
Under review as submission to TMLR

High-Performance Machine Learning for FinTech

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces a high-performance compute engine based on differential evolution
and tailored for machine learning techniques in the FinTech sector. We demonstrate en-
hanced runtime performance, which allows for testing a broader array of candidate invest-
ment and trading strategies, thereby expanding the scope and improving the quality of
strategy evaluations. Serving as the foundation of our differential-evolution-based machine
learning framework for portfolio selection and management, this engine is designed for pro-
cessing real market data and executing highly customisable trading strategies. We present
various techniques to optimise its runtime performance, assess their relative impact on per-
formance, and quantify its superior performance compared to existing engines.

1 Introduction

In the FinTech domain, successful machine learning engines rely on robust computational frameworks capable
of assessing diverse potential investment and trading strategies efficiently. Central to this setup is the use
of modern AI and ML methods, such as neural networks and genetic programming. These methods excel in
testing numerous strategies and models, but their flexibility adds to the computational burden by increasing
the number of strategy variations to be assessed due to different parametrisations and tuning procedures.
This exacerbates the challenges that data analysts face in managing large data volumes and assessing an
increasingly larger universe of complex strategies. We address these two challenges by developing a highly
optimised and efficient compute engine and defining a rule-based expression language. This paper focuses on
the first challenge by detailing the intricacies of the efficiency enhancements made to a compute engine that
we developed but references essential aspects of the rule-based expression language that we designed and
tailored for FinTech applications, and which we present in a separate publication (<anonymised> (2022b)).

This paper is about constructing a machine learning (ML) system tailored for FinTech, addressing perfor-
mance challenges associated with handling large data volumes and backtesting. We present a structured
analysis and evaluation of our compute engine’s computational efficiency, contrasting it with other extant
platforms offering ML capabilities for FinTech. By dissecting the engine’s core architecture, we suggest va-
rious optimisation methods to enhance efficiency and assess their impact across the engine’s components on
overall performance. Such identification of key efficiency enhancing factors offers guidance to developers on
optimising machine-learning engines. The main contributions of this paper relate to the specific techniques
devised to enhance computational efficiency in the different components of the engine and to an empirical
analysis of the engine’s performance in a longitudinal study production setting. To put these contributions
in context, we also summarise the contributions made in <anonymised> (2022b) with respect to the design
features of the developed expression language that allow a high level of automation.

The remainder of the paper is organised as follows.

Section 2 presents the problem’s context and background through a review of the relevant literature and
features of comparative extant platforms.

Section 3 summarises the main contributions made in the design of the expression language that are relevant
to the analysis in this paper. This design facilitates high-level automation for empirical research on strategy
development in FinTech. It automates more decisions for investment managers and traders than extant tools,
enhancing decision-making by replacing subjectivity with data-driven insights. This is not meant to replace

1

Under review as submission to TMLR

professionals but to equip them with tools and techniques for making informed decisions about strategy
robustness over time.

Section 4 describes the techniques devised and used to enhance the speed of backtesting engines that are the
main focus of this paper. A high-performance engine is essential for conducting computationally intensive
simulations necessary for high-level decision-making that utilise AI and ML. Our thorough exploration of
these techniques distinguishes our approach from others, presenting a significant contribution to professional
practice and computational research in backtesting engines. These techniques also hold promise for enhancing
empirical research in time series analysis and financial studies across other research tools and ML engines.

Section 5 conducts an empirical analysis to assess the tool’s speed for longitudinal studies and portfolio
rebalancing between trading sessions. A summary of performance results confirms the viability of both
tasks. This is provided as a brief test in a production setting, but this paper focuses solely on computational
discussions and tool comparisons.

Finally, Section 6 provides a summary and insights into implications for future financial research.

2 Context and Background

Research Gap: Previous studies, such as Kumiega & Van Vliet (2012), have identified a gap in research
concerning the development processes of algorithmic trading strategies. Algorithmic trading has gained
prominence in financial markets, shifting the focus from individual trader decisions to long-term manage-
rial decisions that rely on trading infrastructure and automation tools. Key considerations include which
trading and investment strategies warrant further exploration for profitability and robustness, and which
require refinement for live trading, encompassing execution, user interface enhancements, and automation of
specialised scenarios. Developing specific strategies or features, however, can tie up developer resources for
extended periods. Without safe, extensive, and flexible means to assess decisions at this level, individuals
may form biased estimates of success probabilities, potentially influenced by cognitive or data mining biases
or erroneous assumptions in backtesting. Thus, a significant contribution can be made by providing deve-
lopment managers and researchers with safe, capable, and flexible automated tools to test the robustness of
encoded processes, where financial theories are made machine-executable, testable, and their results quantifi-
able. Failure to do so may lead to inefficient allocation of resources and unreliable returns. Enhancing this
process can facilitate efficiency gains in money and time. This is what our compute engine aims to achieve.

Literature: Machine learning has gained significant traction in both business and research due to its
ability to detect patterns in vast datasets, which previously required extensive manual analysis by data
experts. Rather than replacing data analysts, ML has augmented their capabilities through innovative
techniques driven by computational advancements. Evolutionary computing methods, as highlighted by
Bose & Mahapatra (2001), are recognised for their effectiveness in identifying patterns in noisy data across
extensive problem spaces, particularly when the data format is consistent, as is often the case in finance.
Despite the regulatory and acceptance hurdles faced by ML (Lui & Lamb, 2018), its transparency and
comprehensibility have made it a preferred choice in finance (Wall, 2018). In parallel, genetic programming
generates human-readable expressions and is deemed suitable for strategy development simulation (Lohpetch,
2011). A plethora of other techniques such as deep neural networks, decision trees, clustering, classification,
support vector machines, and hidden Markov models also augment the set of available techniques (Bao
et al., 2017; Wu et al., 2006; Aronson & Masters, 2013; Luo & Chen, 2013; Hargreaves & Mani, 2015;
Nguyen, 2018; Arnott et al., 2019). These techniques stand to benefit from enhanced simulation speeds and
can be amalgamated with genetic programming to forge hybrid ML methodologies. Genetic programming
can leverage inputs from technical analysis (Colby, 2002) or features derived from other ML algorithms, and
can also be employed for meta-optimisation of other ML techniques. This underpins our initial focus on
genetic programming and the formulation of an expression language apt for modelling hybrid ML strategies.

Inspired by AutoML capabilities for making ML methods and processes available for non-ML experts Kotthoff
et al. (2017), our research aims to develop analogous tools tailored for time-series analysis within the financial
trading realm. While our primary focus lies within this specific domain during the developmental phase, the
methodologies and solutions we devise are transferable across diverse research domains.

2

Under review as submission to TMLR

Robustness Problems: ML and manual strategy development in financial markets face challenges due
to transient exploitable inefficiencies and potential biases in detecting them. Aronson (2011) identifies
biases like data-mining, selection, survivorship, and curve-fitting biases and proposes mitigating scientific
approaches. Given the fast evolving nature of markets, strategies must adapt quickly to ensure their currency
and robustness. We follow Pardo (2011) who advocates for a walk-forward automation approach, akin to
an automated longitudinal study, to validate strategy robustness and mitigate potential biases. To this end,
high-speed automation tools are essential for conducting such extensive simulations and empirical research
to assess strategy development processes effectively.

Existing Solutions: We initially examined the literature on platform choices for back-testing in financial
research. Options range from general-purpose scripting languages like Python (de Prado, 2018; Jansen, 2020)
and Julia (Danielsson, 2011), to statistical platforms such as Matlab (Chan, 2017) and R (Georgakopoulos,
2015; Conlan, 2016), as well as specialised trading and FinTech platforms like TradeStation (Pardo, 2011;
Ehlers, 2013), MetaTrader (Blackledge et al., 2011), NinjaTrader (Ford, 2008), FXCM Trading Station
(Mahajan et al., 2021), and Zorro (Liang et al., 2020).

Technical Focus: We focus primarily on event-driven backtesting engines while contrasting some vector-
based ones. However, vector-based strategies often require rewriting for live trading, pose challenges in
aligning multiple data feeds, and are susceptible to the ’look-ahead’ bias during research.1 Performance
comparisons among Matlab, R, Python, and Java have already been performed in JuliaLangContributors
(2022). The Julia benchmarks might be biased positively since Python can be faster than Julia in some cases
(Vergel Eleuterio & Thukral, 2019). The Java benchmarks are biased negatively as they are influenced by Java
Native Interface (JNI) integration for C-based matrix libraries. JNI adds significant overhead to function calls
and conducted tests mainly measure the performance of the C-binding of the matrix library. This is adequate
when comparing matrix operations where Matlab, R, Python, and Julia have their strengths, but they may
not be the best-performing solutions for financial backtests. While these general-purpose languages and
trading platforms lack ready-made strategy generation solutions, specialist platforms like StrategyQuantX
and Adaptrade (Hafiiak et al., 2018; Hayes et al., 2013) and commercial tools like GeneticSystemBuilder
(Zwag, 2020) and BuildAlpha (Bergstrom, 2020) offer faster alternatives.

Contribution: These existing tools, both commercial and non-commercial, lack the computational per-
formance and automation capabilities needed for robustness testing in trading and investment strategy
development processes. In the following sections, we address these research gaps in our high-performance
backtesting engine. This advancement enhances professional practice and empirical research by enabling
cost-effective scenario testing in terms of processing power, manual labour, and time. Our domain-specific
expression language and highly optimised computing engine facilitate the exploration of cutting-edge machine
learning technologies in algorithmic trading and portfolio management.

3 A High-Performance Platform: Invesdwin

To improve the current capabilities for empirical research on strategy development processes in finance,
the first author has implemented a novel platform in Java. This platform, dubbed ’Invesdwin’, has been
extended over the years to enable high-performance machine learning with a high level of automation. This
section outlines how users can analyse strategy development processes using the platform and discusses key
architectural and design features that ensure high performance.

Figure 1 outlines the key structural features and processes of the platform, with a focus on the parts relevant
to this paper. These are explained in the sub-sections that follow. Section 3.1 discusses the benefits of tailored
backtesting engines for specific research tasks. Section 3.2 is an overview of the expression language that
provides the foundation for formalising strategy development processes, with specific examples of decision
point formalisation. Section 3.3 delves into strategy generation, emphasising the need for randomness for
evaluating the robustness of these decision points within the processes. The multiple nested loops required for
this robustness analysis make the problem so computationally expensive that renders existing tools unable to

1The ’look-ahead’ bias results in unrealistically high profits due to accidental misalignment of data that allows decisions to
be influenced by future data points yet unavailable.

3

Under review as submission to TMLR

facilitate such research. We choose Differential Evolution as an example, but our tool allows for a varying set
of ML algorithms, facilitating hybridisation for robustness analyses in layers of nesting as shown in Figure 2.
This adds to the computational simulation requirements that we plan to implement with our novel software
design summarised in this section.

Figure 1: Strategy generation context and architecture of our platform

The platform conducts test scenarios for automated strategy development processes. Strategies are generated
for specific markets where individual candidate strategies undergo profitability testing and are then selected
to form a portfolio of strategies to be traded forward. The robustness of this whole process is ultimately
assessed through a Monte Carlo simulation. The platform, as shown in Figure 1, executes this in the following
steps:

1. Data Discovery and Loading retrieves necessary data from registered data sources based on
user-defined test configurations. Depending on the deployment decisions, the data sources can be
embedded or accessed via a microservice infrastructure. To optimise performance, data is cached
locally in a specialised, low-latency NoSQL database that we designed specifically for this pur-
pose (<anonymised>, 2022d). Test processing can occur locally or parallelised in a distributed grid
or cloud computing infrastructure. In the latter scenario, Steps 2 to 4 below are executed on remote
computation nodes, while Step 5 is completed on the user’s client computer. For this paper, all
operations are confined to a single computer. A key technical innovation enables high-performance
and low-latency communication through a channel abstraction that creates zero-copy, zero-allocation
data pipelines (<anonymised>, 2022c). This expedites test scenario startup times without manual
management and copying of large financial data sets.

2. Local Data Representation converts loaded data into an optimised in-memory structure, leve-
raging domain knowledge and ML techniques to extract information and features from the data, as
detailed in Section 3.1. Results are stored in primitive double value arrays for indicator blocks (deci-
mal results) and bit sets for signal blocks (boolean results). This approach enables rapid in-memory
backtesting, maximising the use of CPU prefetching without relying on slow disk or network data
retrievals.

4

Under review as submission to TMLR

3. Strategy Generation constructs strategy candidates by defining and combining expression blocks
of indicators and signals. This uses machine learning, specifically differential evolution in this paper,
to find local optima in the problem space. Candidate fitness is assessed based on trade frequency,
profitability, and other metrics. Utilising our optimised expression language and many semantic
shortcuts at this step allows for efficient navigation of the problem space.

4. Inner Backtesting Loops assess individual candidate robustness using domain-specific heuristics
and machine learning, subsequently filtering them into portfolios. These portfolios then undergo an
outer walk-forward process (Step 5) that evolves them in regular intervals. Thousands of profitability
and success metrics, including average-based Profit/Loss, Sharpe Ratio, and Drawdown, as well as
complex statistical tests that assess the entire backtest history, are facilitated with minimal storage
and computational overhead. This efficiency is crucial when evaluating hundreds of thousands of
generated strategies per second.

5. Outer Robustness Loops evaluate the robustness of the strategy generation and portfolio selec-
tion approach beyond entries & exits and portfolio management.2 These include risk management,
position sizing, and equity curve trading.3 This allows hypotheses testing on formalised strategy
development processes and decisions at higher levels of abstraction. The walk-forward runs of the
inner backtesting loops (Step 4) are iterated multiple times here (e.g. 200 times) to Monte Carlo
simulate the distribution of out-of-sample results. This strategy generation is randomised, yielding
slightly different results with each run, based on fluctuations in metrics like Profit/Loss or Sharpe
Ratio. Contrasting result distributions allows for comparison and ranking of alternatives. This
decision-making process is formalised and fully automated through our domain-specific expression
language. We define a robust strategy development process as one that has a distribution with
low variance and high average profitability, does not become unprofitable over many trials,
and passes validation checks across multiple markets and time frames (being examples of validation
criteria the platform can use). Such quantification of robustness and decision automation (this Step
5) are unique to our platform, surpassing the capabilities of existing platforms and facilitating formal
research due to superior processing speed and automation.

Figure 2 shows the different levels of abstraction in this model as ML layers. Hybrid ML approaches can
be composed horizontally (architectural integration) to create a combined decision on the same layer,
vertically (data manipulation) by connecting inputs and outputs across multiple layers, or on a meta
optimisation dimension (model parameter) in one layer (see Anifowose (2020) and Anifowose et al. (2017)).

3.1 Backtesting Engines

A fast backtesting engine is the component most critical to performance when applying ML techniques, as
numerous alternatives require rapid testing. Three possible types of local data representation are imple-
mented as specialised backtesting engines. These differ mainly in their storage format for simulating trades
of a strategy candidate based on historical data:

1. Historical: We define ’indicators’ as transformations of the price data to extract features and
define ’signals’ as true/false interpretations of indicators that lead to buy, sell, or hold decisions.
This engine stores indicators and signals as in-memory map-based historical caches during live
trading to minimise memory usage while providing multithreaded access for chart visualisations
(<anonymised>, 2022a). Calculations of these indicators and signals occur lazily through a pull-
based interaction, allowing for skipping specific calculations when not immediately required by a
strategy.

2Entries & exits refer to entering a trade and exiting a trade by sending orders to the broker based on rules. Portfolio
management refers to selecting markets and strategies regularly based on fitness criteria.

3Risk management refers to portfolios, markets, industries, direction, and exposure-based limits. Position sizing refers to
rules that are volatility-based or based on equal risk per cent. Equity curve trading refers to temporarily stopping trading
after certain losses have accumulated in a day or decoupling a strategy from live execution to simulation during drawdowns in
isolated strategy equity.

5

Under review as submission to TMLR

Figure 2: Machine learning layers

2. Circular Buffer: An alternative implementation could employ circular buffers of primitive arrays
for in-memory storage of indicators, enhancing calculations for low-latency live trading or optimising
backtests of large datasets within a constrained memory space using a moving window. Tick data,
with its high volume and smallest granularity, can include multiple ’ticks’ (trades) per millisecond,
while order book data offers insights into market ’depth’ (volume at different prices). For instance,
to accelerate portfolio tests on tick data spanning multiple years without fitting into memory, data
may be eagerly calculated using an observer pattern. This engine is still under development.

3. Blackboard: An alternative approach involves precalculating the entire time series into immutable
primitive arrays for indicators and signals, stored in memory following the blackboard pattern
(Buschmann et al., 1996, p. 71). This enables memoisation during backtests (Mayfield et al., 1995),
with individual backtesting threads able to fetch or add blocks as needed. Unused blocks are au-
tomatically evicted based on memory management heuristics like least recently used, soft & weak
references, and memory limits. This approach offers rapid access for ML tasks iterating over the
time series multiple times to find an optimal variant of a strategy that performs best.

From a computational performance perspective, our focus lies on ML problems employing genetic pro-
gramming, specifically Differential Evolution, to generate and evaluate numerous strategy candidates. The
blackboard option (3) offers the quickest internal representation of this workload. Utilising precomputed
primitive arrays as in-memory representations enables extensive CPU prefetching during backtest iterations.
Our column-oriented storage is favoured over row-oriented storage to minimise CPU cache misses (Ragan-
Kelley, 2014, p.34 ff.). Each column corresponds to an indicator, signal, or another expression that memoises
a function on multiple indicators or signals.

3.2 Expression Language

The platform uses a domain-specific expression language to formalise building blocks for strategy gene-
ration (indicators and signals) and to automate portfolio management and other high-level decisions.
<anonymised> (2022b) discusses the design and choice to use this expression language in detail. In sum-
mary, it is only possible to achieve a high performance by tightly integrating the expression language into

6

Under review as submission to TMLR

the surrounding context (in our case a trading platform). We also compare our expression language against
alternatives in the Java Virtual Machine in that publication. Our implementation is significantly faster while
also being more feature-rich. Other contender expression languages are either proprietary and unavailable
for comparison or unsuitable because they are written in a different programming language which makes
integration impossible or performance too slow. Table 14 extends this analysis by comparing our integrated
solution against some available proprietary solutions that also use expression languages. The results show
that our generalised concepts can help improve the efficiency of future expression languages and, hence, we
offer our expression language implementation as an open source solution.

Indicators (decimals) can be combined into signal blocks (boolean) by comparing them against thresholds or
each other in various ways as expressions. The expression language is rule-based with boolean guards that
trigger actions: "Rule := Guard → Action". Figure 3 shows examples of such expressions and the generation
process:

Figure 3: Genetic generation process and boolean expression example (StrategyQuant, 2022)

Like our platform, BuildAlpha (2022) simplifies the strategy generation process by permitting only curated
signal blocks. It only allows combining multiple blocks using logical “and” operators. It evaluates simple
boolean expressions lazily using shortcutting instead of mathematical expressions. When one condition in
a logical “and” combination is false, the remaining conditions can be ignored without calculating additional
indicators. This improves the backtesting speed significantly because the signal in a trading strategy is false
most of the time. BuildAlpha’s backtesting speed is among the fastest available, excluding ours.

7

Under review as submission to TMLR

3.2.1 Expression Language Design

Our language design document (<anonymised>, 2022b) outlines a domain-specific expression language inten-
tionally not Turing complete, prioritising limited resource consumption. It supports variables and functions
but excludes features like recursion, loops, arrays, lists, collections, maps, strings, exceptions, declarations,
and assignments. Instead, non-recursive functions emulate loops, mappings, decisions, and selections in a
simplified fashion that reduces potential coding errors. Functions can be nested arbitrarily as dynamic pa-
rameters. Thus, a mathematical view of higher-order functions is supported as nested transformations on
double series.4 There is no notion of a functor, function object, or variable for a function in the language.
Only the underlying implementation has that representation and is hidden from the user. Instead, the user
can think in a series of doubles (data) which are provided and transformed by functions to be fed into other
functions as parameters. This stems from the fact that the language operates on streamed financial data and
can access previous data and calculation results. Since it operates solely on doubles and indexes, the func-
tion algebra is simplified significantly. The language makes the use of functions and variables transparent to
the user by making parentheses optional.5 Typical mathematical and logical operations are supported and
constants are represented as variables. The language is case insensitive and has only a single type double for
inputs and outputs. Other types like boolean are encoded into double by seeing numbers above 0 as TRUE
and all other values as FALSE. Null values are represented by the double value NaN (Not a Number). The
underlying implementation may transparently use boolean, Boolean (object), integer, double and generic
object types where this provides a performance benefit.

3.2.2 Signal Strategy Example

A strategy employing simplified boolean expressions combines multiple signals, which interpret indicators
based on domain knowledge, to determine a trade’s entry point. Examples of ’domain knowledge’ would
include technical analysis, statistical measures, or ML models trained on the data. Another simplified boolean
expression with an optional time/loss/profit-based stop handles the exit of the trade. Only one trade at a
time is allowed. Such a strategy can be expressed schematically in a rule-based form, where a guard is a
boolean expression that decides whether to trigger an action or a sequence of actions:

• Rule := Guard → Action6

• Entry := signal1 && signal2 → enterLongAtMarket()

• Exit := with the following Guards and Actions:

1. signal3 && signal4 → exitAtMarket()
2. stopLoss(volatilityRange1) → sendStopLossToBroker()
3. takeProfit(volatilityRange2) → sendTakeProfitToBroker()
4. maxBars ≥ x → exitAtMarket()

An example strategy might take the following form:

• Entry := close[1] < close[0] && volume[1] < volume[0] → enterLongAtMarket()
4For example, a double series consisting of {1.1, 1.2, 1.3} is transformed via nested transformations: “multiply(round(0), 2)”

into a new double series consisting of {2, 4, 6}.
5This is realised in the syntax. Variables may or may not be suffixed with parentheses. The formats “variable()” or “variable”

are both accepted. Also, parentheses can be omitted for functions with only optional or no parameters. The formats “function”
and “function()” are both acceptable.

6The actual syntax uses logical “and”/”or” to combine the guards with mostly implicit actions. This would be the syntax
for entry: "signal1 && signal2 && enterLongAtMarket()", and for exit: "signal3 && signal4 || stopLoss(volatilityRange1) ||
takeProfit(volatilityRange2) || maxBars ≥ x". In the entry, "&& enterLongAtMarket()" can be omitted since this would be the
implicit action (if configured for the strategy). It is useful to declare it explicitly for actions like limit/stop entries. Limit/stop
orders can also be declared for both long and short positions simultaneously by OR combining them into one entry rule. This
way, breakout strategies can be expressed. These are implementation details of the language that we express more simply with
the rule-based notation.

8

Under review as submission to TMLR

• Exit := with the following Guards and Actions:
1. average(close, 10) < average(close, 20) && relativeStrengthIndex(2) < 0.7
→ exitAtMarket()

2. stopLoss(averageTrueRange * 0.5) → sendStopLossToBroker()
3. takeProfit(averageTrueRange * 2) → sendTakeProfitToBroker()
4. maxBars >= 5 → exitAtMarket()

An expression is evaluated for each data point in the time series individually in a backtest or as data arrives
during live trading. This strategy submits a market order during an upward trend when the last bar closes
higher than the previous one (Entry, left) and when there is an increase in volume (Entry, right). Exit occurs
when a fast moving average falls below a slow moving average (Exit 1, left) and the Relative Strength Index
is below 70% (Exit 1, right). Additionally, trades can exit due to a 50% volatility loss (Exit 2) or a 200%
volatility profit (Exit 3). If none of these exit conditions are met, the trade closes 5 bars (e.g., days) after it
has been filled by the broker (Exit 4).

Other strategy generators are:

• Mathematical Strategy: Uses mathematical operators to create a decimal value that is compared
against a threshold. This requires calculating everything without shortcutting. Since this type of
generator is comparatively slow (see Section 5.4), we have not implemented it in our platform.7

• Breakout Strategy: This filters trade opportunities based on signals, and then uses a mathematical
expression to define a price target for a limit order or a stop order.8 We have implemented this and
can make use of our signal optimisations even though trade simulation is slower than in signal-only
strategies.

3.2.3 Portfolio Selection Example

Candidate strategies can also be selected for a portfolio through a ranking and filter expression. By portfolio,
we mean a collection of dynamic strategies on one or more traded instruments (assets). Typical portfolios
only consider Buy & hold investments in stocks, bonds, and funds. The schema might look like this:

• Rank & Filter := with the following Guards and Actions:
– fitnessFilter1 && fitnessFilter2 → removeCandidateStrategy()
– rankDesc(rankFitness) <= portfolioSize → removeCandidateStrategy()

An example expression might look like this:

• Rank & Filter := with the following Guards and Actions:
– tradesCount >= 100 && sharpeRatio > 0.8 → removeCandidateStrategy()
– rankDesc(profitLoss / maxDrawdown) <= 10 → removeCandidateStrategy()

This expression forms a portfolio of the 10 candidates with the highest return-to-risk ratios and have more
than 100 trades and a Sharpe ratio above 0.8.

3.3 Differential Evolution (DE)

We use DE (Storn & Price, 1997), as a good starting example, to generate our strategy candidates. How-
ever, other generators can also be implemented and tested whether they converge faster to viable strategy
candidates.

7We might find ways to accelerate it should we decide to implement it, for example, as a means of exploring whether other
profitable strategies could be generated.

8An example of a breakout strategy can be schematically defined as: "filterLong && enterLongAtStop(longPriceLevel +
volatility * factor) || filterShort && enterShortAtStop(shortPriceLevel - volatility * factor)".

9

Under review as submission to TMLR

3.3.1 Encoding Strategy Candidates

For a strategy that uses simplified boolean expressions with two “and” combined signal blocks for the entry
rule and another two “and” combined signal blocks for the exit rule, the problem would be stated as 4 integer
variables ranging from -1 to the number of different available blocks per variable. The following example
uses 100 blocks. The maximum index is 99 due to array indexing starting at 0, and each array represents a
list of domain-specific rules that extract features from market data.

• Index -1 disables this block.

• Indexes 0 to 20 are variants of moving averages and other long-term trend signals.

• Indexes 21 to 35 are volatility signals based on volume or price action.

• Indexes 36 to 70 are short-term momentum rules for mean reversion based on the Relative Strength
Index and absolute momentum measures.

• Indexes 71 to 85 are time and session filters to restrict when signals are to be taken.

• Indexes 86 to 99 are Bollinger Bands and other channel-based signals for long-term breakout signals.

The problem space results in the permutations of the variables being multiplied. A strategy candidate
selects 4 of the 101 potential blocks (-1 for a disabled block plus rules 0 to 99). The first two variables are
used for the entry signal while the last two are for the exit signal. Figure 4 illustrates a two-dimensional
problem space, with the third dimension representing the fitness value of negative Profit/Loss aimed for
minimisation. The figure displays the convergence point for DE, with the rings at the bottom serving as
contours guiding DE towards the minimum. While typical problem spaces resemble more complex terrains
with multiple local minima, our 4-variable setup operates in a five-dimensional space, including the fitness
value (fifth dimension). Though challenging to visualise, DE adeptly manages higher dimensions by treating
them as guiding contour spaces.

3.3.2 Vector Movement for Crossover and Mutation

The rule arrays are sorted logically to group similar rules closely, enabling algorithms like DE to leverage
directional movements in the contour space. Significant jumps in indexes due to mutations and crossovers
yield distinct rules, depicted as individual inverted mountains or craters in the problem space. Conversely,
smaller jumps produce similar rules differing mainly in parameterisation for fine-tuning towards local minima.
Our generator, on which we base our benchmarks, incorporates 3818 domain-specific rules and includes
efficient negation of those that result in twice as many rules (7636). This design allows sufficient space
for smaller jumps to select similar rule variants and ample local minima for identifying multiple strategy
candidates. To simplify understanding, we focus on 100 rules and illustrate a three-dimensional problem
space in our explanations.

Figure 5 shows how DE calculates the vector movements, for each input that we call ’gene’, in the problem
space using a crossover and mutation formula adapted from Georgioudakis & Plevris (2020).

Figure 6 illustrates how DE is executed. The algorithm commences with an initial population of 500 ran-
domly generated candidates. The scaling factor is a constant that dynamically adjusts based on a random
value, moving at a speed determined by the difference between two random candidate values at the same
gene. Given our integer values, we include a rounding step to approximate the modified vector indices for
new trial candidates to the nearest integer. To ensure the selected signal remains within permissible bounds,
we constrain the results between -1 and 99; selecting -1 disables the corresponding block. This approach
enables testing simpler strategies with fewer signal blocks than the maximum allowed. In our implementa-
tion, the mutation and crossover steps are consolidated into a single operation without creating an interim
vector, conserving resources and enhancing algorithmic speed. Distinctively, we deviate from conventional
DE implementations by modifying the population first and then collectively evaluating all candidates in
a separate step rather than a sequential loop. This introduces additional randomness to the search and
facilitates concurrent backtesting depending on the engine.

10

Under review as submission to TMLR

(For better visualisation: Axes of input variables x1 and x2 are normalised between -1 and 1; f(x1,x2) as
the fitness output is scaled between 9 and 10)

Figure 4: Two dimensional problem space with fitness as third dimension, adapted from (Price et al., 2005,
p. 9)

By sorting the selected blocks within the variables of a generated strategy candidate based on the true
count in ascending order, the number of backtests can be minimised. This approach enables the pre-
filtering of logically duplicate backtests using a score cache. For new candidates, backtesting is expedited
because the initial block typically results in a decision not to initiate a trade, reducing the need to evaluate
subsequent blocks. However, this optimisation is rendered ineffective when block compression (see Section
4.2) is activated, as it consolidates blocks into a single "bit set" in advance. Nevertheless, the optimisation
remains applicable to expressions that incorporate dynamic blocks.

The parameters for the crossover probability P and the scaling factor F could be meta-optimised separately.

We employ multi-threading to execute strategy generation, with each thread conducting backtests to evalu-
ate the DE algorithm. Each thread iteratively runs DE until the predetermined number of unique and valid
candidates is attained. If an excessive number of duplicate or invalid candidates emerge, the process may
terminate with fewer valid candidates. Furthermore, strict limits are set on the maximum number of can-
didates examined, restricting the overall backtests and iterations. DE operates through multiple loops with
defined population sizes and convergence parameters dictating crossover and mutation behaviours. Each
evolutionary step strives to enhance the population until reaching a maximum iteration threshold or when
no improvement occurs over several iterations. The top-performing individual is retained across iterations,
and unchanged candidates are not retested. The most outstanding individual from the final population
serves as the strategy candidate for subsequent portfolio selection. To prevent redundant backtests across
parallel strategy generators, a shared fitness cache is implemented. Duplicate strategies are eliminated from
the resultant candidates by comparing final fitness values and trade counts with other candidates. During
the generation process, invalid candidates who do not execute trades receive the lowest possible fitness score
as a penalty. This approach ensures that DE doesn’t prioritise strategies with no trading activity over those
that might incur losses.

11

Under review as submission to TMLR

(Instead of x1 and x2 as inputs, we speak of g1 and g2 as genes of the vector tuple V[g1][g2] that represents
a candidate that is on the contour space)

Figure 5: Vector movement in the contour space, adapted from (Price et al., 2005, p. 39)

3.3.3 Nested Backtest Loops

Figure 7 illustrates various options for implementing nested loops in Post-Optimisation within each backtest
concerning strategy generation:

• Nested Optimisation: This method employs brute force optimisation, exploring all possible variants
for the given blocks to determine the optimal parameters. DE leverages the best fitness value to make
decisions about an individual. To control the number of tests, parameters are optimised sequentially,
increasing the permutations during the optimisation process. Alternatively, a genetic optimisation
algorithm can be employed to minimise tests when dealing with increased permutations.

• Nested Walk-Forward: This approach conducts brute force optimisation multiple times in a walk-
forward manner, appending the out-of-sample walk-forward steps to calculate the fitness value for
an individual.

• Nested Cross Validation: This technique divides the testing period into multiple segments. It per-
forms brute force optimisation for each segment individually as the out-of-sample period, while the
remaining segments serve as the in-sample optimisation period. The out-of-sample fitness is then
averaged across segments for each individual.

There are additional options available for selecting various optimisation parameters for blocks during the
initial pre-calculation. These options are referred to as Pre-Optimisation, alongside the No-Optimisation
choice, which retains the default values. Pre-Optimisation fully leverages precalculated indicators and sig-
nals. While it is more complex than Post-Optimisation, the platform calculates all permutations for a block
and caches them within the block. This enables values to be reused as primitive arrays throughout op-
timisation cycles. Although this approach demands a more intensive implementation effort, it facilitates

12

Under review as submission to TMLR

Figure 6: Differential evolution process

high-performance advanced optimisation workflows, providing DE with a greater level of abstraction for de-
termining strategy candidates. However, for our comparison benchmarks, we deactivate these nested loops
since no other platform supports them. Instead, optimisations are streamlined into multiple blocks for the
same rule.

The fitness evaluation employs deliberately simple and fast algorithms to swiftly measure specific statistics
about strategies. This approach ensures that nested loops execute only the essential calculations required to
assess an individual strategy. When a strategy candidate is presented for portfolio selection, it undergoes re-
evaluation using a more comprehensive set of statistics. This comprehensive suite enables intricate ranking
and filtering logic to determine which candidates qualify for portfolio inclusion.

13

Under review as submission to TMLR

Figure 7: Candidate generation and evaluation process

The advanced statistical suite computes equity-based metrics like Profit/Loss and Sharpe Ratio on a daily
basis and feeds this information to fast algorithms calculated eagerly. Similarly, order-related statistics such
as Win Percent and Z-Score for Consecutiveness are also pushed eagerly.

More intricate and resource-intensive algorithms, used to validate candidate robustness, are lazily computed
based on other statistics, stored daily equity curves, or individual trade events. Portfolio rules can also
assess statistical properties like correlation or cointegration between candidates, or employ sophisticated
hybrid machine learning techniques at this stage.

By blending eager and lazy calculations, portfolio decisions are expedited for a given configuration. The
immutable results can either be stored in files for subsequent analysis using external tools or utilised in the
following analysis steps.

4 Key Contributors to Performance Improvements

In this section, we summarise the key optimisations undertaken on the platform to achieve performance
evaluations that exceed those of extant platforms according to the measures reviewed in Section 5 below.9
The hardware used comprises an Intel i9-9900k (8 physical cores, 16 virtual cores, 16 MB cache, from 3.6
GHz up to 5 GHz turbo boost) with 64 GB RAM and SSD storage. We use EUR/USD exchange rate as
the instrument, with tick data sourced from DukascopyBankSA (2022b) including the bid/ask spread. One

9These measures are processing speed on ticks and bars for backtesting and optimising classical and ML-generated trading
strategies.

14

Under review as submission to TMLR

minute, four hour, and daily bars are aggregated from this data and used throughout this paper. We next
review the performance contributors in order of their importance.

4.1 Faster Simplified Boolean Expressions

Our platform leverages similar speed improvement measures as BuildAlpha (2022) while introducing unique
optimisations. We store logical signal blocks efficiently using bit sets, utilising just 1 bit per value compared
to 8 bits in primitive boolean arrays in Java. These bit sets employ primitive long array types in Java,
with each bit representing a boolean value, resulting in an eightfold memory reduction and improved CPU
prefetching efficiency. Additionally, we utilise bit set "and" operations to compress multiple signals into one
bit set prior to backtesting. This enables skipping unnecessary backtests for bit sets that remain consistently
false, determining trade execution only when required. This strategy, termed "Skipping Compressed Bit
Sets," optimises the full backtesting logic to execute trades only when necessary, a feature elaborated upon
in the benchmarking Section 4.2..

4.2 Boolean Compression

Table 1 displays the performance impact of various storage formats for signal blocks, as discussed in Section
3.1. The primary performance enhancement arises from two advanced techniques that we term ’compres-
sion and skipping with bit sets’. Compression consolidates multiple bit sets using a swift "and" operation,
creating a single bit set that facilitates quicker iteration and tracks when the combined expression is true.
Entire backtests can be bypassed for false expressions across the entire time series. In the absence of com-
pression, lazy evaluation allows for skipping unnecessary calculations through shortcutting of boolean
combinations. However, understanding the frequency and locations where the time series is true enables
a second optimisation. For sparsely true combinations, skipping pre-computed time series indexes within
backtests is achieved by identifying the next true index in the bit set and resuming the backtest evaluation
from that point. This optimisation avoids intricate calculations within the backtesting engine, that would
have arrived at the same conclusion but with a code path that is more expensive than a bit set lookup.

For automated strategy generation, we opt to create strategies using 8 signal blocks based on simplified
boolean expressions for entry, with a time-based exit after one bar. We conduct tests on daily bars spanning
approximately 20 years of historical data. The impact of skipping to the next true value during backtests is
also demonstrated. We gauge the speed of backtests per second and derive bars per second accordingly.

While compression and skipping optimisations could be applied to boolean lists and arrays, they are likely
less efficient and demand considerably more memory than bit sets. A primitive boolean consumes 1 byte,
whereas a boolean object in the JVM requires 16 bytes due to the object header. In contrast, a boolean
in a bit set uses just 1 bit. Given these inefficiencies, we have not implemented or tested these slower
combinations.

Table 1: Boolean storage format performance overhead
Optimisation Bars Backtests/s Bars/s Relative
RoaringBitmap 5,839 18,439.99 107,671,101.60 -47%
BitSet 5,839 34,367.77 200,673,409.00 -1.3%
Boolean Array (Primitive) 5,839 34,832.96 203,389,653.40 Baseline
Boolean List (Object) 5,839 35,379.05 206,578,273.00 +1.6%
Compressed RoaringBitmap 5,839 49,779.17 290,660,573.60 +42.9%
Skipping RoaringBitmap 5,839 51,289.57 299,479,799.20 +47.2%
Skipping Compressed RoaringBitmap 5,839 104,398.74 609,584,242.90 +199.7%
Compressed BitSet 5,839 111,023.99 648,269,077.60 +218.7%
Skipping BitSet 5,839 121,204.29 707,711,849.30 +247.9%
Skipping Compressed BitSet 5,839 200,746.40 1,172,158,230.00 +476.3%

15

Under review as submission to TMLR

Table 1 presents a summary of each optimisation’s impact, assessed across three computational performance
metrics: backtests per second (using generated signal blocks), bars processed per second, and ’Relative’
runtime performance based on bars per second, using primitive boolean arrays as the baseline. The tabulated
results indicate that leveraging skipping and compressing bit sets can enhance relative performance by
up to 476.3% compared to the baseline of primitive boolean arrays. RoaringBitmap (Lemire et al.,
2017) offers further compression for sparse bit sets by storing only the indexes where the bit set is true,
potentially conserving memory for large and sparsely populated data sets. However, this approach incurs a
performance penalty of up to 48.0%. We incorporate RoaringBitmap in our platform only when storing over
1 million data points in memory, as the performance impact diminishes to around 20.0% with larger data
sets.

4.3 Expression Evaluation

In Table 2 we compare the speed of using cached signal blocks versus evaluating expressions during backtests.
The same scenario is applied as in the above tests. Skipping and compression optimisations are not possible
when the expressions are not precalculated and cached into bit sets. We also disable expression simplifica-
tions and subexpression elimination for a raw evaluation test. Such simplifications might remove unneeded
calculations like “+0” or “-0” while subexpression elimination might turn constant calculations “5+3+2”
into a constant value “10”. Subexpression eliminations avoid repeating calculations that are already known.
This should not be confused with caching or memoisation because there is no additional storage involved.
Instead, it is a language feature. When bit sets are not used in favour of the evaluation of expressions, only
indicators and price data are retrieved from primitive arrays in a cache that never expires. Because the cache
never expires, we call the technique memoisation. Even though the blackboard engine can evict unused data
(for example intermediary calculations), the heuristic is smart enough to never evict data that is actively
used in our experimental setup.

Table 2: Expression evaluation performance overhead
Optimisation Bars Backtests/s Bars/s Relative
Raw (Evaluation) 5,839 14,217.35 83,015,106.65 Baseline
Subexpression Elimination and

Simplification (Evaluation) 5,839 15,730.36 91,849,572.04 +10.6%
Skipping Compressed

BitSet (Memoisation) 5,839 200,746.40 1,172,158,230.00 +1,312.0%

Table 2 shows the results of unoptimised (raw) and optimised (subexpression elimination and simplification)
evaluation against memoisation (with bit sets). As in the previous table, the number of backtests was
measured in a multi-threaded strategy generation process. The bars per second and the relative speed
differences were calculated based on the unoptimised (raw) evaluation. The tabulated results show that the
speed of evaluations with memoisation and highly optimised bit sets is 1,312.0% faster or 14.1
times as fast than the evaluation of expressions for every invocation.

The performance of raw evaluation would degrade if the expression blocks contained more extraneous cal-
culations. This scenario would differ with the generation of mathematical or register-based expressions.
However, as such generators are not currently implemented in our platform, they aren’t tested here. For
performance improvements in scenarios where these generators would be beneficial, refer to the performance
tests in <anonymised> (2022b). A potential optimisation, not yet implemented but beneficial for generated
mathematical expressions, would be eliminating redundant variables or neutral functions in calculations,
such as “+a . . . -a” or “+f() . . . -f()” or “a / a” or “f() / f()”.

4.4 Memory Requirements

Optimisation techniques like caching or memoisation frequently involve a trade-off between computational
speed and memory usage. For our simplified boolean expression strategy generator, memory consumption

16

Under review as submission to TMLR

in bytes can be determined as outlined below. This is the experimental setup for signal-based strategy
generation discussed throughout this document. While bit sets serve as the primary data source for signal-
based strategies, we still compute intermediary indicators as primitive arrays of integer, float, double, or
long data types. These primitive array indicators may be directly utilised to calculate entry levels for
breakout-based strategies.

• Primitive Array of Double or Long (timestamp, price, indicator, exchange rate): 5,839 (bars
in test) * 8 (bytes) = 46,712 (bytes)

• Primitive Array of Integer or Float (count, index): 5,839 (bars in test) * 4 (bytes) = 23,356
(bytes)

• Bit Set of Boolean (simple signal): 5,839 (bars in test) / 8 (1 bit) = 730 (bytes)

• Bars consist of: 46,712 (start time) + 46,712 (end time) + 46,712 (first tick time) + 46,712 (last
tick time) + 46,712 (open) + 46,712 (high) + 46,712 (low) + 46,712 (close) + 46,712 (volume) +
46,712 (mean) + 23,356 (mean count) = 10 * 46,712 + 1 * 23,356 = 490,476 (bytes)

• Ticks consist of: 46,712 (tick time) + 46,712 (ask) + 46,712 (bid) + 46,712 (ask volume) + 46,712
(bid volume) = 5 * 46,712 = 233,560 (bytes)

• Indicators for Evaluation consist of: 141 (double indicators) * 46,712 + 60 (integer indicators)
* 23,356 + 119 (boolean indicators) * 739 = 8,075,693 (bytes)

• Signal Blocks for Memoisation consist of: 3818 (boolean signal blocks) * 739 = 2,821,502
(bytes)

• Total Memory Usage: 490,476 (bars) + 233,560 (ticks) + 8,075,693 (indicators) + 2,821,502
(signal blocks) = 8,799,729 (Blackboard Engine) + 2,821,502 (Signal Block Cache) = 11,621,231
(bytes)

Thus we require about 12 MB of memory for a strategy generator based on about 20 years of daily data.
Using primitive boolean arrays instead of bit sets we would require 19,750,514 bytes more, thus about 20
MB of additional memory or about 32 MB in total. Bit sets save us 63.0% in memory requirements
with this strategy generator. The above calculation can be extrapolated to other time frames. Depending
on the markets and their trading session times the amount of data can be significantly less than the example
below which is based on a 24-hour trading session. Accordingly, it is better to directly count the given bars
in a given time frame of an instrument.

• Daily (5,839 bars): 12 MB

• 4 Hours (35,034 bars): 12 MB * (24 hours / 4 hours) = 12 MB * 6 = 72 MB

• Hourly (140,136 bars): 12 MB * 24 hours = 288 MB

• 5 Minutes (1,681,632 bars): 12 MB * 24 hours * (60 minutes / 5 minutes) = 12 MB * 24 * 12 =
3,456 MB (3.5 GB)

• 1 Minute (8,408,160 bars): 12 MB * 24 hours * 60 minutes = 17,280 MB (17.3 GB)

Nowadays such memory requirements can be easily fulfilled with laptops having 128 GB of available memory
(Schenker Technologies, 2022). Reasonably priced servers also provide this amount of memory (HetznerOn-
lineGmbH, 2022). This ample memory would also facilitate testing multiple instruments concurrently in
baskets, employing additional indicators, and caching more signal blocks. During walk-forwards, the entire
dataset doesn’t need to be loaded into memory. Instead, segments can be individually loaded, allowing,
for example, monthly strategy generation using the last three months of tick data. After each segment,
prior data is unloaded to accommodate the next in-memory segment. Instruments can also be optimised

17

Under review as submission to TMLR

separately, loading only one at a time. Investing in more memory could retain segments between runs, acce-
lerating robustness tests. For optimal JVM performance and to prevent significant slowdowns from garbage
collection, a rule of thumb would be to allocate to the maximum heap size roughly double the residual
memory requirement of the dataset.

The CPU cache may not accommodate all data, even with daily frequency datasets. Our column-oriented
primitive array storage maximises CPU prefetching, preloading data from RAM before calculations require
it. While virtual memory can potentially hold larger datasets than available hardware memory (RAM),
disk swapping can slow backtest speeds due to memory thrashing, as operating systems may not efficiently
prioritise memory usage. Memory compression could reduce requirements by up to 40% with 40-70% per-
formance retention (Jennings, 2013). However, it might be more cost-effective to either chunk backtests to
fit within hardware limits or increase hardware memory, rather than paying for extended backtest times in
cloud computing instances. Thus, we haven’t tested these workarounds for larger datasets. Instead, Section
5.6 explores alternative memory allocation techniques, such as memory-mapped files, allowing tests on SSD-
stored datasets and leveraging the operating system file cache to decide which memory segments should be
cached in RAM. This allows us to perform tests on data sets that are larger than physical memory (RAM).

5 Performance Results

In this section, we compare the runtime performance of our Invesdwin platform with competitor platforms.
To ensure a fair comparison, we utilise event-based strategy APIs from the respective platforms instead
of our expression language since some platforms lack specialised expression languages. However, it’s worth
noting that our expression language serves as a simplified layer over our event-based strategy API, offering
identical functionality. For the tests conducted in this section, strategies are manually coded in a feature-rich
programming language, avoiding the use of an expression language generated approach.

Our analysis primarily focuses on the raw performance of classical backtesting engines and their optimisation
steps. Specifically, we examine differences in storage formats, the potential for multi-threading, and the
impact of altering data resolutions on strategy optimisation tasks. In Section 5.4, our attention shifts to
performance within the context of a full ML backtesting engine. During this later analysis, we will revisit
the role and impact of our expression language.

Before conducting each test, we initiate several warmup runs of backtests on the respective platform. This
procedure helps to load necessary data, populate caches, and perform pre-calculations, ensuring more con-
sistent and accurate test results. Each test is repeated 10 times, and the best time achieved is recorded for
evaluation purposes.

For inclusion in our comparison, platforms must offer a free demo or trial version to ensure accessibility and
fairness. Some platforms were excluded from the evaluation due to challenges in reliably processing tick data
or the unavailability of licensed versions suitable for testing purposes. To maintain consistency, we selected
backtest durations that would provide a sufficiently large sample of ticks for analysis. Where possible, the
same data was imported across platforms to minimise discrepancies. Additionally, we aimed to minimise the
gathering of statistics to keep the focus on performance metrics. The primary metric used for our evaluation
is the achieved rate of Ticks per Second (Ticks/s).

5.1 High Data Resolution: Ticks

Table 3 presents the performance results of processing approximately one year’s worth of ticks (discrete data
points) for the EUR/USD exchange rates without executing trades or strategy logic. This measurement
specifically evaluates the raw performance of processing data points, excluding the overhead of a transaction
or the complexity of strategy logic. To accommodate platforms that do not support ticks as the primary
data feed, we also include comparisons using 1-minute bar feeds (aggregated data) spanning three years.

Zipline-Reloaded encountered session alignment issues preventing backtests on 1-minute data. Consequently,
we utilised a daily feed and compared it against other Python-based platforms. These findings suggest

18

Under review as submission to TMLR

Table 3: Raw performance in bars or ticks per second (ticks/s)
Platform Bars or Ticks Seconds Bars/s or Ticks/s Relative
Daily Data:
Python: Zipline-Reloaded 4,528 5.098 888.19 -84.5%
Python: Backtrader2 4,528 0.789 5,738.91 Baseline
Python: PyAlgoTrade 4,528 0.145 31,117.59 +442.2%
Minutes Data:
Python: Backtrader2 1,000,000 62.020 16,123.83 -93.0%
JForex 4 1,052,540 46.581 22,598.05 -90.1%
Python: PyAlgoTrade 2,000,000 68.263 29,298.45 -87.2%
MetaTrader 4 1,117,631 6.484 172,367.52 -27.8%
Zorro S 1,088,716 4.750 229,203.37 Baseline
MetaTrader 5 1,117,231 0.494 2,261,601.21 +886.7%
Invesdwin (Historical) 1,486,140 0.341 4,358,181.82 +1,701.4%
Invesdwin (Blackboard) 1,486,140 0.149 9,974,093.96 +4,251.6%
Ticks Data:
JForex 4 16,797,607 93.778 179,120.98 -91.9%
Zorro S 17,479,849 7.920 2,207,051.64 Baseline
MetaTrader 5 16,797,607 3.098 5,422,081.02 +145.7%
Invesdwin (Historical) 24,232,002 3.771 6,425,882.26 +191.1%
Invesdwin (Blackboard) 24,232,002 1.727 14,031,268.67 +535.7%

that most purely Python-based platforms, lacking tuned and optimised underlying libraries, demonstrate
insufficient speed to remain competitive in our evaluations.

Regarding MetaTrader 4, we couldn’t confirm that "processing all ticks" involved genuine ticks rather than
interpolated artificial ticks from bars. Hence, we do not categorise this as tick testing. Similarly, Zorro S
offers a comparable interpolation mode, which we also exclude from our tests in favour of genuine tick and
1-minute bar configurations available in Zorro S.

For relative comparisons, we use Zorro S as the baseline since it also fully loads data into memory, akin to
our blackboard engine. Table 3 reveals that our blackboard engine processes ticks 535.7% faster, or
6.3 as fast as Zorro S.

Table 4 and its corresponding bar-chart visualisation in Figure 8 show event-based API backtest engines
executing trades at tick resolution using a basic (Moving Average Crossover) strategy applied to 1-minute
bar intervals. Again, we incorporate tests on 1-minute data feeds since not all platforms support tick
testing. Additionally, we introduce vector-based backtesting engines for this comparison. Testing vector-
based engines on raw data processing speeds is impractical as calculations are necessary for data traversal.
Therefore, we evaluate them using this straightforward strategy. The results indicate that our blackboard
engine is 1,303.6% faster, or 14.0 times as fast as Zorro S when backtesting this simple strategy on
ticks.

Generally, Python- and R-based platforms exhibit the weakest performance. Customised platforms like
Tradestation, MetaTrader, and Zorro S consistently surpass these platforms. Our platform demonstrates
substantial improvements over all these platforms across both minute and tick data. The optimisations
detailed in Section 4 are instrumental in achieving this enhanced performance.

Zorro S is noteworthy for its preloading of all data into memory before executing a backtest. Although
this accelerates backtesting, it restricts the backtesting window as Zorro was solely available as a 32-bit

19

Under review as submission to TMLR

Table 4: Performance of Moving Average Crossover strategy single backtest (bars or ticks)
Platform Bars or Ticks Seconds Bars/s or Ticks/s Relative
Daily Data:

a) Python: Zipline-Reloaded 4,528 16.413 275.88 -93.2%
b) Python: Backtrader2 4,528 1.114 4,064.63 Baseline
c) Python: PyAlgoTrade 4,528 0.165 27,442.42 +575.1%
d) Python: vectorbt 4,528 0.039 116,104.56 +2,756.4%

Minutes Data:
e) R: quantmod 200,000 20.248 9,877.52 -91.7%
f) Python: Backtrader2 1,000,000 94.977 10,528.86 -91.2%
g) JForex 4 (Minutes) 1,052,540 50.696 20,763.77 -82.7%
h) Python: PyAlgoTrade 2,000,000 86.709 23,065.66 -80.7%
i) TradeStation 9.5 6,925,170 290.880 23,807.65 -80.1%
j) Python: vectorbt 2,000,000 17.257 115,895.00 -3.2%
k) Zorro S 1,088,716 9.090 119,770.73 Baseline
l) MetaTrader 4 1,117,631 6.969 160,371.79 +33.9%
m) Matlab 3,002,266 10.917 275,008.34 +129.6%
n) NinjaTrader 8 370,801 1.240 299,033.06 +149.7%
o) Julia: Strategems.jl 3,002,266 6.475 463,670.42 +287.1%
p) MetaTrader 5 1,117,231 2.239 498,986.60 +316.6%
q) Invesdwin (Historical) 1,486,140 1.763 842,960.86 +603.8%
r) Invesdwin (Blackboard) 1,486,140 0.511 2,908,297.46 +2,328.2%

Ticks Data:
s) JForex 4 16,797,607 102.586 163,741.71 -74.9%
t) Zorro S 17,479,849 26.780 652,720.28 Baseline
u) FXCM Trading Station 2,976,026 4.080 729,418.13 +11.7%
v) NinjaTrader 8 16,472,101 8.190 2,011,245.54 +208.3%
w) MetaTrader 5 16,797,607 7.567 2,219,850.27 +240.1%
x) Invesdwin (Historical) 24,232,002 6.866 3,529,274.98 +440.7%
y) Invesdwin (Blackboard) 24,232,002 2.645 9,161,437.43 +1,303.6%

application at the time of testing. Our evaluations utilised an older licensed version, Zorro S (1.83), where
we adjusted the data size to accommodate its backtesting engine limitations.10

Zorro shares numerous backtesting features with our Invesdwin platform, offering detailed control over
how data feeds are processed during backtests. Our platform, built in Java, fully supports 64-bit memory
allocations. Our blackboard engine, which also preloads all data into memory, is solely constrained by
available (virtual) memory. The historical engine can test any data volume as it loads data through a
moving window from data files.

For a more comprehensive case study, we also implemented the Workshop 5 strategy from Zorro’s documenta-
tion (oPgroupGermanyGmbH, 2022a) to compare backtesting speeds in optimisation scenarios. Workshop 5
employs a Moving Average Crossover strategy utilising two indicators with a maximum lookback of 500
bars for smoothing filter algorithm normalisation. It initiates trades based on a crossover with a specified
threshold and employs a volatility-based stop loss.

Trailing stop loss execution is deactivated and identical indicators, algorithms, and settings are used for these
tests on both platforms for consistency. In terms of parallelisation, Zorro cannot utilise multiple threads for
optimisation backtests, a limitation shared by other platforms in similar scenarios. In contrast, our platform
offers broader multi-threading support across various testing scenarios.

10A 64-bit version of Zorro S (2.50) was subsequently released, supporting larger datasets. Our existing license doesn’t
cover this version. The changelog mentions minor backtesting speed improvements due to enhanced memory management
(oPgroupGermanyGmbH, 2022b). Nevertheless, we anticipate these improvements won’t alter the results significantly.

20

Under review as submission to TMLR

Figure 8: Graphical representation (linear and log y-scale) of Table 4: Performance of Moving Average
Crossover strategy single backtest (bars or ticks); bars q, r, x and y represent our Invesdwin platform

For equitable comparison, we evaluate both platforms under single-threaded execution while also providing
metrics for the Invesdwin platform when multiple threads are employed. Initial backtests operate at tick
precision, with the strategy executing trades and logic at four-hour bar intervals. While full statistics are
collected in memory during these backtests, report generation time is excluded from the measured duration
for both platforms.

It’s worth noting that our platform collects a significantly higher volume of statistics than Zorro S, and the
time these take is included in the time we record.

First, we compare the single backtest scenario in Table 5. We use the EUR/USD exchange rate during 2015
as the source of the ticks. The results show that our blackboard engine is 421.3% faster or 5.2 times
as fast as Zorro S for backtesting the Workshop 5 strategy on ticks.

Table 5: Performance of Workshop 5 single backtest (ticks)
Platform Ticks Seconds Ticks/s Relative
Zorro S 34,443,682 53.050 649,268.27 Baseline
Invesdwin (Historical) 24,232,002 41.946 577,695.18 -11.0%
Invesdwin (Historical, Precalculated) 24,232,002 30.605 791,766.12 +21.9%
Invesdwin (Blackboard) 24,232,002 7.159 3,384,830.56 +421.3%

The Precalculated optimisation utilises file storage to store indicator results, retrieving these values from the
file during successive backtests rather than recalculating the indicators each time. Whether stored on a hard
disk or SSD, the impact is minimal due to the operating system file cache retaining hot segments in memory.
The series comprises only a timestamp and a double value over the entire time range at four-hour intervals
(the resolution for strategy decisions), resulting in data small enough (approximately 0.5 MB in size) to fit
into memory after an initial run.11

The primary advantage stems from eliminating the need to repeatedly calculate complex indicators. This
benefit amplifies when more backtests can share these precalculations. This optimisation isn’t necessary for
the blackboard engine since it loads everything from precalculated primitive arrays in memory.

In Table 6, we present a comparison of a concise optimisation run where three strategy-specific parameters
(smoothing filter bars, crossover threshold, volatility multiplier for stop loss) are adjusted in 10% increments
for their values, although platforms compute this differently. This serves as a crucial parameter tuning
example essential for an ML learning platform. Each parameter undergoes individual optimisation, leading
to 32 backtests in our engine. While Zorro performs these backtests sequentially, the Invesdwin platform can

11If it does not fit for decisions made in higher data resolutions (e.g. ticks), it will still improve results if the calculations that
are skipped are costly enough to offset the disk input/output overhead.

21

Under review as submission to TMLR

concurrently execute multiple backtests in a single thread, allowing data loading pipelines to be reused across
multiple backtests. This approach enhances throughput by reducing file access compared to conducting
each backtest individually.

In environments with multiple cores, Invesdwin distributes backtests among available threads, enabling
multiple strategies to operate on the same data stream across the entire time range within a single thread.
This methodology boosts throughput, with each thread reusing data pipelines for simultaneous backtests.
For the blackboard engine, this optimisation is deactivated as executing each backtest separately in memory
proves faster, leveraging improved CPU prefetching due to limited CPU cache sizes. Multi-threading in
the blackboard engine still exists, but each thread manages a single strategy. Regardless of the number
of concurrent strategies within a thread, once a thread completes its tasks, it proceeds to the subsequent
strategy or group of strategies until all necessary backtests conclude.

Since a file buffer cache has been introduced in our NoSQL database it is faster to only run a few (e.g. 5)
backtests together per thread in the historical engine, because the overhead of accessing the files is already
reduced considerably by the database. The results show that our blackboard engine outperforms Zorro
S by 1,731.0% or 18.3 times as fast in step-wise optimising the Workshop 5 strategy on ticks.

Table 6: Performance of Workshop 5 step-wise optimisation (ticks)
Platform Backtests Seconds Backtests/s Ticks/s Relative
Zorro S 38 798.210 0.048 1,639,743.82 Baseline
Invesdwin, 1 Thread:
Historical 32 572.197 0.056 1,355,169.75 -17.3%
Historical, Precalculated 32 427.648 0.075 1,813,229.72 +10.5%
Blackboard 32 155.639 0.206 4,982,196.39 +203.8%
Invesdwin, 12 Threads:
Historical 32 112.054 0.285 6,920,092.67 +322.0%
Historical, Precalculated 32 91.129 0.351 8,509,081.24 +418.9%
Blackboard 32 25.382 1.261 30,550,156.17 +1,731.0%

Table 7 illustrates the scalability of the Invesdwin platform when optimising all three parameters simulta-
neously through a brute-force approach that explores all possible combinations of parameter values. This
increases the permutations, demanding a substantially higher number of backtests (1,331 in our study). We
maintain multi-threaded execution for these tests. The platform incorporates heuristics to limit the number
of parallel backtests, preventing memory exhaustion. If scheduled backtests exceed simultaneous execution
capacity, they run in multiple step-wise chunks.

For relative comparison, we employ the same baseline as in Table 6, since Zorro S’s backtesting speed doesn’t
notably alter with increased backtests. The results show that our blackboard engine is 1,285.6% faster
or 13.8 times as fast as Zorro S when brute-force optimising the Workshop 5 strategy on ticks.
In practical terms, this means waiting approximately 24 minutes instead of over 7 hours for 1,331 backtests.

Table 7: Performance of Workshop 5 brute force optimisation (ticks)
Platform Backtests Seconds Backtests/s Ticks/s Relative
Invesdwin, 12 Threads:
Historical 1331 5,478.488 0.242 5,887,170.81 +259.0%
Historical, Precalculated 1331 3,133.338 0.425 10,239,429.77 +524.4%
Blackboard 1331 1,419.571 0.937 22,720,099.71 +1,285.6%

22

Under review as submission to TMLR

5.2 Medium Data Resolution: One Minute Bars

Usually, there’s a trade-off between achieving reliable backtest results with high data resolution and the
performance overhead of processing numerous data points. Not all platforms can handle algorithmic trading
strategies on ticks or may have limitations on the number of ticks processed in a single backtest. Often,
the compromise involves conducting tests on 1-minute bars. To compare, we executed both optimisations
on 1-minute bars for the EUR/USD exchange rate from 2003 to 2015, ensuring an adequate sample of bars.
Initially, we present single-run comparisons in Table 8. The findings indicate that our blackboard engine
outperforms Zorro S by 7,112.4%, or is 72.1 as fast, when backtesting the Workshop 5 strategy
on 1-minute bars.

Table 8: Performance of Workshop 5 single backtest (one minute bars)
Platform Bars Seconds Bars/s Relative
Zorro S 6.177.906 152.700 40,457.80 Baseline
Historical 4,747,531 12.738 372,706.15 +821.2%
Historical, Precalculated 4,747,531 10.319 460,076.65 +1,037.2%
Blackboard 4,747,531 1.627 2,917,966.19 +7,112.4%

Next, we conduct step-wise optimisation of three parameters individually after each other in Table 9. The
Invesdwin tests were executed directly with 12 threads. The results show that our blackboard engine is
14,364.3% faster or 144.6 times as fast as Zorro S for step-wise optimising the Workshop 5
strategy on 1-minute bars.

Table 9: Performance of Workshop 5 step-wise optimisation (one minute bars)
Platform Backtests Seconds Backtests/s Bars/s Relative
Zorro S 38 3,719.270 0.010 63,120.03 Baseline
Invesdwin, 12 Threads:
Historical 32 59.123 0.541 2,569,575.16 +3,970.9%
Historical, Precalculated 32 51.136 0.626 2,970,920.53 +4,606.8%
Blackboard 32 16.640 1.923 9,129,867.31 +14,364.3%

We also repeat the same brute force optimisation of all three parameters together (multiplied permutations)
in Table 10. The results show that our blackboard engine is 16,001.9% faster or 161 times as fast
as Zorro S for brute force optimising the Workshop 5 strategy on 1-minute bars.

Table 10: Performance of Workshop 5 brute force optimisation (one minute bars)
Platform Backtests Seconds Backtests/s Bars/s Relative
Invesdwin, 12 Threads:
Historical 1331 2,027.233 0.656 3,117,038.72 +4,838.3%
Historical, Precalculated 1331 1,421.373 0.936 4,445,675.95 +6,943.2%
Blackboard 1331 621.730 2.141 10,163,517.54 +16,001.9%

5.3 Low (Minimum) Data Resolution: Four Hour Bars

The strategy operates on decisions made at four-hour intervals, allowing us to test using bars within that
timeframe. This data resolution proves most efficient as it reduces the number of data points by collapsing
them into intervals. The strategy makes the same decisions as in higher data resolutions but works with bars
(intervals) rather than ticks (points). Our platform’s backtest results remain the same unless the strategy
logic’s minimum threshold is surpassed. Other platforms may yield inconsistent or erroneous results at lower

23

Under review as submission to TMLR

data resolutions, unlike our platform. We sidestep this issue by using the historical spread from ticks when
executing trades based on bars. This is done by remembering the related ticks for each bar and using them
during trade execution even in lower data resolution tests. We call this feature “Skipping Ticks”.12 This
feature requires additional work in our backtesting engine due to handling ticks and bars as separate data
streams. Disabling this feature can align our performance with other platforms, reducing backtest times by
up to 15% compared to our tests with "Skipping Ticks" (not compared to Zorro S).

First, we present single-run comparisons in Table 11, utilising EUR/USD data from 2003 to 2015 to ensure a
sufficient bar sample. Our blackboard engine demonstrates remarkable efficiency, being 3,534.6%
faster or 36.3 times as fast as Zorro S when backtesting the Workshop 5 strategy on four-hour
bars.

Table 11: Performance of Workshop 5 single backtest (four hour bars)

Platform Bars Sec Bars/s Relative
Zorro S 17,652 1.640 10,763.41 Baseline
Historical 21,125 0.409 51,650.37 +479.9%
Hist, Precalc 21,125 0.152 138,980.26 +1,191.2%
Blackboard 21,125 0.054 391,203.70 +3,534.6%

Second, we run the step-wise optimisation of 3 parameters in Table 12. The Invesdwin tests are directly
performed with 12 threads. The results show that our blackboard engine is 14,745.1% faster or 148.4
times as fast as Zorro S for step-wise optimising the Workshop 5 strategy on four-hour bars.

Table 12: Performance of Workshop 5 step-wise optimisation (four hour bars)
Platform Backtests Seconds Backtests/s Bars/s Relative
Zorro S 38 45.520 1.197 14,735.85 Baseline
Invesdwin, 12 Threads:
Historical 32 2.951 10.844 229,074.89 +1,454.5%
Historical, Precalculated 32 0.762 41.995 887,139.11 +5,920.3%
Blackboard 32 0.309 103.560 2,187,702.26 +14,745.1%

We also repeat the same brute force optimisation of all 3 parameters in Table 13. The results show that in
this configuration our blackboard engine is 17,319.1% faster or 174.2 times as fast as Zorro S for
brute force optimising the Workshop 5 strategy on four-hour bars.

Table 13: Workshop 5 brute force optimisation (four hour bars)
Platform Backtests Seconds Backtests/s Bars/s Relative
Invesdwin, 12 Threads:
Historical 1331 226.607 5.874 124,079.90 +742.0%
Historical, Precalculated 1331 22.423 59.359 1,253,952.41 +8,409.5%
Blackboard 1331 10.954 121.508 2,566,859.14 +17,319.1%

5.4 ML Performance using Genetic Programming

Having explored the performance traits of classical backtesting engines, we’ll now delve into how their
performance stands against specialised machine learning backtesting engines. In this section, we transition
from traditional strategy development to AI-generated strategies via genetic programming. While it might

12A trailing stop loss that uses every tick as the minimum data resolution will have varying results on coarser bars even in
our platform. Using a trailing stop that only updates every four hours would make results consistent even if finer resolutions
were to be used. So it depends on the strategy design, particularly on when decisions are allowed to be made.

24

Under review as submission to TMLR

be tempting to assume that faster backtests yield superior strategies, this isn’t always the case. Quicker
backtesting facilitates the rapid identification of potential strategies within the space defined by the strategy
generator. However, evaluating numerous candidate strategies can elevate the risk of overfitting and selection
bias, potentially increasing the rate of false negatives (Type II error) by not sufficiently rejecting inadequate
strategy candidates. Hence, speed serves only as a component in the strategy generation process.

The other critical facet involves robustness testing and portfolio selection, which aim to counteract these
biases. While our platform’s medium-term objective involves researching these aspects, a comprehensive
analysis exceeds this paper’s scope. We focus here on our enhancements to backtesting speed, empowering
us to investigate the resilience of strategy development methodologies. Enhanced backtesting speed also
allows us to dedicate more computational resources to exhaustive robustness examinations.

Table 14 and its visualisation as bar-charts in Figure 9 compare the Invesdwin machine learning backtesting
engine with other platforms that have this capability. Given that all platforms can potentially generate
endless candidates, capturing the total runtime becomes irrelevant. Instead, we allow the platforms to
operate for a set duration to amass a sizable sample, subsequently recording their performance. We gauge
performance in backtests per second and extrapolate from that to determine processed bars per second,
rounding the values for clarity.

This means that not all processed bars might be touched by the platform as some optimisations may skip
certain data segments and produce identical backtest results. This, however, allows us to compare normalised
performance as bars per second regardless of such optimisations (that differ across platforms). We configure a
100% in-sample period, ensuring the genetic programming algorithm leverages all available bars. To evaluate
the overhead associated with genetic programming, we employ varying bar counts. Notably, precalculation
and warmup phases are excluded from the evaluation. All platforms leverage multiple threads and can
harness the CPU’s full capacity.

Both BuildAlpha and Invesdwin generate signal-based strategies with 4 entry and 4 exit blocks combined
with identical settings. StrategyQuantX generates signal-based strategies with 4 entry blocks and a time-
based exit. Adaptrade and GeneticSystemBuilder generate mathematical entry expressions with 4 indicators
compared against a threshold with a time-based exit.

We leave the population size and other genetic programming parameters at their default values in the
respective platforms because this should not influence the final number of bars per second. The exact form
of the backtests is inconsequential as long as the threads mainly execute backtests. We don’t measure the
number of candidate strategies created. Instead, we measure how many backtests were executed. Also, the
total number of backtests executed is irrelevant because we simply collect a sufficiently large sample (a few
minutes) to get the number of backtests executed per second.

For the relative comparison, we use GeneticSystemBuilder (intraday) as the baseline because it performs
similar to the tests of the classical backtesting engines in Section 5. Our ML engine is based on the black-
board version of our classical backtesting engines from Section 5. Results in Table 14 and Figure 9 show
that Invesdwin (intraday) is 59,503.8% faster or 596.0 times as fast as GeneticSystemBuilder
(intraday). Invesdwin (20 years) is 554.8% faster or 6.5 times as fast as BuildAlpha (20 years).

BuildAlpha (bars h–j) was an inspiration in the design of the Invesdwin platform machine learning backtesting
engine because it showed that significantly higher backtest speeds are possible with a specialised backtesting
engine for machine learning. Other platforms seemingly use classical event-based backtesting engines judging
by the measured speeds. Invesdwin makes use of more advanced optimisations that increase the speed further
than BuildAlpha, especially bit set compression and skipping of false indexes. Both platforms use simplified
boolean expressions as the basis for the strategy generator.

In the Invesdwin platform, it is also possible to implement more powerful strategy generators like the ma-
thematical threshold indicator calculation that GeneticSystemBuilder uses or the breakout strategies that
StrategyQuantX can generate. These generators will still run magnitudes faster in Invesdwin even though
not all optimisations can be fully utilised. This is because other platforms implement only a subset of possible
optimisations. Both StrategyQuantX and Invesdwin generate breakout strategies with 4 signal filters and

25

Under review as submission to TMLR

Table 14: ML performance: strategy generator performance (12 threads)
Platform Bars Backtests/s Bars/s Relative

a) GeneticSystemBuilder (4 years) 1,296 113,82 147,507.40 -94.0%
b) Adaptrade (4 years) 1,296 215.61 304,654.44 -87.5%
c) StrategyQuantX (20 years) 6,164 50.33 310,266.73 -87.3%
d) Adaptrade (30 years) 10,336 42.16 435,750.42 -82.2%
e) StrategyQuantX (intraday) 6,272,874 0.08 472,923.58 -80.6%
f) GeneticSystemBuilder (30 years) 10,336 77.70 803,108.00 -67.1%
g) GeneticSystemBuilder (intraday) 3,222,007 0.76 2,443,505.99 Baseline
h) BuildAlpha (1 year) 259 143,530.00 37,174,270.00 +1,421.3%
i) BuildAlpha (4 years) 1,098 104,920.00 115,202,160.00 +4,614.6%
j) BuildAlpha (20 years) 6,284 27,420.00 172,307,280.00 +6,951.6%
k) Invesdwin (1 year) 314 916,669.56 287,834,241.80 +11,679.6%
l) Invesdwin (4 years) 1,252 596,633.89 746,985,630.30 +30,470.2%
m) Invesdwin (20 years) 5,839 193,252.58 1,128,401,815.00 +46,079.6%
n) Invesdwin (intraday) 1,482,424 982.46 1,456,422,283.00 +59,503.8%

Figure 9: Graphical representation (linear and log y-scale) of Table 14: Strategy generator performance (12
threads); bars k–n represent our Invesdwin platform

a time-based exit in the tests reported below. Table 15 shows that Invesdwin is 245,399.6% faster or
2,455 times as fast compared to StrategyQuanX for the more sophisticated breakout strategies.

Table 15: ML performance: breakout generator performance
Platform Bars Backtests/s Bars/s Relative
StrategyQuantX (Breakout) 6,164 42.35 261,073.17 Baseline
Invesdwin (Breakout) 5,839 109,767.72 640,933,717.10 +245,399.6%

5.5 Main Contributors to Performance Improvement

To separate the main contributors to the performance improvements, we can pick important measurements
of the previous sections and tabulate them for relative improvements. Table 16 and Figure 10 show these
improvements measured between each step in relative terms. This is not a comparison based on the same
problem, but it allows us to visualise our journey to achieving the backtesting speeds we currently have.
Changing from a classical backtesting engine (historical) to an in-memory backtesting engine (blackboard)
improved backtesting speeds by a factor of 2.74. Applying multi-threading (12 threads) improved the speed
by a factor of 6.13. Switching to our custom expression language allowed us to gain an additional factor of
2.71. Optimising these expressions only gained us a factor of 1.10 in terms of backtests, though switching to

26

Under review as submission to TMLR

bit sets for the memoisation of calculations improved the speed by a factor of 2.18. Compressing these bit
sets gained an additional factor of 3.23 and coupling that with our skipping heuristic led to the final factor
of 1.80. The total of all these improvements leads us to a gain of 646.45 times in terms of backtesting
speed. Taking our performance measurements from the JForex platform as a starting point, we actually
gained about 6543.95 times in terms of speed.

Table 16: Relative performance contributions
Platform Bars/s or Ticks/s Relative
JForex:

a) 1 Thread (Ticks) 179,120.98 -90.1%
Historical Engine:

b) 1 Thread (Ticks) 1,813,229.72 Origin
Blackboard Engine:

c) 1 Thread (Ticks) 4,982,196.39 +174.5%
d) 12 Threads (Ticks) 30,550,156.17 +513.2%

Expression Engine:
e) Raw Evaluation (20 years) 83,015,106.65 +171.7%
f) Optimised Evaluation (20 years) 91,849,572.04 +10.6%
g) BitSet (20 years) 200,673,409.00 +118.5%
h) Compressed BitSet (20 years) 648,269,077.60 +223.0%
i) Skipping Compressed BitSet (20 years) 1,172,158,230.00 +80.8%

Figure 10: Graphical representation (linear and log y-scale) of Table 16: Relative performance contributions

5.6 Scalability Analysis

Scalability comes in two flavours that we can test on a single computer. One is utilising hardware with more
CPU cores and another is utilising additional RAM for larger data sets. For the latter we analyse alternative
memory allocations with a larger data set; specifically, EUR/USD with 4,370,262 bars in 1-minute intervals
from 2003.01.01 to 2015.01.01. Additionally, we test the signal-based strategy generator, as in Table 14, but
on better hardware. Table 17 shows the results. Using an almost 3 times larger data set (4,370,262 instead
of 1,482,424 bars as in Table 14 at bar n), our OnHeap results become 27.6% slower (1,054,675,328
instead of 1,456,422,283 bars/s as in Table 14 at bar n). This is likely caused by garbage collector overhead.

By using the memory allocation with memory mapped files we achieve 61.5% to 100.2% faster
performance for each hardware we tested on. OffHeap being slightly slower than MemoryMappedFile
could be due to pointer compression being disabled for Java processes that are larger than 32 GB in memory.
Even if the memory is allocated OffHeap and does not count as JVM heap size, we still need to allow the
process to have a significantly higher limit than 32 GB of memory which allows the heap to grow beyond 32
GB. This is because the garbage collector is normally greedy and automatically increases the heap size within
limits to reduce the frequency of full garbage collection cycles. This is possible as long as the remaining

27

Under review as submission to TMLR

Memory Allocation Backtests/s Bars/s Relative Relative
(overall) (per machine)

Intel i9-9900k ←↩
8-Core (12 threads):
OnHeap 241.33 1,054,675,328 Baseline Baseline
OffHeap 341.06 1,490,521,558 +41.3% +41.3%
MemoryMappedFile 378.10 1,652,396,062 +56.7% +56.7%
MemoryMappedFile (tmpfs) 429.40 1,876,590,503 +77.9% +77.9%
Intel i9-12900HX ←↩
16-Core (20 threads):
OnHeap 671.58 2,934,980,554 +178.3% Baseline
OffHeap 1,040.18 4,545,859,127 +331.0% +54.9%
MemoryMappedFile 1,084.39 4,739,068,410 +349.3% +61.5%
MemoryMappedFile (tmpfs) 1,011.32 4,419,733,366 +319.1% +50.6%
2x AMD EPYC 7643 ←↩
48-Core (96 threads):
OnHeap 2,380.24 10,402,272,423 +886.3% Baseline
OffHeap 4,477.99 19,569,989,533 +1,755.5% +88.1%
MemoryMappedFile 4,423.09 19,330,062,150 +1,732.8% +85.8%
MemoryMappedFile (tmpfs) 4,766.20 20,829,542,744 +1,875.0% +100.2%

Table 17: Signal Strategy Generator Performance on Better Hardware and Alternative Memory Allocations

memory is not fully occupied by the OffHeap allocations, such that sufficient space is left for the heap size
to grow into.

With memory mapped files we have more control over this and can force the process to use less than 32
GB of memory which allows pointer compression to stay active. This is because the memory mapped files
do not count as process memory. Instead, the operating system file cache has control over these memory
allocations. All tests were performed on Linux kernels that support the operating system file cache per
default. However, this is only relevant for the MemoryMappedFile tests where we store the files on a local
SSD drive. The MemoryMappedFile (tmpfs) tests store the file on a temporary file system (tmpfs) that keeps
the files completely in memory. In most cases, tmpfs is faster, but there are cases where the operating system
file cache performs better (on Intel i9-12900HX). In most cases, however, memory mapped files (regardless
of tmpfs or not) seem to be preferred over OffHeap allocations.

Parallelism. When comparing the speed improvements that the CPU cores provide, we can see that on
the older Intel i9-9900k (12 threads) we achieve up to 154,382,541.00 bars/s per thread. On the newer
Intel i9-12900HX (20 threads) we achieve up to 236,953,420.50 bars/s per thread. On the also recent 2x
AMD EPYC 7643 48-Core (96 threads) we achieve up to 216,974,403,60 bars/s per thread. Thus ignoring
differences in the architecture of the CPUs themselves, it seems like more CPU cores scale more or less
linearly the machine learning performance. This trend should be exploitable further in grid computing or
cloud infrastructure when more nodes are used. This will also depend on communication overhead which
should be negligible because this is an embarrassingly parallel computational problem that does not
require much communication between nodes. To validate the scalability claim, we reran the above test with
the default OnHeap memory allocation and measured the performance on the 2x AMD EPYC 7643 48-Core
machine with successively more threads. Table 18 shows the results and Figure 11 visualises the expected
scalability (calculated by the theoretical increase based on threads from the baseline) against the actual
measured scalability. We can see that the actual curve matches the expected curve closely.

6 Conclusions

To address the technical FinTech challenge of testing a vast number of automatically generated trading strate-
gies within a machine learning framework, we developed and evaluated a high-performance compute engine

28

Under review as submission to TMLR

Threads Backtests/s Bars/s Relative (actual) Relative (expected)
8 208.96 913,209,947.50 Baseline Baseline
12 351.90 1,537,895,198.00 +68.4% +50%
32 1,148.46 5,019,071,097.00 +449.6% +300%
64 1,721.36 7,522,794,196.00 +723.8% +700%
96 2,380.24 10,402,272,423.00 +1,039.1% +1,100%

Table 18: Signal Strategy Generator OnHeap Threads on 2x AMD EPYC 7643 48-Core

Figure 11: Graphical representation of Table 18: Signal Strategy Generator OnHeap Threads on 2x AMD
EPYC 7643 48-Core

within our Invesdwin platform. In this paper, we pinpointed key factors that boost runtime performance,
offering developers insights for building similar machine learning engines.

Accelerating backtesting engines is essential for automating strategy development processes. This advance-
ment enables research at a higher abstraction level, addressing specific financial questions by industry experts.
In this paper, we delved into the design of the Invesdwin platform and how machine learning concepts can
be tested with its compute engine. A pivotal feature of the platform is its domain-specific expression lan-
guage, facilitating the creation of trading strategies and automated portfolio decisions. The flexibility of this
language allows for the formulation of hybrid machine learning methods that, despite posing computational
challenges, can be rapidly tested, an aspect we are currently exploring.

This paper presents novel speed and performance enhancements in empirical research, targeting low-latency
data access with an in-memory machine learning engine support. By skipping compressed bit sets, we
show that strategy generation speed increases by 5.7 times, reducing memory usage by 63% for the
signal generator. Compared to raw expression evaluation, this technology is 14.1 times as fast (see Table 2
in Section 4). Utilising a compressed “bit set” format and skipping storage parts based on the dataset and
strategy ensures rapid reading from financial databases. Additionally, a custom low-latency compressed

29

Under review as submission to TMLR

NoSQL database optimises local data storage. Using memory-mapped files integrated with the flyweight
pattern for the allocation of primitive arrays for indicators and signals can double performance on large
datasets. This design can surpass hardware memory limitations for extensive data sets.

A comparison of our platform’s computational performance with existing contenders demonstrates superior
performance. Our in-memory (blackboard) engine for classical event-based trading strategies outpaces all
tested platforms. In comparison with Zorro S, a platform with some similar features, our ’tick’ processing
speed is 3.0 (Zorro Workshop 5) to 14.0 (Moving Average Crossover) times as fast in a single thread depending
on the tested strategy. Step-wise strategy optimisation is 18.3 times as fast on ticks, 144.6 times as
fast on 1-minute bars, and 148.4 times as fast on four-hour bars (measured on Zorro Workshop 5).
Importantly, trade execution remains consistent across different data resolutions, allowing for the use of
coarsest granularity bars, if desired, without sacrificing speed. Consequently, we expect the same results as
with tick-level execution but with significantly faster backtesting speed.

Our platform exhibits even larger performance gains compared to platforms that can generate trading strate-
gies while using classical event-based backtesting engines. In the "Invesdwin (intraday)" test, our platform
operates 596.0 times as fast as "GeneticSystemBuilder (intraday)". In signal strategy tests, our
"Invesdwin (20 years)" test reports performance 2,589.6 times as fast as "Adaptrade (30 years)" and
3,636.9 times as fast as "StrategyQuantX (20 years)". For breakout strategies within the same time
frame, our platform is 2,455.0 times as fast as "StrategyQuantX (20 years)". These results underscore that
our compute engine achieves unprecedented performance levels in FinTech.

Even when compared to the fastest contender, "BuildAlpha", which also employs a specialised signal stra-
tegy generator, our platform outpaces "BuildAlpha (20 years) by being 6.5 times as fast in the
"Invesdwin (20 years)" test. Notably, the lack of advanced optimisations in BuildAlpha, such as skipping
compressed bit sets, is a primary factor for this performance gap.

Furthermore, our platform distinguishes itself not only in raw speed but also in the ability to formally
automate and evaluate the robustness of strategy development processes. In summary, our platform of-
fers the fastest backtesting performance and the most comprehensive automation capabilities for strategy
development research, setting a new benchmark in the field.

As a result of the meticulous high level performance tuning of our engine, we managed to execute all
tests on a single laptop. Highlighting the current capabilities for leveraging parallelism, our backtesting
engine exhibits linear scalability across a moderate number of CPU cores (Section 5.6). The platform
harbours additional potential for increased parallelism beyond multi-threading, especially when leveraging
grid computing platforms and cloud scaling solutions. A pivotal technical contribution that we identify and
which significantly bolsters low latency and high throughput is the integration of native communication
channels at the heart of our compute engine.

Future Work. Our ongoing research focuses on strategy development processes from a financial perspective.
Decision points such as risk management, position sizing, and equity curve trading will shortly be automata-
ble through specialised expressions. This paves the way for exploring and evaluating innovative hybrid ML
techniques and formulating resilient investment portfolios. As this research progresses, the platform will be
enriched with additional algorithms and testing functionalities. The authors foresee substantial interest in
these capabilities from both academic and practitioner circles. The ultimate goal is for this groundbreaking
platform to become a widely adopted tool in both academic research and professional settings, enhancing
market participants’ capacity to explore novel data-driven methodologies in portfolio management.

Tool and Data Availability. Interested researchers can get free access to the platform (on github.com)
for research purposes by emailing "<anonymised>". The data used in this paper is available at Dukascopy-
BankSA (2022a) or through an API with a free demo account at DukascopyBankSA (2022b).

7 References

Fatai Anifowose. Hybrid machine learning explained in nontechnical terms, 2020. URL https://jpt.spe.
org/hybrid-machine-learning-explained-nontechnical-terms. Retrieved at 08.04.2022.

30

https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms
https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms

Under review as submission to TMLR

Fatai Adesina Anifowose, Jane Labadin, and Abdulazeez Abdulraheem. Hybrid intelligent systems in
petroleum reservoir characterization and modeling: the journey so far and the challenges ahead. Journal
of Petroleum Exploration and Production Technology, 7(1):251–263, 2017.

<anonymised>. Historical Cache for sparse time series with gaps in the Invesdwin Platform, 2022a. URL
https://github.com/invesdwin/invesdwin-util#caches. Retrieved at 25.02.2022.

<anonymised>. A Simple Expression Language for Automating Strategy Development Processes. 03 2022b.
doi: 10.13140/RG.2.2.18081.48484. URL https://www.researchgate.net/publication/359659846_
A_Simple_Expression_Language_for_Automating_Strategy_Development_Processes. Retrieved at
01.04.2022.

<anonymised>. Synchronous Channels in the Invesdwin Platform, 2022c. URL https://github.com/
invesdwin/invesdwin-context-integration#synchronous-channels. Retrieved at 20.02.2022.

<anonymised>. Specialised NoSQL Database for financial time series in the Invesdwin Platform, 2022d. URL
https://github.com/invesdwin/invesdwin-context-persistence#timeseries-module. Retrieved at
20.02.2022.

Rob Arnott, Campbell R. Harvey, Vitali Kalesnik, and Juhani Linnainmaa. Alice’s Adventures in Factorland:
Three Blunders That Plague Factor Investing. The Journal of Portfolio Management, 45(4):18–36, 2019.

D. Aronson. Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to
Trading Signals. Wiley Trading. Wiley, 2011. ISBN 9781118160589.

David Aronson and Timothy Masters. Statistically Sound Machine Learning for Algorithmic Trading of
Financial Instruments: Developing Predictive-Model-Based Trading Systems Using TSSB. CreateSpace
Independent Publishing Platform, ISBN: 978-1489507716, 2013. ISBN 148950771X.

Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked
autoencoders and long-short term memory. PLoS ONE, 12, 07 2017. doi: 10.1371/journal.pone.0180944.

Dave Bergstrom. BuildAlpha, 2020. URL https://www.buildalpha.com. Retrieved at 17.04.2020.

Jonathan Blackledge, Kieren Murphy, Currency Traders Ireland, and Dublin Docklands Innovation Park.
Forex trading using metatrader 4 with the fractal market hypothesis. In Proceedings of the Third Inter-
national Conference on Resource Intensive Applications and Services, INTENSIVE, pp. 1–9, 2011.

Indranil Bose and Radha K. Mahapatra. Business data mining — a machine learning perspective. Information
& Management, 39(3):211–225, 2001. ISSN 0378-7206. doi: 10.1016/s0378-7206(01)00091-x. URL https:
//dx.doi.org/10.1016/S0378-7206(01)00091-X.

BuildAlpha. BuildAlpha Demos (representative screenshot taken from the application), 2022. URL https:
//www.buildalpha.com/demo/. Retrieved at 25.02.2022.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture Volume 1: A System of Patterns. Wiley, 1. aufl. edition, 8 1996. ISBN
9780471958697.

E.P. Chan. Machine Trading: Deploying Computer Algorithms to Conquer the Markets. Wiley Trading.
Wiley, 2017. ISBN 9781119219606.

Robert W. Colby. The Encyclopedia Of Technical Market Indicators, Second Edition. McGraw-Hill, 2 edition,
10 2002. ISBN 9780070120570.

C. Conlan. Automated Trading with R: Quantitative Research and Platform Development. Apress, 2016.
ISBN 9781484221785.

J. Danielsson. Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Im-
plementation in R and Matlab. The Wiley Finance Series. Wiley, 2011. ISBN 9780470669433. URL
https://www.financialriskforecasting.com/book-code/. Retrieved at 23.10.2022.

31

https://github.com/invesdwin/invesdwin-util#caches
https://www.researchgate.net/publication/359659846 _A_Simple_Expression_Language_for_Automating _Strategy_Development_Processes
https://www.researchgate.net/publication/359659846 _A_Simple_Expression_Language_for_Automating _Strategy_Development_Processes
https://github.com/invesdwin/invesdwin-context-integration#synchronous-channels
https://github.com/invesdwin/invesdwin-context-integration#synchronous-channels
https://github.com/invesdwin/invesdwin-context-persistence#timeseries-module
https://www.buildalpha.com
https://dx.doi.org/10.1016/S0378-7206(01)00091-X
https://dx.doi.org/10.1016/S0378-7206(01)00091-X
https://www.buildalpha.com/demo/
https://www.buildalpha.com/demo/
https://www.financialriskforecasting.com/book-code/

Under review as submission to TMLR

Marcos Lopez de Prado. Advances in Financial Machine Learning. Wiley Publishing, 1st edition, 2018.
ISBN 1119482089, 9781119482086.

DukascopyBankSA. Historical Data Export, 2022a. URL https://www.dukascopy.com/trading-tools/
widgets/quotes/historical_data_feed. Retrieved at 26.08.2022.

DukascopyBankSA. JForex Platform and API, 2022b. URL https://www.dukascopy.com/swiss/english/
forex/jforex/. Retrieved at 20.02.2022.

J.F. Ehlers. Cycle Analytics for Traders. Wiley Trading. Wiley, 2013. ISBN 9781118728512.

G. Ford. Systems Trading for Spread Betting: An End-to-end Guide for Developing Spread Betting Systems.
Harriman House, 2008. ISBN 9781905641734.

H. Georgakopoulos. Quantitative Trading with R: Understanding Mathematical and Computational Tools
from a Quant’s Perspective. Palgrave Macmillan US, 2015. ISBN 9781137354075.

Manolis Georgioudakis and Vagelis Plevris. A comparative study of differential evolution variants in con-
strained structural optimization. Frontiers in Built Environment, 6:102, 2020.

A Hafiiak, E Borodina, and A Diachenko-Bohun. Application of genetic programming tools as a means of
solving optimization problems. Control, navigation and communication systems. Collection of scientific
papers, 6(52):58–60, 2018.

Carol Hargreaves and Chandrika Mani. The selection of winning stocks using principal component analysis.
American Journal of Marketing Research, 1:183–188, 08 2015.

Roy L Hayes, Peter A Beling, and William T Scherer. Action-based feature representation for reverse
engineering trading strategies. Environment Systems and Decisions, 33(3):413–426, 2013.

HetznerOnlineGmbH. Dedicated Root Server Hosting, 2022. URL https://www.hetzner.com/
dedicated-rootserver/matrix-ex. Retrieved at 09.04.2022.

S. Jansen. Machine Learning for Algorithmic Trading: Predictive Models to Extract Signals from Market
and Alternative Data for Systematic Trading Strategies with Python. Packt Publishing, 2020. ISBN
9781839217715.

Seth Jennings. Transparent Memory Compression in Linux, 2013. URL https://events.
static.linuxfound.org/sites/events/files/slides/tmc_sjennings_linuxcon2013.pdf. Retrieved
at 16.09.2022.

JuliaLangContributors. Julia Micro-Benchmarks, 2022. URL https://julialang.org/benchmarks/. Re-
trieved at 23.10.2022.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-weka 2.0: Au-
tomatic model selection and hyperparameter optimization in weka. Journal of Machine Learning Research,
18(25):1–5, 2017.

Andrew Kumiega and Benjamin Edward Van Vliet. Automated finance: The assumptions and behavioral
aspects of algorithmic trading. Journal of Behavioral Finance, 13(1):51–55, 2012. ISSN 1542-7560. doi:
10.1080/15427560.2012.654924.

Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François Saint-Jacques, and Gregory
Ssi Yan Kai. Roaring bitmaps: Implementation of an optimized software library. CoRR, abs/1709.07821,
2017. URL http://arxiv.org/abs/1709.07821.

You Liang, Aerambamoorthy Thavaneswaran, Na Yu, Md. Erfanul Hoque, and Ruppa K. Thulasiram.
Dynamic data science applications in optimal profit algorithmic trading. In 2020 IEEE 44th An-
nual Computers, Software, and Applications Conference (COMPSAC), pp. 1314–1319, 2020. doi:
10.1109/COMPSAC48688.2020.00-74.

32

https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/swiss/english/forex/jforex/
https://www.dukascopy.com/swiss/english/forex/jforex/
https://www.hetzner.com/dedicated-rootserver/matrix-ex
https://www.hetzner.com/dedicated-rootserver/matrix-ex
https://events.static.linuxfound.org/sites/events/ files/slides/tmc_sjennings_linuxcon2013.pdf
https://events.static.linuxfound.org/sites/events/ files/slides/tmc_sjennings_linuxcon2013.pdf
https://julialang.org/benchmarks/
http://arxiv.org/abs/1709.07821

Under review as submission to TMLR

Dome Lohpetch. Evolutionary algorithms for financial trading. 2011. URL https://www.ros.hw.ac.uk/
handle/10399/2510.

Alison Lui and George William Lamb. Artificial intelligence and augmented intelligence collaboration:
regaining trust and confidence in the financial sector. Information & Communications Technology Law,
27(3):267–283, 2018. ISSN 1360-0834. doi: 10.1080/13600834.2018.1488659.

Linkai Luo and Xi Chen. Integrating piecewise linear representation and weighted support vector machine
for stock trading signal prediction. Applied Soft Computing, 13(2):806–816, 2013.

Pranit Mahajan, Yagnesh Salian, Vinayak Jadhav, and Sujata Kulkarni. A multi-strategic approach to
automated trading. In 2021 International Conference on Communication information and Computing
Technology (ICCICT), pp. 1–7. IEEE, 2021.

James Mayfield, Tim Finin, and Marty Hall. Using automatic memoization as a software engineering tool in
real-world ai systems. In Proceedings the 11th Conference on Artificial Intelligence for Applications, pp.
87–93. IEEE, 1995.

Nguyet Nguyen. Hidden Markov model for stock trading. International Journal of Financial Studies, 6(2):
36, 2018.

oPgroupGermanyGmbH. Zorro Manual: Workshop 5 - Counter Trend, 2022a. URL https://
zorro-project.com/manual/en/tutorial_fisher.htm. Retrieved at 20.03.2022.

oPgroupGermanyGmbH. New Functions and Features | Zorro Project, 2022b. URL https://manual.
zorro-project.com/new.htm. Retrieved at 16.09.2022.

R. Pardo. The Evaluation and Optimization of Trading Strategies. Wiley Trading. Wiley, 2011. ISBN
9781118045053.

K. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to Global Optimiza-
tion. Natural Computing Series. Springer, 2005. ISBN 9783540209508.

Schenker Technologies. XMG ULTRA - Gaming Laptops, 2022. URL https://www.xmg.gg/xmg-ultra/.
Retrieved at 09.04.2022.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

StrategyQuant. StrategyQuant X User’s Guide, 2022. URL https://www.strategyquant.com/licenses/
d?code=sqxug. Retrieved at 25.02.2022.

Pedro Vergel Eleuterio and Lovjit Thukral. Programming language choices for algo traders: The case of
pairs trading. Computational Economics, 53(4):1443–1449, 2019.

Larry D. Wall. Some financial regulatory implications of artificial intelligence. Journal of Economics and
Business, 100:55–63, 2018. ISSN 0148-6195. doi: 10.1016/j.jeconbus.2018.05.003.

Muh-Cherng Wu, Sheng-Yu Lin, and Chia-Hsin Lin. An effective application of decision tree to stock trading.
Expert Systems with Applications, 31(2):270 – 274, 2006. ISSN 0957-4174.

Peter Zwag. GeneticSystemBuilder, 2020. URL https://trademaid.info. Retrieved at 17.04.2020.

33

https://www.ros.hw.ac.uk/handle/10399/2510
https://www.ros.hw.ac.uk/handle/10399/2510
https://zorro-project.com/manual/en/tutorial_fisher.htm
https://zorro-project.com/manual/en/tutorial_fisher.htm
https://manual.zorro-project.com/new.htm
https://manual.zorro-project.com/new.htm
https://www.xmg.gg/xmg-ultra/
https://www.strategyquant.com/licenses/d?code=sqxug
https://www.strategyquant.com/licenses/d?code=sqxug
https://trademaid.info

	Introduction
	Context and Background
	A High-Performance Platform: Invesdwin
	Backtesting Engines
	Expression Language
	Expression Language Design
	Signal Strategy Example
	Portfolio Selection Example

	Differential Evolution (DE)
	Encoding Strategy Candidates
	Vector Movement for Crossover and Mutation
	Nested Backtest Loops

	Key Contributors to Performance Improvements
	Faster Simplified Boolean Expressions
	Boolean Compression
	Expression Evaluation
	Memory Requirements

	Performance Results
	High Data Resolution: Ticks
	Medium Data Resolution: One Minute Bars
	Low (Minimum) Data Resolution: Four Hour Bars
	ML Performance using Genetic Programming
	Main Contributors to Performance Improvement
	Scalability Analysis

	Conclusions
	References

