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ABSTRACT

The proliferation of diverse data across users and organizations has driven the
development of machine learning methods that enable multiple entities to jointly
train models while minimizing data sharing. Among these, multitask learning
(MTL) is a powerful paradigm that leverages similarities among multiple tasks,
each with insufficient samples to train a standalone model, to solve them simulta-
neously. MTL accomplishes this by learning a shared representation that captures
common structure between tasks and generalizes well across them all. Despite
being designed to be the smallest unit of shared information necessary to effectively
learn patterns across multiple tasks, these shared representations can inadvertently
leak sensitive information about the particular tasks they were trained on.
In this work, we investigate privacy leakage in shared representations through
the lens of inference attacks. Towards this, we propose a novel, black-box task-
inference threat model where the adversary, given the embedding vectors produced
by querying the shared representation on samples from a particular task, aims to
determine whether the task was present in the multitask training dataset. Motivated
by analysis of tracing attacks on mean estimation over mixtures of Gaussian
distributions, we develop efficient, purely black-box attacks on machine learning
models that exploit the dependencies between embeddings from the same task
without requiring shadow models or labeled reference data. We evaluate our attacks
across vision and language domains when MTL is used for personalization and
for solving multiple distinct learning problems, and demonstrate that even with
access only to fresh task samples rather than training data, a black-box adversary
can successfully infer a task’s inclusion in training.

1 INTRODUCTION

Multitask learning (MTL) has emerged as a powerful paradigm that leverages similarities among
multiple learning tasks, each with insufficient samples to train a standalone model, to solve them
simultaneously while minimizing data sharing across multiple entities, such as users and organizations.
MTL accomplishes this goal by learning a shared representation that captures common structure
between the tasks. Concretely, a shared representation could be a neural network that learns a mapping
of the data from all tasks into a shared feature space, where similar data points across tasks cluster
together, and task-specific output layers (or heads) operate on these embeddings—that is, the outputs
of the shared representation—to make predictions. MTL methods have shown remarkable success in
various domains, including computer vision (Girshick, 2015), natural language processing (Collobert
& Weston, 2008), federated learning (Smith et al., 2017; Hanzely & Richtarik, 2021; Mansour et al.,
2020; Ghosh et al., 2020), drug discovery (Ramsundar et al., 2015), and financial forecasting (Ghosn
& Bengio, 1996). For example, MTL can be used to personalize image classification models by
learning a shared across many users and locally adapting to each user’s small, on-device photo library.

Despite being designed to capture only generic patterns that can be applied to several downstream
tasks, these shared representations can inadvertently leak sensitive information about specific tasks, or
underlying data distributions, that they were trained on. The privacy risks that arise are of particular
concern when data from several sensitive entities, such as individual users, private organizations, or
data silos, are jointly used for training across multiple tasks or non-uniform data distributions. Here,
shared representations are often the minimum piece of information that each entity must contribute in
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order to achieve strong generalization while only contributing a limited number of samples. This
point is highlighted in prior work on privacy-preserving collaborative learning (Shen et al., 2023),
where sharing only the representation, not task-specific layers, demonstrably improves convergence
rates and model performance when learning over multiple parties.

In our work, we study privacy attacks at the level of entire tasks and broadly investigate the privacy
risks of jointly learning over multiple tasks by mounting these attacks on the smallest unit of
information required to jointly train a model, the shared representation. In particular, we attempt to
determine whether, and to what extent, an adversary can infer a given task’s inclusion in training
given black-box query access to (i.e. the ability to sample embedding vectors from) the shared
representation. While there is prior work that explores privacy attacks on MTL, this work is limited
to sample-level membership inference and model extraction (Yan et al., 2024) where the adversary
can make queries to the task-specific heads of the multitask model and train reference models.

Towards this goal, we propose a new threat model called task-inference and develop black-box attacks
with minimal adversarial knowledge to infer the inclusion of a task in MTL. Unlike membership-
inference (Homer et al., 2008; Sankararaman et al., 2009; Dwork et al., 2015; Shokri et al., 2016),
task-inference generalizes individual privacy attacks from the sample level to the task level, where
the adversary aims to determine the presence of an entire target task, rather than a particular sample,
in the training set. Critically, our threat model only assumes that the adversary has access to samples
from the target task’s distribution. We identify two variants of our threat model, one with a strong
adversary who has the specific samples used to train the shared representation and another with a weak
adversary who only has independent samples from the target task’s distribution. Our experiments
demonstrate a notable separation between these two threat models in terms of their attack capabilities,
and we provide analysis of a simplified learning setting to help explain our empirical findings in
machine learning. We observe that while both adversaries can mount successful attacks, having
access to training samples provides a sizeable advantage. Furthermore, in contrast to prior work
(Shokri et al., 2016; Carlini et al., 2022; Liu et al., 2021a; Chaudhari et al., 2022; Abascal et al., 2023;
Hartmann et al., 2023; Yan et al., 2024), neither of the task-inference adversaries require auxiliary
datasets to train reference, or shadow, models to calibrate their attack. Instead, our attack exploits the
key observation that embeddings from the same task are codependent, which allows an adversary
with multiple samples to amplify the membership signal and construct a powerful statistical test
without reference models.

We comprehensively evaluate our attacks across vision (CelebA (Liu et al., 2015)) and language
(Stack Overflow (Annamoradnejad et al., 2022)) datasets for two representative MTL use cases. The
first is personalization, where each user is a task with few samples for a single, shared learning
objective (e.g. a personalized spam detector). The second is solving multiple learning problems
simultaneously, where each task is a distinct classification problem with insufficient data to train
a standalone model, but whose shared underlying structure allows them to be solved jointly (e.g.,
detecting different post topics). The privacy risks of task-inference are therefore contextual: in
personalization, the attack leaks an individual’s participation in training, while for multiple learning
problems, it reveals the inclusion of an entire subpopulation. We also study the factors that lead to
task-inference leakage by observing how attack success varies in the model’s generalization gaps.
Our findings demonstrate that a purely black-box adversary can successfully infer inclusion of tasks
in MTL using only query access to the shared representation, even with weak access to training data
samples.

2 BACKGROUND AND RELATED WORK

Multitask Learning. The goal of MTL (see (Caruana, 1997) for an early survey) is to learn jointly
over several related tasks, often with sparse data, by exploiting shared features between them. A
task τ is defined as a distribution over samples in X × Y (e.g. d-dimensional real vectors that
correspond to binary labels). In this work, we assume that the tasks for some learning problem are
drawn from a task distribution,Q. To leverage common features between tasks, we can learn a shared
representation h : X → Z , that maps samples in X to a lower dimensional space, Z , where the
representation vectors, called embeddings, capture the shared structure of the tasks. Mapping these
samples to a lower dimensional space simplifies the learning problem, allowing us to use simple,
linear classifiers gi : Z → {0, 1}. Given data samples from T tasks τ⃗ = (τ1, . . . , τT ) and a loss
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function L, learning the shared representation h can be written as the following optimization problem:

min
hθ∈H

(
min

gβ1
,...,gβT

T∑
i=1

L(gβi
◦ hθ, τi)

)
The shared representation h often takes the form of a neural network that maps an example x ∈ X to
an embedding vector z ∈ Z with task-specific classifiers {g1, ..., gT } being linear classifiers applied
to the embedding vector. Thus, the goal is to learn an h such that it maps data samples to embedding
vectors that are linearly separable.

In this work, we consider two MTL settings that are representative of common scenarios: (1)
personalization, where each user or person represents a task with a personalized objective (e.g.,
multilabel face detection, recommendation, etc.) learned from sparse data by leveraging the shared
representation trained over all users; and (2) multiple learning problems, where the tasks correspond
to distinct classification problems (e.g., detection of facial attributes, binary topic classification, etc.)
that share a similar underlying structure. We choose these two settings because they highlight how
our proposed threat model (Section 3) captures and abstracts the privacy threats posed by existing
attacks at the individual level (Shokri et al., 2016), user level (Kandpal et al., 2023), and property
level (Ateniese et al., 2015).

MTL has deep connections to federated learning (FL) (McMahan et al., 2017), a machine learning
framework where a central, trusted server coordinates model training across several parties, such as
users or silos (Huang et al., 2022). Several works study the connections between FL and MTL (Smith
et al., 2017; Yu et al., 2022; Tan et al., 2023; Hu et al., 2023; Fallah et al., 2020; Mansour et al.,
2020), many of which focus on techniques to learn personalized models by locally adapting a
shared representation on-device. The widespread use of FL (Lu & Wang, 2022) serves as additional
motivation for studying privacy leakage from the shared components of collaborative learning.

Privacy Attacks on ML Models. While overparameterized models are known to memorize training
data (Zhang et al., 2017), they often do so without compromising generalization (Belkin et al., 2019;
Feldman, 2020), making privacy attacks a significant threat (Shokri et al., 2016). These risks are
typically studied through membership-inference attacks (or MIAs), which represent a fundamental
form of privacy leakage. The goal of an MIA adversary is to determine whether specific record was
used in training (Homer et al., 2008). We generalize this notion of leakage by defining a novel threat
model for MTL that restricts the adversary’s access to the shared representation, as it constitutes the
minimal information that must be exchanged for jointly training over tasks with few samples. One
work (Yan et al., 2024) adapts sample-level MIAs to the MTL setting but assumes query access to
the task-specific classification heads; this assumption would render our goal of task-level inference
trivial.

Our proposed threat model is distinct in that it generalizes and interpolates several existing privacy
attacks that operate at a coarser granularity than the sample-level depending on the definition of tasks
within MTL. Namely, property (Ateniese et al., 2015; Chaudhari et al., 2022; Hartmann et al., 2023)
and dataset (Maini et al., 2024) inference aim to determine the frequency and inclusion of entire
subpopulations in the training data of a machine learning model, respectively. Similarly, the goal of a
user-inference (Kandpal et al., 2023) adversary is to infer whether a user’s entire data contribution
was present in training. In contrast to these works, we target the intermediate embedding directly,
rather than the final model, and assume minimal access to side information like reference data.

Multiple works have also studied attacks on representations under different assumptions. Existing
attacks on representations (Song & Raghunathan, 2020; Liu et al., 2021a) target models that are
trained with contrastive loss, which explicitly maximizes the separation between embeddings of
different samples. Our work differs from these approaches by investigating leakage of sensitive
information from representations which are learned implicitly to generalize across a diverse set of
supervised, downstream tasks.

3 THREAT MODEL

We investigate whether, and to what degree, shared representations leak information about the specific
tasks they were trained on through the lens of inference attacks (Homer et al., 2008). In this setting,
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there is an MTL model that is trained on several tasks simultaneously to learn a shared representation,
or encoder, and individual task layers. Black-box queries can then be made to the encoder to receive
representation vectors, or embeddings, for any given input. A challenge task is drawn from the same
distribution as the tasks used to train the MTL model. Our adversary uses their query access, along
with data drawn from the challenge task, to infer whether the challenge task was included while
training the MTL model. In this work, we study this leakage from a purely black-box perspective,
assuming no knowledge of the underlying data distributions to train shadow models, as is common
in prior works (Carlini et al., 2022). We can describe our threat model using the following security
game between a challenger and an adversary:

Task-Inference Security Game

1. The challenger receives T tasks τ⃗ = (τ1, . . . , τT ), drawn from a task distribution Q. For
each of the tasks, τi, the challenger is given a batch of samples Xi and concatenates the T
batches into a dataset D = {Xτ1 , . . . , XτT }.

2. The challenger trains a shared representation hθ ← TMTL(D) by simultaneously learning
task-specific models that share h.

3. The challenger randomly selects b ∈ {0, 1}. If b = 0, the challenger samples a challenge
task τ∗ from Q uniformly at random, such that τ∗ /∈ τ⃗ . Otherwise, the challenger samples
τ∗ from τ⃗ uniformly at random.

4. The challenger sends a batch of samples, X∗, drawn from the challenge task, τ∗.
5. The adversary, using the batch of samples and black-box access to hθ, guesses a bit b̂ ←
A(hθ(Xτ∗)).

6. The adversary wins if b̂ = b and loses otherwise.

A key aspect of this security game is that the adversary only requires samples drawn from the
challenge task, rather than the specific training samples from D. We claim that, even with fresh,
unseen data from a challenge task, a task-inference adversary can successfully infer a task’s inclusion
in multitask training. We use the following terms to define this distinction: A task-inference adversary
is strong if they have access to training samples when b = 1 or weak if they do not have access to
training samples when b = 1.

Our proposed threat model is general and interpolates several existing attack types depending on the
contextual definition of tasks. When tasks correspond to unique users in the dataset, task-inference
leaks the same information as a user-inference (Kandpal et al., 2023) attack. If we further specify
that each user has at most one training example, our threat model reduces to membership-inference.
When tasks are defined by labeling or learning problem, task-inference mirrors property or dataset-
inference (Chaudhari et al., 2022; Hartmann et al., 2023; Maini et al., 2024).

We note that our instantiation of the task-inference adversary operates in a purely black-box manner.
In contrast to most existing work on membership and property-inference (Shokri et al., 2016; Carlini
et al., 2022; Mahloujifar et al., 2022; Liu et al., 2021b; Abascal et al., 2023; Chen et al., 2023), our
adversary does not require metaclassifiers or shadow models to mount their attack. The power of
our approach comes from receiving a set of correlated samples from the challenge task, rather than
just a single sample. By composing a test statistic over multiple embeddings, the membership signal
is amplified, allowing the adversary to distinguish between IN and OUT tasks without additional
information.

4 ANALYZING TASK-INFERENCE

To motivate further exploration of attacks on deep learning models, we present a simplified analog of
multitask learning via mean estimation. A more detailed treatment of the problem and proofs of our
theorems in this section can be found in Appendix B.2.

Let M be the set of task means {µ1, . . . , µT } which are sampled i.i.d. from N (µ̄, σ̄2Id) where µ̄ is
the ”true” mean that we would like to estimate. For each ”task” µi, we can sample N < T vectors
i.i.d. from N (µi, σ

2Id) and store them in the set Xi = {xi,1, . . . , xi,N}. Since no individual dataset
Xi would yield an accurate estimate of µ̄ we can instead compute the sample ”multitask” mean

4
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using all of the Xi’s as µ̂ = 1
T

∑T
i=1

(
1
N

∑N
j=1 Xi,j

)
. We note that µ̂ is Gaussian with expectation

E
µ,X

[µ̂] = µ̄ and covariance Cov (µ̂) =
(

σ̄2

T + σ2

N ·T

)
· Id

We construct an adversary, based on prior work (Dwork et al., 2015), with similar variants to the
strong and weak adversaries detailed in Section 3. We consider a challenger C who releases the
statistic µ̂ and an adversary A who wants to learn whether a given task µi was included in the dataset
that was used to compute µ̂.

1. C flips a coin b ∈ {0, 1} and sends A a challenge set of k < N samples from a training task
µIN ∈M (if b = 1) or a new, unseen task µOUT ∼ N (µ̄, σ̄2Id) (if b = 0)

2. A takes the sample mean of their samples µB = 1
k

∑
x∈B x

3. A computes the test statistic z = ⟨µ̂− µ̄ , µB − µ̄⟩
4. A picks a threshold γ and returns b̂ = 1z>γ

This attack adapts a test statistic originally intended for membership-inference which measures
the correlation between the released statistic and the adversary’s samples. Unlike the membership-
inference setting, the adversary is attempting to detect traces of the task, or data’s distribution, µi,
rather than any particular sample itself. In the following theorems, we find that the inclusion of a
task, µi, can be inferred by both the strong and weak adversaries, and the strong adversary gets a
slight advantage from having access to samples in Xi.
Theorem 4.1 (Strong Adversary). Let τ be the index of the target task and suppose that the challenger
sends the adversary a set of k samples such that, when the task is IN, the k samples are drawn
uniformly at random from Xτ . Then, when µτ is OUT and IN, respectively, we have

E
µ, X

[zOUT] = 0 and E
µ,X

[zIN] =
d

T
(σ̄2 +

σ2

N
).

Theorem 4.1 shows that the strong adversary’s test statistic, z, grows in the dimension of the data
divided by the total number of tasks used to learn the multitask mean, µ̂. This result demonstrates
that detecting traces of tasks can be seen as a generalization of membership inference, as setting the
number of tasks T = 1, sampling N datapoints, X , only from the single task to estimate the task
mean, and allowing the adversary to use k = 1 sample reduces zIN to the membership-inference test
statistic, which has expectation Θ( d

N ). In our setting, the test statistic z of an adversary who wants to
trace a single example would be Θ( d

NT ).
Theorem 4.2 (Weak Adversary). Let τ be the index of the target task and suppose the challenger
sends the adversary a set of k samples such that, when the task is IN, the k samples are drawn i.i.d.
from the same distribution as Xτ , N (µτ , σ

2Id). Then the expected value of the statistic, z, when µτ

is OUT is 0. When µτ is IN: E
µ,X

[zIN] =
d
T σ̄

2

Informally, Theorem 4.2 shows that the expectation of the weak adversary’s test statistic depends
only on the number of tasks, and does not benefit from a smaller number of total training samples.
Theorem 4.3 (Variance of z (Informal)). The variance of z when µτ is IN or OUT is

Var
µ,X

(zIN) ≈ Var
µ,X

(zOUT) =
d

T

[
σ̄4 +

σ4

kN
+
(k +N

kN

)
(σ̄2σ2)

]
We note that the strong adversary always achieves greater attack success rates than the weak adversary
because the distance between the expected value of the test statistic, z, when the task is IN or OUT is
strictly larger than that of the weak adversary at a similar level of variance. Furthermore, this attack
on mean estimation shows that the adversary’s success is dependent on two distinct parts: (1) the
knowledge they receive from having member data (i.e. the d

TN σ2 term) and (2) the knowledge they
have about the distributions, or tasks, that compose the dataset (i.e. the d

T σ̄
2 term).

5 METHODOLOGY

In this section, we realize the threat model in Section 3 for machine learning models by introducing
two efficient, purely black box attacks on shared representations.
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5.1 OUR TASK-INFERENCE ATTACKS

Our two simple and efficient black-box attacks are inspired by prior work on membership-inference,
which shows that embeddings of training samples are more robust to augmentations (e.g., random
rotations) than non-members (Liu et al., 2021a). Our key insight is to generalize this principle by
treating distinct samples from the same task as “natural” augmentations of one another. We therefore
hypothesize that their embeddings will exhibit strong codependencies. We argue this is caused by
distribution-level memorization, where the shared representation ”overfits” to implicitly learned
properties of entire task distributions, irrespective of the training data’s labeling in MTL, in a manner
analogous to sample-level memorization.

Coordinate-Wise Variance Attack (Algorithm 1) To mount the coordinate-wise variance attack,
the adversary first queries the shared representation on a batch of k data samples from a given task,
then aggregates the embeddings into a set E = {hθ(x1), . . . , hθ(xk)}. Then, the adversary computes
the empirical covariance matrix of E and takes the trace divided by the dimension of the embedding
vectors to be the task-inference statistic, z. This is equivalent to computing the sum of coordinate-wise
variances of the embeddings. Lastly, the adversary sets a threshold γ such that any task with z > γ is
labeled as IN , and any task with z < γ is labeled as OUT . The full attack algorithm can be found in
Appendix A.1.

Pairwise Inner Product Attack (Algorithm 2) For our second attack, we once again use the
fact that the shared representation produces close embeddings for data from the same task, but we
measure similarity of the entire embedding vectors rather their individual coordinates by taking their
inner products (or cosine similarities). As in the previous attack, the adversary first queries the
shared representation and aggregates the embeddings E. Then, for each unique pair of data samples
(xi, xj) i ̸= j, the adversary computes the absolute value of the inner product of their embeddings,
z, and stores the value in a set S. The adversary then takes the mean of the z’s (S̄) and applies a
threshold γ as in the variance attack. The full version of Algorithm 2 can be found in Appendix A.1.

Normalizing Embeddings Unlike prior work on membership-inference (Shokri et al., 2016; Carlini
et al., 2022) and property inference (Chaudhari et al., 2022; Mahloujifar et al., 2022) attacks that train
shadow models, our task-inference adversary requires only query access to the shared representation,
eliminating the need for shadow, or reference, models to calibrate the attack. While a slightly stronger
adversary could construct a labeled, auxiliary dataset of known OUT tasks to calibrate their attack
and perform a more powerful exact one-sided test, as in (Carlini et al., 2022), we find that simple
thresholding is sufficient to achieve high success rates while maintaining the purely black-box aspect
of the threat model. Thus, using the adversary’s sampling access to task data and query access to the
shared representation, we attempt to reduce the noise in embedding vectors by applying a whitening
transformation (A.7.1).

6 EVALUATION

We present a thorough evaluation of our efficient, black-box task-inference attacks on MTL models
across the vision and language domains. We study the performance for both strong and weak
adversaries, and we investigate the sources of task-inference leakage by analyzing how attack success
correlates with the model’s generalization. We note the practicality of our, requiring as few as four
samples and taking roughly 0.1 seconds per black-box query and task-inference prediction on a single
RTX 4090 GPU. Additional details on these experiments are available in Appendix A.

6.1 MTL TRAINING

In this study, we consider the original instantiation of MTL training which is described in the seminal
work on the topic of MTL (Caruana, 1997). We highlight that this MTL algorithm is a slight variation
of centralized FedSGD (McMahan et al., 2017), one of the baseline algorithms in the original paper
on collaborative learning. For all of our models, we allow all tasks to share all but the task-specific
classification heads. In our experiments, the shared representation takes the form of a neural network,
and the classification heads are linear. During MTL training, we perform a forward pass and route
each embedding vector to its corresponding task-specific layer. Thus, in the backward pass, the loss

6
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from all tasks is used to train the shared encoder, while only the loss from each particular task is used
to train each linear layer. A detailed description of the multitask training setup used in our evaluation,
along with the corresponding algorithm (Algorithm 3) can be found in Appendix A.3.

6.2 MODELS, DATASETS, AND METRICS

In our vision experiments, we use ResNet models (He et al., 2015) of differing sizes as the shared
representation for MTL. We evaluate our attacks on these vision models using the CelebA (Liu et al.,
2015) and Federated EMNIST (FEMNIST) (Caldas et al., 2019) datasets. A detailed description
of our FEMNIST experiments can be found in Appendix A.6. For our language experiments, we
use downsized variants of the BERT (Devlin et al., 2018; Turc et al., 2019; Bhargava et al., 2021)
architecture, which are pretrained on MNLI (Williams et al., 2018), for downstream classification.

To measure the performance of our task-inference attacks, we use metrics that are commonly found
in the inference attack literature (Carlini et al., 2022; Zarifzadeh et al., 2024; Ye et al., 2022; Kandpal
et al., 2023). We report the ROC curves of our attack, along with true positive rates (TPR) at fixed
low false positive rates (FPR) and area under the curve (AUC). To highlight the black-box nature of
our attack, report the (TPR, FPR) pairs when blindly thresholding our test statistics at the 50th, 75th,
and 90th percentiles. More details on the models, datasets, and metrics used in this evaluation can be
found in Appendices A.2 and A.4.
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Figure 1: ROC curves of our Task-Inference Attacks (MTL for Personalization)

6.3 PERSONALIZATION

Here, we present the results of our experiments in the vision and language settings where MTL is
used for personalization. Across all experiments, the datasets are organized by individual users, with
each user contributing multiple samples. In the MTL framework, the multiple tasks are the users,
and each user’s task-specific layer, which is linear in this case, receives updates from their data. The
shared representation is trained on all of the tasks. When the adversary infers a task’s inclusion in
multitask training, they are leaking whether or not an individual’s data was present at all in updates
to the shared representation. Like in membership-inference, the strong adversary will have a batch
of real training samples at their disposal to perform this test, but the weak adversary receives fresh
samples that belong to the user and were never seen during training. Additional details for all of our
experiments, along with additional results for the FEMNIST dataset, can be found in Appendix A.5.1.

CelebA First, we report the results for our attacks in the vision setting. We train a ResNet-34 (He
et al., 2015) model, pre-trained on ImageNet (Deng et al., 2009), to perform binary facial attribute
detection on the CelebA dataset. In this MTL setup, each task corresponds to a unique person, and
we train a separate linear layer for each of the 512 total tasks (256 IN, 256 OUT).

The results of this experiment are shown in Figure 1a and Table 1. We find that while both the
strong and weak adversaries can achieve non-trivial success rates in determining a task’s inclusion in
training, the true positive rate of the weak adversary is bounded above by the true positive rate of the
strong adversary for any fixed FPR. Moreover, we see that our variance attack nets better TPR in the
low FPR regime, but the inner product attack sees better FPR at higher FPR. At a fixed FPR of 1%,
the TPR of our variance attack on CelebA achieves a TPR of 61.2% and 2.9% for the strong and
weak adversaries, respectively.
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Stack Overflow Next, we present the results for our language experiments on the StackOverflow
dataset. We train a BERT Small (Turc et al., 2019) model to perform topic classification, where the
tasks are users who contributed posts to Stack Overflow, with 256 tasks total (128 IN, 128 OUT).

Figure 1c and Table 1 show the results for this attack. We find that the strong adversary achieves
nearly perfect AUC for both attacks and an empirically-observed FPR of 0% at the 75th and 90th

percentile thresholds over all runs of the attack. The weak adversary again sees nontrivial AUC for
both attacks, and we see a tradeoff between the TPR of the variance and inner product attacks at
particularly high FPR. At fixed FPR of 1% the inner product adversary with weak access to the data
achieves a TPR of 8.2%, while the strong adversary achieves a TPR of 98.5%. By analyzing the
topic frequencies in the dataset, we empirically find that individual users tend to only write about a
small subset of topics. Across all posts, the median user posts about 31 (or 12.1%) of the 256 total
topics, which could lead to high distinguishability of users in representation space.

6.4 MULTIPLE LEARNING PROBLEMS

We present the results of our experiments on models trained using MTL to solve multiple related
learning problems. In contrast to the datasets used to train MTL models in the experiments presented
from Section 6.3, the datasets are split by learnable classes in the dataset rather than by person. For
example, Stack Overflow can be split into its constituent topics, and we can have an MTL model with
a tailored head for detecting each individual topic’s presence. We draw attention to the fact that in
this setting, the labels for the learning problem are directly tied to the task. In other words, if a task is
not included, there are no positive labels corresponding to that task in the training dataset. Additional
details for the experiments in this section can be found in Appendix A.5.2.

CelebA We use the ResNet50 (He et al., 2015) architecture as the backbone for our MTL model
trained on CelebA as there is ample data per task. Each of the 20 IN tasks (40 total) has a corre-
sponding linear head for binary attribute prediction, and no two tasks share the same labeling. For
example, the task head dedicated to hair color does not make predictions for the task head dedicated
to detecting glasses.

In Table 2 and Figure 2a, we see that the strong adversary is able to achieve an AUC of 0.745 using
our coordinate-wise variance attack and a TPR of 22.8% at a FPR of 0% over all runs when using the
90th percentile threshold. The weak sees nontrivial success rates, with a TPR roughly 2× larger than
the FPR when using the 90th percentile threshold.

Stack Overflow In this experiment, each of the 140 total tasks corresponds to the inclusion of
a positively labeled topic in the dataset. For example, if the Stack Overflow topic ”Python” is IN,
there is a task head dedicated to detecting whether a post includes the topic ”Python”. Using a BERT
Medium (Turc et al., 2019) (41M parameters) model as the shared representation, we use MTL to
learn linear task heads that are specialized to detecting the presence of a single topic within a post.
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Figure 2: ROC of Task-Inference Attacks (MTL for Multiple Learning Problems)

Figure 2b shows that in the setting where tasks correspond directly to the training data labeling in
MTL, the gap in attack performance between the strong and weak adversaries becomes small. This
can be attributed to the fact that the model necessarily has to achieve high utility on the training tasks
in order to solve the learning problems. This contrasts our findings in Section 6.3, where the task
heads in MTL are not solving distinct learning problems, and the separation between both adversaries
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is notably larger. In Table 2, we see that the (TPR, FPR) pairs for both adversaries are nearly equal,
and the weak adversary is able to achieve a 19.6% TPR at 0.2% FPR.

6.5 INVESTIGATING SOURCES OF TASK-INFERENCE LEAKAGE

We investigate the factors that lead to task-inference leakage by studying how attack success varies
with the model’s generalization gap. Theorem 4.1 shows an advantage for the strong adversary,
and we observe the gap between strong and weak adversaries is large in our MTL experiments,
especially with sparse tasks like in CelebA. Similar to membership-inference, task-inference success
is closely tied to the model’s generalization gap. To explore this, we measured the inner product
attack’s AUC on Stack Overflow models (trained for personalization as in Section 6.3) at different
stages of training.

0.00 0.01 0.02 0.03 0.04
OUT IN Loss

0.5

0.6

0.7

0.8

0.9

1.0

Ta
sk

-In
fe

re
nc

e 
AU

C

0.50

0.55

0.60

0.65
Weak Adversary

Strong:

Weak:

Epochs

100 200

(a) Strong and Weak (Personalization)

0.0 0.1 0.2 0.3 0.4 0.5
OUT IN Loss

0.5

0.6

0.7

0.8

0.9

100 200

Epochs

(b) Weak (Multiple Learning
Problems)

Figure 3: Relationship between Generalization Gaps and Inner Product Attack AUC on Stack
Overflow

As shown in Figure 3a, the strong adversary’s AUC rapidly increases as the generalization gap,
or difference between training loss and a validation loss on OUT task data, grows. This finding
mirrors traditional membership-inference, where leakage is linked to overfitting on particular training
examples. In contrast, the weak adversary’s AUC grows with a different quantity: the gap between
the loss on unseen samples from IN tasks and the validation loss on OUT samples. This suggests the
shared representation is not only memorizing training points but also generalizing more effectively
on the training tasks. The observation that models memorize information about tasks as a whole is
consistent with findings from prior work on user-inference attacks on LLMs (Kandpal et al., 2023).

7 CONCLUSION AND DISCUSSION

In this work, we study privacy leakage when learning models over a mixture of tasks in multitask
learning. In particular, we focus on the setting where MTL is used to jointly train a model for many
tasks at once by learning a shared representation that captures common features between tasks. We
propose a novel, purely black-box task-inference threat model, where the adversary’s goal is to infer
the inclusion of a target task in training given only query access to the smallest shared component
when learning jointly over many tasks, the shared representation. By analyzing our task-inference
threat model in the context of tracing attacks on Gaussian mean estimation, we find a separation
between strong adversaries with access to training samples and weak adversaries with access to fresh
samples from the target task’s distribution that did not appear in the training dataset. To verify our
analysis, we propose purely black-box attacks on machine learning models trained with MTL and
we conduct extensive experimentation in the vision and language domains for multiple use cases of
MTL. We find that our attacks can consistently achieve non-trivial success rates in terms of AUC
and TPR, even when the adversary has no reference knowledge and chooses thresholds based on
percentiles. Additionally, we attempt to understand the factors that lead to task-inference leakage
by measuring how attack AUC varies for both the strong and weak adversaries as a function of the
model’s generalization gap.
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A.1 ATTACK ALGORITHMS

We provide full versions of the attack algorithms described in Section 5.1.

Algorithm 1 Coordinate-Wise Variance Attack

1: Input: A shared representation hθ, a challenge set Xτ

2: E = {}
3: for xi ∈ Xτ do
4: ei ← hθ(xi) and E ← E ∪ {ei} ▷ Query rep. on challenge set
5: Compute Q, the empirical covariance matrix of E
6: return tr(Q) ▷ Return avg. coordinate-wise variance

Algorithm 2 Pairwise Inner Product Attack

1: Input: A shared representation hθ, a challenge set Xτ

2: E = {}
3: for xi ∈ Xτ do
4: ei ← hθ(xi) ▷ Query rep. on challenge set
5: ei ←W (ei − ē) ▷ Apply whitening
6: E ← E ∪ {ei} ▷ Store normalized embedding
7: S = {}
8: for all unique pairs (ei, ej); i ̸= j; ei, ej ∈ E do
9: if use cosine similarity then

10: (ei, ej)←
(

ei
∥ei∥ ,

ej
∥ej∥

)
11: z ← |⟨ei , ej⟩| and S ← S ∪ {z}
12: return S̄ ▷ Return avg. pairwise inner product

A.2 MODELS AND DATASETS

A.2.1 VISION MODELS

In our vision experiments, we use ResNet models He et al. (2015) of differing sizes as the shared
representation for MTL. The ResNet architecture has gained widespread adoption across computer
vision applications due to its computational efficiency and high performance on a variety of datasets.
This model architecture makes use of residual connections, which stabilize training and convergence
to help maintain high utility when trained on large image datasets. When available, such as in our
CelebA experiments, we use larger ResNet models which are pretrained on the ImageNet Deng et al.
(2009) dataset from the PyTorch Paszke et al. (2019) library.

A.2.2 LANGUAGE MODELS

For our language experiments, we use the BERT Devlin et al. (2018) architecture as the shared
representation. In particular, we use the downsized variants of BERT Turc et al. (2019); Bhargava et al.
(2021) which are pretrained on MNLI Williams et al. (2018) for downstream sequence classification.

A.2.3 VISION DATASETS

We evaluate our task-inference attacks on both the CelebA Liu et al. (2015) faces dataset and the
Federated EMNIST (FEMNIST) Caldas et al. (2019) handwritten character and images dataset.
CelebA contains high-resolution images of celebrities, each with a unique identifier, and 40 facial
attributes with binary labels. The FEMNIST dataset contains 28x28 grayscale images of 62 different
types of handwritten characters. In our experiments on CelebA, we split the dataset into tasks by
person and by facial attribute for each of the two MTL use cases we consider. We split FEMNIST by
writer and train an MTL model for character recognition, personalized to each writer’s hand-drawn
images.
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A.2.4 LANGUAGE DATASETS

To evaluate our attack in the language setting, we use the Stack Overflow Annamoradnejad et al.
(2022) dataset, which consists of posts from the Stack Overflow website with corresponding ratings,
user ID, and topic tags for each post. In our evaluation, we split the posts into tasks by user ID and by
topic for each of the MTL use cases.

A.3 MULTITASK TRAINING

Algorithm 3 shows the general training loop we use for MTL. In practice, we use AdamW Loshchilov
& Hutter (2017) for our Update step, and we perform shuffling over tasks and batching for efficiency.
Additionally, when there is sufficient data available per task, we randomly subsample data from each
task for each training epoch.

Algorithm 3 Multitask Learning Training Loop

1: Input: A shared representation hθ, T task-specific layers {gβ1 , . . . , gβT
}, a training set split by

task D = {(X1, y1) . . . (XT , yT )}, number of training rounds t, a loss function L
2: for i ∈ [t] do
3: ℓMTL ← 0 ▷ Initialize multitask loss
4: for j ∈ [T ] do
5: pj ← gβj

( hθ(Xj ) ) ▷ Get predictions for task j

6: ℓMTL ← ℓMTL +
1
T L(pj , yj)

7: for j ∈ [T ] do ▷ Update each task specific layer
8: βj ← Update

(
βj , ∇βj

ℓ
)

9: θ ← Update (θ, ∇θℓ) ▷ Update shared representation
return hθ

Since the number of samples per task can be smaller than the embedding dimension, we use several
regularization techniques to keep the task-specific linear layers from overfitting to noisy embeddings
early during MTL training. To summarize, we use large values for weight decay, or L2 regularization,
learn a bottleneck on the shared representation to decrease the embedding dimension, normalize
gradients Chen et al. (2018) across tasks during model updates, apply clipping to gradients, and, in
our vision experiments, apply standard augmentations to training images.

In our vision experiments, the CelebA dataset has very few samples per task-specific layer; 22 per
celebrity after holding out samples for the weak adversary. Thus, we do two iterations of ”warm
start” training Nguyen et al. (2023), where we freeze the shared representation and optimize the
task-specific layers for 40 epochs with with a low learning rate (e.g. η = 10−4). In our language
experiments where we use BERT models, we do 20 epochs of warm start training. We also apply a
linear projection on the typical, high-dimensional penultimate layer of our BERT and ResNet models
to 16 or 32 dimensions in order to reduce the chance of task-specific layers overfitting. Each training
step in MTL is performed over a minibatch of tasks, rather than the entire accumulated gradient of
the dataset. We additionally use gradient clipping (C = 1), gradient normalization across tasks Chen
et al. (2018), and a smaller weight decay parameter (e.g. λ = 10−4) than the task-specific layers (e.g.
λ = 10−3) to regularize the shared layers. In total, we train for 200-300 epochs, or communication
rounds, for all of our models, passing through all of the tasks in the dataset each time.

A.4 METRICS

Throughout our evaluation, we analyze the ROC curves of our attack, which measure the relationship
between true positive rate (TPR) and false positive rate (FPR). As summary statistics, we report the
area under the ROC curve, or AUC, as well as the TPR at fixed low FPR (e.g. 1%). Our evaluation
distinguishes between two adversarial settings: a strong adversary with access to training samples
and a weak adversary limited to auxiliary data from the challenge task that was never seen during
training. Thus, we present ROC curves for each adversary. Additionally, we highlight that our attacks
can be performed in a purely black-box setting. This results in the adversary not necessarily having
sufficient knowledge to select the threshold that yields an optimal tradeoff between TPR and FPR.
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So, we also report the (TPR, FPR) pairs when thresholding our test statistics at the 50th, 75th, and
90th percentiles.

A.5 EXPERIMENTAL SETUP

Here, we provide details for the experimental setup for both of the MTL use cases we study.

A.5.1 PERSONALIZATION

CelebA We filter CelebA such that each unique individual has roughly 30 images containing their
face, and we hold out 8 samples per individual to mount an attack with the weak adversary. In our
experiments, we jointly train the MTL model on 256 total tasks with 22 samples per task, or roughly
5600 total samples, and thus use several regularization techniques to ensure that the ResNet layers
learn performant embeddings. During each training step, we randomly sample a batch of tasks and
update their corresponding task heads, while aggregating these tasks’ gradients to update the shared
representation. Once the model is trained, we run 128 trials of each attack on all 512 tasks (256 IN
and 256 OUT ), using 8 samples per task for the strong adversary and 4 of the held out samples per
task for the weak adversary.

Stack Overflow We filter the dataset such that each individual has at least 48 total posts; 32 posts
for the model’s training set and 16 to be used by the weak adversary. Then, we split the dataset
into 128 IN tasks and 128 OUT tasks, yielding two datasets of roughly 10k posts, with each user
contributing about 140 posts on average. We train the shared representation and task-specific linear
layers jointly on the IN dataset. The MTL model is trained to detect the presence of 256 unique
topics in posts, and each post can have multiple corresponding topics. After training is complete, we
run each attack on all 256 tasks for 128 trials, using 8 samples and 4 samples per trial for the strong
and weak adversary, respectively.

A.5.2 MULTIPLE LEARNING PROBLEMS

CelebA For our evaluation on CelebA when MTL is used to solve multiple learning problems
simultaneously, we split the dataset into potentially overlapping tasks by facial attribute, 20 IN and
20 OUT, with at least 1024 samples with corresponding positive and negative labelings for each task.
Because some tasks have very low positive label frequencies (e.g. ¡ 1%), this minimum sample size
ensures sufficient positive examples for the task head to learn from. We average the results of our
experiments over 8 MTL runs, and run the attacks on the 40 total tasks 128 times each, using 16
samples and 8 samples for the strong and weak adversary, respectively.

Stack Overflow In these experiments on Stack Overflow, in contract to the experiments in Sec-
tion 6.3, the posts are not split by user. Rather, each of the 140 total tasks corresponds to the inclusion
of a positively labeled topic in the dataset. If a particular topic is not included, there is no task head
that can learn positively labeled ”Python” samples. Additionally, because the posts in the Stack
Overflow dataset can contain multiple topics, the training data is not disjoint between tasks; the
labeling of each task dataset is unique. We randomly split the data into 70 IN tasks and 70 OUT
tasks, with each task-specific dataset containing 1024 posts. We run both of our attacks on the BERT
model 128 times, using 32 samples and 16 samples each trial for the strong and weak adversaries,
respectively.

A.6 FEMNIST RESULTS

We report additional results in the vision setting for Federated EMNIST Caldas et al. (2019). We
train a MTL model with ResNet8 He et al. (2015) as the shared representation and personalize each
task-specific layer to a unique writer in the dataset. Each writer in the FEMNIST has significantly
more data than each individual in CelebA. Thus, we train the MTL model on 128 tasks with 128
samples per task and hold out 16 samples to mount our attack with the weak adversary. For each of
the 128 runs of the attack, the strong adversary receives 16 training samples, and the weak adversary
receives 8 of the held out samples. Figure 1b and Table 1 show the ROC curves and (TPR, FPR)
pairs of our task-inference attacks on Federated EMNIST. We observe that both the strong and weak
adversaries are able to achieve nontrivial success rates, and the strong adversary sees a TPR of 3%
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Table 1: (TPR, FPR) and Balanced Accuracy for Black-Box Percentile Thresholds for Inner Product
Attack at 50th, 75th, and 90th Percentile Thresholds (Personalization)

50th Percentile 75th Percentile 90th Percentile
Dataset Access (TPR, FPR) Acc. (TPR, FPR) Acc. (TPR, FPR) Acc.

CelebA (Fig 1a) Strong (80%, 20%) 80% (46.7%, 3.3%) 71.7% (19.5%, 0.5%) 59.5%
Weak (52.4%, 47.6%) 52.4% (27.4%, 22.5%) 52.5% (11.5%, 8.5%) 51.6%

FEMNIST (Fig 1b) Strong (61.1%, 38.8%) 61.1% (33.5%, 16.4%) 58.7% (14.3%, 5.7%) 54.3%
Weak (53.2%, 46.8%) 53.2% (27.2%, 22.8%) 52.2%, (11.2%, 8.8%) 51.2%

Stack Overflow (Fig 1c) Strong (98.7%, 1.2%) 98.7% (50.0%, 0%) 75.0% (19.9%, 0%) 59.9%
Weak (58.2%, 41.7%) 58.2% (34.1%, 15.8%) 59.1% (16.3%, 3.6%) 56.3%

Table 2: (TPR, FPR) and Balanced Accuracy for Black-Box Percentile Thresholds for Inner Product
Attack at 50th, 75th, and 90th Percentile Thresholds (Multiple Learning Problems)

50th Percentile 75th Percentile 90th Percentile
Dataset Access (TPR, FPR) Acc. (TPR, FPR) Acc. (TPR, FPR) Acc.

CelebA (Fig 2a) Strong (68.9%, 31.1%) 68.9% (42.6%, 7.4%) 67.6% (22.8%, 0%) 61.4%
Weak (52.5%, 47.5%) 52.5% (29.0%, 21.0%) 54% (13.5%, 6.6%) 53.5%

Stack Overflow (Fig 2b) Strong (87%, 13.9%) 87% (48.3%, 1.7%) 73.3% (19.9%, 0.1%) 59.9%
Weak (85.9%, 14.1%) 85.9% (47.6%, 2.4%) 72.6% (19.6%, 0.2%) 59.7%

at a fixed 1% FPR. When the weak adversary picks the 90th percentile threshold, the inner product
attack yields a 2.5× higher TPR than FPR.

A.7 TABLES FOR PERCENTILE-BASED THRESHOLDS

Here, we present the tables which contain the results of our experiments where we choose the decision
threshold for our test statistic using the 50th, 75th, and 90th percentile values.

A.7.1 WHITENING TRANSFORMATION

Applying a whitening transformation to the embeddings transforms them into random vectors with
covariance equal to the identity matrix. By doing this, we attempt to contract the axes in the the
representation space that dominate our task-inference statistics. We find that whitened embeddings
often provide better signal to the adversary for our inner product attack (Algorithm 2) than raw
embeddings. To compute the transformation, we first estimate the covariance matrix of the embedding
space by pooling all of the embeddings available to the adversary, regardless of task or inclusion in
the model’s training set, and computing the regularized covariance matrix Σreg = (Q+ λ · tr(Q)

d Id)
where Q is the sample covariance matrix, d is the embedding dimension, and λ is a small constant.
Once a well-conditioned Σreg has been estimated, a common choice for the whitening transformation
would be W = Σ

−1/2
reg . To ensure that the covariance estimate is not dependent on a challenge

task’s data, we compute whitening transformations for each of the 2T tasks that we input to our
attack, leaving out the data from one task each time. When applying W to the embeddings, we
additionally center the embeddings by computing ē, the sample mean of all embedding vectors. Thus,
we normalize a given embedding e by computing W (e− ē).

A.7.2 VARIANCE ATTACK TEST STATISTIC

Across all of our experiments in both MTL settings, the statistic produced by our inner product attack
(Algorithm 2) is consistent with respect to the ordering of IN and OUT distributions. In contrast,
when studying leakage in MTL for personalization, we observe a discrepancy in the test statistic
distributions for vision and language datasets. Figure 4 shows that the coordinate-wise variance
statistic (Algorithm 1) is larger for IN tasks than OUT tasks.

To investigate this discrepancy in the ordering of our coordinate-wise variance test statistic, we
compute the pairwise inner product, or similarity, of the weights in the task-specific layers for our
CelebA, FEMNIST, and Stack Overflow models after MTL training. Figure 5 shows the distributions
of the task head inner products, where we see that the vision models produce embeddings that
lead task-specific layers to be correlated on average (i.e. inner product not centered around 0).
Because the task heads are correlated, the primary signal for our attack is the shared representation’s
”overconfidence” in certain directions of the embedding space, which yields higher coordinate-wise
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Figure 4: Distribution of Coordinate-Wise Variance Statistic; (a) CelebA; (b) Stack Overflow

variance. We find that the task heads of our FEMNIST models have the highest correlation, followed
by our CelebA models, then Stack Overflow, which maps to the ordering of the AUC scores we see
in our experiments on MTL for personalization.

0 5 10 15 20 25
Inner Product of Task Heads After MTL Training

CelebA
Stack Overflow
FEMNIST

Figure 5: Task-Specific Layer Similarity (Personalization)

A.8 ABLATIONS ON SYNTHETIC DATA

We attempt to understand task-inference leakage by running our attacks on a synthetic dataset. The
data generation process for this dataset is identical to the mean estimation example in Section 4, but
we adapt it for machine learning. To create the synthetic dataset, we start by sampling 2T i.i.d. tasks,
{µ1 . . . µ2T } from a d-dimensional Gaussian distribution. For each of the tasks, µi, we sample a
dataset of N d-dimensional vectors from the corresponding task distribution. To label the data for
a learning problem, we first generate a random projection matrix H ∈ Rk×d, where d is the data
dimension and k is the embedding dimension. Then, we randomly sample the ”target” task-specific
layers g1, . . . gT ∈ Rk and get the label for each sample, x⃗, coming from task τ ∈ [T ] to be the
sign of the inner product between gτ and the embedding vector Hx⃗ (that is, for any sample Xi,j ,
yi,j = sign(⟨ gi , HXi,j ⟩). This particular dataset is well suited for MTL as all tasks have unique
labeling functions, but a common projection into the embedding space.

In our experiments on synthetic data, we use a simple neural network with 512 hidden units and
a linear projection layer into the embedding space to approximate H . We vary the embedding
dimension, number of samples per task, and number of tasks in the dataset, then measure our
coordinate-wise variance attack’s AUC over 4 training runs, with 64 trials of each attack on 8 random
samples from each task. The results of this experiment are shown in Figure 6. We observe that
increasing the number of total samples in the dataset, whether by increasing the number of samples
per task or the total number of tasks, has a sharp impact on the strong adversary’s AUC. As the
model has more samples to learn from, the gap between the strong and weak adversary’s AUC scores
shrinks. We also find that, in this suite of experiments, the embedding dimension has little impact on
task-inference AUC.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120
Embedding Dimension

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

AU
C

Strong Adversary
Weak Adversary

(a) Embedding Dimension

20 40 60 80 100 120 140 160
Number of Samples Per Task

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

AU
C

Strong Adversary
Weak Adversary

(b) Number of Samples Per Task

100 150 200 250 300 350 400 450 500
Number of Tasks

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Strong Adversary
Weak Adversary

(c) Number of Tasks

Figure 6: Ablations on Synthetic Data

B ANALYZING TASK-INFERENCE VIA TRACING ATTACKS

To motivate further exploration of attacks on deep learning models, we present a simplified analog
of multitask learning via mean estimation. Proofs of our theorems in this Section can be found in
Appendix B.2.

Suppose that there exists a set of task means M = {µ1, . . . , µT } which are sampled i.i.d. from
N (µ̄, σ̄2Id) where µ̄ is the ”true” mean that we would like to estimate. For each ”task” µi, we can
sample N (where N is relatively small) points i.i.d. from N (µi, σ

2Id) and store them in the set
Xi = {xi,1, . . . , xi,N}. Since no individual dataset Xi would yield an accurate estimate of µ̄ we can
instead compute the sample ”multitask” mean using all of the Xi’s as

µ̂ =
1

T

T∑
i=1

 1

N

N∑
j=1

Xi,j


This ”multitask” mean can be viewed as analogous to the weights of the shared representation
in multitask learning, because we average over data, Xi, sampled from a mixture of Gaussian
distributions, N (µi, σ

2Id), which share features, to produce an accurate estimate of the underlying
common parameter, µ̄. We note that µ̂ is Gaussian with expectation and covariance

E
µ,X

[µ̂] = µ̄ Cov (µ̂) =
( σ̄2

T
+

σ2

N · T

)
· Id
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Figure 7: Results of Our Tracing Attack on Multitask Mean Estimation ( T = 256; d = 256; N = 8;
k = 4 )
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B.1 TRACING ATTACK FOR TASK INFERENCE

Here, we construct an adversary, based on prior work on tracing Dwork et al. (2015), with similar
variants to the strong and weak adversaries detailed in Section 3. We consider a challenger who
releases the statistic µ̂ and an adversary who wants to learn whether a given task µi was included in
the dataset that was used to compute µ̂.

One possible attack would be the following:

1. The adversary receives a challenge set, or batch of data, B, from the challenger where |B| =
k ≤ N , such that the samples come from a task that was used to compute µ̂, µIN = µi, or
a task that was not used to compute µ̂ but comes from the same underlying task distribution,
µOUT ∼ N (µ̄, σ̄2Id)

2. First, the adversary computes the sample mean of the batch

µB =
1

k

∑
x∈B

x

3. Then, the adversary computes the test statistic

z = ⟨µ̂− µ̄ , µB − µ̄⟩

4. Lastly, the adversary performs a thresholded classification, returning z > γ for some threshold γ

Our adversary adapts a test statistic originally intended for membership-inference Dwork et al. (2015)
that measures the correlation between the released statistic and the samples available to the adversary.
However, unlike the membership-inference setting, the adversary is attempting to detect traces of the
task, or data’s distribution, µi, rather than any particular sample from one of the datasets Xi. In the
following theorems, we find that the inclusion of a task, µi, can be inferred by both the strong and
weak adversaries, and the strong adversary gets a slight advantage from having access to samples in
Xi.
Theorem B.1 (Strong Adversary; Theorem 4.1 in Main Body). Let τ be the index of the target task
and suppose that the challenger sends the adversary a challenge set of k samples B such that, when
the task is IN, the k samples are drawn uniformly at random from Xτ . Then the expected value of the
statistic, z, when µτ is OUT is

E
µ, X

[zOUT] = 0

and when µτ is IN, the expected value of z is

E
µ,X

[zIN] =
d

T

(
σ̄2 +

σ2

N

)
In Theorem 4.1, we see that the expectation of the strong adversary’s test statistic, z, primarily grows
in the dimension of the data divided by the total number of tasks used to learn the multitask mean,
µ̂. Through this result, we demonstrate that detecting traces of tasks can be seen as a generalization
of membership inference, as setting the number of tasks T = 1, sampling N datapoints, X , only
from the single task to estimate the task mean, and allowing the adversary to use k = 1 sample
reduces zIN to the membership-inference test statistic, which has expectation Θ

(
d
N

)
. In our setting,

if the adversary wants to trace a single sample in the multitask mean, the expectation of their statistic
would be Θ

(
d

NT

)
. Because the total dataset size for our mean estimation is T · N with N ≪ T ,

tracing tasks is an easier objective for the adversary than tracing individual samples, as there a larger
separation between the distributions of zIN and zOUT . Moreover, because the dataset is composed
of multiple task distributions, a weak task-inference adversary can mount attacks by using data that
comes from one of the included tasks but was never used in the estimation of µ̂.
Theorem B.2 (Weak Adversary; Theorem 4.2 in Main Body). Let τ be the index of the target task
and suppose the challenger sends the adversary a challenge set of k samples B such that, when the
task is IN, the k samples are drawn i.i.d. from the same distribution as Xτ , N (µτ , σ

2Id). Then the
expected value of the statistic, z, when µτ is OUT is 0. When µτ is IN, the expected value of z is

E
µ,X

[zIN] =
d

T
σ̄2
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Informally, Theorem 4.2 shows that the expectation of the weak adversary’s test statistic depends
only on the number of tasks, and does not benefit from a smaller number of total training samples.
Similar to the strong case, when analyzing the weak case, we split the statistically dependent and
independent components of the sum, as the batch is drawn from the underlying task distribution for
some fixed task which was included in the estimate. In contrast with the strong case, there is no
overlap between the adversary’s challenge set and the training data. Thus, we need not account for
overlapping Xτ,j’s. Rather, we only need to consider that the challenge set samples come from the
same distribution, or task, as one of the tasks in the dataset used to compute µ̂.

Theorem B.3 (Variance of z; Theorem 4.3 in Main Body). The variance of z when µτ is OUT is

Var
µ,X

(zOUT) =
d

T

[
σ̄4 +

σ4

kN
+
(k +N

kN

)
(σ̄2σ2)

]
When µτ is IN,

Var
µ,X

(zIN) ≤ 3Var
µ,X

(zOUT)

We note that the strong adversary always achieves greater attack success rates than the weak adversary
because the distance between the expected value of the test statistic, z, when the task is IN or OUT
is strictly larger than that of the weak adversary at a similar level of variance. Furthermore, this
attack on mean estimation shows that the adversary’s success is dependent on two distinct parts: the
knowledge they receive from having member data (i.e. the d

TN σ2 term) and the knowledge they have
about the distributions, or tasks, that compose the dataset (i.e. the d

T σ̄
2 term). To empirically verify

our results, we simulated the attack with parameters T = 256, d = 256, N = 8, and k = 4. The
ROC curves and distribution of z for both the strong and weak adversaries are shown in Figure 7.

B.2 PROOFS FOR SECTION 4

In this section, we provide the proofs for our theorems in Section 4. Because the random variables
in our estimation and attack are nested, we use the subscript X to denote taking probability over
sampling the data and subscript µ to denote taking probability over sampling tasks.

Theorem 4.1 (Strong Adversary). Let τ be the index of the target task and suppose that the challenger
sends the adversary a challenge set of k samples B such that, when the task is IN, the k samples are
drawn uniformly at random from Xτ . Then the expected value of the statistic, z, when µτ is OUT is

E
µ, X

[zOUT] = 0

and when µτ is IN, the expected value of z is

E
µ,X

[zIN] =
d

T

(
σ̄2 +

σ2

N

)

Proof. In the strong case, for tasks that were included, the adversary has access to samples which
were used to compute the mean, µ̂. Suppose that the strong adversary computes z, then, when µτ is
OUT,

E
µ,X

[zOUT] = E
µ,X

[⟨µ̂− µ̄ , µB − µ̄⟩]

= ⟨ E
µ,X

[µ̂− µ̄] , E
µ,X

[µB − µ̄]⟩

= 0

In contrast, when the batch of points is IN,
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E
µ,X

[zIN] = E
µ,X

[⟨µ̂− µ̄ , µB − µ̄⟩]

=

d∑
i=1

E
µ,X

[(µ̂− µ̄)i · (µB − µ̄)i]

For succinctness, we drop the summation over d dimensions as they are i.i.d.

E
µ,X

[(µ̂− µ̄) · (µB − µ̄)] = E
µ,X

[
µ̂µB − µ̄µB − µ̄µ̂+ µ̄2

]
= E

µ,X
[µ̂µB ]− µ̄ E

µ,X
[µB ]− µ̄ E

µ,X
[µ̂] + µ̄2

= E
µ,X

[µ̂µB ]− µ̄2

Now, expanding µ̂ and µB

E
µ,X

[µ̂µB ]− µ̄2 = E
µ,X

 1

T

T∑
i=1

1

N

N∑
j=1

Xi,j

1

k

k∑
j=1

Xτ,j

− µ̄2

We assume that k ≤ N . Separating the correlated and uncorrelated tasks, we have

= E
µ,X

 1

T

∑
i̸=τ

1

N

N∑
j=1

Xi,j

1

k

k∑
j=1

Xτ,j


+ E

µ,X

 1

TN

N∑
j=1

Xτ,j

1

k

k∑
j=1

Xτ,j

− µ̄2

= E
µ,X

 1

T

∑
i̸=τ

1

N

N∑
j=1

Xi,j

 · E
µ,X

1

k

k∑
j=1

Xτ,j


+ E

µ,X

 1

TN

N∑
j=1

Xτ,j

1

k

k∑
j=1

Xτ,j

− µ̄2

=
T − 1

T
µ̄2 + E

µ,X

 1

TN

N∑
j=1

Xτ,j

1

k

k∑
j=1

Xτ,j

− µ̄2

=
1

TNk

 k∑
j=1

E
µ,X

[
X2

τ,j

]
+
∑
j ̸=ℓ

E
µ,X

[Xτ,j ·Xτ,ℓ]−Nkµ̄2



Now, taking the expectation over sampling the data then taking the expectation over sampling tasks,
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=
1

TNk

 k∑
j=1

E
µ

[
µ2
τ + σ2

]
+
∑
j ̸=ℓ

E
µ

[
µ2
τ

]
−Nkµ̄2



=
1

TNk

(
k(µ̄2 + σ̄2 + σ2) + (Nk − k)(µ̄2 + σ̄2)−Nkµ̄2

)

=
1

TNk

(
kσ̄2 + kσ2 + (Nk − k)σ̄2

)

=
1

TNk

(
Nkσ̄2 + kσ2

)

=
σ̄2

T
+

σ2

NT

Summing over the d i.i.d. dimensions, we get

E
µ,X

[zIN] =
d

T
(σ̄2 +

σ2

N
)

Theorem 4.2 (Weak Adversary). Let τ be the index of the target task and suppose the challenger
sends the adversary a challenge set of k samples B such that, when the task is IN, the k samples are
drawn i.i.d. from the same distribution as Xτ , N (µτ , σ

2Id). Then the expected value of the statistic,
z, when µτ is OUT is 0. When µτ is IN, the expected value of z is

E
µ,X

[zIN] =
d

T
σ̄2

Proof. The proof for the OUT case is identical to the proof for Theorem 4.1. When the weak
adversary’s challenge batch is IN

E
µ,X

[zIN] = E
µ,X

[⟨µ̂− µ̄ , µB − µ̄⟩]

=

d∑
i=1

E
µ,X

[(µ̂− µ̄)i · (µB − µ̄)i]

For succinctness, we drop the summation over d dimensions as they are i.i.d.

E
µ,X

[(µ̂− µ̄) · (µB − µ̄)] = E
µ,X

[
µ̂µB − µ̄µB − µ̄µ̂+ µ̄2

]
= E

µ,X
[µ̂µB ]− µ̄ E

µ,X
[µB ]− µ̄ E

µ,X
[µ̂] + µ̄2

= E
µ,X

[µ̂µB ]− µ̄2

Expanding µ̂ and µB yields

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E
µ,X

[µ̂µB ]− µ̄2 = E
µ,X

 1

T

T∑
i=1

1

N

N∑
j=1

Xi,j

1

k

k∑
j=1

Xτ,j

− µ̄2

We assume that k ≤ N . Once again separating the correlated and uncorrelated tasks, we have

= E
µ,X

 1

T

∑
i̸=τ

1

N

N∑
j=1

Xi,j

 · E
µ,X

1

k

k∑
j=1

Xτ,j


+ E

µ,X

 1

TN

N∑
j=1

Xτ,j

1

k

k∑
j=1

Xτ,j

− µ̄2

=
T − 1

T
µ̄2 + E

µ,X

 1

TN

N∑
j=1

Xτ,j

1

k

k∑
j=1

Xτ,j

− µ̄2

Now, we note that the challenge batch samples are fresh, i.i.d samples from the task distribution
N (µτ , σ

2Id). Thus, the challenge batch and µ̂ are independent over sampling the data, but correlated
over tasks. Taking the expectation over both data and tasks,

=
T − 1

T
µ̄2 + E

µ

 1

T
E
X

 1

N

N∑
j=1

Xτ,j

 · E
X

1
k

k∑
j=1

Xτ,j

− µ̄2

=
T − 1

T
µ̄2 +

1

T
E
µ

[
µ2
τ

]
− µ̄2

=
T − 1

T
µ̄2 +

1

T
(µ̄2 + σ̄2)− µ̄2

=
1

T
(µ̄2 + σ̄2)− 1

T
µ̄2

=
σ̄2

T

Summing over the d i.i.d. dimensions, we get that under the weak adversary

E
µ,X

[zIN] =
d

T
σ̄2

Theorem 4.3 (Variance). The variance of z when µτ is OUT is

Var
µ,X

(zOUT) =
d

T

[
σ̄4 +

σ4

kN
+
(k +N

kN

)
(σ̄2σ2)

]
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When µτ is IN,

Var
µ,X

(zIN) ≤ 3Var
µ,X

(zOUT)

Proof. First, we define the following random variables:

α = µ̂− µ̄; α ∼ N
(
0⃗,

(
σ̄2

T
+

σ2

NT

)
Id
)

β = µB − µ̄; β ∼ N
(
0⃗,

(
σ̄2 +

σ2

k

)
Id
)

Then, the variance in the OUT case is

Var
µ,X

(zOUT) = Var
µ,X

(⟨α , β⟩)

=

d∑
i=1

Var
µ,X

(αi · βi)

For succinctness, we drop the summation with index i over the i.i.d dimensions of the random
variables. Then, we have

Var
µ,X

(α · β) = E
µ,X

[
α2β2

]
− E

µ,X
[αβ]

2

= E
µ,X

[
α2β2

]
= E

µ,X

[
α2
]
E

µ,X
[β2]

= Var
µ,X

(α)Var
µ,X

(β)

=

(
σ̄2

T
+

σ2

NT

)
·
(
σ̄2 +

σ2

k

)
=

1

T

[
σ̄4 +

σ4

kN
+
(k +N

kN

)
(σ̄2σ2)

]

Summing over the d dimensions, we have

Var
µ,X

(zOUT) =
d

T

[
σ̄4 +

σ4

kN
+
(k +N

kN

)
(σ̄2σ2)

]

Now, we can bound the variance of zIN = ⟨α , β⟩
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Var
µ,X

(zIN) = Var
µ,X

(⟨α , β⟩)

=

d∑
i=1

Var
µ,X

(αi · βi)

=

d∑
i=1

E
µ,X

[
(αi · βi)

2
]
− E

µ,X
[αi · βi]

2

=

d∑
i=1

E
µ,X

[
(αi · βi)

2
]
− Cov

µ,X
(αi, βi)

2

=

d∑
i=1

E
µ,X

[
(αi · βi)

2
]
− ρ2Var

µ,X
(αi)Var

µ,X
(βi)

where ρ is the correlation coefficient between αi and βi. Now, using the Cauchy-Schwarz inequality
and the fact that ρ2 ≥ 0

≤
d∑

i=1

(√
E

µ,X
[α4

i ] E
µ,X

[β4
i ]

)
− ρ2Var

µ,X
(αi)Var

µ,X
(βi)

=

d∑
i=1

(√
3Var
µ,X

(αi)
2 · 3Var

µ,X
(βi)

2

)
− ρ2Var

µ,X
(αi)Var

µ,X
(βi)

=

d∑
i=1

3Var
µ,X

(αi)Var
µ,X

(βi)− ρ2Var
µ,X

(αi)Var
µ,X

(βi)

≤
d∑

i=1

3Var
µ,X

(αi)Var
µ,X

(βi)

= 3Var
µ,X

(zOUT)

We note that in this proof, the variance of zIN is bounded by setting the squared correlation equal to 0.
In practice, ρ2 > 0 since we know from Theorems 4.1 and 4.2 that E

µ,X
[αi · βi] =

σ̄2

T in the weak

case and σ̄2

T + σ2

NT in the strong case.

C ADDITIONAL DISCUSSION

We provide additional discussion points to supplement Section 7.

C.1 POTENTIAL DEFENSES

One potential defense against our attack could be user-level (or group-level) differential privacy Dwork
et al. (2006), where neighboring datasets are defined by the inclusion or omission of a user’s entire
contribution to the dataset, rather than an individual sample. While there are several works study
user-level differential privacy when training machine learning models Levy et al. (2021); Chua
et al. (2024); Charles et al. (2024) and estimating high dimensional means Cummings et al. (2022);
Agarwal et al. (2025), only one work develop algorithms with client-level privacy guarantees Hu
et al. (2023) when MTL is applied to collaborative learning. In contrast to observations for empirical
defenses made in the membership-inference literature Carlini et al. (2022), our attack succeeds even
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when the target MTL model is trained using gradient clipping. In fact, we use gradient clipping in
our evaluation to ensure that the MTL models converge smoothly and do not overfit when learning
over very few samples from each task.

D USE OF LARGE LANGUAGE MODELS

Large language models were used to polish writing by rephrasing sentences, helping condense long
paragraphs, and checking for typos and grammatical errors.

27


	Introduction
	Background and Related Work
	Threat Model
	Analyzing Task-Inference
	Methodology
	Our Task-Inference Attacks

	Evaluation
	MTL Training
	Models, Datasets, and Metrics
	Personalization
	Multiple Learning Problems
	Investigating Sources of Task-Inference Leakage

	Conclusion and Discussion
	Additional Results and Details from Methodology and Evaluation
	Attack Algorithms
	Models and Datasets
	Vision Models
	Language Models
	Vision Datasets
	Language Datasets

	Multitask Training
	Metrics
	Experimental Setup
	Personalization
	Multiple Learning Problems

	FEMNIST Results
	Tables for Percentile-Based Thresholds
	Whitening Transformation
	Variance Attack Test Statistic

	Ablations on Synthetic Data

	Analyzing Task-Inference via Tracing Attacks
	Tracing Attack for Task Inference
	Proofs for Section 4

	Additional Discussion
	Potential Defenses

	Use of Large Language Models

