

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADAM: A DIVERSE ARCHIVE OF MANKIND FOR EVALUATING AND ENHANCING LLMs IN BIOGRAPHI- CAL REASONING

006  
007     **Anonymous authors**  
008     Paper under double-blind review

## 011     ABSTRACT

013     We introduce **ADAM** (A Diverse Archive of Mankind), a framework for eval-  
014     uating and improving multimodal large language models (MLLMs) in biographi-  
015     cal reasoning. To the best of our knowledge, this is the first work to system-  
016     atically examine LLM capabilities in biography, a critical yet underexplored di-  
017     mension of factual knowledge. At its core, **AdamDB** is a multilingual and mul-  
018     timodal dataset covering over 4 million individuals across geography, time, and  
019     profession, while **AdamBench** provides cognitively structured evaluations based  
020     on Bloom’s taxonomy, spanning six reasoning levels in both English and native  
021     languages. To address hallucinations, particularly for lesser-known individuals,  
022     we propose **AdamRAG**, a retrieval-augmented generation system tailored to bi-  
023     ographical contexts. Experiments show that AdamRAG substantially improves  
024     open-source models and modestly benefits closed-source ones, with the largest  
025     gains on lower-order reasoning. Popularity strongly mediates accuracy, and mul-  
026     timodal input via face images offers smaller, less consistent improvements than  
027     retrieval. ADAM establishes the first benchmark and framework for cognitively,  
028     culturally, and multimodally grounded biographical evaluation, advancing the de-  
029     velopment of multilingual, accurate, and hallucination-resistant MLLMs.

## 030     1 INTRODUCTION

031     The proliferation of Large Language Models (LLMs) has revolutionized information access, yet their  
032     application to biographical content reveals critical vulnerabilities. This domain demands absolute  
033     factual accuracy, but is plagued by LLM “hallucinations” (the generation of fabricated or incorrect  
034     facts). This problem is compounded by the poor performance of even advanced vision-language  
035     models like Qwen-VL Bai et al. (2025) and Gemma Team et al. (2025) on multimodal biographical  
036     reasoning tasks, the lack of popularity-aware systems that can distinguish between a global icon and  
037     a regional figure, and a persistent English-centric bias. Consequently, retrieving reliable biographical  
038     information across the world’s languages and cultures remains a significant challenge, creating a gap  
039     where misinformation can flourish.

040     Existing resources are ill-equipped to solve this. Historical and semantic biographical systems such  
041     as BiographySampo (Hyvönen et al., 2019), while valuable, are typically monolingual, manually  
042     curated, and limited in scale. This reliance on manual curation results in incomplete and static  
043     collections that lack linguistic and cultural diversity. While the field has evolved from traditional  
044     information retrieval to more sophisticated retrieval-augmented generation (RAG) and graph search  
045     methods, no system has been specifically engineered to handle the unique complexities of biography.  
046     There is currently no robust, multilingual, popularity-aware, and multimodal RAG system capable of  
047     navigating the vast and varied landscape of human life stories, leaving significant temporal, cultural,  
048     and linguistic gaps in our digital knowledge.

049     To address these gaps, we introduce **ADAM** (A Diverse Archive of Mankind), the first comprehen-  
050     sive, retrieval-augmented framework specifically designed for biographical reasoning across global  
051     languages. At its core, **AdamDB** contains over four million structured biographical records span-  
052     ning nearly 600 native languages, automatically constructed via a WikiDB-to-RAG pipeline. To  
053     overcome linguistic barriers, ADAM integrates cross-language entity linking and multilingual se-

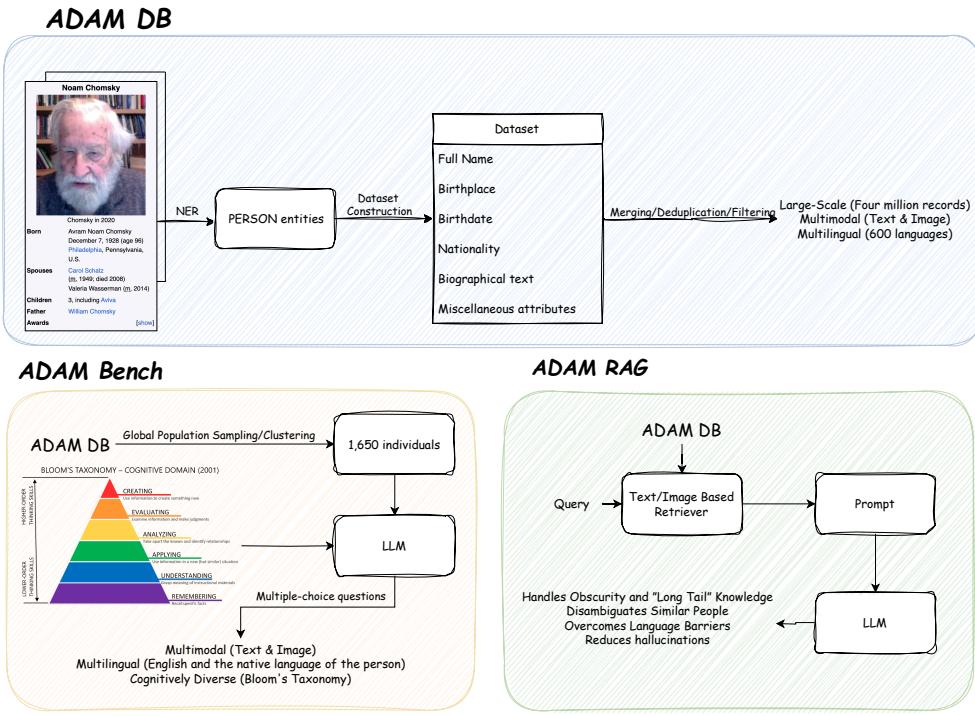
054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065

Figure 1: Overview of the **ADAM** framework. **AdamDB** builds a large-scale, multilingual, and multimodal biographical knowledge base. **AdamBench** enables cognitively diverse and cross-linguistic evaluation through Bloom’s taxonomy, spanning all six reasoning levels. **AdamRAG** integrates retrieval-augmented generation to strengthen factual grounding, improve accuracy, and mitigate hallucinations in biographical reasoning.

mantic search. To incorporate awareness of subject popularity, **AdamRAG** introduces popularity-weighted retrieval using Wikipedia engagement metrics, enabling adaptive knowledge access. Finally, to move beyond fact-checking, **AdamBench** provides a cognitively rigorous evaluation suite grounded in Bloom’s taxonomy, supporting systematic assessment of biographical reasoning from factual recall to creative synthesis.

**Contributions:** The main contributions of this work are **(i) ADAM Framework:** We present the first retrieval-augmented framework for biographical reasoning, integrating multilingual retrieval, popularity awareness, and cognitive evaluation in a unified system. **(ii) AdamDB:** A large-scale, multilingual, and multimodal biographical knowledge base covering over four million individuals across time, geography, profession, and nearly 600 languages. **(iii) AdamBench:** A biographical reasoning benchmark grounded in Bloom’s taxonomy, providing a structured cognitive evaluation across six hierarchical levels in both English and subjects’ native languages. **(iv) AdamRAG:** A retrieval-augmented generation system tailored for biography, incorporating cross-lingual retrieval and popularity-weighted search, significantly reducing hallucinations and improving factual grounding, especially for lesser-known individuals. **(v) Comprehensive Evaluation:** We provide the first systematic analysis of LLMs and MLLMs on biographical reasoning tasks, highlighting gaps in cross-linguistic generalization, cognitive depth, popularity bias, and multimodal grounding. By integrating retrieval with cognitive and multilingual benchmarks, ADAM offers the community a robust framework for developing more accurate, culturally grounded, and hallucination-resistant LLMs.

## 2 RELATED WORKS

Biographical datasets consist of structured or unstructured narratives that capture key details of individuals’ lives, including their personal history, career developments, relationships, and significant life events. They serve as crucial resources for a variety of natural language processing tasks such

108 as biography summarization, named entity recognition, information extraction, and text generation.  
 109 These datasets range widely in size and focus from large-scale collections with millions of records  
 110 to more specialized corpora centered on particular professions, time periods, or population groups.  
 111 Typical sources include encyclopedias, web-scraped data, news articles, social media content, and  
 112 synthetic profiles, each offering varying levels of accuracy, coverage, and structure.

113 A wide range of datasets have been developed for biographical text generation, information ex-  
 114 traction, and related NLP tasks. WikiBio Dataset Lebret et al. (2016) consists of 728,321 English  
 115 Wikipedia biography entries linked with infoboxes, focusing on generating the first sentence of each  
 116 article. Bamman & Smith (2014) is derived from the 2014 Wikipedia dump, comprising 927,403  
 117 entries with structured person data metadata. The filtered version contains 242,970 biographies of  
 118 individuals born after 1800 with at least five documented life events. BigWikiBio Ambavi et al.  
 119 (2020) expands upon WikiBio, offering nearly 6 million biography articles scraped from English  
 120 Wikipedia. BIOS Dataset De-Arteaga et al. (2019) offers 400,000 concise biographies across 28  
 121 occupations, extracted from Common Crawl using occupation-based filtering aligned with the BLS  
 122 taxonomy. It processes WET files from 16 crawls conducted between 2014 and 2018. SynthBio  
 123 Yuan et al. (2021) is a synthetic benchmark for WikiBio, consisting of 2,249 fictional infoboxes  
 124 paired with 4,692 generated biographies, each infobox mapped to an average of 2.1 biographies.  
 125 Pantheon 1.0 Yu et al. (2016) offers manually curated biographies of 11,341 globally notable indi-  
 126 viduals, enriched with occupation categories and popularity metrics such as the Historical Popularity  
 127 Index. BiographySampo (Finnish National Biography) Hyvönen et al. (2019) presents biographical  
 128 data, including structured metadata such as occupations, birth/death dates, and author demographics.  
 129 EventKG Gottschalk & Demidova (2019) includes person-centric timelines with annotated events  
 130 for training and evaluation, covering professions such as politics, music, and sports. Biographical  
 131 Relation Extraction Dataset Plum et al. (2022) enables relation extraction across ten predefined cate-  
 132 gories by aligning Wikipedia sentences with data from Pantheon and Wikidata, including a manually  
 133 verified evaluation set. As shown in Table 1, ADAM significantly outperforms previous datasets in  
 134 terms of records, supported languages, and country coverage.

135 Table 1: Comparison of ADAM with previous datasets, showing its superiority in number of records,  
 136 supported languages, and global coverage.

| 137 | 138 | System             | 139 Records      | 140 Languages | 141 Countries |
|-----|-----|--------------------|------------------|---------------|---------------|
| 139 | 140 | BiographySampo     | 13,100           | 1 (Finnish)   | 1             |
| 140 | 141 | BiographyNet       | 125,000          | 1 (Dutch)     | 1             |
| 141 | 142 | Networked Pantheon | 11,341           | Limited       | Global        |
| 142 | 143 | EventKG+BT         | -                | Limited       | Limited       |
| 143 | 144 | <b>ADAM</b>        | <b>4,016,647</b> | <b>595</b>    | <b>global</b> |

### 146 3 APPROACH

#### 148 3.1 OVERVIEW

149 This work introduces a comprehensive framework designed to enhance and evaluate the biograph-  
 150 ical reasoning capabilities of Large Language Models (LLMs). The foundation of this framework  
 151 is AdamDB, a large-scale, multilingual, and multimodal database containing structured information  
 152 and embeddings for approximately 4 million individuals, created to serve as a factual grounding re-  
 153 source that combats AI hallucinations and addresses coverage gaps in existing datasets. Building on  
 154 this resource, we developed AdamBench, a novel evaluation benchmark featuring multilingual and  
 155 multimodal questions structured according to Bloom’s Taxonomy to assess a spectrum of cognitive  
 156 skills, from factual recall to complex reasoning. To operationalize this data, we present AdamRAG,  
 157 a Retrieval-Augmented Generation system that queries AdamDB to provide LLMs with verified  
 158 contextual information, significantly improving response accuracy, especially for less-prominent in-  
 159 dividuals, and enabling robust disambiguation through sophisticated text and image-based retrieval  
 160 pipelines. Figure 1 provides a holistic overview of the ADAM framework, from algorithmic data  
 161 selection and sampling to benchmark generation and retrieval-augmented evaluation.

162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215

Table 2: Accuracy of leading open-source and closed-source models (⌚) on biographical reasoning tasks, organized along the six cognitive levels of Bloom’s taxonomy (“Remembering” to “Creating”). For each skill, performance is reported in English (“En”) and in the subject’s original language (“Org”, determined by city of birth). A varying number of stars (★★) indicates the popularity level of the individual. Rows specify model configurations, distinguishing multimodal input (✓ Face Image) and whether answers were generated in a two-stage retrieval setting (✓ RAG) or via zero-shot prompting.

| Model              | Language | Image | RAG | (i) Remembering |      |      | (ii) Understanding |      |      | (iii) Applying |      |      | (iv) Analyzing |      |      | (v) Evaluating |      |      | (vi) Creating |      |      |
|--------------------|----------|-------|-----|-----------------|------|------|--------------------|------|------|----------------|------|------|----------------|------|------|----------------|------|------|---------------|------|------|
|                    |          |       |     | ★               | ★★   | ★★★  | ★                  | ★★   | ★★★  | ★              | ★★   | ★★★  | ★              | ★★   | ★★★  | ★              | ★★   | ★★★  | ★             | ★★   | ★★★  |
| ⌚ Gemini Flash 2.5 | En       | ⌚     |     | 73.2            | 82.4 | 89.5 | 87.5               | 93.1 | 97.0 | 89.4           | 95.1 | 97.2 | 87.0           | 92.8 | 91.1 | 90.7           | 96.3 | 96.2 | 90.7          | 96.7 | 96.2 |
| ⌚ Gemini Flash 2.5 | Org      | ⌚     |     | 86.5            | 92.3 | 93.4 | 89.2               | 94.2 | 96.6 | 89.2           | 93.1 | 94.4 | 85.9           | 91.0 | 89.7 | 87.3           | 95.8 | 94.2 | 88.5          | 92.3 | 94.4 |
| ⌚ GPT-4            | En       | ⌚     |     | 63.5            | 72.2 | 78.3 | 88.9               | 91.2 | 92.5 | 83.4           | 87.3 | 88.1 | 85.6           | 87.0 | 88.9 | 91.1           | 90.3 | 86.1 | 91.3          | 92.3 | 94.0 |
| ⌚ GPT-4            | Org      | ⌚     |     | 63.1            | 68.0 | 77.7 | 87.8               | 91.2 | 92.3 | 86.6           | 88.1 | 87.0 | 88.6           | 88.9 | 89.2 | 91.0           | 84.1 | 92.3 | 90.9          | 93.4 |      |
| ⌚ Gemma3-12b-it    | En       | ⌚     |     | 19.0            | 22.9 | 45.7 | 57.0               | 59.5 | 69.4 | 45.6           | 53.2 | 63.8 | 46.8           | 51.5 | 37.2 | 40.7           | 51.7 | 25.4 | 35.0          | 53.9 |      |
| ⌚ Gemma3-12b-it    | Org      | ⌚     |     | 20.8            | 25.2 | 39.4 | 46.7               | 48.6 | 52.7 | 37.9           | 44.5 | 51.5 | 36.9           | 37.2 | 40.6 | 28.8           | 34.3 | 44.1 | 20.6          | 28.9 | 39.0 |
| ⌚ Qwen2.5-7b       | En       | ⌚     |     | 19.7            | 20.8 | 26.4 | 47.7               | 47.7 | 53.7 | 38.9           | 43.0 | 46.7 | 36.4           | 35.2 | 34.6 | 31.2           | 32.6 | 39.4 | 18.5          | 23.6 | 36.0 |
| ⌚ Qwen2.5-7b       | Org      | ⌚     |     | 18.9            | 21.5 | 25.1 | 35.0               | 35.4 | 33.8 | 32.1           | 28.5 | 31.0 | 25.0           | 24.1 | 25.5 | 20.2           | 24.8 | 25.7 | 13.7          | 18.3 | 22.5 |
| ⌚ Gemini Flash 2.5 | En       | ⌚     |     | 98.3            | 99.3 | 98.2 | 96.6               | 97.5 | 96.4 | 95.2           | 94.4 | 91.1 | 93.8           | 93.3 | 88.5 | 93.1           | 93.0 | 91.3 | 94.9          | 93.0 | 90.9 |
| ⌚ Gemini Flash 2.5 | Org      | ⌚     |     | 98.8            | 98.6 | 98.6 | 97.8               | 97.5 | 99.2 | 97.1           | 95.6 | 93.4 | 93.7           | 94.7 | 92.6 | 95.4           | 96.3 | 93.6 | 96.7          | 96.1 | 94.4 |
| ⌚ GPT-4            | En       | ⌚     |     | 95.5            | 95.6 | 95.8 | 96.6               | 96.7 | 96.4 | 89.9           | 90.7 | 91.5 | 94.3           | 94.9 | 96.4 | 92.3           | 92.1 | 88.9 | 97.4          | 96.8 | 95.4 |
| ⌚ GPT-4            | Org      | ⌚     |     | 96.2            | 96.3 | 96.2 | 97.8               | 97.7 | 97.4 | 90.9           | 91.7 | 90.1 | 92.6           | 94.5 | 94.6 | 92.3           | 92.3 | 88.7 | 97.1          | 96.8 | 96.8 |
| ⌚ Gemma3-12b-it    | En       | ⌚     |     | 96.9            | 95.8 | 85.7 | 86.8               | 85.6 | 74.6 | 84.2           | 78.5 | 68.0 | 74.1           | 70.8 | 63.6 | 79.6           | 76.9 | 71.0 | 77.0          | 73.8 | 66.2 |
| ⌚ Gemma3-12b-it    | Org      | ⌚     |     | 94.7            | 82.1 | 65.7 | 67.1               | 56.1 | 64.0 | 62.0           | 52.5 | 56.1 | 51.2           | 46.3 | 55.2 | 56.4           | 47.7 | 55.8 | 52.6          | 43.1 |      |
| ⌚ Qwen2.5-7b       | En       | ⌚     |     | 96.6            | 97.2 | 95.8 | 71.9               | 74.7 | 68.2 | 66.9           | 68.5 | 63.8 | 56.8           | 53.4 | 51.3 | 59.2           | 60.0 | 58.1 | 58.2          | 61.8 | 60.0 |
| ⌚ Qwen2.5-7b       | Org      | ⌚     |     | 86.5            | 87.7 | 81.7 | 49.9               | 48.9 | 42.0 | 45.8           | 41.4 | 40.4 | 38.4           | 34.5 | 32.8 | 34.5           | 34.5 | 35.6 | 34.8          | 34.3 | 35.0 |
| ⌚ Gemini Flash 2.5 | En       | ⌚     |     | 65.7            | 73.8 | 84.9 | 88.0               | 91.0 | 95.8 | 87.8           | 92.6 | 96.6 | 83.4           | 88.4 | 91.1 | 87.8           | 95.6 | 94.8 | 91.8          | 92.3 | 95.2 |
| ⌚ Gemini Flash 2.5 | Org      | ⌚     |     | 65.9            | 72.5 | 85.9 | 86.3               | 89.6 | 95.2 | 88.0           | 93.0 | 95.0 | 83.4           | 87.0 | 91.3 | 88.2           | 94.0 | 93.2 | 89.5          | 92.3 | 95.0 |
| ⌚ GPT-4            | En       | ⌚     |     | 24.9            | 23.4 | 31.0 | 78.9               | 82.8 | 86.9 | 82.7           | 87.7 | 90.7 | 77.4           | 82.8 | 83.9 | 88.2           | 90.7 | 88.9 | 88.2          | 87.9 | 89.9 |
| ⌚ GPT-4            | Org      | ⌚     |     | 24.9            | 24.1 | 34.2 | 81.7               | 83.5 | 88.1 | 80.1           | 86.3 | 87.7 | 74.1           | 76.8 | 78.7 | 74.1           | 85.8 | 86.8 | 86.9          | 85.1 | 87.9 |
| ⌚ Gemma3-12b-it    | En       | ⌚     |     | 40.3            | 42.3 | 48.9 | 68.1               | 71.1 | 76.5 | 73.1           | 79.9 | 84.1 | 71.7           | 75.7 | 79.5 | 69.0           | 80.6 | 81.1 | 68.1          | 74.3 | 79.5 |
| ⌚ Gemma3-12b-it    | Org      | ⌚     |     | 38.5            | 42.1 | 48.1 | 67.5               | 70.0 | 76.2 | 72.0           | 79.8 | 84.0 | 71.7           | 75.6 | 79.2 | 68.2           | 80.5 | 80.2 | 67.5          | 74.3 | 78.3 |
| ⌚ Qwen2.5-7b       | En       | ⌚     |     | 34.0            | 38.6 | 40.2 | 67.9               | 71.3 | 75.9 | 75.3           | 82.4 | 83.5 | 70.3           | 75.7 | 77.5 | 71.4           | 81.0 | 84.9 | 73.1          | 78.9 | 79.7 |
| ⌚ Qwen2.5-7b       | Org      | ⌚     |     | 32.8            | 37.3 | 37.2 | 65.2               | 67.4 | 73.4 | 65.9           | 78.7 | 80.9 | 60.4           | 65.0 | 69.2 | 64.7           | 73.6 | 75.8 | 75.0          | 79.2 | 85.9 |
| ⌚ Gemini Flash 2.5 | En       | ⌚     |     | 69.6            | 78.9 | 90.7 | 85.1               | 89.3 | 95.2 | 85.8           | 93.5 | 95.8 | 84.1           | 89.4 | 91.7 | 86.1           | 94.4 | 95.6 | 86.1          | 90.9 | 95.8 |
| ⌚ Gemini Flash 2.5 | Org      | ⌚     |     | 71.2            | 81.3 | 91.9 | 83.9               | 89.3 | 94.6 | 85.1           | 92.6 | 94.2 | 81.3           | 90.3 | 90.5 | 83.7           | 92.4 | 96.2 | 86.1          | 91.7 | 95.0 |
| ⌚ GPT-4            | En       | ⌚     |     | 42.5            | 53.7 | 66.0 | 69.6               | 77.1 | 84.5 | 74.1           | 82.0 | 87.9 | 73.9           | 81.2 | 82.3 | 74.3           | 82.4 | 84.7 | 76.2          | 79.1 | 87.1 |
| ⌚ GPT-4            | Org      | ⌚     |     | 46.8            | 57.6 | 68.2 | 72.4               | 77.6 | 85.7 | 75.0           | 84.3 | 86.5 | 69.6           | 78.9 | 80.5 | 73.2           | 81.0 | 86.5 | 75.0          | 79.2 | 85.9 |
| ⌚ Gemma3-12b-it    | En       | ⌚     |     | 56.5            | 66.0 | 65.2 | 71.8               | 74.8 | 65.2 | 74.1           | 78.7 | 63.0 | 71.7           | 74.0 | 58.0 | 74.3           | 73.6 | 62.1 | 69.4          | 75.0 |      |
| ⌚ Gemma3-12b-it    | Org      | ⌚     |     | 55.3            | 67.4 | 65.4 | 68.7               | 74.8 | 66.2 | 75.5           | 61.1 | 69.2 | 71.8           | 60.0 | 73.2 | 73.8           | 59.2 | 68.5 | 72.2          | 72.2 |      |
| ⌚ Qwen2.5-7b       | En       | ⌚     |     | 55.5            | 60.4 | 66.4 | 72.7               | 77.1 | 73.2 | 82.0           | 81.7 | 64.7 | 71.8           | 73.8 | 67.6 | 76.8           | 79.7 | 64.5 | 72.0          | 76.1 |      |
| ⌚ Qwen2.5-7b       | Org      | ⌚     |     | 53.0            | 60.4 | 62.6 | 68.8               | 70.6 | 66.2 | 77.6           | 79.7 | 57.0 | 60.9           | 67.2 | 60.6 | 71.5           | 72.2 | 57.6 | 66.4          | 66.6 |      |

216 3.2 DATASET  
217218 **AdamDB** AdamDB forms the core of the ADAM framework and is specifically designed for biographical information at scale. Its key characteristics are: (i) **Large-Scale**: covering over four  
219 million individuals with both structured and unstructured records. (ii) **Multimodal**: integrating textual  
220 biographies, names, dates, and references to images. (iii) **Multilingual**: spanning nearly 600  
221 languages, moving beyond the English-centric scope of prior datasets.  
222223 AdamDB addresses several critical limitations in existing resources: (i) **Reducing Hallucinations**:  
224 by grounding models in structured data through AdamRAG, lowering the risk of fabricated details.  
225 (ii) **Expanding Coverage**: by including diverse professions, geographies, and time periods,  
226 overcoming the narrow focus of manually curated, English-dominated databases. (iii) **Enabling  
227 Cognitive Evaluation**: by supporting AdamBench, which generates biographical questions across  
228 Bloom’s taxonomy for nuanced reasoning assessment. (iv) **Improving Performance**: by significantly  
229 enhancing accuracy, particularly for less popular individuals and non-English settings, when  
230 coupled with retrieval-augmented generation.  
231232 **Data Pipeline** We begin with the WikiDBS dataset, a large collection of relational tables. A two-  
233 stage filtering process isolates human-centric content: first, foreign key columns are heuristically  
234 matched with person-related patterns (e.g., “surname”); second, Named Entity Recognition (NER)  
235 is applied to retain only columns dominated by PERSON entities. Structured biographical records  
236 are then extracted row by row, merged via name-based mappings, and validated with NER.  
237238 To ensure uniqueness, we align records with Wikidata Q-IDs and consolidate duplicates by selecting  
239 modal values for biography, nationality, birth date, and birthplace. Translations of names across  
240 languages are retrieved from Wikidata, yielding a multilingual knowledge base. We retain only in-  
241 dividuals with non-null entries for biography, birth date, nationality, and birthplace. To quantify  
242 popularity, annual page views of each subject’s English Wikipedia entry (2024) are recorded, dis-  
243 carding entries with zero views. A minimum of 10 individuals per country or territory is enforced  
244 to ensure global representation.  
245246 **Dataset Statistics** AdamDB ultimately contains approximately four million unique individuals.  
247 While English has the highest coverage, other major languages remain well represented. Geo-  
248 graphic representation spans all continents and over 200 countries. Summary statistics on distri-  
249 bution by continent, country, and language coverage are provided in Appendix 2, Appendix 3, and  
250 Appendix 3.  
251252 **AdamBench**253 AdamBench is a specialized evaluation benchmark created as part of the ADAM framework. It is  
254 a large suite of multiple-choice questions designed specifically to test how well Large Language  
255 Models (LLMs) can reason about biographical information. They are systematically generated us-  
256 ing the data from AdamDB. They are designed to be: (1) **Multilingual**: Questions are written in  
257 both English and the native language of the person in question. (2) **Multimodal**: Some questions  
258 incorporate images, forcing the AI to connect textual information with visual data. (3) **Cognitively  
259 Diverse**: The questions are grounded in a framework called Bloom’s Taxonomy to test different  
260 levels of thinking.  
261262 Having a benchmark like AdamBench is critical for several reasons, especially in the domain of  
263 biography: (1) **Measures Beyond Factual Recall**: It’s easy for an LLM to repeat a birth date it  
264 found online. It’s much harder for it to understand the significance of a person’s life, compare their  
265 work to a contemporary, or evaluate their impact. A good benchmark tests this deeper understanding,  
266 not just rote memorization. (2) **Expose Hallucinations and Bias**: Biographies are a prime area for  
267 LLM “hallucinations”. A standardized benchmark can systematically probe for these errors and  
268 reveal biases in the model. (3) **Drives Progress**: By providing a consistent and challenging test,  
269 AdamBench allows researchers to compare different models, measure the impact of new techniques,  
270 and identify specific weaknesses that need to be addressed in future AI development.  
271272 Bloom’s Taxonomy is a hierarchical model used in education to classify different levels of intel-  
273 lectual behavior and thinking. It’s a framework that moves from simple information recall to more  
274 complex, abstract thought processes. The levels are: (1) **Remembering**: Recalling facts and basic  
275 concepts. (e.g., “When was Albert Einstein born?”) (2) **Understanding**: Explaining ideas or con-  
276 cepts. (e.g., “Explain the basic principle of Einstein’s theory of relativity.”) (3) **Applying**: Using  
277

270 information in new situations. (e.g., “How would Einstein’s work apply to GPS technology?”) (4)  
 271 **Analyzing:** Drawing connections among ideas; comparing and contrasting. (e.g., “Compare the  
 272 contributions of Albert Einstein and Isaac Newton to physics.”) (5) **Evaluating:** Justifying a stand  
 273 or decision; critiquing. (e.g., “Evaluate the ethical implications of the research Einstein’s work  
 274 enabled.”) (6) **Creating:** Producing new or original work. (e.g., “Propose a hypothetical dialogue  
 275 between Einstein and a modern physicist about quantum computing.”)

276 By building its questions around Bloom’s Taxonomy, AdamBench becomes a much more powerful  
 277 and insightful evaluation tool. Instead of just asking simple “Remembering” questions, AdamBench  
 278 tests the full cognitive spectrum. This allows you to see if an LLM can truly reason about a person’s  
 279 life. This structured approach allows the ADAM framework to pinpoint exactly where a model  
 280 excels or fails. The paper’s results show this clearly, for instance, noting that RAG helps most  
 281 on the “lower levels of cognition” (like Remembering and Understanding). Without the Bloom’s  
 282 framework, it would be impossible to arrive at such a specific and useful conclusion. To construct a  
 283 diverse benchmark, we first implement a proportional sampling strategy based on global population  
 284 data. Individuals are grouped by country, and a base cluster count  $k$  is calculated for each using the  
 285 formula:

$$k = \lceil (\text{country population proportion} \times 5) + 0.01 \rceil \quad (1)$$

286 This ensures that every country is represented by at least one cluster. Within each country, individuals  
 287 are then stratified into three popularity tiers: high (the top  $5k$  individuals), medium (the top  
 288 75% excluding the high-tier), and low (the bottom 25%).  $k$ -means clustering is performed indepen-  
 289 dently on each tier, using a feature vector composed of the individual’s birth date and biography.  
 290 To create this vector, birth dates are quantized to the nearest 50 years, and biographies are encoded  
 291 into normalized vectors using a BERT model after removing explicit mentions of age or nationality.  
 292 The birth date feature is weighted to balance its influence with the biography embedding. From the  
 293 resulting clusters, we select the individual closest to the centroid for the high and medium tiers, and  
 294 the individual with the highest annual visits for the low tier. This procedure yields a final set of  
 295 approximately 1,650 individuals, ensuring diversity across nationality, historical period, profession,  
 296 and notability.

297 For each of the selected individuals, we compile their names in multiple languages along with their  
 298 Wikipedia summary. This consolidated information is then supplied to a Large Language Model  
 299 (LLM). The LLM is prompted to perform two tasks: first, to synthesize a concise biography, and  
 300 second, to generate a set of multimodal and multilingual questions based on Bloom’s Taxonomy.  
 301 These questions are formulated in both English and the individual’s native language to create the  
 302 final benchmark dataset.

### 3.3 ADAMRAG

303 **Motivation** AdamRAG is the retrieval-augmented generation (RAG) module of ADAM, designed to  
 304 ground LLM outputs in factual biographical knowledge. Unlike open-ended text generation, biog-  
 305 raphy requires accuracy: there is a correct answer to whether an individual was born in a given year  
 306 or pursued a particular profession. Standard LLMs often hallucinate when information is sparse,  
 307 ambiguous, or non-English. AdamRAG addresses these challenges by retrieving structured facts  
 308 from AdamDB before generation. This is particularly valuable for lesser-known individuals, for  
 309 disambiguating people with similar names, and for linking multilingual aliases.

310 **Mechanism** For a user query (e.g., “What were the major challenges Marie Curie faced in her early  
 311 career?”), AdamRAG: (i) retrieves relevant entries from AdamDB; (ii) augments the query with the  
 312 retrieved context; (iii) forwards the enriched prompt to the LLM. This pipeline ensures the answer  
 313 is anchored in factual context rather than relying solely on pretraining knowledge.

314 **Retrieval Pipeline** We designed a multi-stage pipeline to handle both text-based and image-based  
 315 queries:

316 *Text-based disambiguation.* The system first attempts exact matches in AdamDB. If ambiguous, it  
 317 uses Language-Agnostic BERT Sentence Embeddings (LaBSE) (Feng et al., 2022) to retrieve se-  
 318 mantically similar candidates. Results are sequentially filtered by nationality (normalized to modern  
 319 countries) and birth date ( $\pm 20$  years). The final candidate is selected via cosine similarity between  
 320 biography embeddings and the query context.

324 *Image-based retrieval.* For face queries, embeddings are extracted and used to retrieve the top-  
 325 100 similar entries in AdamDB. These are filtered by nationality and birth date, yielding up to five  
 326 candidates. To improve coverage, we crawled two verified images per individual when Wikipedia  
 327 photos were absent, ensuring quality and uniqueness.

328 **System Evaluation** The augmented queries, containing retrieved context, are then passed to an  
 329 LLM. We evaluate this system across open-source and proprietary models, under multilingual and  
 330 multimodal conditions, using few-shot prompting. Analysis is stratified by Bloom’s taxonomy level,  
 331 subject popularity, language, and input modality. Ablation studies compare AdamRAG against zero-  
 332 shot prompting. Results show AdamRAG consistently improves factual accuracy, reduces hallucin-  
 333 ations, and narrows performance gaps between open- and closed-source models, with the greatest  
 334 benefits for lesser-known individuals and lower-order reasoning tasks.

### 336 3.4 EVALUATION FRAMEWORKS AND METRICS

338 **Benchmarking Instrument** Our main evaluation tool is **AdamBench**, a benchmark of multiple-  
 339 choice questions designed to probe biographical reasoning across Bloom’s taxonomy. Questions  
 340 span all six cognitive levels, from factual recall to creative synthesis, and are authored in both En-  
 341 glish and subjects’ native languages to capture cross-linguistic generalization.

342 **Metric** We report **accuracy** as the principal evaluation metric. In a multiple-choice setting, accuracy  
 343 provides a direct and interpretable measure of a model’s ability to select the correct answer among  
 344 distractors, reflecting its factual grounding, comprehension, and reasoning capacity.

345 **Frameworks** To ensure reproducibility and comparability, we integrate two complementary eval-  
 346 uation frameworks: **(i) EleutherAI Language Model Evaluation Harness (lm-eval-harness)**: a  
 347 widely adopted tool for standardized evaluation, enabling consistent testing across open-source and  
 348 proprietary models. **(ii) Khayyam Challenge** (Ghahroodi et al., 2024; 2025): a platform specif-  
 349 ically designed for multilingual and multimodal benchmarks, ensuring that AdamBench’s diverse  
 350 question types are presented and evaluated correctly.

351 **Comprehensive Evaluation** This dual-framework setup enables systematic analysis across multi-  
 352 ple dimensions: cognitive complexity (Bloom’s levels), subject popularity, language (English vs.  
 353 native), and modality (text vs. face image). Together, these protocols provide a rigorous, multi-  
 354 dimensional evaluation of biographical reasoning in LLMs and MLLMs.

## 356 4 RESULTS

### 358 4.1 OVERALL TRENDS ACROSS COGNITIVE LEVELS

360 Across all benchmarks, accuracy varies systematically with the cognitive demand of the task (Ta-  
 361 ble 2). Lower-order levels such as *Remembering* and *Understanding* exhibit the highest accuracies  
 362 across models, while higher-order levels such as *Evaluating* and *Creating* expose more pronounced  
 363 weaknesses. Closed source models (Gemini Flash 2.5, GPT-4) consistently achieve accuracies above  
 364 85–95% in most conditions, while open-source baselines (Gemma3-12b-it, Qwen2.5-7b) lag signif-  
 365 icantly, often below 60% without retrieval augmentation. This gap widens at higher cognitive levels,  
 366 where reasoning demands exceed memorization.

### 367 4.2 MODEL COMPARISONS

369 **Closed-source vs. open-source.** Closed-source models clearly dominate in absolute accuracy.  
 370 Gemini Flash 2.5 is the most consistent, frequently surpassing 95% with retrieval, and maintain-  
 371 ing strong scores even without it. GPT-4 trails slightly but remains highly competitive, especially  
 372 in higher-order reasoning. By contrast, Gemma3-12b-it and Qwen2.5-7b perform poorly in the  
 373 zero-shot condition, particularly on less popular individuals, where accuracies often remain below  
 374 40%. However, when retrieval is introduced, both open-source models experience dramatic gains,  
 375 narrowing the performance gap with closed-source systems.

376 **Head-to-head differences.** Between closed-source leaders, Gemini Flash 2.5 demonstrates su-  
 377 perior factual recall (*Remembering*, *Understanding*), while GPT-4 shows more balanced performance

378 in higher-order reasoning (*Evaluating*, *Creating*), especially under multimodal input. Among open-  
 379 source systems, Gemma3-12b-it im most cases outperforms Qwen2.5-7b, reflecting advantages of  
 380 model scale and training quality. Nevertheless, both remain heavily dependent on retrieval to reach  
 381 competitive levels.

382

### 383 4.3 EFFECT OF RETRIEVAL-AUGMENTED GENERATION (RAG)

384

385 The AdamRAG retrieval pipeline emerges as a key performance equalizer. For closed-source mod-  
 386 els, RAG improves factual recall and stabilizes accuracy across languages, pushing most scores  
 387 above 95%. For open-source models, the gains are transformative: Qwen2.5-7b improves from sub-  
 388 40% to well above 70% on mid- and high-popularity individuals, while Gemma3-12b-it achieves  
 389 accuracies above 80% in *Applying* and *Analyzing*. These improvements demonstrate that retrieval  
 390 substantially mitigates knowledge gaps in smaller models, reducing the reliance on large-scale pre-  
 391 training alone.

392

### 393 4.4 POPULARITY EFFECTS

394 Popularity, denoted by the number of stars, has a strong and consistent impact. Accuracy system-  
 395 atically increases from  $\star$  (less popular) to  $\star\star\star$  (highly popular) individuals. For example, GPT-4  
 396 in zero-shot mode improves from  $\sim 65\%$  on low-popularity individuals to above 90% on highly  
 397 popular ones. Gemini Flash 2.5 exhibits similar gains, with improvements of 15–20 points across  
 398 *Remembering* and *Applying*. Open-source systems are the most sensitive: Qwen2.5-7b struggles at  
 399  $\star$  (barely exceeding 20%) but reaches 50–60% at  $\star\star\star$ . These patterns highlight pretraining exposure  
 400 as a determinant of performance, raising concerns about fairness for less-documented individuals.  
 401 Retrieval alleviates, but does not fully eliminate, this disparity.

402

### 403 4.5 LANGUAGE EFFECTS

404 Comparisons between English (En) and Original language (Org, determined by city of birth) reveal  
 405 modest but consistent advantages for Org in the zero-shot setting, especially for closed-source sys-  
 406 tems in *Remembering* and *Understanding*. This suggests cultural and linguistic grounding enhances  
 407 factual recall. With retrieval enabled, however, the difference between En and Org largely vanishes,  
 408 indicating that external retrieval compensates for linguistic coverage gaps in the pretrained model.

409

### 410 4.6 MULTIMODALITY AND IMAGE INPUT

411

412 The inclusion of facial image input yields mixed outcomes. Gemini Flash 2.5 maintains high perfor-  
 413 mance with or without image conditioning, suggesting robustness in multimodal integration. GPT-4,  
 414 however, shows a decline in *Remembering* tasks when using images without retrieval, indicating that  
 415 multimodal signals can introduce noise if not paired with external evidence. Open-source models  
 416 benefit modestly from image input, but the effect is inconsistent and overshadowed by the much  
 417 larger impact of retrieval augmentation.

418

## 419 5 DISCUSSION AND CONCLUSIONS

420

421 In this work, we presented **ADAM**, the first framework to systematically evaluate multimodal large  
 422 language models in the domain of biography. By introducing **AdamDB** and **AdamBench**, we cre-  
 423 ated a large-scale, multilingual, and cognitively structured resource for probing models across six  
 424 levels of Bloom’s taxonomy. We further proposed **AdamRAG**, a retrieval-augmented generation  
 425 system tailored for biographical reasoning, and examined its impact across models, languages, and  
 426 modalities.

427 Our findings highlighted three central insights. First, **model scale and provenance mattered**:  
 428 closed-source models such as Gemini Flash 2.5 and GPT-4 consistently outperformed open-source  
 429 baselines, though retrieval augmentation narrowed the gap substantially. Second, **popularity bias**  
 430 **proved pervasive**: all models performed significantly better on widely known individuals than on  
 431 less popular ones, underscoring heavy reliance on pretraining exposure and raising concerns for  
 fairness and inclusivity in biographical knowledge access. Third, **retrieval emerged as a crucial**

432 **equalizer**: AdamRAG consistently boosted performance across the board, with particularly dramatic  
 433 gains for smaller open-source models, while also mitigating disparities across languages and  
 434 popularity levels.

435 We also observed that multimodal conditioning with face images, while offering complementary  
 436 context, yielded smaller and less consistent improvements compared to retrieval, especially in lower-  
 437 order tasks where visual cues added limited value. Higher-order reasoning tasks such as *Evaluating*  
 438 and *Creating* remained the most challenging, indicating persistent abstraction gaps even in state-of-  
 439 the-art models.

440 Taken together, these results demonstrated that retrieval pipelines are essential for bridging the gap  
 441 between open- and closed-source models, that fairness concerns must be addressed to avoid system-  
 442 atic underperformance on lesser-known individuals, and that multimodal grounding requires more  
 443 principled integration. Future work should refine multimodal fusion strategies, design fairness-  
 444 aware evaluation protocols, and extend biographical reasoning to less-documented populations, sup-  
 445 porting the development of more accurate, culturally sensitive, and hallucination-resistant MLLMs.

## 447 DATA AVAILABILITY

448 With the publication of this work, the full biographical dataset constructed for the ADAM frame-  
 449 work, including **AdamDB** and the benchmark **AdamBench**, will be released on Hugging Face for  
 450 public access and reuse. This release will include both the structured multilingual biographical  
 451 records and the cognitively stratified benchmark questions, enabling reproducibility and further re-  
 452 search on biographical reasoning in language models.

453 For the review process, we provide a representative sample of the dataset in the supplementary  
 454 material. This sample includes a subset of records and example benchmark questions, illustrating  
 455 the data schema and evaluation design without requiring access to the full release.

## 459 ETHICS STATEMENT

460 This work involved no experiments with human subjects or sensitive personal data. All biographical  
 461 information was derived from publicly available sources, primarily Wikipedia and Wikidata, and  
 462 processed in compliance with their respective licenses. For multimodal content, we did not redis-  
 463 tribute copyrighted images directly. Instead, we preserved copyright by including only public URLs  
 464 that reference the original hosting websites, ensuring that attribution and usage rights remain intact.

465 In preparing this manuscript, we employed large language models as auxiliary tools for two pur-  
 466 poses: **(i)** text polishing, to improve clarity and readability, and **(ii)** retrieval and discovery, to aid in  
 467 literature review (e.g., via tools such as *ScholarQA*<sup>1</sup>). All scientific content, methodological design,  
 468 and experimental results were conceived, executed, and validated by the authors. The use of AI tools  
 469 was limited to supportive roles, and we disclose this practice for transparency in line with emerging  
 470 community standards.

## 473 REFERENCES

474 Heer Ambavi, Ayush Garg, Ayush Garg, Nitiksha, Mridul Sharma, Rohit Sharma, Jayesh Choud-  
 475 hari, and Mayank Singh. Biogen: automated biography generation. In *Proceedings of the*  
 476 *18th Joint Conference on Digital Libraries*, JCDL '19, pp. 21–24. IEEE Press, 2020. ISBN  
 477 9781728115474. doi: 10.1109/JCDL.2019.00013. URL <https://doi.org/10.1109/JCDL.2019.00013>.

478 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
 479 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,  
 480 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,  
 481 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.  
 482 URL <https://arxiv.org/abs/2502.13923>.

483  
 484 <sup>1</sup><https://scholarqa.allen.ai/>

- 486 David Bamman and Noah A. Smith. Unsupervised discovery of biographical structure from text.  
 487 *Transactions of the Association for Computational Linguistics*, 2:363–376, 2014. doi: 10.1162/  
 488 tacl\_a\_00189. URL <https://aclanthology.org/Q14-1029/>.
- 489  
 490 Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra  
 491 Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in bios:  
 492 A case study of semantic representation bias in a high-stakes setting. In *Proceedings of the  
 493 Conference on Fairness, Accountability, and Transparency*, FAT\* ’19, pp. 120–128, New York,  
 494 NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi: 10.1145/  
 495 3287560.3287572. URL <https://doi.org/10.1145/3287560.3287572>.
- 496  
 497 Fangxiaoyu Feng, Yinfai Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-  
 498 agnostic BERT sentence embedding. In Smaranda Muresan, Preslav Nakov, and Aline Villav-  
 499 icencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Lin-  
 500 guistics (Volume 1: Long Papers)*, pp. 878–891, Dublin, Ireland, May 2022. Association for Com-  
 501 putational Linguistics. doi: 10.18653/v1/2022.acl-long.62. URL [https://aclanthology.org/2022.acl-long.62/](https://aclanthology.org/2022.acl-long.62).
- 502  
 503 Omid Ghahroodi, Marzia Nouri, Mohammad Vali Sanian, Alireza Sahebi, Doratossadat Dastgheib,  
 504 Ehsaneddin Asgari, Mahdieh Soleymani Baghshah, and Mohammad Hossein Rohban. Khayyam  
 505 challenge (persianmmlu): Is your llm truly wise to the persian language? *arXiv preprint arXiv:2404.06644*, 2024.
- 506  
 507 Omid Ghahroodi, Arshia Hemmat, Marzia Nouri, Seyed Mohammad Hadi Hosseini, Doratossadat  
 508 Dastgheib, Mohammad Vali Sanian, Alireza Sahebi, Reihaneh Zohrabi, Mohammad Hossein Ro-  
 509 hban, Ehsaneddin Asgari, et al. Meena (persianmmlu): Multimodal-multilingual educational  
 510 exams for n-level assessment. *arXiv preprint arXiv:2508.17290*, 2025.
- 511  
 512 Simon Gottschalk and Elena Demidova. Eventkg: the hub of event knowledge on the web – and  
 513 biographical timeline generation. *Semantic Web*, 10(6):1039–1070, October 2019. doi: 10.3233/  
 514 SW-190355.
- 515  
 516 Eero Hyvönen, Petri Leskinen, Minna Tamper, Heikki Rantala, Esko Ikkala, Jouni Tuominen, and  
 517 Kirsia Keravuori. BiographySampo - publishing and enriching biographies on the semantic web for  
 518 digital humanities research. In Pascal Hitzler, Miriam Fernández, Krzysztof Janowicz, Amrapali  
 519 Zaveri, Alasdair J.G. Gray, Vanessa López, Armin Haller, and Karl Hammar (eds.), *The Semantic  
 520 Web*, volume 11503 of *Lecture Notes in Computer Science*, pp. 574–589. Springer, 2019. doi:  
 10.1007/978-3-030-21348-0\_37.
- 521  
 522 Remi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data  
 523 with application to the biography domain, 2016. URL <https://arxiv.org/abs/1603.07771>.
- 524  
 525 Alistair Plum, Tharindu Ranasinghe, Spencer Jones, Constantin Orăsan, and Ruslan Mitkov. Bio-  
 526 graphical: A semi-supervised relation extraction dataset. In *Proceedings of the 45th International  
 527 ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR ’22, pp.  
 528 2833–2838. Association for Computing Machinery, 2022. doi: 10.1145/3477495.3531862.
- 529  
 530 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 531 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas  
 532 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-  
 533 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-  
 534 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-  
 535 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,  
 536 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,  
 537 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe  
 538 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa  
 539 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András  
 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia  
 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,  
 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel

Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Weting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barra, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

A. Z. Yu, S. Ronen, K. Hu, T. Lu, and C. A. Hidalgo. Pantheon 1.0, a manually verified dataset of globally famous biographies. *Scientific Data*, 3:150075, 2016. doi: 10.1038/sdata.2015.75.

Ann Yuan, Daphne Ippolito, Vitaly Nikolaev, Chris Callison-Burch, Andy Coenen, and Sebastian Gehrmann. Synthbio: A case study in human-ai collaborative curation of text datasets. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 29074–29087. Curran Associates, Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/file/f7e62a4888d4778847594f82e30cde43-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/f7e62a4888d4778847594f82e30cde43-Paper.pdf).

## A ADDITIONAL DATASET STATISTICS

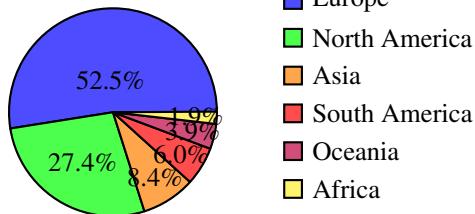


Figure 2: Distribution of individuals by continent in AdamDB.

Table 3: Language coverage statistics.

| Language                 | Names             | Coverage %       |
|--------------------------|-------------------|------------------|
| English (en)             | 3,973,119         | 99.7             |
| Dutch (nl)               | 3,423,044         | 85.9             |
| Spanish (es)             | 2,593,617         | 65.1             |
| French (fr)              | 2,070,396         | 52.0             |
| German (de)              | 1,921,806         | 48.2             |
| Italian (it)             | 1,580,213         | 39.7             |
| Portuguese (pt)          | 1,225,397         | 30.8             |
| Polish (pl)              | 649,224           | 16.3             |
| <b>Major 8 Languages</b> | <b>17,436,816</b> | <b>Avg 55.9%</b> |

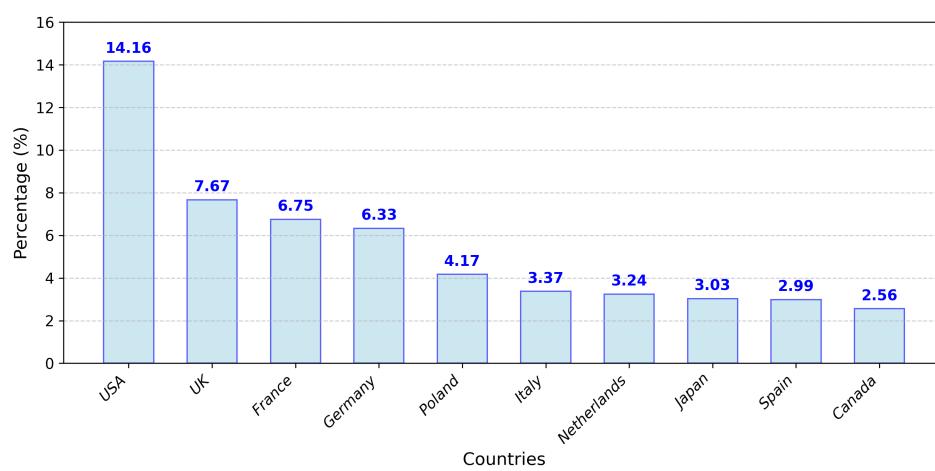


Figure 3: Distribution of top 10 countries by records in AdamDB.

594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647