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ABSTRACT

Policy gradient methods are notorious for having a large variance and high sample
complexity. To mitigate this, we introduce SoftTreeMax—a generalization of
softmax that employs planning. In SoftTreeMax, we extend the traditional logits
with the multi-step discounted cumulative reward, topped with the logits of future
states. We analyze SoftTreeMax and explain how tree expansion helps to reduce
its gradient variance. We prove that the variance depends on the chosen tree-
expansion policy. Specifically, we show that the closer the induced transitions are
to being state-independent, the stronger the variance decay. With approximate
forward models, we prove that the resulting gradient bias diminishes with the
approximation error while retaining the same variance reduction. Ours is the
first result to bound the gradient bias for an approximate model. In a practical
implementation of SoftTreeMax, we utilize a parallel GPU-based simulator for
fast and efficient tree expansion. Using this implementation in Atari, we show
that SoftTreeMax reduces the gradient variance by three orders of magnitude.
This leads to better sample complexity and improved performance compared to
distributed PPO.

1 INTRODUCTION

Policy Gradient (PG) methods (Sutton et al., 1999) for Reinforcement Learning (RL) are often the
first choice for environments that allow numerous interactions at a fast pace (Schulman et al., 2017).
Their success is attributed to several factors: they are easy to distribute to multiple workers, require
no assumptions on the underlying value function, and have both on-policy and off-policy variants.

Despite these positive features, PG algorithms are also notoriously unstable due to the high variance
of the gradients computed over entire trajectories (Liu et al., 2020; Xu et al., 2020). As a result, PG
algorithms tend to be highly inefficient in terms of sample complexity. Several solutions have been
proposed to mitigate the high variance issue, including baseline subtraction (Greensmith et al., 2004;
Thomas & Brunskill, 2017; Wu et al., 2018), anchor-point averaging (Papini et al., 2018), and other
variance reduction techniques (Zhang et al., 2021; Shen et al., 2019; Pham et al., 2020).

A second family of algorithms that achieved state-of-the-art results in several domains is based on
planning. Planning is exercised primarily in the context of value-based RL and is usually implemented
using a Tree Search (TS) (Silver et al., 2016; Schrittwieser et al., 2020). In this work, we combine
PG with TS by introducing a parameterized differentiable policy that incorporates tree expansion.
Namely, our SoftTreeMax policy replaces the standard policy logits of a state and action, with the
expected value of trajectories that originate from these state and action. We consider two variants of
SoftTreeMax, one for cumulative reward and one for exponentiated reward.

Combining TS and PG should be done with care given the biggest downside of PG—its high gradient
variance. This raises questions that were ignored until this work: (i) How to design a PG method based
on tree-expansion that is stable and performs well in practice? and (ii) How does the tree-expansion
policy affect the PG variance? Here, we analyze SoftTreeMax, and provide a practical methodology
to choose the expansion policy to minimize the resulting variance. Our main result shows that a
desirable expansion policy is one, under which the induced transition probabilities are similar for
each starting state. More generally, we show that the gradient variance of SoftTreeMax decays at
a rate of |λ2|d, where d is the depth of the tree and λ2 is the second eigenvalue of the transition
matrix induced by the tree expansion policy. This work is the first to prove such a relation between
PG variance and tree expansion policy. In addition, we prove that the with an approximate forward
model, the bias of the gradient is bounded proportionally to the approximation error of the model.
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To verify our results, we implemented a practical version of SoftTreeMax that exhaustively searches
the entire tree and applies a neural network on its leaves. We test our algorithm on a parallelized
Atari GPU simulator (Dalton et al., 2020). To enable a tractable deep search, up to depth eight, we
also introduce a pruning technique that limits the width of the tree. We do so by sampling only the
most promising nodes at each level. We integrate our SoftTreeMax GPU implementation into the
popular PPO (Schulman et al., 2017) and compare it to the flat distributed variant of PPO. This allows
us to demonstrate the potential benefit of utilizing learned models while isolating the fundamental
properties of TS without added noise. In all tested Atari games, our results outperform the baseline
and obtain up to 5x more reward. We further show in Section 6 that the associated gradient variance
is smaller by three orders of magnitude in all games, demonstrating the relation between low gradient
variance and high reward.

We summarize our key contributions. (i) We show how to combine two families of SoTA approaches:
PG and TS by introducing SoftTreeMax: a novel parametric policy that generalizes softmax to
planning. Specifically, we propose two variants based on cumulative and exponentiated rewards. (ii)
We prove that the gradient variance of SoftTreeMax in its two variants decays with its tree
depth. Our analysis sheds new light on the choice of tree expansion policy. It raises the question
of optimality in terms of variance versus the traditional regret; e.g., in UCT (Kocsis & Szepesvári,
2006). (iii) We prove that with an approximate forward model, the gradient bias is proportional to
the approximation error, while retaining the variance decay. This quantifies the accuracy required
from a learned forward model. (iv) We implement a differentiable deep version of SoftTreeMax
that employs a parallelized GPU tree expansion. We demonstrate how its gradient variance is reduced
by three orders of magnitude over PPO while obtaining up to 5x reward.

2 PRELIMINARIES

Let ∆U denote simplex over the set U. Throughout, we consider a discounted Markov Decision
Process (MDP) M = (S,A, P, r, γ, ν), where S is a finite state space of size S, A is a finite action
space of size A, r : S × A → [0, 1] is the reward function, P : S × A → ∆S is the transition
function, γ ∈ (0, 1) is the discount factor, and ν ∈ RS is the initial state distribution. We denote
the transition matrix starting from state s by Ps ∈ [0, 1]A×S , i.e., [Ps]a,s′ = P (s′|a, s). Similarly,
let Rs = r(s, ·) ∈ RA denote the corresponding reward vector. Separately, let π : S → ∆A be a
stationary policy. Let Pπ and Rπ be the induced transition matrix and reward function, respectively,
i.e., Pπ(s′|s) =

∑
a π(a|s) Pr(s′|s, a) and Rπ(s) =

∑
a π(a|s)r(s, a). Denote the stationary

distribution of Pπ by µπ ∈ RS s.t. µ⊤
π P

π = Pπ, and the discounted state visitation frequency
by dπ so that d⊤π = (1 − γ)

∑∞
t=0 γ

tν⊤(Pπ)t. Also, let V π ∈ RS be the value function of π
defined by V π(s) = Eπ [

∑∞
t=0 γ

tr (st, π(st)) | s0 = s], and let Qπ ∈ RS×A be the Q-function
such that Qπ(s, a) = Eπ [r(s, a) + γV π(s′)]. Our goal is to find an optimal policy π⋆ such that
V ⋆(s) ≡ V π⋆

(s) = maxπ V
π(s), ∀s ∈ S.

For the analysis in Section 4, we introduce the following notation. Denote by Θ ∈ RS the vector
representation of θ(s) ∀s ∈ S. For a vector u, denote by exp(u) the coordinate-wise exponent of
u and by D(u) the diagonal square matrix with u in its diagonal. For a matrix A, denote its i-th
eigenvalue by λi(A). Denote the k-dimensional identity matrix and all-ones vector by Ik and 1k,
respectively. Also, denote the trace operator by Tr . Finally, we treat all vectors as column vectors.

2.1 POLICY GRADIENT

PG schemes seek to maximize the cumulative reward as a function of the policy πθ(a|s) by performing
gradient steps on θ. The celebrated Policy Gradient Theorem (Sutton et al., 1999) states that

∂

∂θ
ν⊤V πθ = Es∼dπθ

,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)] ,

where ν and d⊤πθ
are as defined above. The variance of the gradient is thus

Vars∼dπθ
,a∼πθ(·|s) (∇θ log πθ(a|s)Qπθ (s, a)) . (1)

In the notation above, we denote the variance of a vector random variable X by

Varx (X) = Tr
[
Ex

[
(X − ExX)

⊤
(X − ExX)

]]
,
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similarly as in (Greensmith et al., 2004). From now on, we drop the subscript from Var in (1)
for brevity. When the action space is discrete, a commonly used parameterized policy is softmax:
πθ(a|s) ∝ exp (θ(s, a)) , where θ : S ×A → R is a state-action parameterization.

3 SOFTTREEMAX: EXPONENT OF TRAJECTORIES

We introduce a new family of policies called SoftTreeMax, which are a model-based generalization
of the popular softmax. We propose two variants: Cumulative (C-SoftTreeMax) and Exponenti-
ated (E-SoftTreeMax). In both variants, we replace the generic softmax logits θ(s, a) with the
score of a trajectory of horizon d starting from (s, a), generated by applying a behavior policy
πb. In C-SoftTreeMax, we exponentiate the expectation of the logits. In E-SoftTreeMax, we first
exponentiate the logits and then only compute their expectation.

Logits. We define the SoftTreeMax logit ℓs,a(d; θ) to be the random variable depicting the score of a
trajectory of horizon d starting from (s, a) and following the policy πb:

ℓs,a(d; θ) = γ−d

[
d−1∑
t=0

γtrt + γdθ(sd)

]
. (2)

In the above expression, note that s0 = s, a0 = a, at ∼ πb(·|st) ∀t ≥ 1, and rt ≡ r (st, at) .
For brevity of the analysis, we let the parametric score θ in (2) be state-based, similarly to a value
function. Instead, one could use a state-action input analogous to a Q-function. Thus, SoftTreeMax
can be integrated into the two types of implementation of RL algorithms in standard packages. Lastly,
the preceding γ−d scales the θ parametrization to correspond to its softmax counerpart.

C-SoftTreeMax. Given an inverse temperature parameter β, we let C-SoftTreeMax be

πC
d,θ(a|s) ∝ exp [βEπbℓs,a(d; θ)] . (3)

C-SoftTreeMax gives higher weight to actions that result in higher expected returns. While standard
softmax relies entirely on parametrization θ, C-SoftTreeMax also interpolates a Monte-Carlo portion
of the reward.

E-SoftTreeMax. The second operator we propose is E-SoftTreeMax:

πE
d,θ(a|s) ∝ Eπb exp [(βℓs,a(d; θ))] ; (4)

here, the expectation is taken outside the exponent. This objective corresponds to the exponentiated
reward objective which is often used for risk-sensitive RL (Howard & Matheson, 1972; Fei et al.,
2021; Noorani & Baras, 2021). The common risk-sensitive objective is of the form logE[exp(δR)],
where δ is the risk parameter and R is the cumulative reward. Similarly to that literature, the exponent
in (4) emphasizes the most promising trajectories.

SoftTreeMax properties. SoftTreeMax is a natural model-based generalization of softmax. For
d = 0, both variants above coincide since (2) becomes deterministic. In that case, for a state-action
parametrization, they reduce to standard softmax. When β → 0, both variants again coincide and
sample actions uniformly (exploration). When β → ∞, the policies become deterministic and
greedily optimize for the best trajectory (exploitation). For C-SoftTreeMax, the best trajectory is
defined in expectation, while for E-SoftTreeMax it is defined in terms of the best sample path.

SoftTreeMax convergence. Under regularity conditions, for any parametric policy, PG converges
to local optima (Bhatnagar et al., 2009), and thus also SoftTreeMax. For softmax PG, asymptotic
(Agarwal et al., 2021) and rate results (Mei et al., 2020b) were recently obtained, by showing that
the gradient is strictly positive everywhere (Mei et al., 2020b, Lemmas 8-9). We conjecture that
SoftTreeMax satisfies the same property, being a generalization of softmax, but formally proving it is
subject to future work.

SoftTreeMax gradient. The two variants of SoftTreeMax involve an expectation taken over Sd

many trajectories from the root state s and weighted according to their probability. Thus, during
the PG training process, the gradient ∇θ log πθ is calculated using a weighted sum of gradients over
all reachable states starting from s. Our method exploits the exponential number of trajectories to
reduce the variance while improving performance. Indeed, in the next section we prove that the
gradient variance of SoftTreeMax decays exponentially fast as a function of the behavior policy πb

3
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and trajectory length d. In the experiments in Section 6, we also show how the practical version
of SoftTreeMax achieves a significant reduction in the noise of the PG process and leads to faster
convergence and higher reward.

4 THEORETICAL ANALYSIS

In this section, we first bound the variance of PG when using the SoftTreeMax policy. Later, we
discuss how the gradient bias resulting due to approximate forward models diminishes as a function
of the approximation error, while retaining the same variance decay.

We show that the variance decreases with the tree depth, and the rate is determined by the second
eigenvalue of the transition kernel induced by πb. Specifically, we bound the same expression for
variance as appears in (Greensmith et al., 2004, Sec. 3.5) and (Wu et al., 2018, Sec. A, Eq. (21)).
Other types of analysis could instead have focused on the estimation aspect in the context of sampling
(Zhang et al., 2021; Shen et al., 2019; Pham et al., 2020). Indeed, in our implementation in Section 5,
we manage to avoid sampling and directly compute the expectations in Eqs. (3) and (4). As we
show later, we do so by leveraging efficient parallel simulation on the GPU in feasible run-time. In
our application, due to the nature of the finite action space and quasi-deterministic Atari dynamics
(Bellemare et al., 2013), our expectation estimator is noiseless. We encourage future work to account
for the finite-sample variance component. We defer all the proofs to Appendix A.

We begin with a general variance bound that holds for any parametric policy.

Lemma 4.1 (Bound on the policy gradient variance). Let ∇θ log πθ(·|s) ∈ RA×dim(θ) be a matrix
whose a-th row is ∇θ log πθ(a|s)⊤. For any parametric policy πθ and function Qπθ : S ×A → R,

Var (∇θ log πθ(a|s)Qπθ (s, a)) ≤ max
s,a

[Qπθ (s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

Hence, to bound (1), it is sufficient to bound the Frobenius norm ∥∇θ log πθ(·|s)∥F for any s.

Note that SoftTreeMax does not reduce the gradient uniformly, which would have been equivalent
to a trivial change in the learning rate. While the gradient norm shrinks, the gradient itself scales
differently along the different coordinates. This scaling occurs along different eigenvectors, as a
function of problem parameters (P , θ) and our choice of behavior policy (πb), as can be seen in
the proof of the upcoming Theorem 4.4. This allows SoftTreeMax to learn a good “shrinkage” that,
while reducing the overall gradient, still updates the policy quickly enough. This reduction in norm
and variance resembles the idea of gradient clipping Zhang et al. (2019), where the gradient is scaled
to reduce its variance, thus increasing stability and improving overall performance.

A common assumption in the RL literature (Szepesvári, 2010) that we adopt for the remainder of
the section is that the transition matrix Pπb , induced by the behavior policy πb, is irreducible and
aperiodic. Consequently, its second highest eigenvalue satisfies |λ2(P

πb)| < 1.

From now on, we divide the variance results for the two variants of SoftTreeMax into two subsec-
tions. For C-SoftTreeMax, the analysis is simpler and we provide an exact bound. The case of
E-SoftTreeMax is more involved and we provide for it a more general result. In both cases, we show
that the variance decays exponentially with the planning horizon.

4.1 VARIANCE OF C-SOFTTREEMAX

We express C-SoftTreeMax in vector form as follows.
Lemma 4.2 (Vector form of C-SoftTreeMax). For d ≥ 1, (3) is given by

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (5)

where

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

.
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The vector Cs,d ∈ RA represents the cumulative discounted reward in expectation along the trajectory
of horizon d. This trajectory starts at state s, involves an initial reward dictated by Rs and an
initial transition as per Ps. Thereafter, it involves rewards and transitions specified by Rπb

and Pπb ,
respectively. Once the trajectory reaches depth d, the score function θ(sd) is applied,.
Lemma 4.3 (Gradient of C-SoftTreeMax). The C-SoftTreeMax gradient is given by

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

in RA×S , where for brevity, we drop the s index in the policy above, i.e., πC
d,θ ≡ πC

d,θ(·|s).

We are now ready to present our first main result:
Theorem 4.4 (Variance decay of C-SoftTreeMax). For every Q : S ×A → R, the C-SoftTreeMax
policy gradient variance is bounded by

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ 2

A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

We provide the full proof in Appendix A.4, and briefly outline its essence here.
Proof outline. Lemma 4.1 allows us to bound the variance using a direct bound on the gradient
norm. The gradient is given in Lemma 4.3 as a product of three matrices, which we now study from
right to left. The matrix Pπb is a row-stochastic matrix. Because the associated Markov chain is
irreducible and aperiodic, it has a unique stationary distribution. This implies that Pπb has one and
only one eigenvalue equal to 1; all others have magnitude strictly less than 1. Let us suppose that
all these other eigenvalues have multiplicity 1 (the general case with repeated eigenvalues can be
handled via Jordan decompositions as in (Pelletier, 1998, Lemma1)). Then, Pπb has the spectral
decomposition Pπb = 1Sµ⊤

πb
+
∑S

i=2 λiviu
⊤
i , where λi is the i-th eigenvalue of Pπb (ordered in

descending order according to their magnitude) and ui and vi are the corresponding left and right
eigenvectors, respectively, and therefore (Pπb)d−1 = 1Sµ⊤

πb
+
∑S

i=2 λ
d−1
i viu

⊤
i .

The second matrix in the gradient relation in Lemma 4.3, Ps, is a rectangular transition ma-
trix that translates the vector of all ones from dimension S to A : Ps1S = 1A. Lastly, the
first matrix

[
IA − 1A(π

C
d,θ)

⊤
]

is a projection whose null-space includes the vector 1A, i.e.,[
IA − 1A(πC

d,θ)
⊤
]

1A = 0. Combining the three properties above when multiplying the three matri-

ces of the gradient, it is easy to see that the first term in the expression for (Pπb)d−1 gets canceled,
and we are left with bounded summands scaled by λi(P

πb)d−1. Recalling that |λi(P
πb)| < 1 and

that |λ2| ≥ |λ3| ≥ . . . for i = 2, . . . , S, we obtain the desired result.

Theorem 4.4 guarantees that the variance of the gradient decays with d. More importantly, it also
provides a novel insight for choosing the behavior policy πb as the policy that minimizes the absolute
second eigenvalue of the Pπb . Indeed, the second eigenvalue of a Markov chain relates to its
connectivity and its rate of convergence to the stationary distribution (Levin & Peres, 2017).

Optimal variance decay. For the strongest reduction in variance, the behavior policy πb should be
chosen to achieve an induced Markov chain whose transitions are state-independent. In that case, Pπb

is a rank one matrix of the form 1Sµ⊤
πb
, and λ2(P

πb) = 0. Then, Var (∇θ log πθ(a|s)Q(s, a)) = 0.
Naturally, this can only be done for pathological MDPs; see Appendix C.1 for a more detailed
discussion. Nevertheless, as we show in Section 5, we choose our tree expansion policy to reduce the
variance as best as possible.

Worst-case variance decay. In contrast, and somewhat surprisingly, when πb is chosen so that the
dynamics is deterministic, there is no guarantee that it will decay exponentially fast. For example, if
Pπb is a permutation matrix, then λ2(P

πb) = 1, and advancing the tree amounts to only updating the
gradient of one state for every action, as in the basic softmax.

4.2 VARIANCE OF E-SOFTTREEMAX

The proof of the variance bound for E-SoftTreeMax is similar to that of C-SoftTreeMax, but more
involved. It also requires the assumption that the reward depends only on the state, i.e. r(s, a) ≡ r(s).
This is indeed the case in most standard RL environments such as Atari and Mujoco.
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Figure 1: A comparison of the empirical PG
variance and our bound for E-SoftTreeMax
on randomly drawn MDPs. We present three
cases for Pπb : (i) close to uniform, (ii) drawn
randomly, and (iii) close to a permutation ma-
trix. This experiment verifies the optimal
and worse-case rate decay cases. The vari-
ance bounds here are taken from Theorem 4.7
where we substitute α = |λ2(P

πb)|. To ac-
count for the constants, we match the values
for the first point in d = 1.

Lemma 4.5 (Vector form of E-SoftTreeMax). For d ≥ 1, (4) is given by

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (6)

where

Es,d = Ps

d−1∏
h=1

(
D
(
exp(βγh−dR)

)
Pπb

)
.

The vector R above is the S-dimensional vector whose s-th coordinate is r(s).

The matrix Es,d ∈ RA×S has a similar role to Cs,d from (5), but it represents the exponentiated
cumulative discounted reward. Accordingly, it is a product of d matrices as opposed to a sum. It
captures the expected reward sequence starting from s and then iteratively following Pπb . After d
steps, we apply the score function on the last state as in (6).
Lemma 4.6 (Gradient of E-SoftTreeMax). The E-SoftTreeMax gradient is given by

∇θ log π
E
d,θ = β

[
IA − 1A(π

E
d,θ)

⊤]× D
(
πE
d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

∈ RA×S ,

where for brevity, we drop the s index in the policy above, i.e., πE
d,θ ≡ πE

d,θ(·|s).

This gradient structure is harder to handle than that of C-SoftTreeMax in Lemma 4.3, but here we
also can bound the decay of the variance nonetheless.
Theorem 4.7 (Variance decay of E-SoftTreeMax). There exists α ∈ (0, 1) such that,

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
,

for every Q. Further, if Pπb is reversible or if the reward is constant, then α = |λ2(P
πb)|.

Theory versus Practice. We demonstrate the above result in simulation. We draw a random finite
MDP, parameter vector Θ ∈ RS

+, and behavior policy πb. We then empirically compute the PG
variance of E-SoftTreeMax as given in (1) and compare it to |λ2(P

πb)|d. We repeat this experiment
three times for different Pπb : (i) close to uniform, (ii) drawn randomly, and (iii) close to a permutation
matrix. As seen in Figure 1, the empirical variance and our bound match almost identically. This
also suggests that α = |λ2(P

πb)| in the general case and not only when Pπb is reversible or when
the reward is constant.

4.3 BIAS WITH AN APPROXIMATE FORWARD MODEL

The definition of the two SoftTreeMax variants involves the knowledge of the underlying environment,
in particular the value of P and r. However, in practice, we often can only learn approximations
of the dynamics from interactions, e.g., using NNs (Ha & Schmidhuber, 2018; Schrittwieser et al.,

6
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Figure 2: SoftTreeMax policy. Our exhaus-
tive parallel tree expansion iterates on all ac-
tions at each state up to depth d (= 2 here).
The leaf state of every trajectory is used as
input to the policy network. The output is
then added to the trajectory’s cumulative re-
ward as described in (2). I.e., instead of the
standard softmax logits, we add the cumula-
tive discounted reward to the policy network
output. This policy is differentiable and can
be easily integrated into any PG algorithm. In
this work, we build on PPO and use its loss
function to train the policy network.

2020). Let P̂ and r̂ denote the approximate kernel and reward functions, respectively. In this section,
we study the consequences of the approximation error on the C-SoftTreeMax gradient.

Let π̂C
d,θ be the C-SoftTreeMax policy defined given the approximate forward model introduced

above. That is, let π̂C
d,θ be defined exactly as in (5), but using R̂s, P̂s, R̂πb

and P̂πb , instead of their
unperturbed counterparts from Section 2. Then, the variance of the corresponding gradient again
decays exponentially with a decay rate of λ2(P̂

πb). However, a gradient bias is introduced. In the
following, we bound this bias in terms of the approximation error and other problem parameters. The
proof is provided in Appendix A.9.

Theorem 4.8. Let ϵ be the maximal model mis-specification, i.e., let max{∥P − P̂∥, ∥r − r̂∥} = ϵ.
Then the policy gradient bias due to π̂C

d,θ satisfies∥∥∥∥ ∂

∂θ

(
ν⊤V πC

d,θ

)
− ∂

∂θ

(
ν⊤V π̂C

d,θ

)∥∥∥∥ = O
(

1

(1− γ)2
Sβ2dϵ

)
. (7)

To the best of our knowledge, Theorem 4.8 is the first result that bounds the bias of the gradient
of a parametric policy due to an approximate model. It states that if the learned model is accurate
enough, we expect similar convergence properties for C-SoftTreeMax as we would have obtained
with the true dynamics. It also suggests that higher temperature (lower β) reduces the bias. In this
case, the logits get less weight, with the extreme of β = 0 corresponding to a uniform policy that has
no bias. Lastly, the error scales linearly with d : the policy suffers from cumulative error as it relies
on further-looking states in the approximate model.

5 SOFTTREEMAX: DEEP PARALLEL IMPLEMENTATION

Following impressive successes of deep RL (Mnih et al., 2015; Silver et al., 2016), using deep NNs
in RL is standard practice. Depending on the RL algorithm, a loss function is defined and gradients
on the network weights can be calculated. In PG methods, the scoring function used in the softmax is
commonly replaced by a neural network Wθ: πθ(a|s) ∝ exp (Wθ(s, a)) . Similarly, we implement
SoftTreeMax by replacing θ(s) in (2) with a neural network Wθ(s). Although both variants of
SoftTreeMax from Section 3 involve computing an expectation, this can be hard in general. One
approach to handle it is with sampling, though these introduce estimation variance into the process.
We leave the question of sample-based theory and algorithmic implementations for future work.

Instead, in finite action space environments such as Atari, we compute the exact expectation in
SoftTreeMax with an exhaustive TS of depth d. Despite the exponential computational cost of
spanning the entire tree, recent advancements in parallel GPU-based simulation allow efficient
expansion of all nodes at the same depth simultaneously (Dalal et al., 2021; Rosenberg et al., 2022).
This is possible when a simulator is implemented on GPU (Dalton et al., 2020; Makoviychuk et al.,
2021; Freeman et al., 2021), or when a forward model is learned (Kim et al., 2020; Ha & Schmidhuber,
2018). To reduce the complexity to be linear in depth, we apply tree pruning to a limited width in all
levels. We do so by sub-sampling only the most promising branches at each level. Limiting the width
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drastically improves runtime, and enables respecting GPU memory limits, with only a small sacrifice
in performance.

To summarize, in the practical SoftTreeMax algorithm we perform an exhaustive tree expansion with
pruning to obtain trajectories up to depth d. We expand the tree with equal weight to all actions, which
corresponds to a uniform tree expansion policy πb. We apply a neural network on the leaf states, and
accumulate the result with the rewards along each trajectory to obtain the logits in (2). Finally, we
aggregate the results using C-SoftTreeMax. We leave experiments E-SoftTreeMax for future work
on risk-averse RL. During training, the gradient propagates to the NN weights of Wθ. When the
gradient ∇θ log πd,θ is calculated at each time step, it updates Wθ for all leaf states, similarly to
Siamese networks (Bertinetto et al., 2016). An illustration of the policy is given in Figure 2.

6 EXPERIMENTS

We conduct our experiments on multiple games from the Atari simulation suite (Bellemare et al.,
2013). As a baseline, we train a PPO (Schulman et al., 2017) agent with 256 GPU workers in parallel
(Dalton et al., 2020). For the tree expansion, we employ a GPU breadth-first as in (Dalal et al., 2021).
We then train C-SoftTreeMax 1 for depths d = 1 . . . 8, with a single worker. For depths d ≥ 3,
we limited the tree to a maximum width of 1024 nodes and pruned trajectories with low estimated
weights. Since the distributed PPO baseline advances significantly faster in terms of environment
steps, for a fair comparison, we ran all experiments for one week on the same machine. For more
details see Appendix B.

In Figure 3, we plot the reward and variance of SoftTreeMax for each game, as a function of depth.
The dashed lines are the results for PPO. Each value is taken after convergence, i.e., the average
over the last 20% of the run. The numbers represent the average over five seeds per game. The plot
conveys three intriguing conclusions. First, in all games, SoftTreeMax achieves significantly higher
reward than PPO. Its gradient variance is also orders of magnitude lower than that of PPO. Second,
the reward and variance are negatively correlated and mirror each other in almost all games. This
phenomenon demonstrates the necessity of reducing the variance of PG for improving performance.
Lastly, each game has a different sweet spot in terms of optimal tree depth. Recall that we limit the
run-time in all experiments to one week The deeper the tree, the slower each step and the run consists
of less steps. This explains the non-monotone behavior as a function of depth. For a more thorough
discussion on the sweet spot of different games, see Appendix B.3.

Figure 3: Reward and Gradient variance: GPU SoftTreeMax (single worker) vs PPO (256 GPU
workers). The blue reward plots show the average of 50 evaluation episodes. The red variance plots
show the average gradient variance of the corresponding training runs, averaged over five seeds. The
dashed lines represent the same for PPO. Note that the variance y-axis is in log-scale.

1We also experimented with E-SoftTreeMax and the results were almost identical. This is due to the quasi-
deterministic nature of Atari, which causes the trajectory logits (2) to have almost no variability. We encourage
future work on E-SoftTreeMax using probabilistic environments that are risk-sensitive.
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7 RELATED WORK

Softmax Operator. The softmax policy became a canonical part of PG to the point where theoretical
results of PG focus specifically on it (Zhang et al., 2021; Mei et al., 2020b; Li et al., 2021; Ding et al.,
2022). Even though we focus on a tree extension to the softmax policy, our methodology is general
and can be easily applied to other discrete or continuous parameterized policies as in (Mei et al.,
2020a; Miahi et al., 2021; Silva et al., 2019). Tree Search. One famous TS algorithm is Monte-Carlo
TS (MCTS; (Browne et al., 2012)) used in AlphaGo (Silver et al., 2016) and MuZero (Schrittwieser
et al., 2020). Other algorithms such as Value Iteration, Policy Iteration and DQN were also shown to
give an improved performance with a tree search extensions (Efroni et al., 2019; Dalal et al., 2021).
Parallel Environments. In this work we used accurate parallel models that are becoming more
common with the increasing popularity of GPU-based simulation (Makoviychuk et al., 2021; Dalton
et al., 2020; Freeman et al., 2021). Alternatively, in relation to Theorem 4.8, one can rely on recent
works that learn the underlying model (Ha & Schmidhuber, 2018; Schrittwieser et al., 2020) and
use an approximation of the true dynamics. Risk Aversion. Previous work considered exponential
utility functions for risk aversion (Chen et al., 2007; Garcıa & Fernández, 2015; Fei et al., 2021).
This utility function is the same as E-SoftTreeMax formulation from (4), but we have it directly
in the policy instead of the objective. Reward-free RL. We showed that the gradient variance is
minimized when the transitions induced by the behavior policy πb are uniform. This is expressed by
the second eigenvalue of the transition matrix Pπb . This notion of uniform exploration is common to
the reward-free RL setup (Jin et al., 2020). Several such works also considered the second eigenvalue
in their analysis (Liu & Brunskill, 2018; Tarbouriech & Lazaric, 2019).

8 DISCUSSION

In this work, we introduced for the first time a differentiable parametric policy that combines TS with
PG. We proved that SoftTreeMax is essentially a variance reduction technique and explained how to
choose the expansion policy to minimize the gradient variance. It is an open question whether optimal
variance reduction corresponds to the appealing regret properties the were put forward by UCT
(Kocsis & Szepesvári, 2006). We believe that this can be answered by analyzing the convergence rate
of SoftTreeMax, relying on the bias and variance results we obtained here.

As the learning process continues, the norm of the gradient and the variance both become smaller.
On the face of it, one can ask if the gradient becomes small as fast as the variance or even faster can
there be any meaningful learning? As we showed in the experiments, learning happens because the
variance reduces fast enough (a variance of 0 represents deterministic learning, which is fastest).

Finally, our work can be extended to infinite action spaces. The analysis can be extended to infinite-
dimension kernels that retain the same key properties used in our proofs. In the implementation, the
tree of continuous actions can be expanded by maintaining a parametric distribution over actions that
depend on θ. This approach can be seen as a tree adaptation of MPPI (Williams et al., 2017).

REPRODUCIBILITY AND LIMITATIONS

In this submission, we include the code as part of the supplementary material. We also include a
docker file for setting up the environment and a README file with instructions on how to run both
training and evaluation. The environment engine is an extension of Atari-CuLE (Dalton et al., 2020),
a CUDA-based Atari emulator that runs on GPU. Our usage of a GPU environment is both a novelty
and a current limitation of our work.
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APPENDIX

A PROOFS

A.1 PROOF OF LEMMA 4.1 – BOUND ON THE POLICY GRADIENT VARIANCE

For any parametric policy πθ and function Q : S ×A → R,

Var (∇θ log πθ(a|s)Q(s, a)) ≤ max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F ,

where ∇θ log πθ(·|s) ∈ RA×dim(θ) is a matrix whose a-th row is ∇θ log πθ(a|s)⊤.
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Proof. The variance for a parametric policy πθ is given as follows:

Var (∇θ log πθ(a|s)Q(a, s)) =Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
−

Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)]

⊤ Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)] ,

where Q(s, a) is the currently estimated Q-function and dπθ
is the discounted state visitation frequency

induced by the policy πθ. Since the second term we subtract is always positive (it is of quadratic form
v⊤v) we can bound the variance by the first term:

Var (∇θ log πθ(a|s)Q(a, s)) ≤Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
=
∑
s

dπθ
(s)
∑
a

πθ(a|s)∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

≤max
s,a

[
[Q(s, a)]

2
πθ(a|s)

]∑
s

dπθ
(s)
∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

≤max
s,a

[Q(s, a)]
2
max

s

∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

=max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

A.2 PROOF OF LEMMA 4.2 – VECTOR FORM OF C-SOFTTREEMAX

In vector form, (3) is given by

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (8)

where

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

. (9)

Proof. Consider the vector ℓs,· ∈ R|A|. Its expectation satisfies

Eπbℓs,·(d; θ) = Eπb

[
d−1∑
t=0

γt−drt + θ(sd)

]

= γ−dRs +

d−1∑
t=1

γt−dPs(P
πb)t−1Rπb

+ Ps(P
πb)d−1Θ.

As required.

A.3 PROOF OF LEMMA 4.3 – GRADIENT OF C-SOFTTREEMAX

The C-SoftTreeMax gradient of dimension A× S is given by

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

where for brevity, we drop the s index in the policy above, i.e., πC
d,θ ≡ πC

d,θ(·|s).
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Proof. The (j, k)-th entry of ∇θ log π
C
d,θ satisifes

[∇θ log π
C
d,θ]j,k =

∂ log(πC
d,θ(a

j |s))
∂θ(sk)

= β[Ps(P
πb)d−1]j,k −

∑
a

[
exp

[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]]

a
β
[
Ps(P

πb)d−1
]
a,k

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)]

= β[Ps(P
πb)d−1]j,k − β

∑
a

πC
d,θ(a|s)

[
Ps(P

πb)d−1
]
a,k

= β[Ps(P
πb)d−1]j,k − β

[
(πC

d,θ)
⊤Ps(P

πb)d−1
]
k

= β[Ps(P
πb)d−1]j,k − β

[
1A(π

C
d,θ)

⊤Ps(P
πb)d−1

]
j,k

.

Moving back to matrix form, we obtain the stated result.

A.4 PROOF OF THEOREM 4.4 – EXPONENTIAL VARIANCE DECAY OF C-SOFTTREEMAX

The C-SoftTreeMax policy gradient is bounded by

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ 2

A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

Proof. We use Lemma 4.1 directly. First of all, it is know that when the reward is bounded in [0, 1],
the maximal value of the Q-function is 1

1−γ as the sum as infinite discounted rewards. Next, we
bound the Frobenius norm of the term achieved in Lemma 4.3, by applying the eigen-decomposition
on Pπb :

Pπb = 1Sµ⊤ +

S∑
i=2

λiuiv
⊤
i , (10)

where µ is the stationary distribution of Pπb , and ui and vi are left and right eigenvectors correspond-
ingly.

∥β
(
IA,A − 1Aπ

⊤)Ps(P
πb)d−1∥F = β∥

(
IA,A − 1Aπ

⊤)Ps

(
1Sµ⊤ +

S∑
i=2

λd−1
i uiv

⊤
i

)
∥F

(Ps is stochastic) = β∥
(
IA,A − 1Aπ

⊤)(1Aµ⊤ +

S∑
i=2

λd−1
i Psuiv

⊤
i

)
∥F

(projection nullifies 1Aµ⊤) = β∥
(
IA,A − 1Aπ

⊤)( S∑
i=2

λd−1
i Psuiv

⊤
i

)
∥F

(triangle inequality) ≤ β

S∑
i=2

∥
(
IA,A − 1Aπ⊤) (λd−1

i Psuiv
⊤
i

)
∥F

(matrix norm sub-multiplicativity) ≤ β|λd−1
2 |

S∑
i=2

∥IA,A − 1Aπ⊤∥F ∥Ps∥F ∥uiv
⊤
i ∥F

= β|λd−1
2 |(S − 1)∥IA,A − 1Aπ

⊤∥F ∥Ps∥F .

Now, we can bound the norm ∥IA,A − 1Aπ⊤∥F by direct calculation:

∥IA,A − 1Aπ
⊤∥2F = Tr

[(
IA,A − 1Aπ⊤) (IA,A − 1Aπ⊤)⊤] (11)

= Tr
[
IA,A − 1Aπ

⊤ − π1⊤
A + π⊤π1A1⊤A

]
(12)

= A− 1− 1 +Aπ⊤π (13)
≤ 2A. (14)
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From the Cauchy-Schwartz inequality,

∥Ps∥2F =
∑
a

∑
s

[[Ps]a,s]
2
=
∑
a

∥[Ps]a,·∥22 ≤
∑
a

∥[Ps]a,·∥1∥[Ps]a,·∥∞ ≤ A.

So,

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ max

s,a
[Q(s, a)]

2
max

s
∥∇θ log π

C
d,θ(·|s)∥2F

≤ 1

(1− γ)2
∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2F

≤ 1

(1− γ)2
β2|λ2(P

πb)|2(d−1)S2(2A2),

which obtains the desired bound.

A.5 A LOWER BOUND ON C-SOFTTREEMAX GRADIENT (RESULT NOT IN THE PAPER)

For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that
this result does not translate to the a lower bound on the variance since we have no lower bound
equivalence of Lemma 4.1.

Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:

∥∇θ log π
C
d,θ(·|s)∥F ≥ C · β|λ2(P

πb)|(d−1). (15)

Proof. We begin by moving to the induced l2 norm by norm-equivalence:

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥F ≥ ∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2.

Now, taking the vector u to be the eigenvector of the second eigenvalue of Pπb :

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2 ≥ ∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1u∥2
= β∥

(
IA,A − 1Aπ⊤)Psu∥2

= β|λ2(P
πb)|(d−1)∥

(
IA,A − 1Aπ

⊤)Psu∥2.

Note that even though Psu can be 0, that is not the common case since we can freely change πb (and
therefore the eigenvectors of Pπb ).

A.6 PROOF OF LEMMA 4.5 – VECTOR FORM OF E-SOFTTREEMAX

For d ≥ 1, (4) is given by

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (16)

where

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
(17)

with R being the |S|-dimensional vector whose s-th coordinate is r(s).

Proof. Recall that

ℓs,a(d; θ) = γ−d

[
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

]
. (18)

and, hence,

exp[βℓs,a(d; θ)] = exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

)]
. (19)
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Therefore,

E[expβℓs,a(d; θ)] = E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
E [exp [β (θ(sd))]|s1, . . . , sd−1]

]
(20)

= E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
Pπb(·|sd−1)

]
exp(βΘ) (21)

= E

[
exp

[
βγ−d

(
r(s) +

d−2∑
t=1

γtr(st)

)]
exp[βγ−1r(sd−1)]P

πb(·|sd−1)

]
exp(βΘ).

(22)

By repeatedly using iterative conditioning as above, the desired result follows. Note that
exp(βγ−dr(s)) does not depend on the action and is therefore cancelled out with the denomi-
nator.

A.7 PROOF OF LEMMA 4.6 – GRADIENT OF E-SOFTTREEMAX

The E-SoftTreeMax gradient of dimension A× S is given by

∇θ log π
E
d,θ = β

[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

,

where for brevity, we drop the s index in the policy above, i.e., πE
d,θ ≡ πE

d,θ(·|s).

Proof. The (j, k)-th entry of ∇θ log π
E
d,θ satisfies

[∇θ log π
E
d,θ]j,k =

∂ log(πE
d,θ(a

j |s))
∂θ(sk)

=
∂

∂θ(sk)

(
log[(Es,d)

⊤
j exp(βΘ)]− log[1⊤AEs,d exp(βΘ)]

)
=

β(Es,d)j,k exp(βθ(s
k))

(Es,d)⊤j exp(βΘ)
− β1⊤

AEs,dek exp(βθ(s
k))

1⊤AEs,d exp(βΘ)

=
β(Es,dek exp(βθ(s

k)))j
(Es,d)⊤j exp(βΘ)

− β1⊤AEs,dek exp(βθ(s
k))

1⊤AEs,d exp(βΘ)

= β

[
e⊤j

e⊤j Es,d exp(βΘ)
− 1⊤A

1⊤AEs,d exp(βΘ)

]
Es,dek exp(βθ(s

k)).

Hence,

[∇θ log π
E
d,θ]·,k = β

[
D(Es,d exp(βΘ))−1 − (1⊤AEs,d exp(βΘ))−11A1⊤A

]
Es,dek exp(βθ(s

k))

From this, it follows that

∇θ log π
E
d,θ = β

[
D
(
πE
d,θ

)−1 − 1A1⊤
A

] Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

. (23)

The desired result is now easy to see.

A.8 PROOF OF THEOREM 4.7 — EXPONENTIAL VARIANCE DECAY OF E-SOFTTREEMAX

There exists α ∈ (0, 1) such that, for any function Q : S ×A → R,

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
.

If all rewards are equal (r ≡ const), then α = |λ2(P
πb)|.
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Proof outline. Recall that thanks to Lemma 4.1, we can bound the PG variance using a direct bound
on the gradient norm. The definition of the induced norm is

∥∇θ log π
E
d,θ∥ = max

z:∥z∥=1
∥∇θ log π

E
d,θz∥,

with ∇θ log π
E
d,θ given in Lemma 4.6. Let z ∈ RS be an arbitrary vector such that ∥z∥ = 1. Then,

z =
∑S

i=1 cizi, where ci are scalar coefficients and zi are vectors spanning the S-dimensional space.
In the full proof, we show our specific choice of zi and prove they are linearly independent given that
choice. We do note that z1 = 1S .

The first part of the proof relies on the fact that (∇θ log π
E
d,θ)z1 = 0. This is easy to verify using

Lemma 4.6 together with (6), and because
[
IA − 1A(πE

d,θ)
⊤
]

is a projection matrix whose null-space
is spanned by 1S . Thus,

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi.

In the second part of the proof, we focus on Es,d from (6), which appears within ∇θ log π
E
d,θ. Notice

that Es,d consists of the product
∏d−1

h=1

(
D
(
exp(βγh−dR

)
Pπb

)
. Even though the elements in this

product are not stochastic matrices, in the full proof we show how to normalize each of them to a
stochastic matrix Bh. We thus obtain that

Es,d = PsD(M1)

d−1∏
h=1

Bh,

where M1 ∈ RS is some strictly positive vector. Then, we can apply a result by Mathkar & Borkar
(2016), which itself builds on (Chatterjee & Seneta, 1977). The result states that the product of
stochastic matrices

∏d−1
h=1 Bh of our particular form converges exponentially fast to a matrix of the

form 1Sµ⊤ s.t. ∥1Sµ⊤ −
∏d−1

h=1 Bh∥ ≤ Cαd for some constant C.

Lastly, 1Sµ⊤
πb

gets canceled due to our choice of zi, i = 2, . . . , S. This observation along with the
above fact that the remainder decays then shows that ∇θ log π

E
d,θ

∑S
i=2 zi = O(αd), which gives the

desired result.

Full technical proof. Let d ≥ 2. Recall that

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
, (24)

and that R refers to the S-dimensional vector whose s-th coordinate is r(s). Define

Bi =

{
Pπb if i = d− 1,

D−1(PπbMi+1)P
πbD(Mi+1) if i = 1, . . . , d− 2,

(25)

and the vector

Mi =

{
exp(βγ−1R) if i = d− 1,

exp(βγi−dR) ◦ PπbMi+1 if i = 1, . . . , d− 2,
(26)

where ◦ denotes the element-wise product. Then,

Es,d = PsD(M1)

d−1∏
i=1

Bi. (27)

It is easy to see that each Bi is a row-stochastic matrix, i.e., all entries are non-negative and
Bi1S = 1S .

Next, we prove that all non-zeros entries of Bi are bounded away from 0 by a constant. This is
necessary to apply the next result from Chatterjee & Seneta (1977). The j-th coordinate of Mi

satisfies

(Mi)j = exp[βγi−dRj ]
∑
k

[Pπb ]j,k(Mi+1)k ≤ ∥ exp[βγi−dR]∥∞∥Mi+1∥∞. (28)
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Separately, observe that ∥Md−1∥∞ ≤ ∥ exp(βγ−1R)∥∞. Plugging these relations in (26) gives

∥M1∥∞ ≤
d−1∏
h=1

∥ exp[βγh−dR]∥∞ =

d−1∏
h=1

∥ exp[βγ−dR]∥γ
h

∞ = ∥ exp[βγ−dR]∥
∑d−1

h=1 γh

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ .

(29)

Similarly, for every 1 ≤ i ≤ d− 1, we have that

∥Mi∥∞ ≤
d−1∏
h=i

∥ exp[βγ−dR]∥γ
h

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ . (30)

The jk-th entry of Bi = D−1(PπbMi+1)P
πbD(Mi+1) is

(Bi)jk =
Pπb

jk [Mi+1]k∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk

∥ exp[βγ−dR]∥
1

1−γ
∞

. (31)

Hence, for non-zero Pπb

jk , the entries are bounded away from zero by the same. We can now proceed
with applying the following result.

Now, by (Chatterjee & Seneta, 1977, Theorem 5) (see also (14) in (Mathkar & Borkar, 2016)),
limd→∞

∏d−1
i=1 Bi exists and is of the form 1Sµ⊤ for some probability vector µ. Furthermore, there

is some α ∈ (0, 1) such that ε(d) :=
(∏d−1

i=1 Bi

)
− 1S µ⊤ satisfies

∥ε(d)∥ = O(αd). (32)

Pick linearly independent vectors w2, . . . , wS such that

µ⊤wi = 0 for i = 2, . . . , d. (33)

Since
∑S

i=2 αiwi is perpendicular to µ for any α2, . . . αS and because µ⊤ exp(βΘ) > 0, there
exists no choice of α2, . . . , αS such that

∑S
i=2 αiwi = exp(βΘ). Hence, if we let z1 = 1S and

zi = D(exp(βΘ))−1wi for i = 2, . . . , S, then it follows that {z1, . . . , zS} is linearly independent.
In particular, it implies that {z1, . . . , zS} spans RS .

Now consider an arbitrary unit norm vector z :=
∑S

i=1 cizi ∈ RS s.t. ∥z∥2 = 1. Then,

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi (34)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

Es,dD(exp(βΘ))

1⊤AEs,d exp(βΘ)

S∑
i=2

cizi (35)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

Es,d

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (36)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1 [
1Sµ

⊤ + ε(d)
]

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (37)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

ε(d)

1⊤
AEs,d exp(βΘ)

S∑
i=2

ciwi (38)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

ε(d)D(exp(βΘ))

1⊤AEs,d exp(βΘ)
(z − c11S), (39)
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where (34) follows from the fact that ∇θ log π
E
d,θz1 = ∇θ log π

E
d,θ1S = 0, (35) follows from

Lemma 4.6, (36) holds since zi = D(exp(βΘ))−1wi, (38) because µ is perpendicular wi for each i,
while (39) follows by reusing zi = D(exp(βΘ))−1wi relation along with the fact that z1 = 1S .

From (39), it follows that

∥∇θ log π
E
d,θz∥ ≤ β∥ε(d)∥

∥∥∥∥∥∥∥
[
IA − 1A(πE

d,θ)
⊤] D

(
πE
d,θ

)−1

1⊤
AEs,d exp(βΘ)

∥∥∥∥∥∥∥ ∥D(exp(βΘ))∥ ∥z − c11S∥

(40)

≤ βαd(∥IA∥+ ∥1A(πE
d,θ)

⊤∥)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥

(41)

≤ βαd(1 +
√
A)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (42)

≤ βαd(1 +
√
A)
∥∥D−1(Es,d exp(βΘ))

∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (43)

≤ βαd(1 +
√
A)

1

mins[Es,d exp(βΘ]s
exp(βmax

s
θ(s))∥z − c11S∥ (44)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s))mins |M1|
∥z − c11S∥ (45)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s)) exp(βmins r(s))
∥z − c11S∥ (46)

≤ βαd(1 +
√
A) exp(β[max

s
θ(s)−min

s
θ(s)−min

s
r(s)])∥z − c11S∥. (47)

Lastly, we prove that ∥z − c11S∥ is bounded independently of d. First, denote by c = (c1, . . . , cS)
⊤

and c̃ = (0, c2, . . . , cS)
⊤. Also, denote by Z the matrix with zi as its i-th column. Now,

∥z − c11S∥ = ∥
S∑

i=2

cizi∥ (48)

= ∥Zc̃∥ (49)
≤ ∥Z∥∥c̃∥ (50)
≤ ∥Z∥∥c∥ (51)

= ∥Z∥∥Z−1z∥ (52)

≤ ∥Z∥∥Z−1∥, (53)
where the last relation is due to z being a unit vector. All matrix norms here are l2-induced norms.

Next, denote by W the matrix with wi in its i-th column. Recall that in (33) we only defined
w2, . . . , wS . We now set w1 = exp(βΘ). Note that w1 is linearly independent of {w2, . . . , wS}
because of (33) together with the fact that µ⊤w1 > 0. We can now express the relation between Z
and W by Z = D−1(exp(βΘ))W. Substituting this in (53), we have

∥z − c11S∥ ≤ ∥D−1(exp(βΘ))W∥∥W−1D(exp(βΘ))∥ (54)

≤ ∥W∥∥W−1∥∥D(exp(βΘ))∥∥D−1(exp(βΘ))∥. (55)
It further holds that

∥D(exp(βΘ))∥ ≤ max
s

exp (βθ(s)) ≤ max{1, exp[βmax
s

θ(s)])}, (56)

where the last relation equals 1 if θ(s) < 0 for all s. Similarly,

∥D−1(exp(βΘ))∥ ≤ 1

mins exp (βθ(s))
≤ 1

min{1, exp[βmins θ(s)])}
. (57)
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Furthermore, by the properties of the l2-induced norm,

∥W∥2 ≤
√
S∥W∥1 (58)

=
√
S max

1≤i≤S
∥wi∥1 (59)

=
√
Smax{exp(βΘ), max

2≤i≤S
∥wi∥1} (60)

≤
√
Smax{1, exp[βmax

s
θ(s)], max

2≤i≤S
∥wi∥1)}. (61)

Lastly,

∥W−1∥ =
1

σmin(W )
(62)

≤

(
S−1∏
i=1

σmax(W )

σi(W )

)
1

σmin(W )
(63)

=
(σmax(W ))

S−1∏S
i=1 σi(W )

(64)

=
∥W∥S−1

|det(W )|
. (65)

The determinant of W is a sum of products involving its entries. To upper bound (65) independently
of d, we lower bound its denominator by upper and lower bounds on the entries [W ]i,1 that are
independent of d, depending on their sign:

min{1, exp[βmin
s

θ(s)])} ≤ [W ]i,1 ≤ max{1, exp[βmax
s

θ(s)])}. (66)

Using this, together with (53), (55), (56), (57), and (61), we showed that ∥z−c11S∥ is upper bounded
by a constant independent of d. This concludes the proof.

A.9 BIAS ESTIMATES

Lemma A.2. For any matrix A and Â,

Âk −Ak =

k∑
h=1

Âh−1(Â−A)Ak−h.

Proof. The proof follows from first principles:
k∑

h=1

Âh−1(Â−A)Ak−h =

k∑
h=1

Âh−1ÂAk−h −
k∑

h=1

Âh−1AAk−h (67)

=

k∑
h=1

ÂhAk−h −
k∑

h=1

Âh−1Ak−h+1 (68)

= Âk −Ak +

k−1∑
h=1

ÂhAk−h −
k∑

h=2

Âh−1Ak−h+1 (69)

= Âk −Ak. (70)

Henceforth, ∥ · ∥ will refer to ∥ · ∥∞, i.e. the induced infinity norm. Also, for brevity, we denote πC
d,θ

and π̂C
d,θ by πθ and π̂θ, respectively. Similarly, we use dπθ

and dπ̂θ
to denote dπC

d,θ
and dπ̂C

d,θ
. As for

the induced norm of the matrix P and its perturbed counterpart P̂ , which are of size S × A × S,

we slightly abuse notation and denote ∥P − P̂∥ = maxs{∥Ps − P̂s∥}, where Ps is as defined in
Section 2.
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Definition A.3. Let ϵ be the maximal model mis-specification, i.e., max{∥P − P̂∥, ∥r − r̂∥} = ϵ.

Lemma A.4. Recall the definitions of Rs, Ps, Rπb
and Pπb from Section 2, and respectively denote

their perturbed counterparts by R̂s, P̂s, R̂πb
and P̂πb . Then, for ϵ defined in Definition A.3,

max{∥Rs − R̂s∥, ∥Ps − P̂s∥, ∥Rπb
− R̂πb

∥, ∥Pπb − P̂πb∥} = O(ϵ). (71)

Proof. The proof follows easily from the fact that the differences above are convex combinations of
P − P̂ and r − r̂.

Lemma A.5. Let πθ be as in (5), and let π̂θ also be defined as in (5), but with Rs, Ps, P
πb replaced

by their perturbed counterparts R̂s, P̂s, P̂
πb throughout. Then,

∥πC
d,θ − π̂C

d,θ∥ = O(βdϵ). (72)

Proof. To prove the desired result, we work with (5) to bound the error between Rs, Ps, P
πb , Rπb

and their perturbed versions.

First, we apply Lemma A.2 together with Lemma A.4 to obtain that ∥(Pπb)k − (P̂πb)k∥ = O(kϵ).
Next, denote by M the argument in the exponent in (5), i.e.

M := β[Cs,d + Ps(P
πb)d−1Θ].

Similarly, let M̂ be the corresponding perturbed sum that relies on P̂ and r̂. Combining the bounds
from Lemma A.4, and using the triangle inequality, we have that ∥M̂ −M∥ = O(βdϵ).

Eq. (5) states that the C-SoftTreeMax policy in the true environment is πθ = exp(M)/(1⊤ exp(M)).
Similarly define π̂θ using M̂ for the approximate model. Then,

π̂θ = (πθ ◦ exp(M − M̂))1⊤ exp(M)/(1⊤ exp(M̂)),

where ◦ denotes element-wise multiplication. Using the above relation, we have that ∥π̂θ − πθ∥ =

∥πθ∥∥ exp(M−M̂)1⊤ exp(M)

1⊤ exp(M̂)
− 1∥. Using the relation |ex − 1| = O(x) as x → 0, the desired result

follows.

Theorem A.6. Let ϵ be as in Definition A.3. Further let π̂C
d,θ being the corresponding approximate

policy as given in Lemma 4.2. Then, the policy gradient bias is bounded by∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π̂θ

)∥∥∥∥ = O
(

1

(1− γ)2
Sβ2dϵ

)
. (73)

We first provide a proof outline for conciseness, and only after it the complete proof.

Proof outline. First, we prove that max{∥Rs−R̂s∥, ∥Ps−P̂s∥, ∥Rπb
−R̂πb

∥, ∥Pπb−P̂πb∥} = O(ϵ).
This follows from the fact that the differences above are suitable convex combinations of either the
rows of P − P̂ or r − r̂. We use the above observation along with the definitions of πC

d,θ and π̂C
d,θ

given in (5) to show that ∥πC
d,θ − π̂C

d,θ∥ = O(βdϵ). The proof for the latter builds upon two key facts:

(a) ∥(Pπb)k − (P̂πb)k∥ ≤
∑k

h=1 ∥P̂πb∥h−1∥P̂πb −Pπb∥∥pπb∥k−h = O(kϵ) for any k ≥ 0, and (b)
|ex − 1| = O(x) as x → 0. Next, we decompose the LHS of (7) to get

∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
×Xi+1(s) · · ·X4(s),

where X1(s) = dπC
d,θ

(s) ∈ R, X2(s) = (∇θ log π
C
d,θ(·|s))⊤ ∈ RS×A, X3(s) = D(πC

d,θ(·|s)) ∈

RA×A, X4(s) = QπC
d,θ (s, ·) ∈ RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πC

d,θ re-
placed by π̂C

d,θ. Then, we show that, for i = 1, . . . , 4, (i) ∥Xi(s) − X̂i(s)∥ = O(ϵ) and (ii)
max{∥Xi∥, ∥X̂i∥} is bounded by problem parameters. From this, the desired result follows.
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Proof. We have

∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)
(74)

= Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)]− Es∼dπ̂θ

,a∼π̂θ(·|s)
[
∇θ log π̂θ(a|s)Qπ̂θ (s, a)

]
(75)

=
∑
s,a

(
dπθ

(s)πθ(a|s)∇θ log πθ(a|s)Qπθ (s, a)− dπ̂θ
(s)π̂θ(a|s)∇θ log π̂θ(a|s)Qπ̂θ (s, a)

)
(76)

=
∑
s

(
dπθ

(s)(∇θ log πθ(·|s))⊤D(πθ(·|s))Qπθ (s, ·) (77)

− dπ̂θ
(s)(∇θ log π̂θ(·|s))⊤D(π̂θ(·|s))Qπ̂θ (s, ·)

)
(78)

=
∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
(79)

=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s), (80)

where X1(s) = dπθ
(s) ∈ R, X2(s) = (∇θ log πθ(·|s))⊤ ∈ RS×A, X3(s) = D(πθ(·|s)) ∈ RA×A,

X4(s) = Qπθ (s, ·) ∈ RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πθ replaced by π̂θ.

Therefore, ∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)∥∥∥∥ ≤
(
max

s
Γ(s)

)
S, (81)

where

Γ(s) = ∥
4∑

i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s)∥. (82)

Next, since dπθ
, dπ̂θ

, πθ, and π̂θ are all distributions, we have

max{|X1(s)|, |X̂1(s)|, |X3(s, a)|, |X̂3(s, a)|} ≤ 1. (83)

Separately, using Lemma 4.3, we have

∥X2∥ = ∥∇θ log πθ(a|s)∥ ≤ β(∥IA∥+ ∥1Aπ
⊤
θ ∥)∥Ps∥∥(Pπb)d−1∥. (84)

Since all rows of the above matrices have non-negative entries that add up to 1, we get

∥Y ∥ ≤ 2β. (85)

In the rest of the proof, we bound each of ∥X1 − X̂1∥, . . . , ∥X4 − X̂4∥.
Finally,

∥X4∥ ≤ 1

1− γ
. (86)

Similarly, the same bounds hold for X̂1, X̂2, X̂3 and X̂4.

From, we have

∥X1 − X̂1∥ ≤ (1− γ)

∞∑
t=0

γt∥ν⊤(Pπθ )t − ν⊤(P π̂θ )t∥ (87)

≤ (1− γ)∥ν∥
∑
t=0

γttdϵ (88)

≤ (1− γ)dϵ

∞∑
t=0

γtt (89)

=
γdϵ

1− γ
. (90)
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The last relation follows from the fact that (1− γ)−1 =
∑∞

t=0 γ
t, which in turn implies

γ
∂

∂γ

(
1

1− γ

)
=

∞∑
t=0

tγt. (91)

From Lemma A.5, it follows that

∥X3 − X̂3∥ = O(βdϵ). (92)

Next, recall that from Lemma 4.3 that

X2(s, ·) = β
[
IA − 1A(πθ)

⊤]Ps (P
πb)

d−1
.

Then,

∥X2(s, ·)− X̂2(s, ·)∥ ≤∥β
[
IA − 1A(πθ)

⊤]Ps∥∥ (Pπb)
d−1 −

(
P̂πb

)d−1

∥ (93)

+ ∥β
[
IA − 1A(πθ)

⊤] ∥∥Ps − P̂s∥∥
(
P̂πb

)d−1

∥ (94)

+ β∥1A(πθ)
⊤ − 1A(π̂θ)

⊤∥∥P̂s

(
P̂πb

)d−1

∥. (95)

Following the same argument as in (85) and applying Lemma A.2, we have that (93) is O(βdϵ).
Similarly, from the argument of (85), Eq. (94) is O(βϵ). Lastly, (95) is O(βdϵ) due to Lemma A.5.
Putting the above three terms together, we have that

∥X2(s, ·)− X̂2(s, ·)∥ = O(βdϵ). (96)

Since the state-action value function satisfies the Bellman equation, we have

Qπθ = r + γPQπθ (97)

and
Qπ̂θ = r̂ + γP̂Qπ̂θ . (98)

Consequently,

∥Qπθ −Qπ̂θ∥ ≤ ∥r − r̂∥+ γ∥PQπθ − PQπ̂θ∥+ γ∥PQπ̂θ − P̂Qπ̂θ∥ (99)

≤ ϵ+ γ∥P∥∥Qπθ −Qπ̂θ∥+ γ∥P − P̂∥∥Qπ̂θ∥ (100)

≤ ϵ+ γ∥Qπθ −Qπ̂θ∥+ γ

1− γ
ϵ, (101)

which finally shows that

∥X4 − X̂4∥ = ∥Qπθ −Qπ̂θ∥ ≤ ϵ

(1− γ)2
. (102)

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

The environment engine is the highly efficient Atari-CuLE (Dalton et al., 2020), a CUDA-based
version of Atari that runs on GPU. Similarly, we use Atari-CuLE for the GPU-based breadth-first TS
as done in Dalal et al. (2021): In every tree expansion, the state St is duplicated and concatenated
with all possible actions. The resulting tensor is fed into the GPU forward model to generate the
tensor of next states (S0

t+1, . . . , S
A−1
t+1 ). The next-state tensor is then duplicated and concatenated

again with all possible actions, fed into the forward model, etc. This procedure is repeated until the
final depth is reached, for which Wθ(s) is applied per state.

We train SoftTreeMax for depths d = 1 . . . 8, with a single worker. We use five seeds for each
experiment.
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For the implementation, we extend Stable-Baselines3 (Raffin et al., 2019) with all parameters taken
as default from the original PPO paper (Schulman et al., 2017). For depths d ≥ 3, we limited the
tree to a maximum width of 1024 nodes and pruned non-promising trajectories in terms of estimated
weights. Since the distributed PPO baseline advances significantly faster in terms of environment
steps, for a fair comparison, we ran all experiments for one week on the same machine and use the
wall-clock time as the x-axis. We use Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with
one NVIDIA Tesla V100 32GB.

B.2 TIME-BASED TRAINING CURVES

We provide the training curves in Figure 4. For brevity, we exclude a few of the depths from the plots.
As seen, there is a clear benefit for SoftTreeMax over distributed PPO with the standard softmax
policy. In most games, PPO with the SoftTreeMax policy shows very high sample efficiency: it
achieves higher episodic reward although it observes much less episodes, for the same running time.

Figure 4: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the wall-clock time.
The runs ended after one week with varying number of time-steps. The training curves correspond to
the evaluation runs in Figure 3.

B.3 STEP-BASED TRAINING CURVES

In Figure 5 we also provide the same convergence plots where the x-axis is now the number of online
interactions with the environment, thus excluding the tree expansion complexity. As seen, due to the
complexity of the tree expansion, less steps are conducted during training (limited to one week) as
the depth increases. In this plot, the monotone improvement of the reward with increasing tree depth
is noticeable in most games.
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Figure 5: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the number of online
interactions with the environment. The runs ended after one week with varying number of time-steps.
The training curves correspond to the evaluation runs in Figure 3.

We note that not for all games we see monotonicity. Our explanation for this phenomenon relates to
how immediate reward contributes to performance compared to the value. Different games benefit
differently from long-term as opposed to short-term planning. Games that require longer-term
planning need a better value estimate. A good value estimate takes longer to obtain with larger depths,
in which we apply the network to states that are very different from the ones observed so far in the
buffer (recall that as in any deep RL algorithm, we train the model only on states in the buffer). If
the model hasn’t learned a good enough value function yet, and there is no guiding dense reward
along the trajectory, the policy becomes noisier, and can take more steps to converge – even more
than those we run in our week-long experiment.

For a concrete example, let us compare Breakout to Gopher. Inspecting Fig. 5, we observe that
Breakout quickly (and monotonically) gains from large depths since it relies on the short term goal
of simply keeping the paddle below the moving ball. In Gopher, however, for large depths (>=5),
learning barely started even by the end of the training run. Presumably, this is because the task in
Gopher involves multiple considerations and steps: the agent needs to move to the right spot and
then hit the mallet the right amount of times, while balancing different locations. This task requires
long-term planning and thus depends more strongly on the accuracy of the value function estimate.
In that case, for depth 5 or more, we would require more train steps for the value to “kick in” and
become beneficial beyond the gain from the reward in the tree.

The figures above convey two key observations that occur for at least some non-zero depth: (1) The
final performance with the tree is better than PPO (Fig. 3); and (2) the intermediate step-based results
with the tree are better than PPO (Fig. 5). This leads to our main takeaway from this work — there
is no reason to believe that the vanilla policy gradient algorithm should be better than a multi-step
variant. Indeed, we show that this is not the case.

C FURTHER DISCUSSION

C.1 THE CASE OF λ2(P
πb) = 0

When Pπb is rank one, it is not only its variance that becomes 0, but also the norm of the gradient
itself (similarly to the case of d → ∞). Note that such a situation will happen rarely, in degenerate
MDPs. This is a local minimum for SoftTreeMax and it would cause the PG iteration to get stuck,
and to the optimum in the (desired but impractical) case where πb is the optimal policy. However,
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a similar phenomenon was also discovered in the standard softmax with deterministic policies:
θ(s, a) → ∞ for one a per s. PG with softmax would suffer very slow convergence near these
local equilibria, as observed in Mei et al. (2020a). To see this, note that the softmax gradient is
∇θ log πθ(a|s) = ea − πθ(·|s), where ea ∈ [0, 1]A is the vector with 0 everywhere except for the
a-th coordinate. I.e., it will be zero for a deterministic policy. SoftTreeMax avoids these local optima
by integrating the reward into the policy itself (but may get stuck in another, as discussed above).
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