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Abstract

Goal-conditioned reinforcement learning (RL) usually suffers from sparse reward
and inefficient exploration in long-horizon tasks. Planning can find the shortest
path to a distant goal that provides dense reward/guidance but is inaccurate without
a precise environment model. We show that RL and planning can collaboratively
learn from each other to overcome their own drawbacks. In “CO-PILOT”, a
learnable path-planner and an RL agent produce dense feedback to train each
other on a curriculum of tree-structured sub-tasks. Firstly, the planner recursively
decomposes a long-horizon task to a tree of sub-tasks in a top-down manner,
whose layers construct coarse-to-fine sub-task sequences as plans to complete the
original task. The planning policy is trained to minimize the RL agent’s cost of
completing the sequence in each layer from top to bottom layers, which gradually
increases the sub-tasks and thus forms an easy-to-hard curriculum for the planner.
Next, a bottom-up traversal of the tree trains the RL agent from easier sub-tasks
with denser rewards on bottom layers to harder ones on top layers and collects
its cost on each sub-task train the planner in the next episode. CO-PILOT repeats
this mutual training for multiple episodes before switching to a new task, so
the RL agent and planner are fully optimized to facilitate each other’s training.
We compare CO-PILOT with RL (SAC, HER, PPO), planning (RRT*, NEXT,
SGT), and their combination (SoRB) on navigation and continuous control tasks.
CO-PILOT significantly improves the success rate and sample efficiency. Our code
is available at https://github.com/Shuang-AO/CO-PILOT.

1 Introduction

Although AI can surpass humans on certain tasks, humans still perform much better in making sequen-
tial decisions via learning from interactions with the environment. Reinforcement learning (RL) [50]
aims to bridge this gap by learning to optimize the trajectories of agents (e.g., controllers, robots, game
players, self-driving cars, etc) to achieve the maximal return. However, in complicated long-horizon
tasks, RL usually suffers from poor sample efficiency and costly data collection. Moreover, the data
quality is often low due to sparse rewards when rollouts fail and cannot provide informative feedback.
Model-based RL and off-policy RL improve the sample complexity with the price of extra biases,
causing unstable and brittle optimization. Instead of reaching a single goal, goal-conditioned RL [27]
learns one model for any given goal input to its model(s). However, it needs to be trained to reach
many possible goals, and the resulted model’s performance still degrades drastically for distant goals.
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Instead, planning algorithms are usually more robust and effective on long-horizon tasks. Given a
distance metric, they discretize the state space to a grid/graph and seek for the shortest collision-free
path between states using graph search such as Dijkstra’s algorithm or A* [22]. Thereby, it only
needs a local policy to navigate between consecutive states on the path. However, it is challenging
to learn or estimate the distance accurately in complicated tasks such as mazes. Moreover, planning
every step on the path is as difficult as the original RL and requires fine-grained discretization
impractical for high-dimensional states. Planning only a few milestone states leaves the RL agent
to solve relatively long-horizon sub-tasks. Although sampling-based search heuristics can build a
graph with a better exploration-exploitation trade-off, they are not optimized for the RL policy. [13]
adapt planning to a learned RL policy, which can provide distances estimated from its replay buffer,
but the performance largely depends on the RL policy and its exploration.

A critical insight of this paper is that planning at even a coarse level can be used for reward shaping
and substantially improves RL on long-horizon tasks with sparse reward. In contrast, experiences
of the RL agent on the planned sub-tasks can improve the distance metric of planning to produce
better paths/sub-tasking for the RL agent. Hence, the RL agent and path-planner can provide dense
and informative feedback to train each other. Thus, combining their strengths helps to overcome the
bottleneck of each one and improve their exploration efficiency.
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Figure 1: (a) Mutual training between RL and planner in CO-PILOT. The planner is trained to recursively
decompose a task (s, g) to a sub-task tree of coarse-to-fine min-cost sequences of sub-tasks. While this top-down
construction forms an easy-to-hard curriculum to train the planner, a bottom-up traversal of those sub-tasks forms
an easy-to-hard curriculum for RL. The planned sub-tasks provides dense rewards enabling more efficient RL,
while RL’s cost on each sub-task is used to train the planner for producing more cost-efficient sub-tasks for RL.
For comparison, (b) describes how SoRB [13] combines RL with planning, which does not adopt such mutual
training scheme and the sub-task curricula. In both diagrams, the brown arrows only happen in the training phase.

In this paper, we propose “CO-PILOT”, a collaborative learning scheme between planning and
goal-conditioned RL. As illustrated in Figure 1 (a), it trains each model under the other’s guidance
along a curriculum of sub-tasks. Unlike most existing planning methods, we train a planning policy
to recursively decomposes a task into two easier sub-tasks, which finally yields a tree containing
coarse-to-fine trajectories of sub-goals to the final goal. The tree naturally forms a curriculum for
more effective training. During the top-down tree construction, we start from training the planner
to find the shortest path on a coarser graph with fewer sub-goals, which is an easier training task,
and gradually request it to generate detailed paths with denser sub-goals. We measure the distance
by the cost of an RL agent navigating between consecutive sub-goals, so the planner is optimized
to produce the most efficient path for the RL agent.

With the sub-goal tree constructed, we then train the goal-conditioned RL agent by a bottom-up
curriculum, starting from easier sub-tasks with dense reward along the path and gradually enforcing
the RL agent to navigate between more distant sub-goals. The sub-goals previously generated by the
planner now provide an accurate reward shaping since they constitute cost-efficient paths for the RL
agent. As a byproduct of rollouts on the sub-tasks, the RL policy helps to explore the environment
topology and collect cost data between states to refine the distance metric for planning. Hence, the
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top-down (bottom-up) curriculum training of planner (RL agent) eases the training on the original
tasks and collects more informative feedback to train the RL agent (planner). CO-PILOT repeats the
above procedures for episodes of mutual boosting between the two until they are fully optimized for
the other. In experiments, we apply CO-PILOT to navigation and continuous control. Compared to
existing RL, planning and combining them, CO-PILOT significantly improves the sample efficiency
and the final success rate for long-horizon tasks.

2 Related Work

RL: Goal-conditioned RL [40, 27, 45] takes a goal as an additional input to its model(s) and aims
to handle different goals/tasks using the same policy. However, it requires more exploration and
expensive training on various possible goals, and it still easily fails to reach distant goals in practice.
Goal-relabeling and reward shaping [3, 40, 19] have been commonly studied to mitigate these issues.
Recent methods [16, 55] improve it by learning a compact representation of the goal space. The
goal-conditioned value function V (s|g) naturally provides an ideal distance metric for shortest path
planning. [10, 54] propose to train RL policy on a curriculum of environments adaptive to the RL.
In CO-PILOT, we train a sub-goal tree planner to generate a sample-efficient and adaptive training
curriculum that trains goal-conditioned to reach distant goals progressively. On the other hand, the
goal-conditioned policy’s cost on the planned paths is used to improve the planning policy.

Planning: Planning [50, 34] are more effective in addressing long-horizon tasks in practice [37, 29].
It usually refers to dynamic programming that finds the optimal path between two nodes on a graph.
Planning methods in RL, e.g., value/policy iteration [33, 37], utilize or learn an environment model
to improve the RL policy. Compared to a reactive policy, an advantage of planning is that the planned
trajectory provides a global view of future steps. However, learning the environment model usually
requires expensive exploration of state space [12, 35, 24, 39], structured and compact modeling of
the environment/graph [7, 41], and an accurate distance metric [13]. CO-PILOT overcomes these
limitations by “learning to plan”, which trains a planning policy to produce sequences of sub-tasks
that minimize the cost of the RL agent for completing the sequences. Specifically, we adopt recent
sub-goal tree (SGT) planning [25] to generate tree-structured coarse-to-fine sequences of sub-tasks,
instead of searching on a pre-built hierarchical partition tree of the state space as many hierarchical
planning methods [39]. Moreover, we use the RL agent’s time cost on the sub-tasks as the distance
metric to train the planner, which is more accurate and adaptive. Furthermore, every-step planning is
not necessary since a few sub-tasks may already suffice to provide dense rewards and guidance to
efficiently train the RL agent, so the planning in CO-PILOT can be much easier. Compared to SGT
and other hierarchical planning methods, the collaborative training between RL and “learning to plan”
along easy-to-hard curricula in CO-PILOT can efficiently improve the performance of both RL and
planning without heavily relying on prior knowledge.

Combine RL with Planning: A line of recent works [1, 36, 49, 46] embeds a planning model as one
part of an RL agent’s model and train it together with the RL policy in an end-to-end manner. [9, 15,
44] find that combining the two can help agents to reach distant goals in specific tasks. [13, 44] propose
planning strategies with graph search based on the replay buffer of experiences from a given RL policy.
[46] proposes to use Monte-Carlo tree search when planning in latent space to achieve a better op-
timization on value function. These results inspire our work, but our primary difference is the mutual
training between RL and planning, which does not require either a pre-trained policy or strong heuris-
tics about the distance metric. In CO-PILOT, both are trained from scratch and can mutually boost and
guide each other’s training via an auto-generated curriculum of easy-to-hard sub-tasks. This mutual
training leads to a principled learning framework adaptive to a vast amount of potential applications.

Hierarchical RL: Hierarchical RL (HRL) [26, 18, 38, 32] learns a sequence of primeval policies,
e.g., policies for low-level skills or easier sub-tasks, and then sequentially composes them to form
a high-level policy addressing complicated tasks. Another kind of HRL methods transfers the
knowledge of a morphologically simpler agent to a more complex one [23, 8]. HRL for goal-reaching
tasks has been studied in [13, 38]. A key challenge in HRL is how to define low-level skills or
sub-goals [11, 17, 48, 2]. In CO-PILOT, we train a planning policy to automatically propose
sub-tasks of increasing difficulty to train the RL agent. Therefore, RL agent starts from learning how
to reach nearby sub-goals and progressively improve its skills for completing long-horizon tasks.
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3 CO-PILOT

3.1 Goal-conditioned Reinforcement Learning

Goal-conditioned RL or multi-goal RL learns a policy that can be adapted to different goals. Given
the state space S, the action space A, and the goal space G, a goal-conditioned policy is a mapping
π(a|s, g) : S ×G 7→ A that outputs an action a (or probabilities Pr(a|s, g) over actions a ∈ A) given
a state-goal pair (s, g). An RL agent uses π(a|s, g) to interact with an environment described by a
Markov decision process (MDP) {S,A,G, p, r, γ}, where p(s′|s, a) , Pr(st+1 = s′|st = s, at = a)
is the transition probability for the agent from state s to s′ after taking action a, r(s, a|g) : S ×A×
G 7→ R is a reward function, and γ ∈ [0, 1] is a discount factor.

In each episode, the agent starts from an initial state s0 ∼ p0(s) and aims to reach a
given goal g ∈ G. In every time step t, it takes an action at = π(a|st, g) (deterministic)
or at ∼ π(a|st, g) (stochastic), receives a reward r(st, at|g), and moves to a new state
st+1 ∼ p(s′|st, at). RL aims to learn a policy π maximizing the expected return E(s0,g)[Eπ(R0)].
Define the action-value function Q(s, a|g) , E(Rt|st = s, at = a, g), the optimal pol-
icy π∗ achieves the maximal Q(s, a|g) for any feasible (s, a, g). Define the value function
V (s|g) , E(Rt|st = s, g) = Ea∼π[Q(s, a|g)] =

∑
a∈A π(a|s, g)Q(s, a|g). Directly maximizing

the expected return or V w.r.t. π results in the vanilla policy gradient method [50], which usually
samples inefficient and suffers from the high variance of Rt. Actor-critic methods [51] additionally
learns a model of V or Q as a “critic” to the “actor” π, which performs as a baseline to effectively
reduce the variance. The optimization of V or Q aims to minimize the Bellman residual

JQπ = E(st,at,g)

[
Qπ(st, at|g)− r(st, at|g)− γEst+1

[V (st+1|g)]
]2
, (1)

Given the critic Q, maximizing the expected return w.r.t. π reduces to minimizing
Jπ = E(st,g)[−V (s|g)] = E(st,g)[Eat [−Q

π(s, a|g)]]. (2)
A typical actor-critic algorithm alternates between minimizing JQ and Jπ . To encourage exploration,
we use soft actor-critic (SAC) [20] that augments V with an entropy term (with temperature α), i.e.,

V (s|g) = Ea∼π[Qπ(s, a|g)− α log π(a|s, g)]. (3)
In order to encourage the above equation, SAC additionally optimizes V by minimizing the mean
square error

JV = E(st,g) [V (st|g)− Ea∼π[Qπ(st, at|g)− α log π(at|st, g)]]
2
. (4)

SAC alternatively optimizes JV , JQ and Jπ (using the augmented V in Eq. (3)) defined in Eq. (1)-(4)
by using stochastic gradient decent (SGD) on batches of sampled (st, at, g). Although we use SAC
in our experiments, CO-PILOT can work with any other RL algorithm besides SAC.

3.2 Reward Shaping for RL by Path-Planning

In various environments, an RL agent receives a nonzero reward only when reaching the ε-ball
B(g, ε) around the goal g, i.e., r(s, a|g) = 1[s ∈ B(g, ε)] with 1 being the indicator, so r(s, a|g)
for most steps/trajectories cannot provide informative feedback to policy training. RL is unstable
and can easily fail with such sparse reward, especially in long-horizon tasks when g is far away
from s0 or too difficult to reach for the agent-in-training. To address this problem, reward shaping
method [31] augments the environment reward with a dense reward r′(s, a|g) that can be issued
to more non-goal states, e.g., intrinsic motivation/curiosity that encourages effective exploration,
or human-engineered task-specific rewards. The ideal dense reward, which is, however unavailable
without knowing π∗, is V ∗(s|g). Planning methods, e.g., value iteration [52] or fitted-Q iteration [4],
can approximate V ∗(s|g) but accurately estimating V ∗(s|g) is as challenging as the policy learning.

Path-planning and motion-planning methods [12] usually adopt a heuristic distance or cost c(s, g)
(e.g., Euclidean distance or time cost) to replace the unknown V ∗(s|g). They discretize the state
space into a grid/graph and find the shortest path connecting the initial state s0 and the goal g. In
goal-conditioned RL, s0 and g can be any feasible states on the graph, so path-planning needs to
solve the all-pairs shortest path(APSP) problem [43], i.e.,

min
g0=s0,g1:T−1,gT=g

T−1∑
t=0

c(gt, gt+1), ∀s0 ∈ S, g ∈ G, (5)

where g1:T−1 denotes a discrete sequence of sub-goals (g1, g2, . . . , gT−1) between g0 = s0 and
gT = g. Planning every step for an agent is usually challenging and requires an accurate c(·, ·) or
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environment model. But we only use planning for reward shaping, which can tolerate a small T , i.e.,

r̄(s, a|g0:T ) =
1

T

T∑
t=1

r(s, a|gt). (6)

As T increases, r̄(s, a|g0:T ) becomes denser and the RL agent can receive more effective feedback
for policy training. However, the quality of r̄(s, a|g0:T ) also heavily depends on the cost for the
agent to reach g by following the path g0:T , since issuing reward to an inefficient/long path misleads
the policy training. Therefore, in CO-PILOT, we use a prediction model to predict c(·, ·) and train
the planning policy to generate g0:T incurring the smallest cost as in Eq. (5).

Remarks: This leads to a collaborative learning and mutual boosting scheme between RL and
planning: planning produces easy sub-tasks that the RL agent can complete in a few steps and
thus provide dense rewards enabling more efficient RL , while the time costs of RL agent on those
sub-tasks can be used to further improve the planning policy towards producing more cost-efficient
paths and better reward shaping. In addition, this scheme makes both RL and planning easier to
overcome their bottlenecks: RL learns from dense rewards to complete long-horizon tasks, while
relatively coarse (with small T ) planning suffices to provide dense rewards so every-step planning
relying on accurate modeling of MDP is not necessary. We will introduce more details next.

3.3 Curriculum for Learning to Plan a Sub-task Tree
In the above scheme, planning serves RL like a copilot in an aircraft to encourage more efficient
training. The main advantage of a tree structure planner is to provide a global view of future
milestones to the RL policy, which mainly focuses on local steps and might lack long-term sight.
However, many planning algorithms are based on Bellman equation and sequentially predict the
sub-goals, which may suffer from accumulated errors [42]. In addition, as the aforementioned, a
larger T results in easier sub-tasks for the RL agent but also increases the difficulty of planning, and
vice versa. Hence, it is challenging to train both the RL and planning policy from scratch using either
a small or a large T . This motivates us to seek coarse-to-fine planning that can generate multiple
trajectories of sub-goals with increasing T , so the planning policy can be trained on an easy-to-hard
curriculum [5, 14], i.e., generating coarse-to-fine shortest paths from small T to large T . At the same
time, the RL agent can also be trained on an easy-to-hard curriculum of sub-tasks, i.e., by following
the trajectories from large T to small T .

Therefore, we apply “sub-goal tree (SGT)” [25] to recursively divide a trajectory from small T
to large T and produce a sub-task tree. We define a planning policy πp(g|gi, gj) as a stochastic
mapping from two nearby endpoints gi and gj to a predicted sub-goal g in the middle of gi and gj . In
our scheme, we use πp(g|gi, gj) to break down a task with initial state gi and goal gj (denoted by
(gi, gj)) to two sub-tasks (gi, g) and (g, gj). Hence, we can generate a tree of sub-goals by recursively
sampling sub-goals from πp(g|gi, gj) as below, which finally generates a planning trajectory g0:T
with a tree structure, i.e.,

Pr
πp

(g0:T |g0 = s0, gT = g) , Pr
πp

(
g0:T2

∣∣∣g0, gT
2

)
Pr
πp

(
gT

2 :T

∣∣∣gT
2
, g
)
πp

(
gT

2

∣∣∣ s0, g) , (7)

where T = 2K with K being the depth of the tree. As shown in Figure 1 (a), for layer-k, the sub-goal
tree g0:T interpolates a sequence of 2k − 1 sub-goals gk1:(2k−1) ,

(
gk1 , g

k
2 , . . . , g

k
2k−1

)
between s0

and g, where gkj = gTj/2k in g0:T , ∀ j ∈ [2k−1]. In layer-1, we have the coarsest trajectory (s0, g
1
1 =

gT/2, g). In the bottom layer-K, we have the finest trajectory g0:T . From top layers to bottome ones,
their sub-goal trajectories naturally form a coarse-to-fine sub-tasking curriculum, e.g., the planning
in layer-1 requires the agent to accomplish two hard and long-horizon sub-tasks to reach g, while
layer-K’s planning requires the agent to accomplish T much simpler and shorter-horizon sub-tasks.

To train the planning policy πp, we apply it to produce a tree-structured g0:T via Eq. (7) and
evaluate the cost c

(
gk0:2k

)
of the trajectory gk0:2k by integrating the cost of every segment/sub-task

c
(
gktT/2k , g

k
(t+1)T/2k

)
along the trajectory, i.e.,c

(
gk0:2k

)
,
∑2k−1
t=0 c

(
gktT/2k , g

k
(t+1)T/2k

)
. We will

elaborate on our option of cost function c(·, ·) later in Eq. (11). The objective of πp aims to minimize
the total cost c(g0:T ) of the sub-goal tree, which sums over all trajectories’ costs across the K layers,

c(g0:T ) ,
K∑
k=0

c
(
gk0:2k

)
. (8)
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According to APSP objective in Eq. (5), the optimal planning policy π∗p minimizes the expected
cost Jπp over all possible planning trajectories defined below:

Jπp , Eg0:T [c(g0:T )] = E(s0,g)Eg1:T−1∼πp [c(g0:T )], (9)
where g1:T−1 ∼ πp denotes the recursive sampling of g1:T−1 in Eq. (7). Any policy gradient method
can be used to minimize Jπp , with the gradient w.r.t. πp computed as

∇Jπp = Eg0:T∼πp
[
c(g0:T ) · ∇ log Pr

πp
(g0:T |s0, g)

]
. (10)

To form an easy-to-hard curriculum for training πp, during the top-down construction of the tree,
at every layer-k, we train πp to only minimize the cost for layers from 0 to k (instead of K as in
Eq. (8)) so the planning policy πp starts from only producing relatively coarse sequence of a few
sub-tasks for the top layers before trained to produce more detailed sub-task paths. In Line 4 of
Algorithm 1, we will use Jkπp to denote c(g0:T ) computed up to layer-k.

Cost function of sub-tasks: As discussed in the end of Section 3.2, the cost function c(gt, gt+1)
should reflect the difficulty of sub-task (gt, gt+1) for the RL agent. Euclidean distance ‖gt−gt+1‖2 is
commonly used by previous path-planning methods but is not adaptive to the evolution of the agent’s
policy and environment, e.g., the difficulty of sub-task (gt, gt+1) with/without nearby obstacles can
vary drastically. Instead, we use the time-cost τg,g′ spent by the agent on completing the task (g, g′)
to measure its difficulty, which is adaptive to both the agent and environment and thus more accurate
than Euclidean distance. By training the planner to produce minimum-cost sequences of sub-tasks,
the planned paths are optimized for the training of RL policy. Since the time cost data is collected
during the training of RL agent on the assigned sub-tasks, they are not available at the very beginning
of the first episode. Therefore, we “warm start” the first top-down construction and training of the
planner by Euclidean distance and consider the following cost function for the first two episodes, i.e.,

c(gt, gt+1) = α‖gt − gt+1‖2 + (1− α)τ(gt, gt+1). (11)
In experiments, we start from α = 1 and gradually reduce it towards 0 during the first two episodes.
After that, the cost function is the time cost τ(gt, gt+1) collected in previous episode and no longer
depends on the Euclidean distance.

3.4 Mutual Training between RL and “Learning to Plan”

Algorithm 1 Top-Down Construction of Sub-Task Tree
1: Input: (s0, g), planning policy πp and its training set Dτ
2: Output: tree structured sub-goals g0:T , πp
3: for k = 1, 2, . . . ,K do
4: Apply any RL method to minimize Jkπp , i.e., Jπp in Eq. (9)

computed only up to layer-k;
5: for t = 0, 1, . . . , 2k−1 − 1 do
6: Generate the sub-goal gkt ∼ πp(gkt |gk−1

t−1 , g
k−1
t );

7: Add gkt , g
k−1
t into the trajectory gk0:T on layer-k;

8: end for
9: end for

CO-PILOT is a mutual training
scheme between the RL policy π and
the planning policy πp, each gen-
erating dense cost/reward on tree-
structured sub-tasks to train the
other.By top-down construction of
sub-task tree from k = 0 to k = K,
it firstly trains the planning policy πp
on a curriculum of generating coarse-
to-fine trajectories. On each layer-k,
it generates 2k sub-tasks through roll-
outs of πp. Given Dτ and the cost
c(·, ·) in Eq. (11), CO-PILOT updates πp by minimizing Jπp in Eq. (9). At the very beginning of CO-
PILOT, Dτ = ∅ and the cost solely depends on the Euclidean distance. However, as we are collecting
more experiences into Dτ , πp will be trained towards producing the easiest sub-task trajectory for the
RL agent to finish and thus increases its chance of receiving non-zero rewards. The complete proce-
dures of top-down construction are given in Algorithm 1. Being updated using the most recentDτ , πp
keeps tracking the RL agent’s learning progress to produce the most cost-efficient paths for the agent.
Moreover, the top-down construction naturally forms an easy-to-hard curriculum for the planning
policy πp. In Line 4 of Algorithm 1 , we train πp to produce sub-goal trajectories up to layer-k.
Hence, the training of πp is more smooth and less challenging than learning the optimal V ∗ or Q∗.

After the top-down construction of the sub-task tree, CO-PILOT trains the RL policy π on a curricu-
lum of easy-to-hard sub-tasks by bottom-up traversal of the tree from k = K to k = 0. The sub-
goal trajectory in each layer aims to guild the agent to complete the original task from s0 to g. At layer-
k, CO-PILOT applies π sequentially to the 2k sub-tasks (as the conditioned goal). It then updates π by
SAC, which alternates among the minimization of JQ, Jπ and JV in Eq. (1)-(4) to update π, V and Q.
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Algorithm 2 Bottom-Up Traversal of Sub-Task Tree
1: Input: RL policy π, sub-goal tree of g0:T , τmax, ε
2: Output: π, Dτ
3: Initialize: Dτ ← ∅
4: for k = K, . . . , 1, 0 do
5: Set RL agent’s initial state to be s0 ← g0;
6: for t = 1, 2, 3, . . . , 2k do
7: Set the condition of V , Q, π in SAC to be gkt ;
8: τ ← 0, B ← ∅;
9: while τ ≤ τmax or sτ /∈ B(gkt , ε) do

10: RL agent takes action aτ ∼ π(aτ |sτ , gkt );
11: RL agent moves to sτ+1 ∼ p(sτ+1|sτ , aτ ) and re-

ceives reward r(sτ , aτ |gkt );
12: B ← B ∪ (sτ , aτ , r(sτ , aτ |gkt ), sτ+1);
13: end while
14: Dτ ← Dτ ∪ (s0, sτ , τ), s0 ← sτ ;
15: for every gradient step do
16: Apply gradient steps in SAC: update Q, V, π to mini-

mize JQ, Jπ and JV in Eq. (1)-(4) using samples drawn
from B;

17: end for
18: end for
19: end for

Note we can replace SAC with other
RL algorithms in the general frame-
work of CO-PILOT. The rollouts of
π on the sub-tasks not only collect
experiences to train itself but also
collect tuples of (g, g′, τg,g′) added
to Dτ , which will be used to train
πp. It is possible that π fail on some
sub-task within τmax steps. In this
case, we treat the actual ending state
as g′ in the tuple for Dτ and initialize
the the next sub-task from this state.
The bottom-up traversal is detailed
in Algorithm 2, where Line 9-13
apply π to reach sub-goal gtT/2k .
The bottom-up traversal forms an
easy-to-hard curriculum to train π, in
which the sub-tasks from the bottom
layers are easier so the agent by larger
chance can receive non-zero rewards.
Given a task (s0, g), the curriculum
guides the agent first to learn how
to finish it by following a detailed
planning path of many sub-goals. It then gradually increases the hardness by halving the number
of sub-goals until recovering the original task. Therefore, it critically alleviates the sparse reward
problem that usually fails or considerably slows down RL on long-horizon tasks.

Algorithm 3 CO-PILOT
1: Input: G, p0, T , τmax, ε, b
2: Output: RL agent’s policy π, planning policy πp
3: Initialize: π, πp, Dτ by Euclidean distance
4: while not converge do
5: Sample a task (s0, g) with s0 ∼ p0(s) and g ∈ G;
6: for episode = 1, 2, . . . , b do
7: Algorithm 1: top-down construction of a sub-task tree

g0:T , train planning policy πp based on Dτ ;
8: Algorithm 2: bottom-up traversal of the sub-task tree

g0:T , train RL policy π, collect Dτ ;
9: end for

10: end while

A prominent advantage and differ-
ence of CO-PILOT compared to
other methods that combine RL and
planning is to repeat the top-down con-
struction and bottom-up traversal for
multiple (b in Algorithm 3) episodes
on each task (s0, g). Thereby, the RL
agent and the planning policy are fully
optimized for each other’s training,
forming an adaptive curriculum
without human engineering. The
complete procedures of CO-PILOT
are listed in Algorithm 3.

4 Experiments

We evaluate CO-PILOT on three types of tasks: a maze and two continuous control tasks for robotic
navigation. CO-PILOT outperforms several strong baselines of RL and planning, as well as methods
combining RL and planning, on both sample efficiency and final success rate.

Maze environment: We build a maze environment of size 1×1 containing square obstacles(obstacle
states) and free-to-reach states as shown in Figure 4. For each benchmark(the design of benchmark
refer to the caption of Figure 2), We randomly sample 300 pairs of (s0, g) for training and 100 pairs
for test from a uniform distribution on the coordinate range and remove the ones in obstacles. It
takes an RL agent ≥ 200 steps on average moving from s0 to g, which is a long-horizon task. The
task succeeds if the agent reaches B(g, ε = 0.025) without collision.

Mujoco Ant-v1: We evaluate CO-PILOT and baselines in the Mujoco environment with an Ant-v1
agent (Quadruped [53]) with an 8-dim action space. As shown in Figure 2 (c), we train the agent to
navigate in the maze without self-rotation and collisions to the wall. We randomly sample 50 (s0, g)
pairs for training and 10 pairs for test.
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BipedalWalker: The BipedalWalker environment [6] offers a new perspective of tasks rather than
maze type. The learning agent, embodied in a bipedal walker, receives positive rewards for moving
forward and penalties for torque usage and angular head movements. Agents are allowed 2000 steps
to reach the other side of the map. The environment producing tracks paved with stumps varying
by their height parameter µh and an independent sampled spacing parameter ∆s ∈ N (µh, 0.1).
We design three agents with different length of legs (as shown in figure 3) for each benchmark.
Performance is evaluated periodically by sampling 10 tracks in each track distribution of a fixed
evaluation set of 50 distributions sampled uniformly in the parameter space. We measure the
percentage of mastered tracks.

Baselines: In the maze environment, we compare CO-PILOT with (1) three planning methods:
RRT* [28] (Rapidly-exploring Random Trees), NEXT [7] (Neural Exploration-Exploitation Trees)
and SGTPG [25] (Sub-Goal Tree Policy Gradient); three model-free RL algorithms: valued-based
method SAC [21], policy-based method PPO [47] (in CO-PILOT, we use the former to train the
RL policy and the latter to train the planning policy) and HER [3], which improves goal-conditioned
RL’s efficiency by re-labelling the visited states as pseudo goals; and (3) a RL-planning hybrid
method: SoRB [13], which trains planning strategies based on the experiences of a given RL policy.
For fair comparisons, we use SAC as the RL algorithm in both CO-PILOT and SoRB. In the Mujoco
environment, we compare CO-PILOT with SAC, SoRB, and hierarchical RL [23]. In BipedalWalker,
we compare CO-PILOT with SAC and SoRB.

env steps(1e6)

av
e.

 re
tu

rn

(a) (b) (c) (d)

Figure 2: (a) Success rate on test tasks of Maze environment. We train three types of agents with different
DoF (degrees of freedom): point mass (2D), rigid body (3D), and 3-link snake (5D). More details are given in
Appendix B. (b) Success rate of CO-PILOT with sub-goal tree of different depth K on the same test set in (a).
(c) Ant-v1 agent and the associated environment in Mujoco. (d) Average return of Ant-v1 in (c).

4.1 Training Details and Hyperparameters

In CO-PILOT, we initialize the dataset Dτ with 50,000 tuples of (g, g′, τg,g′) with τg,g′ being the
Euclidean distance. We use SAC to train the RL policy and PPO [47] to train the planning policy in
Line 8 of Algorithm 1, since the former encourages exploration and the latter is simple and efficient.
We set a reward of 1 (1000, 200) to each task (s0, g) in Maze (Mujoco,BipedalWalker). According to
Eq. (6), the reward of each sub-task in layer-k is 1/2k (1000/2k, 200/2k). For planning cost, if the
segment between (gt, gt+1) trespasses any obstacle, we add a penalty of 10 to τ(gt, gt+1) in Eq. (11).
We linearly reduce α in Eq. (11) from 0.9 to 0.1 throughout every episode. For planning policy
training, we apply PPO with a trust region of ε = 0.2 and use Adam optimizer [30] with a learning
rate of 0.005. For RL training with SAC, we use its default hyperparameters. In both environment,
we set T = 25 (ablation study of different T in Figure 2 (c)) and b = 5 (further increasing it does not
improve the performance). We set τmax = 25, τmax = 200 and τmax = 2000 for Maze, Mujoco and
BipedalWalker respectively. For efficiency, in Line 5 of Algorithm 3, we instead sample a mini-batch
of 30 (Maze) or 50 (Mujoco) pairs of (s0, g). The (s0, g) is fixed in BipedalWalker, we randomly
sample 20 tracks in each track distribution from the same 50 distributions mentioned in section 4.1.

4.2 Main Results

In Figure 2 (a), we compare the performance of CO-PILOT with all the baselines on the test tasks
of the Maze environment. CO-PILOT achieves the highest success rate across all benchmarks
and significantly outperforms SAC and SGTPG. Figure 4 (a)-(c) report how the success rate of all
methods change during training as the number of interaction steps with the environment increases.
We limit the total environment steps of all methods ≤ 1.8 × 106 except for NEXT (since NEXT
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requires the pre-training of RRT*). In Figure 4 (a), CO-PILOT and SGTPG perform similarly in
the early training period because the cost data collected by the RL agent do not contain sufficient
information to train a powerful path-planner and the inaccurate Euclidean distance dominates the cost
c(·, ·) in Eq. (11). The performance of SoRB and SAC are similar because SoRB needs to pre-train
the RL policy at first when no planning is required. SoRB surpasses SAC during the later stages.
NEXT also needs to pre-train RRT* before applying self-improving training, so we do not see the
change of cost and collision checks for NEXT during the earlier stages. The comparison between
CO-PILOT with SAC demonstrates the significant improvement brought by the learned planner to RL.

(a) Short agents (b) Default agents (c) Quadrupedal agents

Figure 3: Main results and comparison in BipedalWalker. The
mean performance (32 seeded runs) is reported together with the
standard deviation (shaded areas).

The average return on Mujoco tasks
is shown in Figure 2 (d). Further-
more, the percentage of mastered envi-
ronments on BipedalWalker is shown
in Figure 3. For simplicity, we de-
note [23] as HRL. SoRB and HRL
start later because the RL policy is
under pre-training. The experimental
results show that CO-PILOT achieves
much better sample efficiency than all
the baselines, including SoRB. The fi-
nal performance is comparable with
SoRB but significantly outperforms
SAC and HRL(Mujoco).

CO-PILOT with sub-task tree of different depth K: In Figure 2 (b), we evaluate 5 different
depths for the sub-task tree in CO-PILOT, with all the rest hyperparameters fixed. It shows a trade-off
between RL and planning, i.e., a deeper sub-task tree can provide denser rewards and more detailed
guidance from sub-tasks, hence improving the efficiency of RL, but it also makes training the planning
policy more challenging. In this experiment, the best trade-off is achieved when depth K = 5.

4.3 A Close Look of Mutual Training in CO-PILOT

To understand the mutual training of CO-PILOT in the experiments, in Figure 4 (d), we visualize
how a sub-task tree evolves over episodes in Algorithm 3, where the sub-goal paths at layer-2, 3, 4
generated in Episode-1, 3, 5 for the same task (s0, g) are reported. Each maze map contains a path
from a layer in an episode and the histogram above it reports the time cost of RL for completing
each sub-task on the path. We are particularly interested in two questions: how does planning guide
RL by sub-tasking? How does RL agent’s cost affect the planned paths?

Train πp using RL agent’s time cost data. In Episode-1, the sub-goal paths of all the three layers
are too close to some obstacles or even trespass some others and thus cannot provide reliable guidance
for the RL agent. The Euclidean distances between consecutive sub-tasks on a path are almost equal
but the corresponding time costs shown in the histograms vary a lot, which is not preferred since
some sub-tasks are too hard, but some are too easy for training the RL agent. Hence, the planning
policy is not fully optimized to produce cost-efficient paths for the RL agent.

In Episode-3, the generated sub-goals paths become more adaptive to the environment. In all
layers, we can see that the planner tends to generate longer segments for places with fewer nearby
obstacles and collision risks while adding more fine-grained sub-tasks to get around the corners. This
phenomenon implies that the planning policy is learning to produce better and more adaptive guidance
with dense rewards. However, due to the limited number of sub-goals per layer, the paths in layer-2, 3
can still be improved if interpolating more sub-goals. Nevertheless, on the deepest layer-3, the planned
path is already collision-free and thus can provide an accurate reward shaping for the RL agent.

In Episode-5, the planning paths are almost optimal, especially for the one in layer-4, which keeps
distant from the obstacles of both sides in the maze. Moreover, RL agent’s time costs shown in
the histograms are not only much lower than those of the previous two episodes but also have
similar values across different sub-tasks. Hence, the planning policy is well optimized to generate
cost-efficient paths for RL.

Planner guides RL by sub-tasking. In Episode-1, the time cost for the RL agent to finish the
whole task is much higher than that in the later episodes due to the poor RL policy at the beginning.
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Figure 4: (a) Success rate. (b) Average path length (normalized by RRT*) in terms of Euclidean distance.
(c) Average collision checks (normalized by RRT*) as every method increases its interaction steps with the
environment. CO-PILOT achieves the best sample efficiency among all methods. (d) Visualization of the
sub-goal paths on layer-k = 2, 3, 4 of the sub-task tree in Episode-1, 3, 5 for a task with initial state s0 (red dot)
and goal g (blue dot) in Maze. Each histogram reports the RL agent’s cost τgt,gt+1 for sub-tasks along the path.
As episode increases, planning paths across all layers are improved, and on each path the costs of all sub-tasks
reduce towards a similar value, though the Euclidean distances are still different, since the planner learned to
produce more sub-tasks near complicated obstacles.

In contrast, the time cost drastically decreases in Episode-3 when compared to Episode-1, which
indicates that the RL policy is significantly improved under the guidance of planning. In Episode-5,
the time cost for completing each sub-task of layer-3, 4 further decreases when compared to the
former episodes and the costs becoming more uniform across sub-tasks, implying that the RL policy
learns to complete the planned sub-tasks more efficiently.

Therefore, both planning and RL are improved via the mutual training scheme in CO-PILOT and
fully optimized to facilitate the training of the other. In particular, the planner learns to produce
cost-efficient paths of different amounts of sub-tasks to guide RL with dense rewards. It does not
depends on any pre-defined metric but is adaptive to the RL policy. Moreover, it does not need
to produce a step-by-step plan: the RL agent can learn efficiency under the guidance of a few
interpolated sub-tasks by the planner. Hence, the mutual training between the two policies overcome
the bottlenecks of training each policy separately. In addition, the easy-to-hard curricula for both
planning and RL considerably improves their training efficiency.

5 Conclusion

We propose CO-PILOT, a mutual learning framework between RL and “learning to plan” policies,
which provides a principal solution addressing the problems of both RL and planning when applied
to long-horizon tasks. In CO-PILOT, each policy produces dense feedback on a curriculum of
sub-tasks to train the other more efficiently and is optimized to assist the other’s training. The planner
learns to decompose a long-horizon task into a few sub-tasks at first and then gradually increases
the interpolated sub-tasks, forming an easy-to-hard curriculum to train the planning policy. On the
other hand, this top-down curriculum recursively builds coarse-to-fine sequences of sub-tasks. By
training the RL agent to complete easier sub-tasks on finer sequences of bottom layers at first and
then gradually moving to harder ones in top layers, the RL agent can be efficiently trained following
an easy-to-hard curriculum. In experiments, CO-PILOT significantly improves the sample efficiency
and success rate on different types of tasks especially on long-horizon tasks with sparse rewards.
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