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ABSTRACT

We consider the protein sequence engineering problem, which aims to find pro-
tein sequences with high fitness levels, starting from a given wild-type sequence.
Directed evolution has been a dominating paradigm in this field which has an itera-
tive process to generate variants and select via experimental feedback. We demon-
strate large language models (LLMs), despite being trained on massive texts,
are secretly protein sequence optimizers. With a directed evolutionary method,
LLM can perform protein engineering through Pareto and experiment-budget con-
strained optimization, demonstrating success on both synthetic and experimental
fitness landscapes.

1 INTRODUCTION

Protein engineering aims to develop novel protein sequences exhibiting improved or new-to-nature
functions (Romero & Arnold, 2009). Directed evolution stands as a cornerstone paradigm of the
field which leverages iterative rounds of mutagenesis and experimental selection to yield variants
with gradually enhanced fitness (Arnold, 1998). While classical directed evolution has proven ef-
fective, it is generally acknowledged that its greedy optimization process often converges on subop-
timal variants once a local maximum in the sequence fitness landscape of activity is reached (Yang
et al., 2019). In recently proposed machine-learning guided directed evolution (MLDE) settings,
sequence-to-function models have been incorporated as a computational surrogate to select candi-
dates for experimental validation (Yang et al., 2019; Kirjner et al., 2023; Ren et al., 2022; Jain et al.,
2022; Brookes et al., 2019; Yang et al., 2024).

With the grand success of AlphaFold2 on accurately predicting protein tertiary structures (Jumper
et al., 2021), numerous work study protein language models (PLMs) which do not rely on multi-
ple sequence alignment (MSA) and instead counting on learning the co-evolution information from
multi-head attention transformers (Lin et al., 2023; Zhang et al., 2024). Motivated by the improved
performance on structure prediction emerged from sequence-based pre-training, it has been em-
ployed as part of an evolutionary method which designs two masking strategies as mutation oper-
ators (Tran & Hy, 2024). More recently, increasing attention has been attracted to leverage large
language models (LLMs) for problems in scientific discovery, e.g. molecule optimization (Wang
et al., 2024), materials discovery (Lu et al., 2024). In protein engineering, Chen et al. (2024) pro-
pose a bi-level optimization to iteratively fine-tune pre-trained LLMs for protein optimization.

In this paper, we demonstrate LLMs themselves can already optimize protein fitness on-the-fly with-
out further fine-tuning. Specifically, we build an evolutionary method that directly samples from
pre-trained LLMs and select high fitness and low editing distance candidates for the next iteration.
We count on LLMs to propose new candidates (i.e. mutation and crossover) to guide the search.
Upon multiple experiments from 1) experiment-derived exact fitness landscapes, 2) simulated syn-
thetic fitness landscapes, and 3) machine learning (ML) fitness landscape models trained on deep
mutational scanning (DMS) datasets, we demonstrate LLMs can effectively propose new candidates
that are much more efficient than the straightforward evolutionary algorithm with random muta-
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Figure 1: The overview of the optimization framework.

tion and crossover. We also extend the experiment setting to experiment-budget constrained and
multi-objective optimization.

2 PRELIMINARY: PROTEIN SEQUENCE OPTIMIZATION

Single-objective optimization. Given an oracle function f : Ω → R, where Ω :=
{(a1, a2, · · · , aL)|ai ∈ A}, L is the maximum length of a protein sequence, and A is the set of
20 amino acid types, we aim to find the candidate x∗ as follows:

x∗ = argmax
x∈Ω

f(x) (1)

Constrained optimization. Beyond merely optimizing the oracle function, we are often limited
by experimental budget such that we constrain the maximum number of edits to be K from the
reference wild type xref.

x∗ = argmax
x∈Ω

f(x), s.t. dist(x, xref) ≤ K (2)

where the distance function is taken as the Hamming distance dH(·, ·) between two sequences.

Budget-constrained optimization. Instead of constraining the absolute Hamming distance, a more
realistic setting in wet-lab experiments is to constrain the relative Hamming distance (i.e. minimum
Hamming distance between the proposed sequence and all previous experiment trials).

dist(x,P) = min
xp∈P

dH(x, xp) (3)

where P is the set of all previously evaluated candidates.

Multi-objective optimization. In scenarios where we have multiple oracle functions to optimize,
we solve a multi-objective optimization problem where the objective function becomes a vector-
valued function f : Ω→ Rd:

x∗ = argmax
x∈Ω

f(x) (4)

One simple way to aggregate multiple objectives is to take a weighted sum over the output vector∑
j wjfj(x) and

∑
j wj = 1, where we refer to as sum of objectives.

Nevertheless, the more rigorous formulation is to find the Pareto frontier P , defined as follows:

P(X ) =
{
x ∈ X : {x′ ∈ X : x ⪯ x′, x ̸= x′} = ∅

}
(5)

where ⪯ defines a partial order such that x ⪯ x′ or x is dominated by x′ if and only if ∀j fj(x
′) ≥

fj(x). We refer the problem to find the Pareto set to as Pareto set selection.
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Dataset Space size Sequence length # mutation sites Oracle Target range Initial pool fitness wild-type fitness
Syn-3bfo N/A 85 85 SLIP N/A -4.11±2.22 0.00

GB1 149,361 56 4 exact [0, 8.76] 0.08±0.40 1.00
TrpB 159,129 397 4 exact [0, 1] 0.02±0.06 0.41

AAV N/A 735 28 ML N/A 0.31±0.05 0.56
GFP N/A 238 237 ML N/A 0.08±0.12 0.94

Table 1: Dataset statistics. Syn-3bfo refer to synthetic dataset constructed from PDB ID 3bfo.

3 METHODOLOGY

We propose an evolutionary method for protein sequence optimization. There are three main mod-
ules in our method: (1) initialization, (2) diversification and (3) selection. The framework is illus-
trated in Figure 1 and the pseudocode is included in Algorithm 1.

Initialization. We initialize a pool of candidates by randomly sampling from the entire space or a
single mutation from the wild type.

Mutation/Crossover. The default mutation in evolutionary algorithm (EA) is to perform a random
mutation over a single protein sequence; the default crossover in EA is to randomly swap amino
acids of two protein sequences at the same position or swap the entire half sequence split by a
random position. In our LLM-based method, we randomly sample a pair of protein sequences from
our pool and encourage LLMs to propose a new candidate either through mutation or crossover.

Selection. For single-objective optimization, we simply select the top-k ranked protein sequences in
both the previous pool and the newly proposed candidates. For constrained optimization, we employ
a rejection sampling-based strategy: we discard all samples that violate the constraints (exceeding
the maximum number of edits allowed. For multi-objective optimization, we optimize for two ob-
jectives: (1) objective scalarization: we sum over all objective values in the multi-objective vectors
and treat it as a single-objective optimization problem; (2) Pareto set selection: we select only the
candidates on the Pareto frontier to proceed the next iteration.

4 EXPERIMENT

4.1 EXPERIMENT SET-UP

Oracle function. We have three types of oracle functions: exact oracle, synthetic SLIP model
oracle, and ML oracle. For exact oracle, directly measures the fitness values of all possible variants
in a specified search space by deep mutational scanning (DMS) (Fowler & Fields, 2014). Due to
experimental budget constraints, the number of sites to be mutated is often limited to four or fewer.

For the synthetic SLIP oracle, the statistical energy of protein variants evaluated by the Potts model
has been demonstrated to correlate with observed empirical fitnes (Hopf et al., 2017), and the Syn-
thetic Landscape Inference for Proteins (SLIP) based on Potts models has been proposed as a hard-
to-optimize fitness landscape (Thomas et al., 2022).

For ML oracle, a machine learning model is trained on sequence–fitness pairs of single and multi-
ple mutants for a wild-type protein through DMS (Dallago et al., 2021). Unlike the exact oracle,
which focuses on a small subset of variants, the ML oracle can evaluate protein variants with any
number of mutations away from the wild-type sequence, returning a predicted fitness value. How-
ever, its generalization ability remains a key limitation: because the model is typically trained on a
comparatively small dataset, its predictions may be unreliable across the full sequence space.

Hyperparameters. We adopt the Llama-3.1-8B-Instruct model as our LLM. To mimic real-world
protein engineering experiment procedure, we choose a set of 32/48/96 candidates in each iteration
for a total of 4 iterations. For experiment settings allowing a larger number of mutations away from
the wild-type, we increase to 8 iterations for better optimization.

Baselines. We use the exactly same hyperparameters and initial pools for the baseline evolutionary
algorithm as our model, we adopt the default mutation and crossover operators for EA in Section 3.

Datasets. Here we list the datasets used for each type of oracle function:

• For the exact oracle setting, we test our framework on two combinatorial landscape datasets
GB1 (Wu et al., 2016) and TrpB (Johnston et al., 2024). On these landscapes, four amino acids
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Dataset Method Population × iteration
Fitness score

Top 1 Top 10 Top 50

GB1

EA
32×4 5.38±1.77 3.81±1.10 2.31±0.71
48×4 4.88±0.33 3.72±0.38 2.17±0.27
96×4 5.72±0.56 4.32±0.53 2.84±0.60

Ours
32×4 4.34±0.53 3.22±0.23 1.94±0.28
48×4 4.31±0.82 3.76±0.82 2.45±0.61
96×4 4.80±0.52 4.09±0.19 3.04±0.19

TrpB

EA
32×4 0.20±0.18 0.14±0.12 0.07±0.05
48×4 0.67±0.14 0.52±0.11 0.19±0.04
96×4 0.74±0.01 0.59±0.03 0.35±0.10

Ours
32×4 0.60±0.10 0.50±0.07 0.35±0.07
48×4 0.68±0.04 0.58±0.01 0.36±0.01
96×4 0.78±0.20 0.60±0.16 0.39±0.16

Syn-3bfo

EA
32×8 0.57±0.21 -0.44±0.11 -1.35±0.17
48×8 1.29±0.36 0.42±0.24 -0.63±0.07
96×8 1.85±0.47 1.10±0.28 0.07±0.28

Ours
32×8 2.51±0.23 1.33±0.14 0.28±0.20
48×8 2.35±0.26 1.36±0.11 0.04±0.09
96×8 2.83±0.20 2.02±0.36 0.96±0.36

AAV

EA
32×8 0.42±0.03 0.36±0.01 0.32±0.00
48×8 0.44±0.00 0.38±0.01 0.33±0.00
96×8 0.44±0.00 0.40±0.01 0.36±0.00

Ours
32×8 0.74±0.00 0.69±0.02 0.62±0.03
48×8 0.75±0.01 0.71±0.01 0.64±0.02
96×8 0.76±0.03 0.73±0.03 0.68±0.03

GFP

EA
32×8 0.43±0.13 0.21±0.02 0.12±0.01
48×8 0.43±0.14 0.26±0.05 0.12±0.01
96×8 0.50±0.11 0.34±0.05 0.18±0.01

Ours
32×8 0.96±0.02 0.94±0.01 0.88±0.03
48×8 0.96±0.02 0.93±0.01 0.84±0.02
96×8 0.97±0.01 0.95±0.01 0.92±0.01

Table 2: Single-objective optimization results for fitness optimization. We record the mean of top-k
ranked candidates and report the mean and std over three random seeds. The best score for different
population sizes and landscapes is bold.

are picked to be mutated, therefore having a total of 204 variants. The fitness is measured by
wet-lab experiments for nearly all the variants in the library.

• For the synthetic SLIP oracle setting, we create the tuned synthetic landscape constructed
from the multiple sequence alignment for PDB ID 3bfo follow the guidance in the SLIP pa-
per (Thomas et al., 2022).

• For the ML oracle setting, we evaluate our framework on two DMS datasets: Green Fluorescent
Proteins (GFP) (Sarkisyan et al., 2016) and Adeno-Associated Virus (AAV) (Bryant et al., 2021).
These DMS experiments include up to 15 mutations from the wild-type sequence. The fitness
metric for GFP is based on its fluorescence properties as a biomarker, while for AAV, it is based
by its ability to package a DNA payload for gene delivery. An ML oracle model is trained
following Kirjner et al. (2023) to predict fitness for any variant.

4.2 MAIN EXPERIMENT

We validate our method in four settings to evaluate our method on protein sequence optimization.

Single-objective optimization. We conduct single-objective optimization on all five datasets. In
this experiment, we follow the traditional directed evolution protocol, setting the number of pro-
posed variants per iteration to 32, 48, and 96. For GB1 and TrpB, the number of iterations is set to
4, while for the other landscapes, the number of iterations is increased to 8 due to the larger number
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Figure 2: Pareto frontiers identified under constrained and budget-constrained optimization settings.

of possible mutation sites. The optimization objective is to maximize the fitness value from the
oracle function, as detailed in Table 1. Among five datasets, GB1 and TrpB have more linear fitness
landscapes, where finding a favorable amino acid at a position often leads to its presence in the op-
timal sequence (demonstrated by Figure 4). This allows EA to find strong variants early, sometimes
outperforming our method. As shown in Figure 7, EA only outperforms one of three random seeds
for GB1, while our framework performs better in the other two.

Since linear relationships between positions are less likely in more complex landscapes with larger
search spaces, we also evaluate our framework on Syn-3bfo, AAV, and GFP, which have more mu-
tation sites and nonlinear fitness landscapes (Table 1). For Syn-3bfo, the initial pool is generated
from single mutations of the wild-type protein 3bfo, with fitness values calculated using the SLIP
model. For the AAV and GFP datasets, our initial pool setting follows the medium difficulty criteria
outlined in (Kirjner et al., 2023). This involves restricting the fitness range of the initial pool proteins
to fall between a certain range and ensuring that the mutational gap from the highest-score protein
in the given dataset is greater than 6. The predicted fitness value is normalized by min-max values
of dataset. Our method consistently outperforms EA in these datasets (Table 2).
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Figure 3: Pareto frontiers identified under multi-objective optimizations. We display the Pareto
frontiers found for TrpB (a) and Syn-3bfo (b), using Pareto set selection (left) and sum of objectives
(right), respectively. We also show the groundtruth Pareto frontiers for TrpB.

Constrained optimization. In constrained optimization, we limit the number of mutations at each
iteration to 3, 5, and 10, rejecting sequences that exceed these limits on the Syn-3bfo landscape. For
our method, we add the prompt: “The proposed sequence must have a Hamming distance between
1 and {H} from the {wild-type sequence}”, where H represents the Hamming distance constraint.

As shown in Table 4, our method demonstrates stable performance compared to EA. Notably, the
performances of EA at constrained Hamming distances of 5 and 10 are the same, as the maximum
Hamming distance of sequences proposed by EA does not exceed 5 within eight iterations. Our
framework performs best when the constrained Hamming distance is set to 3. Additionally, we
illustrate the Pareto frontier discovered during the constrained optimization tasks by selecting the
best fitness value for each Hamming distance from the wild-type in Figure 2.

Budget-constrained optimization. In budget-constrained optimization, we restrict the maximum
number of amino acids edited in a single iteration to 1, 2, and 4 on the Syn-3bfo landscape. Se-
quences exceeding this limit are dropped by rejection sampling. For our method, we include the
prompt: “The proposed sequence must have a Hamming distance between 1 and {BH} from the
{parent sequence}”, where BH represents the constrained Hamming distance, and {parent se-
quence} refers to the two parent sequences provided to the LLM for optimization.
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Dataset Method Pareto (Top-k) Sum (Top-k)

Top1 Top10 Top50 Top1 Top10 Top50

Syn-3bfo EA 1.38±1.26 0.82±0.79 0.82±0.79 1.17±0.27 0.38±0.22 -0.64±0.33
Ours 1.52±0.37 0.71±0.26 0.71±0.26 1.73±0.27 0.82±0.28 -0.19±0.37

TrpB EA 0.84±0.12 0.67±0.05 0.67±0.05 0.67±0.02 0.60±0.01 0.47±0.01
Ours 0.73±0.14 0.66±0.08 0.66±0.08 0.69±0.04 0.62±0.05 0.50±0.06

Table 3: Multi-objective optimization (Pareto and sum of objectives) with parameter 48×8.

Dataset Method H=3 H=5 H=10

Top1 Top10 Top50 Top1 Top10 Top50 Top1 Top10 Top50

Syn-3bfo EA 1.20±0.42 0.51±0.26 -0.57±0.11 1.29±0.36 0.42±0.24 -0.63±0.07 1.29±0.36 0.42±0.24 -0.63±0.07
Ours 2.46±0.22 1.74±0.16 0.66±0.10 2.21±0.19 1.59±0.35 0.49±0.44 2.28±0.29 1.74±0.33 0.73±0.40

Table 4: Constrained optimization results on Syn-3bfo. Each set of columns shows a different H.

Dataset Method H=1 H=2 H=4

Top1 Top10 Top50 Top1 Top10 Top50 Top1 Top10 Top50

Syn-3bfo EA 1.36±0.45 0.78±0.33 -0.24±0.17 1.42±0.54 0.62±0.52 -0.48±0.35 1.29±0.36 0.42±0.24 -0.63±0.07
Ours 2.10±0.09 1.29±0.17 0.28±0.26 2.52±0.53 1.61±0.41 0.46±0.42 2.34±0.26 1.28±0.16 -0.01±0.07

Table 5: Budget-constrained optimization on Syn-3bfo with different budget H.

The results in Table 5 show that our model outperforms EA across all three settings. Our method
performs best when the maximum number of amino acids edited in a single iteration is limited to 2.
Additionally, we present the Pareto frontier obtained from the budget-constrained optimization task,
using the same settings as the constrained optimization shown in Figure 2.

Multi-objective optimization. We perform multi-objective optimization to simultaneously opti-
mize the Hamming distance and fitness on the Syn-3bfo landscape. In the sum of objectives ap-
proach, the fitness value and 1−normalized Hamming distance are combined into a single objective
with equal weight. In the Pareto set selection approach, all dominated points are rejected, and opti-
mization is restricted to points on the Pareto frontier.

The results from the first approach are summarized in Table 3 and compared against the evolutionary
algorithm (EA). The Pareto frontiers identified by our framework and the EA for both approaches
are illustrated in Figure 3. For the TrpB landscape, the true Pareto frontier can be determined as it
is fully enumerated, and our method identifies more Pareto frontier points than EA in the sum-of-
objectives setting. Moreover, the Pareto frontiers found by our method in the sum-of-objectives task
dominate or are equivalent to those found by EA on both landscapes.

In the Pareto set selection setting, our method does not dominate all the Pareto frontiers identified
by EA. This is because restricting the experiment pool to only include Pareto frontier points limits
the LLM’s access to sufficient information about the sequence space for optimization. However, our
method still identifies Pareto frontier points that dominate those found by EA on Syn-3bfo landscape.

5 CONCLUSION

In this paper, we introduce an LLM-guided directed evolution framework for protein sequence opti-
mization. We investigate a range of tasks, employing oracle functions of varying complexity—from
synthetic landscapes to experimental ground-truth measurements and machine learning–based ora-
cles. We conduct experiments on multiple optimization tasks from single-objective to constrained
and multi-objective optimization. Our results consistently demonstrate the efficacy of LLMs in
proposing high-fitness variants. Moving forward, integrating LLM-based optimization into real-
world experimental pipelines can accelerate directed evolution experiments, allowing for more effi-
cient exploration of the protein sequence space.
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MEANINGFULNESS STATEMENT

Our work demonstrates that large language models (LLMs) can serve as effective protein sequence
optimizers by leveraging their learned representations of sequential structures. By integrating LLMs
into a directed evolution framework, we provide a novel approach to exploring protein fitness land-
scapes, optimizing sequences efficiently without explicit fine-tuning.
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A APPENDIX

A.1 PSEUDOCODE

We show the pseudocode of our framework below.

Algorithm 1: Protein Sequence Optimization with LLM
Data: Initial population P0; mutation rate rm; population size K; number of iterations N ; the

fitness function F (·); the default crossover function C(·, ·); the default mutation function
M(·).

Result: Optimized protein population PN .
begin

for s ∈ P0 do
Compute F (s);

for t ∈ [1, N ] do
offspring = [];
for k ∈ [1,K] do

Draw parent sequences (s0, s1) ∼ Pt × Pt;
proposed seq← LLM propose(s0, s1);
if proposed seq is None then

offspring.append(C(s0, s1));
r ∼ Uniform[0, 1]
if r ≤ rm then

offspring.append(M (s0));

else
offspring.append(proposed seq);

for s ∈ offspring do
Compute F (s);

merged population← merge(Pt, offspring);
Pt ← sorted(merged population)[:K];

Return PN ;

A.2 DATASETS ANALYZE

We present a heatmap of the average scores for specific combinations at different positions: the first
two, last two, last three, and the full sequence for GB1 and TrpB in Figure 4. The heatmap reveals
that certain combinations in the last two positions, such as CA, LG, and AA in GB1, and KG, LG,
and IG in TrpB, exhibit higher fitness scores compared to others. Preserving these combinations can
significantly simplify the path to identifying sequences with improved fitness.

(a) GB1 (b) TrpB

Figure 4: The fitness heatmaps of first two, last two, last three, and full sequence on two datasets.
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A.3 PROMPTS

The example prompts we use for GB1 is shown below, while the dataset description varies for
different datasets.

Prompt

system

You are a world-class assistant specializing in protein engineering, fitness optimiza-
tion, and sequence design. Your expertise lies in analyzing sequence-function re-
lationships, interpreting experimental data, and proposing rational modifications to
optimize protein fitness.

user

You will carry out a multi-round directed evolution experiment with the following
protein sequence, aimed at improving protein’s ability to bind affinity-based se-
quence enrichment via protein fitness optimization.
### Protein fitness optimization
The fitness score reflects the efficacy or functionality for a desired application, from
chemical synthesis to bioremediation and therapeutics. Protein fitness optimization
can be thought of as navigating a protein fitness landscape, a mapping of amino acid
sequences to fitness values, to find higher-fitness variants. Specifically, it is achieved
by making crossover and mutations on the given sequences.
We are focusing on changes to a limited subset of amino acids within the sequence.
The provided subset protein sequences come from B1 domain of streptococcal pro-
tein G, with sequence:
```
MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDAT
KTFTVTE
```
Each subset protein sequence represents specific amino acid substitutions at four key
positions: 39, 40, 41, and 54, denoted using the single-letter amino acid code.
### Parent protein sequences
Here are the parent protein sequences that you will be modifying from. Each se-
quence comes with 4 amino acids and its fitness score is also provided.
Protein sequence 1 (fitness score: 0.0018)
```
Q H V R
```
Protein sequence 2 (fitness score: 0.0021)
```
R L I V
```
### Instructions
Follow the instructions below to propose a new protein:
* Your proposal should focus on maximizing fitness and minimizing humming dis-
tance from the wild type while considering structural and functional plausibility.
* You can propose it via making crossover or mutation on the parent sequences.
* You can also propose a new sequence based on your knowledge.
* Your proposed sequence MUST have the same length as the parent sequences.
* DO NOT propose sequence that is identical with the parent or the wild type se-
quences.
* Your output MUST ONLY include: \box{{Protein}}.

A.4 PARETO FRONTIER

We present the Pareto frontiers identified through constrained optimization tasks with different Bud-
get H and H , as shown in Figure 5. The figures shows our method consistently dominate EA.
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Figure 5: The Pareto frontiers identified by EA and our method in both constrained and budget-
constrained optimization settings for all parameter configurations.

We also present the Pareto frontiers identified by our method for different tasks on the Syn-3bfo
dataset in Figure 6, illustrating how the choice of objectives to optimize influences the discovery of
the Pareto frontier.
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Figure 6: The Pareto frontier found by our method via different task. S stand for Sum of objective,
P stand for Pareto frontier set selection, B stand for Budget-constrained, and C stand for the Con-
strained.

A.5 ABLATION STUDY OF THE NUMBER OF ITERATIONS

We analyze the impact of varying the number of iterations on the results in Table 6. The analysis
shows that as the number of iterations increases, both EA and our framework improve in perfor-
mance. However, our method consistently maintains its advantage over EA.

Dataset Method Iteration
Fitness score

Top 1 Top 10 Top 50

Syn-3bfo

EA
8 1.85±0.47 1.10±0.28 0.07±0.28

12 1.97±0.58 1.52±0.41 0.77±0.27
16 2.38±0.45 1.99±0.42 1.34±0.34

Ours
8 2.83±0.20 2.02±0.36 0.96±0.36

12 3.03±0.29 2.51±0.36 1.66±0.44
16 3.84±0.44 3.29±0.36 2.48±0.34

Table 6: Ablation study on different iterations for Syn-3bfo landscape with 96 population size.

A.6 ADDITIONAL EXPERIMENTS RESULT

We present additional experiments,show results across three random seeds and datasets in Figure 7.
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GB1

TrpB

Syn-3bfo
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GFP

Figure 7: Fitness score across all iterations for five datasets with three random seeds.
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