exists o € (0, 1) such that, for any function @ : S x A — R,
Var (Vg log 7T579(G|S)Q(8, a)) €O (ﬁ2a2d) .

If all rewards are equal (r = const), then o = | Ao (P™)|.

16

Under review as a conference paper at ICLR 2025

Proof outline. Recall that thanks to Lemma4.T] we can bound the PG variance using a direct bound
on the gradient norm. The definition of the induced norm is

Vo log i, = nax, IVologml 2|,

with Vj log 71'5, o given in Lemma Let z € R¥ be an arbitrary vector such that ||z|| = 1. Then,

z= Zis:l ¢;z;, where ¢; are scalar coefficients and z; are vectors spanning the S-dimensional space.
In the full proof, we show our specific choice of z; and prove they are linearly independent given that
choice. We do note that z; = 1g.

The first part of the proof relies on the fact that (Vg log Wgyo)zl = 0. This is easy to verify using

Lemmatogether with (6)), and because [I Aa—1y (7757 G)T] is a projection matrix whose null-space

is spanned by 1g. Thus,
s

Vo log wgﬂz = Vylog wgﬁ Z CiZi.
i=2
In the second part of the proof, we focus on E; 4 from (6)), which appears within Vy log Tl'dE}G. Notice

that E, 4 consists of the product [T1_} (D (exp(87"~¢R) P™) . Even though the elements in this
product are not stochastic matrices, in the full proof we show how to normalize each of them to a
stochastic matrix By,. We thus obtain that

d—1

E.q=P.D(M) [] Bn,
h=1

where M; € R® is some strictly positive vector. Then, we can apply a result by Mathkar & Borkar
(2016)), which itself builds on (Chatterjee & Senetal [1977)). The result states that the product of

stochastic matrices Hi;i B, of our particular form converges exponentially fast to a matrix of the
form 1gp " s.t. [[1gu’ — i;i By|| < Ca? for some constant C.

Lastly, 1g u; gets canceled due to our choice of z;, ¢ = 2,...,.S. This observation along with the
above fact that the remainder decays then shows that Vg log 7f 2522 z; = O(a?), which gives the
desired result. '

Full technical proof. Let d > 2. Recall that

d—1
Eea = Ps [(D (exp[By"~"R]) P™), (24)
h=1

and that R refers to the S-dimensional vector whose s-th coordinate is 7(s). Define

pro ifi=d—1,
Bi= {D—l(P”bMiH)PﬂD(MiH) ifi=1,...,d—2, @)
and the vector
exp(BY"IR) ifi=d—1,
e {exp(ﬁ’yidR) oP™M;y; ifi=1,...,d—2, (26)
where o denotes the element-wise product. Then,
d—1
Eyq=P.D(My) [] B 27)
i=1

It is easy to see that each B; is a row-stochastic matrix, i.e., all entries are non-negative and
Bilg = 1g.

Next, we prove that all non-zeros entries of B; are bounded away from O by a constant. This is
necessary to apply the next result from |Chatterjee & Senetal (1977)). The j-th coordinate of M;
satisfies

(M;); = exp[By“Ry] Y [P™]; 6 (Mig1)i < [l exp[BY' ™" R]loo | Mis1loo- (28)
k

17

Under review as a conference paper at ICLR 2025

Separately, observe that || My_1| s < || exp(87 ! R)| - Plugging these relations in (26) gives

d—1 d—1 d—1 _h 1
1M1]o0 < TT llexl87"Rllloo = [T Il explBy BRI = | explBy R]|%"=" < |[exp[sy *R]|I %
h=1 h=1
(29)
Similarly, for every 1 <13 < d — 1, we have that
d—1 . L
1Moo < TT IlexplBy R < [lexp[8y"R]||%" - (30)
h=i
The jk-th entry of B; = D™Y(P™ M, 1) P™ D(M;, 1) is
PTY[M; P’”’ P
(Bi)j = ‘Sf'“ [ﬂ ke o > * G
Sz P (Migale — Y02 P [Miale || exp[By—4R]| %7

Hence, for non-zero PjT;j, the entries are bounded away from zero by the same. We can now proceed
with applying the following result.

Now, by (Chatterjee & Senetal, [1977, Theorem 5) (see also (14) in (Mathkar & Borkar, [2016)),
limg_s o0 H?;ll B; exists and is of the form 154 for some probability vector yi. Furthermore, there
is some « € (0, 1) such that e(d) := (Hd ' B;) — 15 p " satisfies

le()ll = O(a?). (32)
Pick linearly independent vectors wa, . .., wg such that
plw; =0fori=2,...,d. (33)
Since 2;12 a;w; is perpendicular to 4 for any as, ... ag and because 4 exp(30) > 0, there
exists no choice of as, ..., ag such that Zf 5 aw; = exp(fO). Hence, if we let z; = 1g and
2 = D(exp(f80))~tw; fori = 2,..., S, then it follows that {21, ..., zg} is linearly independent.
In particular, it implies that {z1, . . zs} spans R,

. . . s
Now consider an arbitrary unit norm vector z := _,_, ¢;z; € RS s.t. ||z]|2 = 1. Then,

S

Vg log ﬂgﬁz = Vylog wgﬁ Z Ci%i (34)
i=2

-1
D () EeaD(exp(86)) & N
IXES,d exp(50O) Z cisi (35)

—1
D(n8y) Foa S

=B [1a—1a(rhy) "]

=0 {a—-1 G ——— i W;
BlIa—1a(myy) '] T h s ep(30) ;cw (36)
-1
D(xt,) [sn” +e(@)] &
=pIa—-1 20) " : i W;
Ala=1alrdo)] 1} B, 4 exp(0) ;Cw 7
—1
D (#E
=B [La—1a(mge) '] L Z ciw; (38)

lAEs aexp(f

D (5,) " c(d)Dlesp(50))

=5 [IA — 1A(7TdE79)T] 1;E 1exp(B80)

(z —ails), (39)

18

Under review as a conference paper at ICLR 2025

where (34) follows from the fact that Vg log 7} gz1 = Vplogmygls = 0, (33) follows from
Lemma 4.6, (36) holds since z; = D(exp(30))~ w;, (38) because is perpendicular w; for each 4,
while (39) follows by reusing z; = D(exp(80))~'w; relation along with the fact that z; = 1g.

From (39), it follows that

-1
Vo log 75 o2l < Blle(@)]| || [T — La(xk)T]D(Wg"’) ID(exp(80))] |1z — 11
womh = 07 LB, 4exp(50)

(40)
-1
< Ba([Zall + 2a(mge) 1) M exp(Smax6(s))||z — crls]
- @0 les,d exp(80O) E
41
-1
< gt v | -2 (Fmax0())z — erls @)
< Ba ———~—llexp(Bmax8(s))||z —c11s
14 B, qexp(40) E
< Bat(1+VA) [|D7! (B exp(80))]| exp(5 max6(s))||= — erLs]| (43)
1
< Ba _
< Ba’(1+ VA) B rep(e], CPAmax @)z~ eils (44)
s0(s))
< Bat(1 A exp(ff max, -1 4
< faf(l+ f)exp(ﬁmins 6(s)) ming | M| Iz = ei1sl] “45)
< ﬂad(l + \/Z) exp(B max, 6(s)) |z — ci1g]| (46)
- exp(B ming 6(s)) exp(S ming r(s)) 18
< Ba(1 + VA) exp(B[max 0(s) — min8(s) — minr(s)])||z — c11g]|. 47
Lastly, we prove that ||z — ¢1 15| is bounded independently of d. First, denote by ¢ = (cy,...,cg) "
and & = (0,¢ca,...,c5) " . Also, denote by Z the matrix with z; as its i-th column. Now,
s
Iz = exlsl| = D ezl (48)
i=2
= [1Ze] (49)
< [1Z]lllell (50)
< [1Z[lllell (51)
=21z~ =] (52)
<Ilzlliz=1, (53)

where the last relation is due to z being a unit vector. All matrix norms here are l»-induced norms.

Next, denote by W the matrix with w; in its i-th column. Recall that in (33) we only defined
wa, ..., ws. We now set w; = exp(8O). Note that w; is linearly independent of {ws, ..., ws}
because of (33) together with the fact that ;1" w; > 0. We can now express the relation between Z
and W by Z = D~ (exp(30))W. Substituting this in (53), we have

Iz = c1lg]| < [D™" (exp(80))W ||[|[W " D(exp(80))]| (54)
< [[WIIWHI[| D (exp(8O)) | |1D~ (exp(80))]]. (55)

It further holds that
|1D(exp(60))]| < maxexp (86(s)) < max{L, exp[f maxf(s)])}, (56)

where the last relation equals 1 if 6(s) < 0 for all s. Similarly,

D (exp(50))]| < =

1
min, exp (36(s)) = min{1, exp[S ming 6(s)])}

(57)

19

Under review as a conference paper at ICLR 2025

Furthermore, by the properties of the [;-induced norm,

W2 < VS|W] (58)
= \/glrg{agxs ||wl|\1 (59)
= V'S max{exp(30), Joax, [lw;ll1} (60)
< VS max{1, exp|3 max §(s)], max |lwil)} (61)
Lastly,
1
_1 _
||W ” - Umin(W) (62)
S rmax (W) 1
< 63
- (21:[1 o (W) Tmin (W) ©3)
S—1
_ (am;x(W)) (64)
Hi:1 ai (W)
0
= [det (7])

The determinant of W is a sum of products involving its entries. To upper bound (63)) independently
of d, we lower bound its denominator by upper and lower bounds on the entries [W]; ; that are
independent of d, depending on their sign:

min{1, exp|[S msin 0(s)])} < [Wlia1 < max{1,exp[s max 6(s)])}- (66)

Using this, together with (33), (33), (56), (7)), and (61)), we showed that ||z — ¢11g]| is upper bounded
by a constant independent of d. This concludes the proof. O

A.9 BIAS ESTIMATES

Lemma A.2. For any matrix A and A,
k
AR — AR =N AP A - Ay AR
h=1

Proof. The proof follows from first principles:

k k k
SO AR(A - AR = 3 A AARE Y AR Ak (©7)
h=1 h=1 h=1
k k
— ZAhAk*h _ ZAh*lAk*]’H*l (68)
h=1 h=1
k—1 k
— Ak _ Ak + Ab AR _ ZAhflAkchrl (69)
h=1 h=2
= Ak — Ak, (70)
O
Henceforth, || - || will refer to || - ||, i.e. the induced infinity norm. Also, for brevity, we denote wg’ 9

and 7%579 by 7y and 7, respectively. Similarly, we use d,, and d, to denote dﬂgye and dﬁgye. As for

the induced norm of the matrix P and its perturbed counterpart P , which are of size § x A x §,
we slightly abuse notation and denote | P — P|| = max,{||Ps — Ps||}, where P; is as defined in
Section[2]

20

Under review as a conference paper at ICLR 2025

Definition A.3. Let e be the maximal model mis-specification, i.e., max{||P — P||,||r — 7|} = e.

Lemma A.4. Recall the deﬁmtlons Of RS, P, R,,b and P™ from Section[2] and respectlvely denote
their perturbed counterparts by I{37 Pg, Rﬁb and P™. Then, for € defined in Deﬁnmon

max{||Rs — Ryll, | Ps = Py, | Rr, — B, ||, |[P™ = P™ ||} = O(e). (71)
Proof. The proof follows easily from the fact that the differences above are convex combinations of
P —Pandr —r. O

Lemma A.5. Let mp be as in (), and let 7ty also be defined as in (B), but with R, Ps, P™ replaced
by their perturbed counterparts Ry, Ps, P™ throughout. Then,

Hﬂge 7Td0||— (Bde). (72)

Proof. To prove the desired result, we work with (3)) to bound the error between Ry, Ps, P™, R,
and their perturbed versions.

First, we apply Lemmatogether with Lemma to obtain that ||(P™)* — (P™)¥|| = O(ke).
Next, denote by M the argument in the exponent in (5)), i.e.

M := B[Cs.q + Ps(P™)%710).
Similarly, let M be the corresponding perturbed sum that relies on Pand 7. Combining the bounds
from Lemmal|A.4, and using the triangle inequality, we have that | M — M|| = O(Bde).
Eq. (@) states that the C-SoftTreeMax policy in the true environment is 7y = exp(M) /(1T exp(M)).
Similarly define 7y using M for the approximate model. Then,
79 = (mg 0 exp(M — M))1 T exp(M)/(17 exp(A1)),

where o denotes element-wise multiplication. Using the above relation, we have that |7y — 7| =
exp(M—M)1" exp(M)
1T exp(M)

[l7olll — 1]|. Using the relation |e” — 1| = O(x) as — 0, the desired result

follows.
O

Theorem A.6. Let € be as in Deﬁnition Further let 7?579 being the corresponding approximate
policy as given in Lemma[.2] Then, the policy gradient bias is bounded by

-2

T7r9
) =55 W V)

1
=0 <Sﬂ2de) . (73)
‘ (1—9)?
We first provide a proof outline for conciseness, and only after it the complete proof.

Proof outline. First, we prove that max{|| Rs— Ry |, | Ps—Ps||, || R, — Rr, ||, | P™ —P™||} = O(e).
This follows from the fact that the differences above are suitable convex combinations of either the
rows of P — P or r — 7. We use the above observation along with the definitions of 7rd g and 7 7Td 0

given in (3)) to show that || a0 — 7z ¢/l = O(Bde). The proof for the latter builds upon two key facts:

(a) I(Pe)k — (Po)M|| < Sy [P ||t P — P |[p™ |* =" = O(ke) for any k > 0, and (b)
—1]=0(x) asx — 0. Next we decompose the LHS of (7) to get

4 4 4
3 (H Xi(s) - HXAs)) =3 Kals) - Kia(s) (Xis) = Xils)) x Xiga(s) - Xa(s),
s =1 i=1 s i=1

where X,(s) = dg, (3) € B, Xo(s) = (Vo logn(19) € B4, Xy(s) = Dl () €
RAXA X, (s) = Q’rdvﬂ(s,) € RA%4 and X,(s),..., X4(s) are similarly defined with wgﬂ re-
placed by ﬁgﬁ(,. Then, we show that, for i = 1,...,4, (i) | Xi(s) — Xi(s)| = O(e) and (ii)

max{ || X;||, || X;]|} is bounded by problem parameters. From this, the desired result follows. O

21

Under review as a conference paper at ICLR 2025

Proof. We have
8 (Tvﬂ'g) _ (Tvﬂ'6> (74)

0
= Eod,, ammo(ls) [V 108 70(al5)Q™ (5,0)] = Byd,, amto(-1s) [Vo log 7o (als)Q™ (s, a)]

(75)
= Z o (7r9(a|s)Vg10g7r9(a|s)Q’T9(s,a)fd,}e(s)fr@(a|s)v(9logﬁg(a|s)Qﬁ9(s,a)) (76)

9

- Z(0 (9)(Vo log (1) Dl (16))Q (5.))

— diy (5)(Vo logfre('IS))TD(ﬁe('IS))Q“(s,')) 78)

=2 (H Xi(s) — H&(@) (79)
4

= 3> Kils) - Kica(o) (Xils) = Xils)) Xiga(5) - Xao) (80)

where X1 (s) = dr,(s) € R, Xa(s) = (Vglogmy(+|s))T € R¥*A X3(s) = D(mg(:]5)) € RAXA,
X4(s) = Qm(s,-) € RA*4 and X(s),..., X4(s) are similarly defined with 7y replaced by 7p.

Therefore,

0 0 /
H@G (TV’”’) ~ % (VTVWG) ’ < (mgxl"(s)) S, (81)
where
4
T(s) = |- Xu(s) -+ Koo (s) (Xi(s) = Xi(s)) Xiga(s) -+ Xa(s)], (82)
i=1
Next, since d,, dx,, Tp, and 7y are all distributions, we have
max{|X1(s)], | X1(s)], [Xa(s,)], | Xa(s,0)[} < 1. (83)
Separately, using Lemma4.3] we have
1X2]| = Ve log m(als)[| < BUILall + l[Lamg DIP (P). (84)
Since all rows of the above matrices have non-negative entries that add up to 1, we get
1Y < 25. (85)
In the rest of the proof, we bound each of || X; — X1, ..., | X4 — X4]|.
Finally,
1
Xyl € —. 86
[X4l < - (86)

Similarly, the same bounds hold for Xl, Xg, Xg and)f4.

From, we have

1%, = X1l < (1~ Zvnu (Pmoyt =T (P (87)
(1-~ ||u||thtde (88)
<(1- y)dert (89)
de
:17 , (90)
-

22

Under review as a conference paper at ICLR 2025

The last relation follows from the fact that (1 —) ™' = >"7° /4, which in turn implies

o (1 -
=) =S"t". 1
2()-E-
t=0
From Lemma[A.3] it follows that
1Xs — Xs|| = O(Bde). (92)

Next, recall that from Lemma [4.3] that
Xa(s,7) = B [Ia = La(me) '] P (P™)" "

Then,
1Xa(5,7) = Xals,)l <8 [La — Lalm)T] Pl P72 = (P2) T 99)
+ 18 [1a = La(mo) TP, = 2ol (P) ©4)
£ BllLalme)™ — 1aro) 12, (B7) . ©3)

Following the same argument as in (85) and applying Lemma [A.2] we have that (O3) is O(S3de).
Similarly, from the argument of (83)), Eq. (94) is O(8e). Lastly, (93) is O(Sde) due to Lemma
Putting the above three terms together, we have that

1X2(s,-) — Xa(s,)|| = O(Bde). (96)

Since the state-action value function satisfies the Bellman equation, we have

Q™ =7 +7PQ™ 97)
and X o
QY =7 +~yPQ™. (98)
Consequently,
Q™ — Q™| < |lr = 7| + [P — PQ™ || +~| PQ™ — PQ™ | 99)
< e+ AlIP1QT — Q[+ || P — P|Q™|| (100)
< e+aQr - QM+ e (101)
which finally shows that
~ S €
X4 — X4l =]Q™ - Q™| £ —. 102
O

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

The environment engine is the highly efficient Atari-CuLE (Dalton et al., [2020), a CUDA-based
version of Atari that runs on GPU. Similarly, we use Atari-CuLE for the GPU-based breadth-first TS
as done in |Dalal et al.|(2021): In every tree expansion, the state S; is duplicated and concatenated
with all possible actions. The resulting tensor is fed into the GPU forward model to generate the
tensor of next states (S, ..., Sﬁ[ll). The next-state tensor is then duplicated and concatenated
again with all possible actions, fed into the forward model, etc. This procedure is repeated until the
final depth is reached, for which Wy(s) is applied per state.

We train SoftTreeMax for depths d = 1...8, with a single worker. We use five seeds for each
experiment.

23

Under review as a conference paper at ICLR 2025

For the implementation, we extend Stable-Baselines3 (Raffin et al.| 2019) with all parameters taken
as default from the original PPO paper (Schulman et al.,[2017). For depths d > 3, we limited the
tree to a maximum width of 1024 nodes and pruned non-promising trajectories in terms of estimated
weights. Since the distributed PPO baseline advances significantly faster in terms of environment
steps, for a fair comparison, we ran all experiments for one week on the same machine and use the
wall-clock time as the x-axis. We use Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with
one NVIDIA Tesla V100 32GB.

B.2 TIME-BASED TRAINING CURVES

We provide the training curves in Figure] For brevity, we exclude a few of the depths from the plots.
As seen, there is a clear benefit for SoftTreeMax over distributed PPO with the standard softmax
policy. In most games, PPO with the SoftTreeMax policy shows very high sample efficiency: it
achieves higher episodic reward although it observes much less episodes, for the same running time.

Asteroids Breakout Gopher Krull
8000 1
200 6000
©
£ 3000]
© 4000 - 6000
5 N 200 40001
¢ 2000 2000
— PPO
—— SoftTreeMax Depth 2 0 2000+
— SoftTreeMax Depth 3 0 100 o 100 o 100 o 100
—— SoftTreeMax Depth 5 Time [hours] Time [hours] Time [hours] Time [hours]
—— SoftTreeMax Depth 6
— softTreeMax Depth 8 KungFuMaster NameThisGame Phoenix VideoPinball
60000 30000 4
] 200000 1
o 10000
§ 40000 20000
0_
& 20000 50001 10000
0 100 0 100 0 100 0 100

Time [hours]

Time [hours]

Time [hours]

Time [hours]

Figure 4: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the wall-clock time.
The runs ended after one week with varying number of time-steps. The training curves correspond to
the evaluation runs in Figure 3]

B.3 STEP-BASED TRAINING CURVES

In Figure[5) we also provide the same convergence plots where the x-axis is now the number of online
interactions with the environment, thus excluding the tree expansion complexity. As seen, due to the
complexity of the tree expansion, less steps are conducted during training (limited to one week) as
the depth increases. In this plot, the monotone improvement of the reward with increasing tree depth
is noticeable in most games.

24

Under review as a conference paper at ICLR 2025

Asteroids Breakout Gopher Krull
40004 8000 1
o 2001 6000
& 3000 6000+
2 4000
] 200]
o 2000*_’__./ 0o 2000 4000
— PPO T i T T T i T T
5 10* 108 108 10* 10° 108 10* 10° 108 10* 10 108
—— SoftTreeMax Depth 2
SoftTreeMax Depth 3 Num of Num of Num of Num of
SoftTreeMax Depth 5 online interactions online interactions online interactions online interactions
—— SoftTreeMax Depth 6
— SoftTreeMax Depth 8~ KungFuMaster NameThisGame Phoenix 300000 VideoPinball
60000—/
° 10000 { 200000
.
g 40000—49& 20000
(V] 1
2 [—rt 5000 | 10000 / 100000
200001 — 4
| |] | ; ! 01 ; ;
10* 108 108 104 10 108 10* 10° 108 10* 108 108
Num of Num of Num of Num of
online interactions online interactions online interactions online interactions

Figure 5: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the number of online
interactions with the environment. The runs ended after one week with varying number of time-steps.
The training curves correspond to the evaluation runs in Figure[3]

We note that not for all games we see monotonicity. Our explanation for this phenomenon relates to
how immediate reward contributes to performance compared to the value. Different games benefit
differently from long-term as opposed to short-term planning. Games that require longer-term
planning need a better value estimate. A good value estimate takes longer to obtain with larger depths,
in which we apply the network to states that are very different from the ones observed so far in the
buffer (recall that as in any deep RL algorithm, we train the model only on states in the buffer). If
the model hasn’t learned a good enough value function yet, and there is no guiding dense reward
along the trajectory, the policy becomes noisier, and can take more steps to converge — even more
than those we run in our week-long experiment.

For a concrete example, let us compare Breakout to Gopher. Inspecting Fig. [5] we observe that
Breakout quickly (and monotonically) gains from large depths since it relies on the short term goal
of simply keeping the paddle below the moving ball. In Gopher, however, for large depths (>=5),
learning barely started even by the end of the training run. Presumably, this is because the task in
Gopher involves multiple considerations and steps: the agent needs to move to the right spot and
then hit the mallet the right amount of times, while balancing different locations. This task requires
long-term planning and thus depends more strongly on the accuracy of the value function estimate.
In that case, for depth 5 or more, we would require more train steps for the value to “kick in” and
become beneficial beyond the gain from the reward in the tree.

The figures above convey two key observations that occur for at least some non-zero depth: (1) The
final performance with the tree is better than PPO (Fig. [3); and (2) the intermediate step-based results
with the tree are better than PPO (Fig.[5). This leads to our main takeaway from this work — there
is no reason to believe that the vanilla policy gradient algorithm should be better than a multi-step
variant. Indeed, we show that this is not the case.

C FURTHER DISCUSSION

C.1 THE CASE OF X\2(P™) =0

When P7™ is rank one, it is not only its variance that becomes 0, but also the norm of the gradient
itself (similarly to the case of d — o). Note that such a situation will happen rarely, in degenerate
MDPs. This is a local minimum for SoftTreeMax and it would cause the PG iteration to get stuck,
and to the optimum in the (desired but impractical) case where 7 is the optimal policy. However,

25

Under review as a conference paper at ICLR 2025

a similar phenomenon was also discovered in the standard softmax with deterministic policies:
0(s,a) — oo for one a per s. PG with softmax would suffer very slow convergence near these
local equilibria, as observed in |[Mei et al.| (2020a). To see this, note that the softmax gradient is
Vo logmg(als) = e, — mo(+|s), where e, € [0,1]" is the vector with O everywhere except for the
a-th coordinate. Le., it will be zero for a deterministic policy. SoftTreeMax avoids these local optima
by integrating the reward into the policy itself (but may get stuck in another, as discussed above).

26

	Introduction
	Preliminaries
	Policy Gradient

	SoftTreeMax: Exponent of trajectories
	Theoretical Analysis
	Variance of C-SoftTreeMax
	Variance of E-SoftTreeMax
	Bias with an Approximate Forward Model

	SoftTreeMax: Deep Parallel Implementation
	Experiments
	Related Work
	Discussion
	Proofs
	Proof of Lemma 4.1 – Bound on the policy gradient variance
	Proof of Lemma 4.2 – Vector form of C-SoftTreeMax
	Proof of Lemma 4.3 – Gradient of C-SoftTreeMax
	Proof of Theorem 4.4 – Exponential variance decay of C-SoftTreeMax
	A lower bound on C-SoftTreeMax gradient (result not in the paper)
	Proof of Lemma 4.5 – Vector form of E-SoftTreeMax
	Proof of Lemma 4.6 – Gradient of E-SoftTreeMax
	Proof of Theorem 4.7 — Exponential variance decay of E-SoftTreeMax
	Bias Estimates

	Experiments
	Implementation Details
	Time-Based Training Curves
	Step-Based Training Curves

	Further discussion
	The case of 2(Pb)=0

