
OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Xuetian Chen 1 2 Yinghao Chen 2 3 Xinfeng Yuan 1 2 Zhuo Peng 1 Lu Chen 1 Yuekeng Li 1 Zhoujia Zhang 1

Yingqian Huang 1 Leyan Huang 1 Jiaqing Liang 1 Qiushi Sun 2 4 Biqing Qi 2 Bowen Zhou 2

Abstract

Computer use agents have shown strong poten-
tial to boost human productivity and enable new
application forms across platforms. While recent
advances have led to usable applications, exist-
ing benchmarks fail to account for the internal
task heterogeneity and the corresponding agent
capabilities, as well as their alignment with ac-
tual user demands—hindering both targeted capa-
bility development and the reliable transition of
research progress into practical deployment. To
bridge the gap, we present OS-MAP, a bench-
mark for daily computer use automation, consist-
ing of 15 applications and 416 realistic tasks. To
enable fine-grained analysis of required capabili-
ties and alignment with real-world scenarios, OS-
MAP evaluates agents along two dimensions: au-
tomation level across a five-level taxonomy, and
generalization scope across a demand hierarchy.
This design captures varying levels of required
agent autonomy and generalization, forming a
performance–generalization evaluation matrix for
structured and comprehensive assessment. Ex-
periments show that even the strongest agents
struggle with higher-level tasks involving percep-
tion, reasoning, and coordination—highlighting
the need for a deeper understanding of current
strengths and limitations to drive future progress
in computer use agents research and deployment.
All code, environments, baselines, and data are
publicly available at https://github.com/
OS-Copilot/OS-Map.

1School of Data Science, Fudan University, Shanghai, China
2Shanghai AI Lab, Shanghai, China 3School of Computer Science,
Tsinghua University, Beijing, China 4Department of Computer
Science, The University of Hong Kong, Hong Kong, China. Corre-
spondence to: Qiushi Sun <qiushisun@connect.hku.hk>,
Biqing Qi <qibiqing@pjlab.org.cn>, Bowen Zhou
<zhoubowen@tsinghua.edu.cn>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

1. Introduction
Computer use agents, which can understand user intent
and autonomously perform operations across digital en-
vironments, is driving the next transformation in human-
computer interaction (Hu et al., 2024b;a). Powered by the
extensive world knowledge, interaction capability, and tool-
use abilities of Large Language Models (LLMs) and Vision
Language Models (VLMs), computer use agents such as
Operator (OpenAI, 2025), Claude 3.5 (Anthropic, 2024),
UFO2 (Zhang et al., 2025), and UI-TARS (Qin et al., 2025)
can understand natural language instructions and interact
directly with various applications in a human-like manner.
Once a fixture of science fiction—like J.A.R.V.I.S. in Iron
Man, seamlessly managing schedules, editing documents,
shopping across websites, and automating routine computer
tasks—such digital personal assistants are now becoming a
tangible reality (Wu et al., 2024b). This transformation frees
humans to focus on creative work, significantly boosting
productivity and enabling new applications.

As research on computer use agents continues to advance,
an increasing number of models with strong functionali-
ties (Qin et al., 2025; Bai et al., 2025; Liu et al., 2024b; Xu
et al., 2024b; Wu et al., 2024c) and meticulously designed
agent systems (Jiang et al., 2025; Agashe et al., 2024; 2025;
Zhang et al., 2025; Jia et al., 2024) are being proposed. De-
spite the rapid emergence of new methods, the open-ended
semantics and diverse capability demands of computer use
tasks still hinder actual deployment (Hu et al., 2024b). To
turn methodological advances into practical impact, it is
critical to develop a principled benchmark to understand the
scope and boundaries of current agent capabilities. How-
ever, existing benchmarks fall short of this goal. While
spanning various platforms and scenarios (Deng et al., 2023;
Zhou et al., 2023; Cao et al., 2024; Rawles et al., 2024),
they treat tasks as flat collections, without decomposing
task heterogeneity and required capabilities (Drouin et al.,
2024; Xie et al., 2024; Bonatti et al., 2024; Rawles et al.,
2024), making it difficult to perform fine-grained evaluation
and differentiation. Moreover, task collections are typically
organized around applications (Li et al., 2024a; Xie et al.,
2024) rather than aligned with the actual distribution of
daily computer use, limiting the relevance of benchmark

1

https://github.com/OS-Copilot/OS-Map
https://github.com/OS-Copilot/OS-Map

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

performance to real-world utility (Hu et al., 2024b).

To bridge the gaps, we present the OS-MAP benchmark that
is grounded in dynamic desktop environments and struc-
tured along two dimensions: automation levels and gener-
alization scopes. First, we propose a five-level capability
taxonomy based on degrees of autonomy, encompassing a
wide range of computer use tasks—from atomic execution
and simple planning to disturbance adaptation, complex or-
chestration, and proactive behaviors. Second, we derive a
real-world user demand hierarchy on daily scenarios and
select representative tasks to ensure both coverage and align-
ment with practical demands. Furthermore, we combine the
two dimensions into a unified evaluation matrix (Figure 1),
which highlights how various existing computer use agents
differ in capability trade-offs between automation and gener-
alization. The upper-right corner marks a high-value region,
representing impactful yet unachieved applications where
no current agent demonstrates sufficient capability.

Across 416 tasks spanning 15 applications in OS-MAP, even
the strongest existing agents achieve only an 11.4% overall
success rate, with near-zero performance on higher-level
tasks—falling far short of human performance. These find-
ings underscore the importance of a principled evaluation
framework. By offering both qualitative and quantitative
insights into where and to what extent computer use agents
can assist humans, our framework supports comprehensive
evaluation and provides a clear roadmap for future progress.

2. Environment
OS-MAP adopts and extends the OSWorld (Xie et al., 2024)
infrastructure, which centers around a virtual machine (VM)
and a host-side controller (VMC). This executable environ-
ment offers controllability, reproducibility, extensibility, and
secure isolation, forming an ideal sandbox for evaluating
computer use agents in real-world scenarios.

2.1. Task Definition

In general, computing use automation tasks are roughly
modeled as partially observable Markov decision processes
(S,O,A, T ,R). At timestep t, the agent resides in the
environment state st ∈ S, but only receives a partial ob-
servation ot ∈ O (e.g., the current screenshot). Based on
ot, the agent emits an action at ∈ A (e.g., a structured text
click(350,600)). The environment transitions to the
next state st+1 = T (st, at) via the transition function T ,
which is governed by the underlying software and system,
revealing a new observation ot+1. This process continues
iteratively until the agent actively issues a terminal action
(i.e., DONE or FAIL), or passively exceeds a predefined
step limit. After termination, the system determines whether
the task is completed and provides a final outcome reward

r ∈ R = {0, 1}, without any intermediate process rewards.

2.2. Environment Structure

Task lifetime. Each task is specified by a JSON file defin-
ing initialization, instruction, and evaluation protocols. As
shown in Figure 2, evaluation begins by restoring a desig-
nated VM snapshot and running lightweight setup routines.
The agent then enters the interaction loop, receiving obser-
vations from and sending actions to the VM via the VMC.
This loop continues until the agent terminates the episode,
either actively or passively. The evaluator then compares the
VM state to reference criteria and returns a binary reward.
See Appendix B.1 for details.

Initialization and evaluation configuration. Task setup
in OS-MAP combines VM snapshots with modular configu-
ration functions, supporting scalable and flexible task cre-
ation. Standard initialization adopt reusable OSWorld func-
tions (e.g., file downloading, shell commands), while more
complex setups (e.g. software installation or database config-
uration) are manually performed and captured as restorable
snapshots. Depending on the task, state-based evaluation
may involve file comparison and system state inspection, or
execution-based verification. See Appendix B.2 and B.3 for
detailed initialization and evaluation modes.

Observation and action space. Recent research increas-
ingly gravitates toward human-like interaction paradigms:
raw pixel screenshots as observations and atomic keyboard/-
mouse operations as actions. OS-MAP adopts this design,
using only raw screenshots as input—without accessibility
trees or SoM annotations—for simplicity and broader ap-
plicability. The action space extends OSWorld’s 13 atomic
operations and 3 meta-actions (i.t., WAIT, FAIL, DONE)
with a new primitive, CALL USER, which delegates control
to a simulated human supervisor in cases requiring human
intervention (e.g., logins). This addition supports human-
in-the-loop coordination, enabling real-world interaction
dynamics and reinforcing permission boundaries. See Ap-
pendix B.4 and B.5 for detailed space descriptions and the
full action list with examples.

3. Benchmark
OS-MAP comprises 416 real-world computer use automa-
tion tasks on 15 Ubuntu applications, spanning diverse ev-
eryday scenarios. Tasks are categorized along two orthogo-
nal dimensions: automation level, capturing the degree of
agent autonomy, and generalization scope, defined by a hi-
erarchical demand taxonomy, measuring agents’ capability
transferability. Together, they form a structured evalua-
tion matrix (Fig. 1) supports systematic evaluation. The
following sections introduces the automation levels (§3.1),

2

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Automation

Level

Generalization

Scope

L1

Execution

S1
Narrow

S2
Medium

L3

Adaptation

L2

Planning

L4

Orchestration

L5

Proactivity

S3
General

OS-Atlas

UGround

CogAgent

UI-TARS

Claude

SeeClick

GPT

AutoGLM
OSCAR

OS-Copilot

PC-Agent

MobileAgent
AppAgent

Aguvis

SheetCopilot

Pix2Act

Qwen2.5-VL

WebAgent

Microsoft

Copilot

Commercial Product

Agentic Model

Agent Framework

Action Model

General-Propose Model

GitHub

Copilot
Cortana

Siri

High Value Area

OS-Genesis
AgentStore

Agent S2

Figure 1: OS-MAP qualitative evaluation matrix, summarizing how existing agents perform across two dimensions. General-
purpose models show strong generalization, while scenario experts excel at specific tasks. Mainstream computer use agents
aim to balance both, yet face major challenges. Assessments are based on reported performance; see Appendix A for details.

generalization scope (§3.2), evaluation matrix (§3.3), task
curation pipeline (§3.4), and benchmark statistics (§3.5).

3.1. Automation Levels

Real-world computer automation varies in task complex-
ity, user involvement, and agent responsibility. Users
may provide goals, supervise execution, or intervene when
needed, while agents assist, collaborate, or take control to
different extents. To support consistent evaluation across
these variations, we introduce a five-level automation tax-
onomy (L1–L5), inspired by SAE driving automation tax-
onomy (Committee, 2021) and grounded in the division of
labor between humans and agents. Figure 3 illustrates how
a concrete task (wallpaper switching) manifests across all
five interaction modes. Each level reflects a specific degree
of autonomy in planning and execution, shaped by both task
complexity and the expected user role.

L1: Reactive executor. The agent acts purely as an
assistant, executing user-defined atomic operations (e.g.,
clicks, keystrokes). Task planning remains entirely user-
driven. This stage primarily evaluates perceptual grounding
and command-to-action mapping—capabilities that many

grounding models (Cheng et al., 2024; Wu et al., 2024c;
Gou et al., 2024) specifically target.

L2: Deterministic planner. The user specifies only the
task goal, leaving the agent to autonomously plan and exe-
cute actions under ideal and predictable conditions. High-
level task decomposition remains user-driven, and interven-
tion is required when failures occur. This stage tests prior
knowledge and basic planning, representing the operational
level of most current agents and proprietary models.

L3: Adaptive agent. L3 emphasizes robustness in dy-
namic, noisy, and partially observable states. Agents must
adapt plans autonomously in response to unpredictable
events or evolving interfaces. While users still define high-
level goals, they no longer need to intervene during execu-
tion. Only a small subset of agents specifically designed
for adaptivity reach this level, demonstrating resilience and
flexible subtask completion under real-world conditions.

L4: Global conductor. The agents take full responsibility
for decomposing high-level goals and orchestrating complex
workflows involving subgoals, cross-application context
switching, and tool usage. Acting as autonomous top-level

3

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Instruction: Make this image a transparent background and set it as my avatar.

…

…

…

Observation

Setup

config

Environment

Initial

setup

Agent

Action

Eval func

Final

State

Iterative

Instruction

…

Figure 2: OS-MAP is built on an executable desktop environment designed for daily computer tasks, integrating a suite
of applications and tools. It provides the infrastructure for reliable evaluation by handling task initialization and success
verification. Agents interact autonomously via GUI operations, guided by instructions and screenshot perception.

orchestrators, they coordinate entire tasks end-to-end, with
users only issuing goals and verifying outcomes. As shown
in our results, no current agent effectively handles this level,
though emerging multi-agent approaches show promise.

L5: Proactive companion. L5 marks a shift from reac-
tive execution to proactive collaboration. The agent continu-
ously monitors context, anticipates user needs, and initiates
helpful actions without explicit instructions. It learns from
long-term interactions to provide personalized support as an
intelligent digital companion. While still an underexplored
concept, with only a few studies across different scenar-
ios (Lu et al., 2024c; Chen et al., 2025; Chaves & Gerosa,
2021; Liao et al., 2023), it holds significant promise for fu-
ture applications. Due to limited research and infrastructure
divergence, OS-MAP does not yet include L5 tasks.

3.2. Generalization Scope

While §3.1 focuses on structural organization via automa-
tion levels, this section turns to the content dimension: gen-
eralization scope based on user demand hierarchy. Design-
ing meaningful tasks for computer use agents is challeng-
ing. Prior benchmarks often rely on predefined applications
sets (Xie et al., 2024; Bonatti et al., 2024; Li et al., 2024a;
Chai et al., 2025) or template-based generation (Liu et al.,
2018; Rawles et al., 2024; Drouin et al., 2024). In contrast,
we take a demand-driven approach—identifying common
daily use cases and deriving tasks accordingly—to ensure
realism, representativeness, and practical relevance.

Executor

Planner

Agent

Conductor

Companion

L1
User

Assistance

L2
Partial

Automation

L3
Local

 Automation

L4
Global

Automation

L5
Beyond

Automation

Noticed user’s daily wallpaper

change—offering help!

Download & rotate

Bing wallpaper every day.

Download and use today’s

Bing wallpaper.

Set it as wallpaper.

Open this picture.

Figure 3: Automation levels demonstration on a specific
task: rotating wallpapers daily. Achieving the same final
goal involves increasing agent responsibility and decreasing
user involvement as automation level rises. Task executions
become longer and more complex, reflecting the shifting
division of labor between human and the agent.

Demand hierarchy. We define a three-level hierarchy:
domains, scenarios, and representative tasks with applica-
tions, guided by industry survey and public databases. Start-
ing from the State of Mobile 2025 report (Tower, 2025),
we adapt mobile usage statistics to the desktop setting by
excluding mobile-specific categories (e.g., payments) and
adding desktop-relevant ones (e.g., office work), forming
six domains: work, study, life services, entertainment, cre-
ative production, and system management. Figure 4 illus-
trates this demand hierarchy details. Scenarios are derived
by aligning app subcategories with activity metadata from
OECD ICT Access and Usage Database (OECD, 2025).

4

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Tasks are then selected through expert review and LLM-
assisted ideation, filtered by clarity, reproducibility, and
independence from real-world accounts or side effects.

Generalization scope. Anchored in this hierarchy, we
define three scopes of generalization: S1 (Narrow), S2
(Domain-Level), and S3 (General) to characterize agents’
capability breadth across diverse user demand. An S1 agent
handles tasks within a single scenario (e.g., calendar man-
agement). An S2 agent succeeds across multiple scenar-
ios within a domain (e.g., document editing, emailing, and
scheduling in the work domain). An S3 agent demonstrates
S2-level performance across all six domains, effectively
acting as a generalist for daily computer use assistance.

3.3. Evaluation Matrix

We further integrate the two orthogonal dimensions (au-
tomation levels L1–L5 and generalization scopes S1–S3)
into a two-dimensional evaluation matrix, enabling a sys-
tematic assessment of both the depth and breadth of agent
capabilities, as presented in Figure 1. This depth–breadth
perspective aligns with the performance–generality frame-
work proposed in earlier AGI research (Morris et al., 2024;
Zhang et al., 2024c). In the context of computer use, per-
formance denotes the extent to which an agent can operate
independently from human intervention within collaborative
settings, as reflected by the task complexity across the au-
tomation levels. Generality, in parallel, refers to the range
of tasks where the agent meets the performance threshold,
anchored in its coverage of the demand hierarchy.

By decoupling performance and generality, the matrix pro-
vides a fine-grained evaluation of CUAs’ practical utility
by revealing strengths and limitations and supporting clear
comparisons across systems with differing design priorities.
The structure also scales naturally—new tasks or scenarios
can be added to underexplored regions without disrupting
the overall framework. Most importantly, it offers a clear de-
velopmental roadmap, guiding researchers and practitioners
in setting progressive goals along both dimensions toward
building more capable and general-purpose agents.

3.4. Task Curation Process

Each task in OS-MAP is created following a standard-
ized process grounded in the two-dimensional organization
framework: (1) task selection, (2) exploration and spec-
ification, (3) instruction and configuration, (4) reference
preparation, (5) evaluation setup, and (6) cross-validation.
Appendix C.1, C.2 presents the detailed pipeline of each
step and the full design process and refinement of a rep-
resentative L4 task, respectively. We also incorporate and
adapt OSWorld tasks by mapping them to our difficulty lev-
els and generalization tiers. All included tasks undergo the

same validation pipeline, while those with invalid formats
or ambiguous feasibility are excluded. Related details are
discussed in Appendix C.3.

3.5. Benchmark Statistics

Statistics. Figure 4 presents the distribution of tasks in
OS-MAP across the user-centered demand hierarchy. Based
on industry surveys (Tower, 2025; OECD, 2025), we de-
fine a three-level demand hierarchy comprising 6 top-level
needs, 18 sub-needs, and 45 concrete scenarios, spanning
15 representative applications and covering a broad range
of daily computer use situations. In total, OS-MAP con-
tains 416 tasks representative of their respective scenarios.
Among them, 138 tasks are meticulously designed by the
authors, while the remaining 296 are relabeled and filtered
for ambiguity and redundancy from OSWorld (Xie et al.,
2024) as Appendix C.3 describes. Table 1 provides more
detailed statistics, including the distribution of automation
levels. Notably, 35.7% of tasks involve multi-app work-
flows, posing significant challenges to agents’ adaptation
and orchestration capabilities.

Of
fic

e

[12
2]

Knowledge

[98]

Life
[49]

E
nt

er
ta

in
m

en
t

[3
1]

C
reativity

[25]

System[91]

Communication

[24]

Sche
dul

e

[5]

Do
cu

m
en

ta
tio

n

[5
6]

D
at

a
[3

7]

R
eading and

Learning
[21]

Knowledge

[49]

Skills Practice[28]

Shopping
[12]

Trave
ling

[15]

Pub
lic

Serv
ice

s

[6]

Fin
an

ce

[11
]

In
fo

m
at
io
n

[5
]

Vi
de

o
an

d
M

us
ic

[1
4]

N
et

wo
rk

 P
la

tf
or

m
[4

]

G
am

in
g

[1
3]

D
igital C

ontent

C
reation
[25]

Files and

Applications

[55]

Personalization[36]

Emailing

Messag
ing

Meeti
ngCalen

dar
ToD

o

Writ
ing

Pr
es

en
ta

tio
nTa

bl
in

g

Vi
su

al
iz

at
io

nE
-book

O
nline C

ourses

Technical Tutorials

Data Retrieval

Inform
ation

OrganizationLiteratureNotes and
Mindmaps

Coding

Math
Languages

Searching

Ordering

Ticket

Cars

Accom
modat

ion

Map
Navig

atio
n

Citiz
en

Serv
ice

Pu
blic

 Sp
ac

e

Tr
an

sa
ct

ion

Man
ag

em
en

t

Ne
ws

W
ea

th
er

Vi
de

o

M
us

ic
C
om

m
un

it
y

M
in

ig
am

es
 P

la
yi

ng

G
am

e
In

fo
rm

at
io

n

Im
age E

diting

Video E
ditting

D
iagram

 D
raw

ing

Files

App Installation

App Configuration

System Resources

Appearance

Profile

System Settings

Figure 4: Task distribution on OS-MAP demand hierarchy.

Comparison with existing benchmarks. Table 2 com-
pares OS-MAP with existing efforts across key dimensions.
First, OS-MAP builds on an executable environment, in-
heriting the architecture, utility functions, and evaluation
tools from OSWorld (Xie et al., 2024). This ensures control-
lability and flexible open-domain scalability. Second, we
expand the number of applications and tasks, including a
substantial portion of cross-application tasks, thereby en-
hancing the task diversity. Most importantly, we introduce a

5

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Table 1: Statistics of OS-MAP.

Task Type Statistics

Total Tasks 416 (100%)
- Single-App 283 (62.3%)
- Multi-App 154 (37.7%)

Automation Level
- L1: Execution 25 (6.0%)
- L2: Planning 234 (56.3%)
- L3: Adaptability 115 (27.6%)
- L4: Orchestration 42 (10.1%)

Source
- Authors 161 (38.7%)
- Labeled from OSWorld 255 (61.3%)

Avg. Words of Task Instructions 34.3
Avg. Steps 11.4

fine-grained evaluation framework based on both task diffi-
culty levels and user demand hierarchy. These two axes are
further integrated into a structured, two-dimensional evalua-
tion matrix, enabling systematic, detailed comparisons and
offering clear guidance for future development—an aspect
largely overlooked by existing benchmarks.

4. Experiments and Analysis
4.1. Experimental Settings

Agent types. We construct three types of com-
puter use agents based on different types of state-
of-the-art models: (1) General baselines: general-
purpose VLMs (GPT-4o (Hurst et al., 2024),
Claude-3.7-Sonnet (Anthropic, 2025)) for end-
to-end execution. (2) GUI-specific model baseline:
GUI-specialized VLMs (UI-TARS-72B (Qin et al., 2025))
for end-to-end execution. (3) Planning-Grounding: to
compensate for the imprecise grounding abilities of general
models, GPT-4o for conducting high-level plans, refined
by lightweight GUI action models (Aguvis-7B (Xu et al.,
2024b), OS-ATLAS-Base-7B (Wu et al., 2024c)) for
precise grounding.

Agent settings. All three agent types share a common
decision-making and interaction pattern, along with similar
prompting strategies. Specifically, the agent interacts with
the environment under the guidance of a system prompt,
which includes descriptions of the task goal, observation
and action space, and required output format. At each step,
the agent generates an action based on the current screen-
shot and the three most recent rounds of interaction history.
Detailed prompts are provided in Appendix E.

4.2. Results

We compare the performance of the above three agent types
powered by different models on OS-MAP, as presented in
Table 3, with key empirical results as follows:

Computer use agents remain far from practical deploy-
ment. Despite recent advances, current agents exhibit con-
sistently poor performance across all levels of automation,
with many near zero, highlighting a substantial performance
gap from human users. This suggests that existing mod-
els still struggle with core capabilities such as grounding,
multi-step planning, adaptation, and are not yet reliable for
real-world computer use automation.

Agents’ performance exhibits a stepwise decline
across automation levels. Among the evaluated models,
UI-TARS-72B achieves the best balance of visual ground-
ing, robust planning, and task generalization, significantly
outperforming both general-purpose VLMs and GUI ac-
tion models under planning-grounding setups. It performs
well when tasks include step-level guidance (L1) and main-
tains solid performance on tasks requiring basic planning
(L2). However, its advantage drops markedly on tasks in-
volving environmental adaptation (L3) and multi-context
orchestration (L4), suggesting that adaptive reasoning and
long-horizon planning remain key challenges even when
accurate perception and domain knowledge are in place.

Open-source models have achieved competitive end-
to-end performance. Although smaller in scale, open-
source models trained in GUI-centric environments (Qin
et al., 2025) demonstrate better performance than propri-
etary general-purpose models in end-to-end execution. Their
superiority stems from targeted training in GUI contexts,
which enhances planning stability and task adaptation in
complex desktop environments.

The interleaved planning and grounding setting yields
better performance. Dividing planning and grounding
between specialized agents significantly improves perfor-
mance. In particular, using GPT-4o as a high-level plan-
ner and lightweight GUI models as grounders outperforms
GPT-4o alone in end-to-end execution. This setup lever-
ages the world knowledge and strategic planning of general
models alongside the precise perception and control capa-
bilities of GUI-oriented models.

5. Analysis
To understand key challenges behind poor performance, this
section analyzes representative failure cases to uncover core
factors that lead to agent breakdowns. We highlight both
general capability gaps observed across agents and level-

6

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Table 2: Comparison of different environments for benchmarking CUAs. The columns indicate: dynamic executable
environment provided (Exec. Env.?), the ease of adding new tasks involving arbitrary applications in open domains (Scal.
Env.), the number of applications or websites (#Apps/sites), the number of task instances and templates (if applicable) (#
Inst. (# Temp.)), inclusion of cross-app tasks (Cross-app?), whether to provide evaluation based on task difficulty (Task Diff.
Levels?), demand perspective (Demand Scope?), or a multi-dimensional structure (Struct. Eval.?).

Benchmark Exec.
Env.?

Scal.
Env.?

Apps/
sites

Inst.
(# Temp.)

Cross-
app?

Task Diff.
Levels?

Demand
Scope?

Struct.
Eval.?

GAIA (Mialon et al., 2023) ✗ - - 466 ✗ ✓ ✗ ✗
MIND2WEB (Deng et al., 2023) ✗ - 137 2350 ✗ ✗ ✗ ✗
WEBVOYAGER (He et al., 2024) ✗ - 15 643 ✗ ✗ ✗ ✗
AITW (Rawles et al., 2024) ✗ - 357+ 30k ✗ ✗ ✗ ✗
OMNIACT (Kapoor et al., 2024) ✗ - 60+ 9802 ✗ ✗ ✗ ✗

WEBSHOP (Yao et al., 2022) ✓ ✗ 1 12k (1) ✗ ✗ ✗ ✗
WEBARENA (Zhou et al., 2023) ✓ ✗ 6 812 (241) ✗ ✗ ✗ ✗
WORKARENA (Drouin et al., 2024) ✓ ✗ 1 23k (29) ✗ ✗ ✗ ✗
ANDROIDARENA (Xing et al., 2024) ✓ ✗ 13 221 ✓ ✓ ✗ ✓
ANDROIDWORLD (Rawles et al., 2024) ✓ ✓ 20 ∞ (116) ✓ ✗ ✗ ✗
ANDROIDAGENTARENA (Chai et al., 2025) ✓ ✓ 21 201 ✗ ✓ ✗ ✗
OSWORLD (Xie et al., 2024) ✓ ✓ 9 369 ✓ ✗ ✗ ✗
SPIDER2-V (Cao et al., 2024) ✓ ✓ 20 494 ✓ ✗ ✗ ✗
WINDOWSAGENTARENA (Bonatti et al., 2024) ✓ ✓ 11 154 ✓ ✗ ✗ ✗
SCIENCEBOARD (Sun et al., 2025) ✓ ✗ 6 169 ✓ ✗ ✓ ✗

OS-MAP ✓ ✓ 15 416 ✓ ✓ ✓ ✓

Table 3: Success rates of computer use agents on OS-MAP. We present each agent backbone’s performance on tasks across
different automation levels. Proprietary VLMs and GUI Action VLMs are distinguished by color. In Planning-Grounding

setting, GPT-4o is used as the planning model.

Agent Type Model Success Rate (↑)
L1 L2 L3 L4 Overall

General Baselines GPT-4o 0.0% 1.2% 1.1% 0.0% 1.0%
Claude-3.7-Sonnet 0.0% 3.7% 0.0% 0.0% 2.1%

GUI-Specific Baseline UI-TARS-72B 48.0% 14.0% 1.0% 0.0% 11.4%

Planning-Grounding Aguvis-7B 4.0% 4.7% 1.8% 0.0% 3.4%
OS-ATLAS-Base-7B 0.0% 6.6% 1.1% 0.0% 4.3%

Human Performance 96.0% 74.8% 65.2% 59.5% 71.9%

specific bottlenecks tied to increasing automation levels.
These insights shed light on where agents fall short and
inform more targeted future improvements. See Appendix F
for a more detailed case analysis with screenshots.

5.1. General Failures

Poor instruction following. This manifests as limited
generalization over the action space and frequent violations
of the required output format, contributing to around 15% of
failures. A typical case is Claude-3.7-Sonnet issuing
an OPEN FILE EXPLORER command when it decide to
open the file manager—despite the valid action space being
restricted to atomic mouse and keyboard operations. The
problem is more pronounced in open-source models, such
as UI-TARS-72B, which cannot be prompted to conform

to the action space of OS-MAP.

Severe hallucination. Due to limited perception and rea-
soning, agents often wrongly assume that previous actions
have succeeded, and occasionally exhibit drastic hallucina-
tions—e.g., mistaking the activities window for Chrome and
attempting to search within it (Figure 13 in Appendix F).

5.2. Level-wise Bottlenecks

L1: execution. Proprietary models (Hurst et al., 2024;
Anthropic, 2025) exhibit poor grounding capabilities, often
preferring command-line operations (Sun et al., 2024a) or
direct URL jumps over intuitive GUI navigation—strategies
that may resemble “magical” behavior from a human per-
spective (Figure 5). In contrast, GUI action models (Qin

7

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Figure 5: Agent prefers entering
”magic” URL instead of navigate
websites.

Figure 6: GUI action model fails
in the grounding of the green color
block.

Figure 7: Searching for the album
Taylor Swift instead of all albums by
Taylor Swift.

Figure 8: Agent is deleting all history,
not just those related to YouTube.

Figure 9: Agent start filling out the
form before clarifying necessary in-
formation from the email.

Figure 10: Agent calculate calculus
internally instead of trying tools in
the context.

Figure 11: Failure cases of each automation levels, reflecting bottlenecks in core capabilities.

et al., 2025) demonstrate more human-aligned interaction
patterns and stronger grounding ability, yet still struggle
with accurately locating non-textual UI elements (Figure 6).

L2: planning. Benefiting from broad world knowledge,
agents often produce reasonable high-level plans for sim-
ple tasks. However, they are prone to two common fail-
ure modes: (1) distraction by similar but incorrect op-
tions—for example, searching for the album Taylor Swift
instead of all albums by Taylor Swift (Figure 7); and (2) ne-
glecting specific task constraints—e.g., deleting all brows-
ing history instead of those related to YouTube (Figure 8).

L3: adaptability. Agents demonstrate basic proactive ex-
ploration (e.g., inspecting potential directories before file
operations) and reactive handling (e.g., closing unexpected
pop-ups). However, they struggle with fallback strategies
under deviation, such as failing to exit full-screen mode
via hotkeys to access the system-level interfaces (Figure 14
in Appendix F), or activating theater mode before resiz-
ing, which hides the required controls (Figure 15). They
also show poor awareness of implicit task context, often
bypassing relevant active in-window elements in favor of
unrelated global searches (Figure 16).

L4: orchestration. These tasks pose the greatest chal-
lenge, requiring task decomposition, dependency tracking,

context switching, and tool use. Agents exhibit major bot-
tlenecks in all aspects: unclear decomposition leads to
aimless clicking in complex workflows (Figure 17 in Ap-
pendix F); misordered context switches break task depen-
dencies, such as filling forms before reading related emails
(Figure 9) or initiating transactions before checking wal-
let balance (Figure 18); and failure to leverage external
tools, e.g., ignoring a provided calculator link and relying
on inaccurate internal computations instead (Figure 10).

6. Related Work
Computer use benchmarks. Existing benchmarks for
computer use agents span a wide range of evaluation settings
and can be broadly categorized along several dimensions:
by platform (e.g., Web (Yao et al., 2022; Deng et al., 2023;
Zhou et al., 2023; Drouin et al., 2024; Koh et al., 2024; Liu
et al., 2024a), Desktop (Xie et al., 2024; Bonatti et al., 2024;
Kapoor et al., 2024; Cao et al., 2024; Xu et al., 2024a), or
Mobile (Rawles et al., 2023; 2024; Lu et al., 2024a; Chai
et al., 2025)); by task type (e.g., understanding (Liu et al.,
2024a; Chen et al., 2024a), grounding (Cheng et al., 2024; Li
et al., 2025; Nayak et al., 2025), and end-to-end automation);
and by scenario domain (e.g., everyday, office (Drouin et al.,
2024; Xu et al., 2024a), or professional (Cao et al., 2024; Li
et al., 2025)). A recent trend is the adoption of dynamic en-
vironments (Xie et al., 2024; Cao et al., 2024; Bonatti et al.,

8

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

2024; Xu et al., 2024a; Rawles et al., 2024; Chai et al., 2025;
Sun et al., 2025) which enable the open-ended interaction.
These environments support generalization and scalability,
making them ideal testbeds for realistic computer use agent
evaluation. Focusing on end-to-end automation evaluation
in daily scenarios on a dynamic desktop environment, OS-
MAP is the first to systematically analyze task structures
and automation levels grounded in real-world user needs,
bridging capability evaluation with practical relevance.

Computer use agents. Recent advances in computer use
agents, have been highly diverse. On the model side, ef-
forts have focused on enhancing visual perception through
high-resolution (Hong et al., 2024; You et al., 2024; Yang
et al., 2024; Li et al., 2024c) or adaptive cropping and token
selection (Ge et al., 2024; Zhang et al., 2024b; Lin et al.,
2024; Wu et al., 2025) techniques. On the data side, two
dominant trends have emerged: (1) large-scale multi-task
pretraining on web-based datasets (Cheng et al., 2024; You
et al., 2024; Chen et al., 2024b; Wu et al., 2024a;c; Gou
et al., 2024; Lu et al., 2024b), and (2) supervised fine-tuning
on high-quality interaction trajectories (Wu et al., 2024a;
Ou et al., 2024; Zhang et al., 2024a; Sun et al., 2024b; Qin
et al., 2025; Su et al., 2025). Reinforcement learning has
also been introduced to improve adaptability, error recovery,
and long-horizon reasoning (Fan et al., 2025; Feng et al.,
2024; Lai et al., 2024; Qi et al., 2024; Lu et al., 2025; Xia &
Luo, 2025; Liu et al., 2025). A parallel line of work builds
ReAct-style (Yao et al., 2023; Shinn et al., 2023) agentic
frameworks (Agashe et al., 2024; Wu et al., 2024b; Abuel-
saad et al., 2024; Zheng et al., 2024; He et al., 2024), where
agents coordinate structured functional modules, with grow-
ing emphasis on hierarchical planning, systematic memory
organization, and collaborative multi-agent systems (Sun
et al., 2023; Jia et al., 2024; Agashe et al., 2025; Jiang et al.,
2025; Wang et al., 2024; 2025; Zhang et al., 2025).

AI capability levels. Both industry and academia have
long explored ways to define graded AI capabilities (Sheri-
dan & Parasuraman, 2005; Parasuraman et al., 2000; Go-
ertzel, 2014). A well-known example is the levels of driving
automation (Committee, 2021) based on the human–system
collaboration model. Recently, researchers have proposed
grading schemes for artificial general intelligence with the
performance-generality capability framework (Morris et al.,
2024; Zhang et al., 2024c). A related survey (Li et al.,
2024b) discusses the intelligence levels of personal LLM
agent in terms of collaboration patterns, but with abstract
classification, vague levels and overlapping capabilities. Our
work grounds the performance–generality perspective in the
concrete domain of computer tasks automation, introducing
clear levels aligned with real-world tasks and user involve-
ment, and further instantiates this taxonomy as the OS-MAP
benchmark to support systematic, quantitative evaluation.

7. Limitations and Future Work
First, designing tasks that align precisely with automation
levels and hierarchical needs often requires carefully con-
trolled initial states and evaluation functions built through
extensive reverse engineering, limiting the scalability of syn-
thetic approaches. Moreover, the need for distribution and
reproducibility prevents alignment with many real-world
scenarios, which are often tightly coupled with user ac-
counts, personalized content, or external effects, making
them unsuitable as benchmark tasks.

Future work may explore scalable methods to generate fine-
grained, controllable tasks that better cover the full range
of user needs. Additionally, integrating environment-aware
reward shaping could enable finer supervision and continual
improvement for computer-using agents. We hope OS-
MAP offers a solid foundation and actionable insights for
advancing this direction.

8. Conclusion
In this work, we propose a two-dimensional evaluation
framework for computer use agents, spanning automation
levels and generalization scopes. We instantiate it as the
OS-MAP Benchmark, comprising 416 tasks across 15 desk-
top applications, executed in a controllable and extensi-
ble environment to ensure quantitative and reproducible
evaluation. Despite recent progress, OS-MAP remains
highly challenging—state-of-the-art general-purpose and
GUI-specialized VLMs still fall far short of human perfor-
mance. Through in-depth failure analysis, we identify key
capability bottlenecks at each automation level, laying a
foundation for targeted improvements in future research.

Impact Statement
While the development of computer use agents promises
to enhance productivity and relieve humans from repetitive
digital labor, it also raises important ethical and societal
considerations. Many occupations rely heavily on routine
computer interactions, and the increasing automation of
such tasks may lead to concerns about job displacement,
privacy, or the misuse of sensitive data.

However, it is important to clarify that our work introduces
a benchmark instead of a deployed system, and does not
directly automate any occupational workflows. The bench-
mark is designed to evaluate current agents’ capabilities in a
controlled setting and provide insight into specific task-level
automation potential, rather than assess the feasibility of
full job replacement. We hope our work supports respon-
sible research and helps stakeholders—from researchers to
policymakers—better understand both the opportunities and
limitations of this emerging technology.

9

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

References
Abuelsaad, T., Akkil, D., Dey, P., Jagmohan, A., Vempaty,

A., and Kokku, R. Agent-e: From autonomous web
navigation to foundational design principles in agentic
systems. arXiv preprint arXiv:2407.13032, 2024.

Agashe, S., Han, J., Gan, S., Yang, J., Li, A., and Wang, X. E.
Agent s: An open agentic framework that uses computers
like a human. arXiv preprint arXiv:2410.08164, 2024.

Agashe, S., Wong, K., Tu, V., Yang, J., Li, A., and Wang,
X. E. Agent s2: A compositional generalist-specialist
framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic. Claude 3.5 sonnet. https:
//www.anthropic.com/news/
3-5-models-and-computer-use, 2024. Ac-
cessed: 2025-04-25.

Anthropic. Claude 3.7 sonnet. https://www.
anthropic.com/news/claude-3-7-sonnet,
2025. Accessed: 2025-04-25.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., et al. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923, 2025.

Bonatti, R., Zhao, D., Bonacci, F., Dupont, D., Abdali, S.,
Li, Y., Lu, Y., Wagle, J., Koishida, K., Bucker, A., et al.
Windows agent arena: Evaluating multi-modal os agents
at scale. arXiv preprint arXiv:2409.08264, 2024.

Cao, R., Lei, F., Wu, H., Chen, J., Fu, Y., Gao, H., Xiong,
X., Zhang, H., Hu, W., Mao, Y., et al. Spider2-v: How far
are multimodal agents from automating data science and
engineering workflows? Advances in Neural Information
Processing Systems, 37:107703–107744, 2024.

Chai, Y., Li, H., Zhang, J., Liu, L., Liu, G., Wang, G.,
Ren, S., Huang, S., and Li, H. A3: Android agent arena
for mobile gui agents. arXiv preprint arXiv:2501.01149,
2025.

Chaves, A. P. and Gerosa, M. A. How should my chatbot
interact? a survey on social characteristics in human–
chatbot interaction design. International Journal of
Human–Computer Interaction, 37(8):729–758, 2021.

Chen, D., Huang, Y., Wu, S., Tang, J., Chen, L., Bai, Y.,
He, Z., Wang, C., Zhou, H., Li, Y., et al. Gui-world:
A dataset for gui-oriented multimodal llm-based agents.
arXiv e-prints, pp. arXiv–2406, 2024a.

Chen, V., Zhu, A., Zhao, S., Mozannar, H., Sontag, D., and
Talwalkar, A. Need help? designing proactive ai assis-
tants for programming. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp.
1–18, 2025.

Chen, X., Li, H., Liang, J., Jiang, S., and Yang, D.
Edge: Enhanced grounded gui understanding with en-
riched multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461, 2024b.

Cheng, K., Sun, Q., Chu, Y., Xu, F., Li, Y., Zhang, J., and
Wu, Z. Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935, 2024.

Committee, O.-R. A. D. O. Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-
Road Motor Vehicles, April 2021. URL https://doi.
org/10.4271/J3016_202104.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36:28091–28114, 2023.

Drouin, A., Gasse, M., Caccia, M., Laradji, I. H., Del Verme,
M., Marty, T., Boisvert, L., Thakkar, M., Cappart, Q.,
Vazquez, D., et al. Workarena: How capable are web
agents at solving common knowledge work tasks? arXiv
preprint arXiv:2403.07718, 2024.

Fan, Y., Zhao, H., Zhang, R., Shen, Y., Wang, X. E., and
Wu, G. Gui-bee: Align gui action grounding to novel
environments via autonomous exploration. arXiv preprint
arXiv:2501.13896, 2025.

Feng, P., He, Y., Huang, G., Lin, Y., Zhang, H., Zhang, Y.,
and Li, H. Agile: A novel reinforcement learning frame-
work of llm agents. arXiv preprint arXiv:2405.14751,
2024.

Ge, Z., Li, J., Pang, X., Gao, M., Pan, K., Lin, W., Fei, H.,
Zhang, W., Tang, S., and Zhuang, Y. Iris: Breaking gui
complexity with adaptive focus and self-refining. arXiv
preprint arXiv:2412.10342, 2024.

Goertzel, B. Artificial general intelligence: concept, state of
the art, and future prospects. Journal of Artificial General
Intelligence, 5(1):1, 2014.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

He, H., Yao, W., Ma, K., Yu, W., Dai, Y., Zhang, H., Lan,
Z., and Yu, D. Webvoyager: Building an end-to-end
web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024.

Hong, W., Wang, W., Lv, Q., Xu, J., Yu, W., Ji, J., Wang, Y.,
Wang, Z., Dong, Y., Ding, M., et al. Cogagent: A visual
language model for gui agents. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14281–14290, 2024.

10

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Hu, S., Ouyang, M., Gao, D., and Shou, M. Z. The dawn
of gui agent: A preliminary case study with claude 3.5
computer use. arXiv preprint arXiv:2411.10323, 2024a.

Hu, X., Xiong, T., Yi, B., Wei, Z., Xiao, R., Chen, Y., Ye, J.,
Tao, M., Zhou, X., Zhao, Z., et al. Os agents: A survey
on mllm-based agents for general computing devices use,
2024b.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jia, C., Luo, M., Dang, Z., Sun, Q., Xu, F., Hu, J., Xie, T.,
and Wu, Z. Agentstore: Scalable integration of heteroge-
neous agents as specialized generalist computer assistant.
arXiv preprint arXiv:2410.18603, 2024.

Jiang, W., Zhuang, Y., Song, C., Yang, X., Zhou, J. T.,
and Zhang, C. Appagentx: Evolving gui agents as profi-
cient smartphone users. arXiv preprint arXiv:2503.02268,
2025.

Kapoor, R., Butala, Y. P., Russak, M., Koh, J. Y., Kamble,
K., AlShikh, W., and Salakhutdinov, R. Omniact: A
dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European
Conference on Computer Vision, pp. 161–178. Springer,
2024.

Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P.-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Lai, H., Liu, X., Iong, I. L., Yao, S., Chen, Y., Shen, P., Yu,
H., Zhang, H., Zhang, X., Dong, Y., et al. Autowebglm:
A large language model-based web navigating agent. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5295–5306,
2024.

Li, K., Meng, Z., Lin, H., Luo, Z., Tian, Y., Ma, J., Huang,
Z., and Chua, T.-S. Screenspot-pro: Gui grounding for
professional high-resolution computer use. arXiv preprint
arXiv:2504.07981, 2025.

Li, W., Bishop, W. E., Li, A., Rawles, C., Campbell-Ajala,
F., Tyamagundlu, D., and Riva, O. On the effects of data
scale on ui control agents. Advances in Neural Informa-
tion Processing Systems, 37:92130–92154, 2024a.

Li, Y., Wen, H., Wang, W., Li, X., Yuan, Y., Liu, G., Liu,
J., Xu, W., Wang, X., Sun, Y., et al. Personal llm agents:
Insights and survey about the capability, efficiency and
security. arXiv preprint arXiv:2401.05459, 2024b.

Li, Z., You, K., Zhang, H., Feng, D., Agrawal, H., Li,
X., Moorthy, M. P. S., Nichols, J., Yang, Y., and Gan, Z.
Ferret-ui 2: Mastering universal user interface understand-
ing across platforms. arXiv preprint arXiv:2410.18967,
2024c.

Liao, L., Yang, G. H., and Shah, C. Proactive conversational
agents in the post-chatgpt world. In Proceedings of the
46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 3452–
3455, 2023.

Lin, K. Q., Li, L., Gao, D., Yang, Z., Bai, Z., Lei, W.,
Wang, L., and Shou, M. Z. Showui: One vision-language-
action model for generalist gui agent. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Liu, E. Z., Guu, K., Pasupat, P., Shi, T., and Liang, P. Re-
inforcement learning on web interfaces using workflow-
guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Liu, J., Song, Y., Lin, B. Y., Lam, W., Neubig, G., Li, Y.,
and Yue, X. Visualwebbench: How far have multimodal
llms evolved in web page understanding and grounding?
arXiv preprint arXiv:2404.05955, 2024a.

Liu, X., Qin, B., Liang, D., Dong, G., Lai, H., Zhang, H.,
Zhao, H., Iong, I. L., Sun, J., Wang, J., et al. Autoglm:
Autonomous foundation agents for guis. arXiv preprint
arXiv:2411.00820, 2024b.

Liu, Y., Li, P., Xie, C., Hu, X., Han, X., Zhang, S., Yang, H.,
and Wu, F. Infigui-r1: Advancing multimodal gui agents
from reactive actors to deliberative reasoners. arXiv
preprint arXiv:2504.14239, 2025.

Lu, Q., Shao, W., Liu, Z., Meng, F., Li, B., Chen, B., Huang,
S., Zhang, K., Qiao, Y., and Luo, P. Gui odyssey: A
comprehensive dataset for cross-app gui navigation on
mobile devices. arXiv preprint arXiv:2406.08451, 2024a.

Lu, Y., Yang, J., Shen, Y., and Awadallah, A. Omni-
parser for pure vision based gui agent. arXiv preprint
arXiv:2408.00203, 2024b.

Lu, Y., Yang, S., Qian, C., Chen, G., Luo, Q., Wu, Y., Wang,
H., Cong, X., Zhang, Z., Lin, Y., et al. Proactive agent:
Shifting llm agents from reactive responses to active as-
sistance. arXiv preprint arXiv:2410.12361, 2024c.

Lu, Z., Chai, Y., Guo, Y., Yin, X., Liu, L., Wang, H., Xiong,
G., and Li, H. Ui-r1: Enhancing action prediction of
gui agents by reinforcement learning. arXiv preprint
arXiv:2503.21620, 2025.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom,
T. Gaia: a benchmark for general ai assistants. In The

11

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Twelfth International Conference on Learning Represen-
tations, 2023.

Morris, M. R., Sohl-Dickstein, J., Fiedel, N., Warkentin, T.,
Dafoe, A., Faust, A., Farabet, C., and Legg, S. Position:
Levels of agi for operationalizing progress on the path to
agi. In Forty-first International Conference on Machine
Learning, 2024.

Nayak, S., Jian, X., Lin, K. Q., Rodriguez, J. A., Kalsi,
M., Awal, R., Chapados, N., Özsu, M. T., Agrawal, A.,
Vazquez, D., et al. Ui-vision: A desktop-centric gui
benchmark for visual perception and interaction. arXiv
preprint arXiv:2503.15661, 2025.

OECD. Ict access and usage database. https://oe.cd/
dx/ict-access-usage, 2025. Accessed: 2025-04-
25.

OpenAI. Introducing operator. https://openai.com/
index/introducing-operator/, 2025. Ac-
cessed: 2025-04-25.

Ou, T., Xu, F. F., Madaan, A., Liu, J., Lo, R., Sridhar, A.,
Sengupta, S., Roth, D., Neubig, G., and Zhou, S. Synatra:
Turning indirect knowledge into direct demonstrations for
digital agents at scale. arXiv preprint arXiv:2409.15637,
2024.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. A
model for types and levels of human interaction with
automation. IEEE Transactions on systems, man, and
cybernetics-Part A: Systems and Humans, 30(3):286–297,
2000.

Qi, Z., Liu, X., Iong, I. L., Lai, H., Sun, X., Zhao, W., Yang,
Y., Yang, X., Sun, J., Yao, S., et al. Webrl: Training
llm web agents via self-evolving online curriculum re-
inforcement learning. arXiv preprint arXiv:2411.02337,
2024.

Qin, Y., Ye, Y., Fang, J., Wang, H., Liang, S., Tian, S.,
Zhang, J., Li, J., Li, Y., Huang, S., et al. Ui-tars: Pioneer-
ing automated gui interaction with native agents. arXiv
preprint arXiv:2501.12326, 2025.

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap, T.
Androidinthewild: A large-scale dataset for android de-
vice control. Advances in Neural Information Processing
Systems, 36:59708–59728, 2023.

Rawles, C., Clinckemaillie, S., Chang, Y., Waltz, J., Lau,
G., Fair, M., Li, A., Bishop, W., Li, W., Campbell-
Ajala, F., et al. Androidworld: A dynamic benchmark-
ing environment for autonomous agents. arXiv preprint
arXiv:2405.14573, 2024.

Sheridan, T. B. and Parasuraman, R. Human-automation
interaction. Reviews of human factors and ergonomics, 1
(1):89–129, 2005.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

Su, H., Sun, R., Yoon, J., Yin, P., Yu, T., and Arık, S. Ö.
Learn-by-interact: A data-centric framework for self-
adaptive agents in realistic environments. arXiv preprint
arXiv:2501.10893, 2025.

Sun, Q., Yin, Z., Li, X., Wu, Z., Qiu, X., and Kong,
L. Corex: Pushing the boundaries of complex reason-
ing through multi-model collaboration. arXiv preprint
arXiv:2310.00280, 2023.

Sun, Q., Chen, Z., Xu, F., Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024a.

Sun, Q., Cheng, K., Ding, Z., Jin, C., Wang, Y., Xu, F.,
Wu, Z., Jia, C., Chen, L., Liu, Z., et al. Os-genesis:
Automating gui agent trajectory construction via reverse
task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Sun, Q., Liu, Z., Ma, C., Ding, Z., Xu, F., Yin, Z., Zhao,
H., Wu, Z., Cheng, K., Liu, Z., et al. Scienceboard:
Evaluating multimodal autonomous agents in realistic
scientific workflows. arXiv preprint arXiv:2505.19897,
2025.

Tower, S. State of mobile 2025: The industry’s
leading report. https://sensortower.com/
state-of-mobile-2025, 2025. Accessed: 2025-
04-25.

Wang, J., Xu, H., Jia, H., Zhang, X., Yan, M., Shen, W.,
Zhang, J., Huang, F., and Sang, J. Mobile-agent-v2:
Mobile device operation assistant with effective nav-
igation via multi-agent collaboration. arXiv preprint
arXiv:2406.01014, 2024.

Wang, Z., Xu, H., Wang, J., Zhang, X., Yan, M., Zhang, J.,
Huang, F., and Ji, H. Mobile-agent-e: Self-evolving
mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

Wu, Q., Xu, W., Liu, W., Tan, T., Liu, J., Li, A., Luan, J.,
Wang, B., and Shang, S. Mobilevlm: A vision-language
model for better intra-and inter-ui understanding. arXiv
preprint arXiv:2409.14818, 2024a.

Wu, Q., Cheng, K., Yang, R., Zhang, C., Yang, J., Jiang,
H., Mu, J., Peng, B., Qiao, B., Tan, R., et al. Gui-actor:

12

https://oe.cd/dx/ict-access-usage
https://oe.cd/dx/ict-access-usage
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://sensortower.com/state-of-mobile-2025
https://sensortower.com/state-of-mobile-2025

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Coordinate-free visual grounding for gui agents. arXiv
preprint arXiv:2506.03143, 2025.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S.,
Yu, T., and Kong, L. Os-copilot: Towards generalist
computer agents with self-improvement. arXiv preprint
arXiv:2402.07456, 2024b.

Wu, Z., Wu, Z., Xu, F., Wang, Y., Sun, Q., Jia, C., Cheng,
K., Ding, Z., Chen, L., Liang, P. P., et al. Os-atlas: A
foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024c.

Xia, X. and Luo, R. Gui-r1: A generalist r1-style vision-
language action model for gui agents. arXiv preprint
arXiv:2504.10458, 2025.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua,
T. J., Cheng, Z., Shin, D., Lei, F., et al. Osworld: Bench-
marking multimodal agents for open-ended tasks in real
computer environments. Advances in Neural Information
Processing Systems, 37:52040–52094, 2024.

Xing, M., Zhang, R., Xue, H., Chen, Q., Yang, F., and
Xiao, Z. Understanding the weakness of large language
model agents within a complex android environment. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6061–6072,
2024.

Xu, F. F., Song, Y., Li, B., Tang, Y., Jain, K., Bao, M., Wang,
Z. Z., Zhou, X., Guo, Z., Cao, M., et al. Theagentcom-
pany: benchmarking llm agents on consequential real
world tasks. arXiv preprint arXiv:2412.14161, 2024a.

Xu, Y., Wang, Z., Wang, J., Lu, D., Xie, T., Saha, A., Sahoo,
D., Yu, T., and Xiong, C. Aguvis: Unified pure vision
agents for autonomous gui interaction. arXiv preprint
arXiv:2412.04454, 2024b.

Yang, J., Zhang, H., Li, F., Zou, X., Li, C., and Gao, J.
Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Yang, Y., Wang, Y., Li, D., Luo, Z., Chen, B., Huang, C.,
and Li, J. Aria-ui: Visual grounding for gui instructions.
arXiv preprint arXiv:2412.16256, 2024.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744–20757, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. In International Conference on
Learning Representations (ICLR), 2023.

You, K., Zhang, H., Schoop, E., Weers, F., Swearngin, A.,
Nichols, J., Yang, Y., and Gan, Z. Ferret-ui: Grounded
mobile ui understanding with multimodal llms. In Eu-
ropean Conference on Computer Vision, pp. 240–255.
Springer, 2024.

Zhang, C., Huang, H., Ni, C., Mu, J., Qin, S., He, S., Wang,
L., Yang, F., Zhao, P., Du, C., et al. Ufo2: The desktop
agentos. arXiv preprint arXiv:2504.14603, 2025.

Zhang, J., Wu, J., Teng, Y., Liao, M., Xu, N., Xiao, X., Wei,
Z., and Tang, D. Android in the zoo: Chain-of-action-
thought for gui agents. arXiv preprint arXiv:2403.02713,
2024a.

Zhang, J., Yu, Y., Liao, M., Li, W., Wu, J., and Wei, Z. Ui-
hawk: Unleashing the screen stream understanding for
gui agents. Preprints, manuscript/202408.2137, 2024b.

Zhang, K., Qi, B., and Zhou, B. Towards building spe-
cialized generalist ai with system 1 and system 2 fusion.
arXiv preprint arXiv:2407.08642, 2024c.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-4v
(ision) is a generalist web agent, if grounded. arXiv
preprint arXiv:2401.01614, 2024.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., et al. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

13

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

A. Qualitative Evaluation Matrix
This section explains the qualitative criteria used to position each method in the evaluation matrix (Figure 1). Given
the subjective and heuristic nature of this analysis, the capability levels shown are approximate and do not reflect strict
objectivity or fine-grained scale.

• Academic methods. For research models, capability levels are estimated based on their task scope, qualitative behavior,
and whether they address key challenges or demonstrate core abilities. Quantitative results on relevant benchmarks
are then used to refine their positions. For example, SeeClick (Cheng et al., 2024), U-Ground (Gou et al., 2024),
and OS-Atlas (Wu et al., 2024c) are all evaluated on the ScreenSpot (Cheng et al., 2024) dataset, which focuses on
GUI action grounding—a task category near L1. The latter two models incorporate rudimentary planning and can
independently complete simple end-to-end tasks, suggesting capabilities closer to L2. Their exact placement is further
adjusted based on performance scores (e.g., overall accuracy) and domain generalization, as ScreenSpot includes
multiple domains. Other methods are evaluated similarly, using additional benchmarks such as AITW (Rawles et al.,
2023), GAIA (Mialon et al., 2023), WebArena (Zhou et al., 2023), and OSWorld (Xie et al., 2024).

• General-purpose models. For models like GPT, we base our assessment on their qualitative and quantitative
performance in OSWorld (Xie et al., 2024) and OS-MAP, under both end-to-end and planning-grounding settings.
These models show strong generalization—able to plan in nearly any scenario—but limited adaptivity, often struggling
with unexpected events or common errors. As a result, they are positioned in the upper-middle region of the matrix.

• Commercial products. For tools like Microsoft Copilot, which lack quantitative evaluations or OSWorld-style
experiments, we rely on a combination of official capability descriptions, public user discussions, and authors’ own
usage experience. Earlier commercial products like Siri offer narrow functionality and low automation, while GitHub
Copilot shows high-level code generation capabilities, often anticipating user needs. Microsoft Copilot for Windows
11 provides a more balanced and moderate level of capability and coverage.

B. Environment Structure
The core of the OS-MAP environment consists of a virtual machine (VM) and a virtual machine controller (VMC). The host
machine runs a VM using virtualization software such as VMware. This VM serves both as the source of visual observations
and the target for action execution by the agents. The host communicates with the VM through a virtual network, enabling
initialization, observation extraction, file transfer, and other forms of control. These components, together with tools for
launching the VM, loading snapshots, and managing execution states, collectively form the VMC, which runs on the
host side. The following sections detail how this architecture supports the task lifetime, initialization and configuration,
state-based evaluation, and the design of the observation and action spaces.

B.1. Task Lifetime

OS-MAP consists of 416 tasks across diverse scenarios, each controlled and executed sequentially by a main evaluation
loop. For each iteration, a new task evaluation is initiated. The lifetime of a task is composed of the following five stages:

1. Initialization. To ensure reproducibility, each task begins by loading a designated snapshot. Afterward, a predefined
initialization script is executed. Snapshots and initialization scripts are designed to work in tandem, offering both high
flexibility and low initialization overhead.

2. Task execution. Once initialized, the system enters the execution loop. At each step, the VMC captures the current
observation and passes it to the agent. Based on the current state and interaction history, the agent outputs a textual
action. This action is parsed and executed by the VMC within the VM. The loop continues until the agent either
terminates voluntarily (via DONE or FAIL) or reaches the maximum allowed number of steps.

3. Post-execution configuration (optional). For certain tasks, the final state after agent execution is not directly extractable.
In such cases, additional actions are required to bring the system into a verifiable state. For example, after adding an
item to the cart on the Decathlon website, the system needs to open the cart page so the evaluator can verify the result
by inspecting the DOM tree.

14

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

4. State extraction. The VMC includes a set of state extraction functions designed to retrieve relevant information from
the VM. These serve as input for the next evaluation step.

5. Evaluation. Evaluation functions are task-specific and compare the extracted state against expected conditions.
Depending on the nature of the state, corresponding comparison logic is applied—such as string matching, file
equivalence, or key–value comparison.

B.2. Initialization Configurations

Task initialization in OS-MAP relies on a combination of restorable VM snapshots and configuration scripts. For simple
tasks, initialization can be performed directly via scripts, which are pre-written command sequences that encapsulate
commonly used operations—such as file downloads, application launches, API calls, webpage interactions via Playwright,
and shell commands. For more complex or customized tasks (e.g., pre-created users and messages in Rocket.Chat), manual
setup is conducted in advance and saved as a snapshot for fast recovery. In practice, task initialization uses both snapshot
recovery and lightweight runtime configuration: snapshots (either from leaf nodes or key intermediate nodes of the snapshot
tree) are loaded first, followed by scripted configuration. This hybrid approach ensures high flexibility and minimizes
initialization time.

B.3. State-based Evaluation

The primary motivation for introducing a dynamic environment is to enable state-based evaluation. The underlying
logic is that as long as the system ultimately reaches a predefined desired state, the task is considered successfully
completed—regardless of the specific sequence of actions taken to reach that state. This approach allows for a fair
comparison between different execution trajectories of the same task.

Accordingly, each task JSON file must define both the target state and the method for extracting relevant system states.
Common examples include retrieving specific files, reading software or system configurations, or extracting the content of
rendered webpages via Playwright. In certain tasks, a post-config step is required to convert hard-to-access intermediate
states into more easily extractable forms. Implementing state-based evaluation requires substantial reverse engineering of
software and operating systems to locate and extract relevant data. Once the VM’s state is extracted to the host machine, an
evaluation function compares it against the target state to determine whether the task has been successfully completed.

The evaluation methods are tailored to the extracted state types, typically involving file comparisons or configuration
matching. In some cases, more specialized metrics—such as image similarity or fuzzy text matching scores—are used. All
evaluation results are ultimately converted into a binary outcome, indicating task success or failure.

B.4. Observation Space

OS-MAP use screenshot for the only observation modality. Following OSWorld (Xie et al., 2024), the VMC takes full-screen
screenshots and preserves the cursor to align with human perception of the UI. The default resolution is 1920× 1080, and
supports adjustments to avoid overfitting on absolute pixel coordinates and generalization studies.

While previous benchmarks (Xie et al., 2024; Cao et al., 2024) also used inputs such as the accessibility (a11y) tree and
Set-of-Marks (Yang et al., 2023) (SoM) prompted screenshots, OS-MAP relies solely on screenshots for two main reasons:

• Screenshots are easy to capture and align closely with human perception.

• They preserve rich visual information, whereas a11y trees and SoM formats can be overly excessively verbose, lossy,
inaccurate, or unavailable in visually complex interfaces.

Although structured inputs sometimes yield better performance, recent methods have increasingly shifted toward using
VLMs on raw screenshots (Qin et al., 2025; Bai et al., 2025; Wu et al., 2024c), making pure visual input the more general
and future-proof approach.

B.5. Action Space

OS-MAP adopts the Computer 13 action space from OSWorld, covering all basic mouse and keyboard operations—such
as mouse movement, various clicks, drags, key presses, and hotkeys. It also includes three meta-actions: WAIT, FAIL, and

15

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Table 4: Action types and parameters defined in action space COMPUTER 13, a variance we created for the potential
reinforcement learning research based on our environment.

Action Type Parameters Note
MOVE TO x, y Move the cursor to the specified position
CLICK button,

x, y,
num clicks

Click the left button if the button not specified, otherwise click
the specified button; click at the current position if x and y
are not specified, otherwise click at the specified position

MOUSE DOWN button Press the left button if the button not specified, otherwise press
the specified button

MOUSE UP button Release the left button if the button not specified, otherwise
release the specified button

RIGHT CLICK x, y Right click at the current position if x and y are not specified,
otherwise right click at the specified position

DOUBLE CLICK x, y Double click at the current position if x and y are not specified,
otherwise double click at the specified position

DRAG TO x, y Drag the cursor to the specified position with the left button
pressed

SCROLL dx, dy Scroll the mouse wheel up or down
TYPING text Type the specified text
PRESS key Press the specified key and release it
KEY DOWN key Press the specified key
KEY UP key Release the specified key
HOTKEY keys Press the specified key combination
WAIT - Wait until the next action
FAIL - Decide the task cannot be performed
DONE - Decide the task is done
CALL USER - Call the simulated user to fill the credentials when logging-in

DONE, which allow the agent to express task progress or termination conditions.

To support human-in-the-loop collaboration, OS-MAP introduces a new action: CALL USER, used when human input
is required—for example, entering sensitive information like login credentials. This helps define the agent’s permission
boundary and enables more realistic human-agent cooperation. In OS-MAP benchmark, this action is only used during
Google account login, where the agent yields control and a script autofills the credentials.

In total, OS-MAP defines 17 actions, summarized with their parameters in Table 4.

C. Task Curation Details
All tasks in OS-MAP are designed according to a structured framework based on automation levels and hierarchies of user
needs. Each task is implemented on the VM with a well-defined initial state and evaluation function, ensuring consistent and
repeatable benchmarking. Task Curation was a collaborative effort by the authors, involving nine computer science students
who jointly annotated and refined the tasks over approximately 600 hours of work.

Section C.1 outlines the standard six-stage pipeline for task creation, while Section C.2 provides a detailed walkthrough of
how a representative Level-4 (L4) task was designed, iterated, and finalized from scratch. Section C.3 describes the process
of filtering and re-annotating tasks imported from OSWorld (Xie et al., 2024).

C.1. Pipeline Descriptions

Based on the two-dimensional task organization framework described above, each task in OS-MAP is created by the
co-authors following a standardized procedure:

1. Task selection. We begin by identifying underrepresented scenes within the demand hierarchy. For each selected scene,

16

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Figure 12: Detailed Specification of the task goal in ToDo (not informed in the task instruction).

we determine a representative application and outline a task concept aligned with that context.

2. Exploration & specification. Annotators study the target app or website using official documentation, demos, and
hands-on interaction. They then define a concrete task objective, assign an appropriate difficulty level, and manually
execute the task flow to verify feasibility. To prevent data contamination, task goals must not overlap with content from
official materials; annotators are required to adapt or design new content accordingly.

3. Instruction & configuration. Annotators craft clear and concise task instructions and executable initialization
configurations. Together, they control task difficulty—higher-level tasks omit details or include (human-recognizable)
misleading cues, requiring agents to actively explore the environment for critical information.

4. Reference state preparation. The annotators manually complete the task to record a standard success state for the
following evaluation process.

5. Evaluation setup. Evaluation involves comparing VM file or system states against predefined targets. Some tasks also
require post-execution scripts or logic (postconfig) to expose the key status for assessment.

6. Cross-validation. Each task undergoes a rigorous review by two other annotators across several dimensions before
inclusion: (1) task authenticity and representativeness, (2) clarity and unambiguity of instructions, (3) reproducibility,
(4) correctness and (5) robustness of evaluation, (6) alignment with difficulty level, and (7) non-duplication.

C.2. A Representative Example

We illustrate the creation of a representative L4 task, from ideation to finalization:

1. Task selection. Upon reviewing the current task set, we found a gap in L4-level tasks within the office productivity
domain—particularly tasks involving tool use, to-do management, and email communication. We thus defined a task
prototype: write a to-do item that instructs the user to download multiple documents from a website, translate them
using Google Translate, and send them as an email attachment to a colleague.

2. Exploration & specification. We selected the How’s Life reports from the official OECD website as the document
source. A to-do entry was added in a ToDo application, with a detailed task description specifying file names, save
locations, and expected actions (see Figure 12).

3. Instruction & configuration. Through reverse engineering of the ToDo application, we identified the configuration
file’s location and edit protocol. Based on this, we created a config file and imported it during task initialization, so the
to-do item loads automatically. Similarly, we reverse-engineered the Thunderbird email client, configuring its profile
folder to pre-load an account and a draft email with a blank recipient field and no attachment.

4. Reference state preparation. We manually completed the task to obtain a reference success state—defined as the
appearance of a new email in the recipient’s local mail server directory. During testing, we observed long download
times and limits on translation input and attachment size. To ensure feasibility, we reduced the requirement from
translating six reports to just one.

5. Evaluation setup. The evaluation checks for textual equality between the expected and actual email file and is provided
as part of the task package.

6. Cross-validation. The task was tested by two additional annotators to validate both procedure correctness and
robustness—i.e., whether the task would still pass evaluation despite minor execution variations or small errors.

17

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

C.3. Filtering of Tasks from OSWorld

We reused and adapted the majority of tasks from OSWorld. After careful filtering and re-annotation, a total of 255 tasks
were retained. The excluded tasks fall into three main categories:

• Redundant tasks within the same scenario – For example, the LibreOffice Calc tasks derived from the SheetCopi-
lot dataset often involved templated spreadsheet operations (e.g., statistical summaries and charting). Only 1–2
representative tasks were kept to avoid unnecessary duplication.

• Tasks lacking general relevance – These focused too heavily on application-specific UI details, such as fine-grained
formatting combinations in office software (e.g., font size, line spacing, paragraph alignment), rather than testing
generalizable agent capabilities.

• Tasks marked as infeasible – These either had ambiguous descriptions or indirect, open-ended solutions that made
evaluation problematic. For example, the task ”Could you please convert a PowerPoint presentation to video and play
it with VLC?” was removed. Retaining such tasks would conflict with our design principle of aligning higher-level
tasks with feasible, goal-driven behavior, while rewriting them would introduce challenges in open-ended evaluation.

D. Experiment Details
D.1. Model Baselines

We utilize the versions of gpt-4o-2024-11-20 and claude-3-7-sonnet-20250219 for results of GPT-4o and
Claude-3.7-Sonnet, respectively, need to be noted that result could be changed from time since it is close-sourced.
For all VLMs, we take the default hyper-parameters, i.e., we set the temperature parameter to 1.0, and top p to 0.9, and the
maximum number of tokens for generation is set to 1500. We set the maximum number of interaction steps for L1, L2, L3
and L4 tasks to 15, 15, 30, and 50, respectively, which is sufficient to complete most tasks.

E. Prompts for Agents
Multi-modal computer use agent baseline involves complex prompt engineering, including system prompts, task instruction
prompts, and step prompts. The following sections introduce these three types in detail and present representative examples
of task instructions.

E.1. System Prompt

The system prompt is the main part of prompt engineering in OS-MAP, including role description and observation space,
action space, use cases, and format description with tips. The following will show the four parts of the system prompt. The
complete system prompt is the splicing of the four parts.

Role description and observation space

You will act as an agent responsible for automating desktop computer tasks according
to my instructions. You must possess strong knowledge of computer GUI operations
and experience using common software applications.

↪→
↪→

For each task, I will provide you with an instruction that describes the task goal
and may include additional hints. You will then enter an operation loop, where
you fully take over the control of the computer, performing one action step at a
time. At each step, you will receive the history of actions and the current
screenshot as observations, and you need to output what action to perform next.
The action will be executed, and the loop continues with a new screenshot.

↪→
↪→
↪→
↪→
↪→

Your output can include your reasoning|such as your observations, long-term planning,
the objective of the current step, and the expected outcome. However, you must
ALWAYS include a predicted ACTION and the action must conform to the action
space described below. Your output must follow the specified FORMAT and include
the correct `action_type` and required parameters.

↪→
↪→
↪→
↪→

18

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Action space

ACTION_SPACE = [
{

"action_type": "MOVE_TO",
"note": "move the cursor to the specified position",
"parameters": {

"x": {
"type": float,
"range": [0, X_MAX],
"optional": False,

},
"y": {

"type": float,
"range": [0, Y_MAX],
"optional": False,

}
}

},

... more action definitions ...

{
"action_type": "TYPING",
"note": "type the specified text",
"parameters": {

"text": {
"type": str,
"range": None,
"optional": False,

}
}

},

... more action definitions ...

###
{

"action_type": "CALL_USER",
"note": "Call the user to fill in the Google account or password (the input

box must be activated), one at a time, according to the parameter
call_type.",

↪→
↪→
"parameters": {

"call_type": {
"type": str,
"range": ["email", "password"],
"optional": False,

}
}

},
{

"action_type": "WAIT",
"note": "wait until the next action",

},
{

"action_type": "FAIL",
"note": "decide the task is failed or can not be performed",

},
{

"action_type": "DONE",
"note": "decide the task is done",

}
]

19

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Use Cases

Notes:
1. To reiterate, regardless of whether you include reasoning, your output MUST

contain an action in the SPECIFIED FORMAT (a dictionary enclosed in triple
backticks as shown in the examples below), and it must include a valid
`action_type` and parameters as defined above.

↪→
↪→
↪→
2. For `MOUSE_MOVE`, you must specify the exact target `x` and `y` coordinates. The

screen bounds are `X_MAX = 1920`, `Y_MAX = 1080`. The coordinates must fall
within [0, 1920] and [0, 1080]. Example:

↪→
↪→
```
{

"action_type": "MOUSE_MOVE",
"x": 1319,
"y": 65

}
```
3. For `[CLICK, RIGHT_CLICK, DOUBLE_CLICK, DRAG_TO]`, specifying `x` and `y` is

optional. If omitted, the action defaults to the current cursor position (often
used after `MOUSE_MOVE`). However, it is RECOMMENDED to specify the coordinates
explicitly. Same format as `MOUSE_MOVE`:

↪→
↪→
↪→
```
{

"action_type": "CLICK",
"x": 1319,
"y": 65

}
```

... more use cases ...

Format descriptions with tips

11. Other special actions are `[WAIT, FAIL, DONE]`. Use them when you think it's
necessary to wait, when the task has failed, or when it has succeeded. Each
`WAIT` pauses for ˜2 seconds. Do not declare `FAIL` lightly without attempting
reasonable actions and explorations, but if you still cannot get out of the
predicament after trying for several steps, you can declare it. Only use `DONE`
when you are certain the task is completed successfully. Do NOT use dictionary
format or triple backticks. Just output like the BARE "DONE" without any other
thought or formatting.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
12. If the task is file editing, make sure it is saved successfully. If there is no

clear description of the file name, save location, etc., use the default.↪→
13. If there are clear step-level instructions, please follow them strictly.

Otherwise, you can do whatever you want as long as the task is completed.↪→
14. My computer password is `"password"`. You may use it freely whenever `sudo`

access is required.↪→

Please think step by step. Carefully observe the current screenshot and then output
your reasoning (optional), your plan, the current action and expected results,
and most importantly, the FORMATTED ACTION.

↪→
↪→
Do NOT ask questions. Do NOT attempt to interact with the user in any way other than

via the `CALL_USER` action. You are fully responsible for controlling the
computer.

↪→
↪→
Do NOT output anything else.

20

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

E.2. Task Instruction Prompts

The task instruction is appended directly after the system prompt and is also loaded only once per task. It specifies the
concrete objective the agent is expected to complete, in the following format:

You are asked to complete the following task: {{Instruction}}

E.3. Step Prompt

The system prompt is loaded once at the beginning of each task to provide the agent with general instructions and behavioral
priors. At every step during task execution, the agent also receives a step prompt in the following fixed format, where
”History” stands for the previous three interaction history.

{{History}} {{Screenshot}} Given the screenshot below, what is the next step you
will take to help complete the task?↪→

E.4. Representative Task Instructions

Task instructions are written in a human-friendly tone, clearly stating the objective and specifying any necessary details for
evaluation. To enhance generalization and reduce overfitting to prompt patterns, we ensure diversity in language style and
phrasing across tasks. Below, we present several representative examples.

Rotate Wallpapers (L4)

Download the Bing wallpaper for Italy from the latest 5 days in 4K resolution to
˜/Pictures/wallpapers and name them 0.jpg (today's), 1.jpg, ..., add them to the
wallpaper candidates, and set the today's one as the wallpaper. Next, configure
a cron task to switch wallpapers in order at 00:00 every day. The required
script change_wallpaper.sh is already provided on the desktop and can be used
for cron tasks after only modifying the wallpaper directory.

↪→
↪→
↪→
↪→
↪→

Zotero Citation (L4)

I am writing my course paper and I need to cite a reference. I remember it in Zotero,
but I can't remember which one it is. Please help me find this article and
imitate the two IEEE formats above to complete the citation. Note that the font
format must also be the same. Then download this article to the
Documents/references folder and put it together with other cited papers.

↪→
↪→
↪→
↪→

Meet Schedule (L3)

Did you see the meeting time sent in the DATA group in Rocket.Chat? Add it to the
event in Calendar, title it Team Meeting, and make sure you don't make mistakes
with the date, time, and location.

↪→
↪→

F. Case Analysis
This section provides the full context and failure analysis for several representative error cases referenced in the main
Analysis section §5.

Figure 13 illustrates a severe hallucination, where the agent mistakenly identifies the current webpage as a Chrome browser
interface and treats the top search bar as a search engine input.

21

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Figures 14 and 15 show two L3 tasks in which the agent fails to adapt when the straightforward method breaks down—for
example, when the target element is missing from the screenshot.

In Figure 16, another L3 task requires the agent to interact with a map embedded on the current page. However, the agent
ignores this context and instead jumps to a global Google Maps search, bypassing the intended interaction.

Figures 17 and 18 depict two L4 tasks characterized by long instructions and complex dependencies. In one case, the agent
fails to properly decompose the instruction and proceeds with aimless exploration; in the other, it confuses the order of
contextual navigation and concrete operations. These cases highlight the agent’s significant shortcomings in handling the
high-level reasoning and planning required at L4.

Figure 13: (L2) The agent identifies this page as Chrome
and attempts to use the ”search engine”.

Figure 14: (L3) The agent does not realize that it needs to
use the keyboard shortcut to exit full-screen mode.

Figure 15: (L3) Task instruction: Enter theater mode and resize the scale to 48. However, the resize button is hidden in
theater mode, and the agent does not know it should swap the execution order.

22

OS-MAP: How Far Can Computer Use Agents Go in Breadth and Depth?

Figure 16: (L3) Task instruction: Locate the MOST geographically central station in Paris on this map and jump to its
location on Google Maps. The agent simply ignores the current page (weather station map) and searches for subway stations
in the center of Paris on Google Maps.

Figure 17: (L4) Task instruction: I am writing my course
paper and I need to cite a reference. I remember it in Zotero,
but I can’t remember which one it is. Please help me find this
article and imitate the two IEEE formats above to complete
the citation. Note that the font format must also be the same.
Then download this article to the Documents/references
folder and put it together with other cited papers. The
agent did not break down the task into subtasks and clicked
aimlessly on the Zotero interface.

Figure 18: (L4) Task instruction: I plan to use the money in
my wallet to buy something to reward myself. Please check
how much money is in my wallet account, and then buy the
item of the corresponding amount in the todo list. Please
choose the appropriate size and add it to the shopping cart.
Then go back to the firefly and add a corresponding expense
transaction, named the item name on the todo list. The
agent does not check the wallet balance or place an order,
but tries to add a transaction record first.

23

