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ABSTRACT

Differential equations are frequently used in engineering domains, such as mod-
eling and control of industrial systems, where safety and performance guarantees
are of paramount importance. Traditional physics-based modeling approaches re-
quire domain expertise and are often difficult to tune or adapt to new systems. In
this paper, we show how to model discrete ordinary differential equations (ODE)
with algebraic nonlinearities as deep neural networks with varying degrees of prior
knowledge. We derive the stability guarantees of the network layers based on the
implicit constraints imposed on the weight’s eigenvalues. Moreover, we show how
to use barrier methods to generically handle additional inequality constraints. We
demonstrate the prediction accuracy of learned neural ODEs evaluated on open-
loop simulations compared to ground truth dynamics with bi-linear terms.

1 INTRODUCTION

Ordinary differential equations (ODE) have numerous applications in various engineering domains
such as thermodynamics, mechanics, chemical processes, circuit design, and optimal control. How-
ever, the solution of the ODEs often require sophisticated numerical methods [19]. Popular ODE
methods are implemented in Dymola, OpenModelica, MapleSim, Simulink, C, FORTRAN, or Julia
and are mostly restricted to users with expert knowledge.

On the other hand, approaches that bring together deep learning, scientific computing, and differ-
ential equations aim to provide this capability to a broader class of users [8; 5; 15; 2; 9; 17; 11].
Physics-informed neural networks [17] train fully connected deep neural nets while embedding
physics knowledge in the loss function. In this work we take a different approach by directly specify-
ing the structure of the neural network to capture the physics, given initial and boundary conditions.
Studies on stability, applying the formal analysis from dynamical systems to deep learning models
derive interesting implications [6; 10; 13; 18]. For instance, authors in [7] linked the vanishing and
exploding gradient problems with the stability of the neural networks interpreted as ODEs and pro-
posed restricted architectures with guaranteed stability. We integrate these findings into our neural
ODE framework.

In this paper, we present a novel method for modeling discrete ODE systems as deep neural net-
works. We demonstrate the possibility of incorporating varying degrees of prior knowledge com-
bining physics-based and purely data-driven modeling in a unified framework. Moreover, we show
how to impose stability guarantees and inequality constraints on the layers of arbitrary neural archi-
tectures. We apply the proposed method to the identification of a ODE model with bi-linear terms
simulating a thermal system. We show that embedding constraints and stability regularizations can
provide advantages in sample efficiency, generalization, as well as physically consistent trajectories.

2 METHODS

Section 2.1 describes the architecture of discrete neural ODE with possible variations and exten-
sions. In section 2.1, we derive the stability guarantees of generic neural architectures by con-
straining eigenvalues of the layer weights. Moreover, we introduce a generic method for imposing
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inequality constraints on hidden states of deep neural networks. The proposed method for modeling
of neural ODE systems is demonstrated in section 3 on a case study from the energy domain.

2.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Ground Truth ODE: Our task is to model the dynamics of an unknown ground truth ODE system
in discrete-time with linear dynamics and bi-linear algebraic form:

xk+1 = Axk + Buk + Edk, (1a)
uk = akHbk + h, (1b)

where xk ∈ Rnx is the system state, yk ∈ Rny is the system output, uk ∈ Rnu is the algebraic in-
put, and dk ∈ Rnd is measured disturbance at time k. The bi-linearity is defined via algebraic equa-
tion 1b with linear terms H, h and inputs ak ∈ Rna and bk ∈ Rnb .

Discrete Neural ODE: Single time step of our neural ODE model has the following form:

fODE(x,a,b,d) = fSSM(Ãx + B̃u + Ẽd) (2a)
u = hΘ(a,b) (2b)

By stacking multiple layers of equation 2 with shared weights, we can construct time-invariant ODE
model with arbitrary depth N , where each layer corresponds to the one-time step defined by the
sampling time of the training data. The main dynamics equation 2a is given as a state space model
(SSM) with parameters Ã, B̃, Ẽ, and activation function fSSM. In this paper, the fSSM is given as an
identity operation to model linear dynamics. We further differentiate the baseline neural ODE model
into three forms with varying degrees of prior knowledge about the algebraic equation 2b. In case
of no prior knowledge, we use a black-box ODE (ODEB), where equation 2b can be modeled by a
standard multi-layer fully connected neural network. For the purposes of this paper, we have chosen
two layers with ReLU activations and 8 hidden units. In practice, we may often know the structure
of the underlying algebraic equation 2b, for instance, based on known physical laws governing the
system dynamics. In our case, this equation is given as bi-linear term u = aH̃b+ h̃, with learnable
parameters Θ = {H̃, h̃}. We will refer to such a model as a gray-box ODE (ODEG). When the
structure, as well as the parameters of equation 2b are known, e.g., obtained from the engineering
sheets, we use the white-box ODE (ODEW) with given constants H, h of its bi-linear term.

Variations and Extensions: To model the time-varying dynamics, we can stop sharing the weights
in the successive layers to generate piecewise-linear approximations. Another extension is to use
the nonlinear activation function fSSM in equation 2a, and increasing the depth of a single time step
model. Similarly, it is straightforward to extend the input space by state variables in equation 2b
for approximating differential algebraic equations (DAE) [1]. Moreover, we can structurally prior
arbitrary algebraic terms, given as polynomials constructed by stacking multiple bi-linear terms. An
extensive list of structural priors and possible applications is beyond the scope of this paper.

2.2 OPTIMIZATION WITH STABILITY GUARANTEES AND CONSTRAINTS HANDLING

Eigenvalues of the Layer Weights: The Perron–Frobenius theorem [12] states that the row-
wise maximum and minimum of nonnegative square matrix A defines the upper and lower
bound of its dominant eigenvalue. We use this to constrain the eigenvalues of the weights
Ã to enforce the stability of the layer forward pass. This constraint is formulated as:

M = 1− 0.1σ(M′) (3)
Ãi,j =

exp(Ã′ij)Mi,j∑nx

k=1 exp(Ã′ik)
(4)

Where the matrix M is modeling damping given as a function of parameter M′ ∈ Rnx×nx . We
use softmax regularized rows of the Ã′ matrix in elementwise multiplication with M to generate
the new weight matrix Ã of the state dynamics used in equation 2a. With dominant eigenvalue to
be less or equal to one, the stability of the learned dynamics of the discrete system is guaranteed.
Additionally, by having the eigenvalues of layer weights close to one for discrete time, or zero for
continuous time systems, respectively, the well-posedness of the learning problem is estabilished by
preventing exploding and vanishing gradients [7].
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Inequality constraints via penalty method: For handling the inequality constraints we employ
the penalty method for constrained optimization [3; 4]. The principle idea is based on penalizing the
constraints in the objective of the unconstrained optimization problem. In particular, we use ReLU
units to model the violations of inequality constraints:

xk ≤ xk + s
x
k
∼= s

x
k = ReLU(−xk + xk) (5a)

xk − sxk ≤ xk
∼= sxk = ReLU(xk − xk) (5b)

Here, sxk = s
x
k + sxk define joint slack variables representing the magnitude of the constraints viola-

tion, and xk and xk stand for time-varying lower and upper bound on the variable xk, respectively.
Analogically the constraints can be defined for all model variables. In this paper, we impose the
inequality constraints on states xk and algebraic inputs uk, to keep their trajectories within physi-
cally realistic bounds. We refer to the constrained ODE models as cODE. The proposed method for
constraints handling is generic and not limited to any specific neural architecture. The constraints
can be imposed on model outputs, hidden states, or their derivatives.

Loss function: The objective penalizes the deviations of the model response defined by equation 2
from the training data obtained from simulating the ground truth system equation 1 overN time steps
generating sequences of vectors, X = x0, ...xN ,A = a0, ...aN , B = b0, ...bN ,D = d0, ...dN . We
assume that for optimization, we only have access to one observable variable xk,i denoted by index
i. The model is given only an initial state x0, together with system inputs A and B, and disturbance
D trajectories to produce sequences of state predictions, X̃ = x̃0, ...x̃N , as well as slack variables
referring to the state and hidden inputs constraints violations Sx = sx0 , ...s

x
N and Su = su0 , ...s

u
N ,

respectively. Constraints violations are penalized in the objective with weighting factors λ and µ.
The multi-objective Mean Squared Error (MSE) loss over given N -step prediction horizon is then:

LMSE(X̃ ,X|Ã, B̃, Ẽ,Θ) =
1

N

N∑
k=1

(
||x̃k,i − xk,i||22 + λ||sxk||22 + µ||suk ||22

)
(6)

In the general neural ODE model given by equation 2 we optimize the Ã, B̃, Ẽ parameter matrices
of the linear dynamics. Moreover, in the case of ODEB and ODEG, also the Θ parameters of the
approximated algebraic equation 2b are optimized. The models are implemented1 in Pytorch [16].

3 NUMERICAL CASE STUDY

We compare empirical results for identification of models with and without constraints (cODE vs
ODE), and with three degrees of prior knowledge about the algebraic interaction between input
variables (ODEB, ODEG, ODEW). We simulated the true dynamics (equation 1) of a simple building
thermal system with state x ∈ R4 whose elements correspond to wall (x1), ceiling (x2), floor (x3),
and ambient room temperature (x4, the observed state). The bi-linear term is a heat flow equation
with constant parameter of specific heat capacity H = cp,h = 0, and two variables, mass flow
ak = ṁk, and difference of supply and return temperature bk = ∆Tk. The corresponding control
input signals A, and B are generated as a sine and cosine wave, respectively, with the period of
one day and amplitudes as nominal physical values of the true model. The disturbance signals D
represent the historical environmental conditions. We use the 2nd, 3rd, and 4th weeks of simulation
as train, validation, and test sets (each containing 2016 contiguous time-steps). We chose this limited
time period to demonstrate generalization capability with limited training samples.

For black, gray, and white-box ODE models with and without state and control restraints as de-
scribed in section 2.1 we train models with N-step prediction objective, N ∈ {23, ..., 27}. For each
of these 30 (model, N-step objective) pairs we train 30 models from random parameter initializations
with full batch AdamW [14] updates (step-size ranging from 0.001 to 0.03) for 15,000 epochs. We
evaluate the prediction performance of the learned models for both the N-step prediction training
objective, and open-loop MSE for model simulation over the test set with T = 2016 time steps:
1
T

∑T
t=1(xID

k,4 − x̃k,4)2. Tables 1, and 2 show the N -step and open-loop MSE respectively on the
test set for eachN -step prediction horizon training objective. AsN increases, models tend to higher

1Code is available for reproducing experiments at:
https://github.com/pnnl/neural_ODE_ICLR2020

3

https://github.com/pnnl/neural_ODE_ICLR2020


Integration of Deep Neural Models and Differential Equations, ICLR ‘20

N 8 16 32 64 128

ODEB 0.04 0.13 0.47 0.31 0.41
ODEG 0.08 0.33 0.92 0.82 0.65
ODEW 0.08 0.31 0.92 0.81 0.65
cODEB 0.03 0.13 0.46 0.30 0.35
cODEG 0.08 0.33 0.92 0.91 0.58
cODEW 0.08 0.33 0.92 0.82 0.59

Table 1: Best N-step prediction MSE.

N 8 16 32 64 128

ODEB 9.93 3.75 5.15 2.24 2.59
ODEG 19.0 23.0 4.19 0.91 2.56
ODEW 19.6 19.2 6.58 5.24 3.81
cODEB 3.44 3.48 4.94 2.47 0.22
cODEG 19.5 19.5 4.68 2.96 0.56
cODEW 19.9 19.6 6.91 7.60 0.41

Table 2: Best open-loop prediction MSE.
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Figure 1: Non-constrained model trace.
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Figure 2: Constrained model trace.

N -step MSE, and lower open-loop MSE. This makes sense as, while training with a longer predic-
tion horizon is a more difficult learning objective, the longer horizons provide closer approximations
to the open-loop behavior of the learned models. Black and gray-box models without constraints
fail to realize gains from the longest horizon, whereas the best performing models were constrained
models with a 128-step prediction horizon objective. Interestingly, the best performing model was a
cODEB, suggesting that given physically reasonable constraints, acceptable dynamics models can be
learned given less prior knowledge of the true system. Figures 1 and 2 show open-loop simulations
from non-constrained and constrained models, respectively. The solid blue line indicates the true
system trajectory. Unconstrained models’ trajectories drift more over time, especially for the unob-
served variables. Notably, the cODEB model does a remarkable job of tracking all state variables,
excepting x3 (floor temperature), which has the weakest connection with the observed x4.

4 CONCLUSIONS AND FUTURE WORK

This work presents novel methods for modeling discrete ordinary differential equations (ODE) as
neural networks with i) stability guarantees based on eigenvalue regularization of the layer weights
and ii) time-varying inequality constraints. Both i) and ii) are implemented using standard opera-
tions available in popular deep learning libraries. We demonstrate remarkable generalization and the
ability to learn physically consistent ODE dynamics from a limited amount of training data. Em-
pirical results underscore the advantages of using penalty methods for minimizing the constraints
violation in the problem’s loss function. Thus, enabling model safety assessment and certification.

The future work includes applying the neural ODEs and DAEs to model large-scale physical systems
with various types of dynamic and algebraic nonlinearities. Computational efficiency and scalability
of the proposed neural ODE can be further compared with classical ODE solution methods. For
practical purposes, the authors intend to develop a library of physics-informed ODE and DAE priors
commonly occurring in various engineering domains for user-friendly gray-box modeling. The
authors also intend to explore the use of neural ODEs in model-based deep learning approaches
to constrained optimal control for physical systems. The convergence guarantees can be obtained
by means of Lyapunov stability analysis of the loss function. Another open research avenue is
the development of customized optimizers for the solution of constrained optimization problems.
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Finally, the generic nature of the proposed methods for enforcing stability and constraints handling
can be explored on various neural architectures and learning tasks.
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5 APPENDIX

In this appendix we present additional visualizations comparing model performance, eigenvalues
and heatmaps for learned transition matrices, and a comparison with a preliminary Physics-Informed
Recurrent Neural Network Model (PI-RNN) without constraints on the principal learned dynamics
matrix Ã or its hidden states.

5.1 ADDITIONAL PERFORMANCE VISUALIZATIONS

Figures 3 and 4 visualize the influence of the increasing prediction horizonN on the open loop MSE
and N -step MSE loss, reported in Tables 1 and 2 , respectively. The increasing trend of the N -step
MSE with larger prediction horizonN is given by the increasing complexity of the learning problem,
which is correlated with the increased accuracy of the learned models in open-loop simulations.
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Figure 3: N-step best MSE
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Figure 4: Open-loop best MSE

5.2 GROUND TRUTH PHYSICAL MODEL

The system equation 1 represents a simple building thermal system with states xk ∈ R4 whose
elements are wall (xk,1), ceiling (xk,2), floor (xk,3), and room temperature (xk,4, the observed state).
Control inputs equation 1b represent heat flow equation of the building’s radiator uk = ṁkcp∆Tk,
with mass flow ṁk, specific heat capacity cp, and temperature difference of the emission system
∆Tk. The disturbances dk ∈ R3 represent ambient temperature (dk,1), solar irradiation (dk,2),
and internal heat gains (dk,3), respectively. We generate the state trajectories X for the system
identification by simulating the model equation 1 with initial conditions of x0 = 20 ◦C, given the
measured disturbance trajectories D. In practice, D is obtained from weather forecast.

An interesting property of the thermal models of the buildings is that their transition matrix Ã is,
in general, non-negative with stable eigenvalues. This feature motivates the use of the eigenvalue
regularization given by equation 4. In this case, the damping factor M can be physically interpreted
as heat losses of the building envelope. Hence physical insights can be used for tuning of the
proposed model to different building types. The penalty constraints on the state trajectories are
derived based on the physically meaningful values for the building.
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Figure 5: Open-loop trajectory for best perform-
ing S-RNN model.

8 16 32 64 128

Open-loop 2.03 1.22 1.13 3.10 3.04
N -step 0.02 0.09 0.20 1.02 0.64

Table 3: Structured RNN MSE for N -step and
open-loop prediction.

5.3 STRUCTURED RNN MODEL

Here we introduce a preliminary model with neither eigenvalue constraints on the learned Ã matrix
nor barrier penalties in the learning objective. Considering the same limited knowledge of the un-
derlying dynamics as in the ODEB model we introduce a preliminary model S-RNN. The discrete
SSM model remains the same as equation 2a, but with a two layer neural network modeling the
underlying bi-linear algebraic term as follows:

fS-RNN(x,a,b,d) = fSSM(Ãx + B̃u + Ẽd) (7a)

u = ReLU
(
W̃2h1 + W̃3

[
a
b

])
(7b)

h1 = ReLU
(
W̃1

[
a
b

])
(7c)

where the matrices W̃ are additional learned parameters for the algebraic equation approximation
via neural network.

Figure 5 shows the open-loop trace of trained S-RNN on training, validation, and test set, respec-
tively. The trajectories can be directly compared with Figures 1 and 2, at first glance it is visible
that although capable of accurate prediction and generalization of the observed state, the S-RNN
fails to capture the dynamics of the unobserved states, in contrast with ODE models. The corre-
sponding open-loop MSE and N -step MSE with increasing values of the model prediction horizon
N are given in Table 3. We observe that in contrast with ODE models S-RNN fails to leverage the
advantage of the larger prediction horizons to improve its accuracy.

5.4 EFFECT OF THE LEARNED EIGENVALUES

Table 4 compares the eigenvalues of the learned transition matrix Ã with the eigenvalues of the
ground truth model. All physics-informed models accurately learned the stable dominant eigen-
value of the primary dynamics. However, differences arise when comparing the rest of the eigen-
value spectrum. The eigenvalues of the trained ODE models have, in general, shorter Euclidean
distance from the ground truth values compared to S-RNN model. However, the eigenvalues of the
constrained SSM have the shortest Euclidean distance from those of the ground truth system. More-
over, the better estimate of the eigenvalues of the system dynamics can be correlated with better
open-loop performance, as reported in Table 4. Additionally, S-RNN is the only model learning
complex eigenvalues. This can be further examined through the physical interpretation of the eigen-
values given as follows: real parts represent gains of the system, while the imaginary parts define
the frequencies of the dynamics signals. Hence, S-RNN model learned to associate the periodic
behavior of the training data with the main system dynamics given by Ã transition matrix. How-
ever, this is not correct association because the periodicity of the training data is the consequence
of the periodic nature of the control inputs A, B and disturbance trajectories D (day and night pat-
terns). This may provide an explanation of why ODE models outperform S-RNN in the open-loop
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prediction. Moreover, it can explain a remarkable capability of the ODE models in also predicting
the unobserved states trajectories, despite not being explicitly trained to do so. In contrast, S-RNN
fails to get even close to true trajectories of the unobserved states, as shown in Figure 5.

Table 4: Comparison of Eigenvalues for Ã transition matrix

λ1 λ2 λ3 λ4

True 1.0 0.99 0.98 0.25
S-RNN 0.99 0.11+0.11i 0.11-0.11i -0.05
ODEB 1.0 0.88 0.21 0.02
ODEG 1.0 0.62 0.15 -0.01
ODEW 1.0 0.76 0.47 0.07
cODEB 1.0 0.89 0.15 -0.03
cODEG 1.0 0.60 0.21 0.02
cODEW 1.0 0.65 0.25 0.03

5.5 COMPARISON OF THE LEARNED STATE TRANSITION PARAMETERS

Figure 6 compares the heat maps of the state transition matrix parameters of the learned models Ã
with ground truth values A. The comparison of the learned model parameters of S-RNN with ODE
models is less clear than in the case of eigenvalues. Nevertheless, we can spot that ODE models are
slightly sparser than S-RNN. Especially, ODEW models learn the most similar sparsity patterns in
visual comparison with the diagonal structure of the ground truth model. However, the ODEW is
outperformed by ODEB model in the open-loop prediction task, indicating that not learning the true
parameters but having the eigenvalues correct matters the most. Without any sparsity regularizations
or structural priors on the Ã matrix, no model can exactly identify the ground truth model parame-
ters. However, this does not prevent the models to learn physically consistent open-loop dynamical
trajectories with large time horizons. This might suggest that the solution to this system identifi-
cation problem is not unique. In conclusion, it is important to say that a more rigorous analysis of
the learned system parameters and eigenvalues, as well as the model structure, needs to be made to
verify or falsify the qualitative statements in this appendix.

True System S -RNN

ODEB ODEG

ODEw cODEB

cODEG cODEW

Figure 6: Heat maps of learned Ã matrices
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