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Abstract

While conventional Transformers generally operate on sequence data, they can be used in
conjunction with structure models, typically SE(3)-invariant or equivariant graph neural
networks (GNNs), for 3D applications such as protein structure modelling. These hybrids
typically involve either (1) preprocessing/tokenizing structural features as input for Trans-
formers or (2) taking Transformer embeddings and processing them within a structural
representation. However, there is evidence that Transformers can learn to process struc-
tural information on their own, such as the AlphaFold3 structural diffusion model. In
this work we show that Transformers can function independently as structure models when
passed linear embeddings of coordinates. We first provide a theoretical explanation for how
Transformers can learn to filter attention as a 3D Gaussian with learned variance. We then
validate this theory using both simulated 3D points and in the context of masked token
prediction for proteins. Finally, we show that pre-training protein Transformer encoders
with structure improves performance on a downstream task, yielding better performance
than custom structural models. Together, this work provides a basis for using standard
Transformers as hybrid structure-language models.

1 Introduction

1.1 Background

Transformers typically operate on sequential data, however many applications of Transformers benefit from
an ability to learn geometric reasoning. For instance, ESM-2 (Lin et al., 2023) demonstrates that in order to
effectively predict masked tokens in protein sequences, the model has learned some ability to predict protein
structures. Other tasks such as image processing or even natural language processing may benefit from an
internal representation of objects in 3D space. However, it is unclear how Transformers can learn to use 3D
representations to perform spatial reasoning. To this end, custom structural Transformers have been created
which model data as graphs and represent distance between nodes as edge features in order to perform
SE(3)-invariant attention (Ingraham et al., 2019; Fuchs et al., 2020; Liao & Smidt, 2023; Liao et al., 2023).

SE(3) invariance means that all functions of coordinates reduce to functions of relative distance. That is,
for every function f of two coordinates x1 and x2, there exists an equivalent function g which depends only
on their relative distance: f(x⃗1, x⃗2) = g(|x⃗1 − x⃗2|). Since relative distance in Euclidean space is defined as
|x⃗| =

√
x2 + y2 + z2, it may be easier to learn functions of the square of the relative distance — a linear

combination of functions of the individual coordinates.

In this manuscript, we investigate how conventional Transformers can learn to approximate functions of the
squared distance between points, thereby learning an approximately SE(3)-invariant measure of distance. In
short, we show that “out of the box” Transformers can act as 3D structural models. Our main contributions
are (1) to provide a theoretical explanation for how standard Transformers can learn to measure distance
and perform structural reasoning, (2) to show that Transformers indeed learn Gaussian functions of distance
and investigate efficient data augmentation methods which can be used to learn SE(3), and (3) to train a
protein masked token prediction model with coordinates and show that finetuning it for function prediction
yields a model which outperforms structural GNNs.
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1.2 Prior work

There have been prior approaches to merge Transformers with SE(3)-(in/equi)variant models, especially for
computational chemistry and 3D point clouds. Some methods add attention blocks to SE(3) GNNs to create
SE(3)-invariant GNN Transformers (Fuchs et al., 2020; Liao & Smidt, 2023). These have shown good results
on a number of tasks, however tend to be memory-intensive, particularly because attention is performed on
edges, which grow as n2 for fully-connected graphs. As a result, the graph connectedness of the GNNs is
typically limited to k-nearest neighbours. In contrast, memory-efficient attention implementations such as
FlashAttention (Dao et al., 2022; Dao, 2023) have enabled linear-memory standard Transformers.

Previous works have demonstrated that sequence-only protein Transformers can learn attention maps which
correlate with physical contacts (Lin et al., 2023; Vig et al., 2020). However, these works do not formally
model structure and so are limited by which contacts can be predicted from purely sequential patterns. To
overcome this, Transformers are often paired with structural models, for instance methods such as ProSST
(Li et al., 2024), ESM-IF (Hsu et al., 2022), and ESM3 (Hayes et al., 2024) use custom graph-based modules
to create structural tokens which are fed into standard Transformers. In contrast, our work shows that
standard Transformers are natively capable of using coordinates to model structure and measure distance.

Similarly, AlphaFold2 (Jumper et al., 2021) and ESMFold (Lin et al., 2023) use Transformers to preprocess
protein sequences for structure prediction. Again, these preprocessed representations have been shown to cor-
relate with structural contacts. AlphaFold2 makes this explicit during training by minimizing a distrogram
loss which encourages the EvoFormer to learn structural contacts. However, it is unclear if these representa-
tions are learning to explicitly embed coordinates in 3D and both models still require an SE(3)-equivariant
GNN structure module to actually produce 3D structures.

In building AlphaFold3, DeepMind replaced AlphaFold2’s SE(3)-equivariant structure module with linearly
embedded coordinates fed into a diffusion transformer (Abramson et al., 2024). AlphaFold3’s structure
module uses inner product attention with a pair bias learned from the pair representation. At present,
this still requires quadratic memory, however does indicate that nearly-standard Transformers with linearly
embedded coordinates can learn on structure. Here, we explore how such linearly embedded coordinates can
be used by standard Transformer attention modules to measure the Euclidean distance between tokens, and,
in contrast to prior work, show that no modifications are necessary for the standard Transformer architecture
to learn to perform structural reasoning.

2 Theory

Here we introduce our theory for how Transformers can learn to measure Euclidean distance. Throughout
this section, we assume that all coordinates are small. This can be achieved by scaling the inputs and outputs
manually or via learned weights in the linear input/output maps. For more detail, see Appendix A.1.

2.1 Gaussian spatial attention

Consider a pre-norm Transformer (Xiong et al., 2020) operating on a sequence of embedded positions, E(x⃗i).
For simplicity, assume that the key and query embeddings for all heads are trivial (Q = K = Id). Such
mappings can easily be learned as long as the head dimension is at least d. Then, in the first layer of the
Transformer, the attention matrix for all heads will be:

Ai,j = SM(LN(E(x⃗i))·LN(E(x⃗j))√
d

) (1)

Where SM denotes the softmax function and LN denotes LayerNorm (Ba et al., 2016).

Our objective is to determine an embedding, E, such that the attention Ai,j is a monotone decreasing
function of the Euclidean distance between x⃗i and x⃗j . In particular, if we choose E such that, for some
a, b ∈ R:
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LN(E(x⃗i)) · LN(E(x⃗j)) ≈ −a|x⃗i − x⃗j |2 + b (2)

Then,

Ai,j = SM(LN(E(x⃗i))·LN(E(x⃗j))√
d

)

≈ SM(− a√
d

|x⃗i − x⃗j |2 + b√
d

)

= SM(− a√
d

|x⃗i − x⃗j |2)

(3)

In particular, the unnormalized attention paid to xj by xi is:

Anonormi,j
≈ e

− a√
d

|x⃗i−x⃗j |2 (4)

Which is a Gaussian of the relative distance between the two points, i.e., Transformers can learn to ap-
proximate a 3D Gaussian to gate attention values and selectively attend to points nearby in 3D space. By
learning individual LayerNorm gains or Q/K mappings, each head can tune the variance of this Gaussian
filter, which allows each head to determine the appropriate spatial resolution for that type of information.

Below, we provide embeddings which satisfy Equation 2 and so lead to Gaussian attention filters.

2.2 Spatial positional embeddings

For simplicity, we consider the case of 1 spatial dimension and provide 4-dimensional embeddings, which
satisfy Equation 2. The 3 (or n) dimensional case is similar. Consider the embeddings:

Etrig(x) = (sin(x), − sin(x), cos(x), − cos(x))
Elin(x) = (x, −x, 1, −1)

Equad(x) = (x, −x, 1 − x2

2 ,
x2

2 − 1)
(5)

Here, Etrig is similar to the standard sinusoidal positional encoding for linear sequences (Vaswani et al.,
2017). Then, Elin and Equad can be thought of as the first and second order approximations of Etrig,
respectively. It can be shown (see Appendix A.2) that for all three embeddings:

LN(E(xi)) · LN(E(xj)) ≈ −2|xi − xj |2 + 4 (6)

Subject to |xi − xj | being small for Etrig and subject to |xi| and |xj | being small for Elin and Equad. This
surprising result for Elin stems from the non-linearity of LayerNorm causing the constant terms to be locally
quadratic. For more details, see Appendix A.2.2. An important consequence of this result is that simple
linear embeddings of positions can still lead to an approximately 3D Gaussian filter of relative distance for
attention.

Additionally, the approximation Equad is better than that of Elin, however the requirement to encode x2

explicitly makes it harder for individual attention heads to rescale the positions appropriately, since heads
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Figure 1: Overview of the simulated experiment model. Coordinates are passed through a Transformer
encoder which is truncated such that the output is the unnormalized attention for a single head. Loss
is computed as the difference between the attention for each pair and a Gaussian of the relative distance
between those points.

have to learn the linear and quadratic scaling terms separately. However, in A.2 we show that ReGLU and
SwiGLU activation functions (Shazeer, 2020) are capable of learning exactly quadratic functions of their
input, which may allow some modern Transformers to learn positional embeddings of the form Equad after
the appropriate rescaling. This may be a useful benefit of GLU activation functions for models such as
AlphaFold3 (Abramson et al., 2024).

3 Experiments

3.1 Simulated points

To test our theory of how Transformers learn to measure distance, we designed a Transformer encoder which
is truncated such that the output is the unnormalized attention matrix for a single head. A diagram of
this model is shown in Figure 1. We computed the loss as the l1 difference between the output matrix and
the matrix Ai,j = e( −(xi−xj)2

2002 ). This corresponds to the prenormalized softmax of the negative square of
the relative distance between points, as predicted by our theory. The data consisted of 10,000 “structures”,
each with five 3-dimensional points with coordinates randomly selected between 0 and 200. Unless otherwise
indicated, the Transformer encoder for all experiments has three layers (is truncated at the third layer),
an embedding dimension of 256, a feedforward dimension of 1,024, 8 heads, pre-normalization and ReLU
activation. The models were trained with a batch size of 16 using the Adam optimizer with a peak learning
rate of 4×10−4 which is reached after 4,000 warmup steps, and then is quadratically decayed.

As in AlphaFold3 (Abramson et al., 2024), we transform the input structures before they are passed through
the model. Whenever a structure is loaded, its points are recentred, randomly rotated, and rescaled by a
factor of 1

16 . This has two benefits. First, recentering and rescaling the points ensures that all coordinates stay
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Figure 2: (a) Validation loss as a function of the exponent p. The loss is lowest for p = 2 which corresponds
to learning a Gaussian function of distance. (b) Validation loss as a function of head dimension for different
spatial dimensions. Models need a head dimension of n + 2 to accurately measure distance in Rn.

relatively small, even before the embedding layer has learned an appropriate mapping. Second, recentering
and randomly rotating gives the model resilience to translations and rotations which encourages it to learn
a distance measure which is truly SE(3)-invariant.

3.1.1 Transformers can attend to |x⃗i − x⃗j |2

In Section 2, we show that Transformers are theoretically capable of learning Gaussian functions of distance.
We experimented with learning e−|x⃗i−x⃗j |p for different powers p, ranging from 0.5 to 4, in increments of 0.5.
Figure 2a shows the relationship between p and the validation loss. As expected, Transformers can learn to
reproduce the e−|x⃗i−x⃗j |2 attention matrix most accurately which shows that a Gaussian is the most natural
way for Transformers to learn to filter attention spatially.

3.1.2 Transformers need n + 2 embedding dimensions to learn distance in Rn

Next, we explored how large a spatial embedding must be to learn a good approximation of distance for Rn.
For the case of 1 spatial dimension, we provide a theoretical 4-dimensional embedding. We trained models
to predict Euclidean distance in Rn for n ∈ 1, 2, 3, 4 using head dimensions from 1 to 8. Figure 2b shows
the relationship between validation loss and head dimension. We found that the model only needs n + 2
head dimensions to learn a good approximation of distance for all spatial dimensions. This means that to
learn a good approximation of distance in R3, a model must reserve at least 5 embedding dimensions for
each head. This is a surprisingly compact requirement which should be easily accommodated even in small
Transformers.

3.1.3 SE(3) transformations improve learned SE(3)-invariance

We investigated whether Transformers will learn to overfit training data in a low data regime and if this
can be prevented. This could also correspond to a scenario where there is only a strong structural signal
in a small number of training examples. We reduced the number of training points to 100 and measured
the training and validation loss. To test the importance of data augmentation, we trained models with and
without the random rotations (Figure 3a). The raw coordinates clearly demonstrate overfitting while the
randomly rotated coordinates show near perfect alignment between training and validation loss. Importantly,
this form of data augmentation does not require creating new data points, only rotating the training data
each epoch.

5



Under review as submission to TMLR

2000 4000 6000 8000 10000
Epoch

0.00

0.02

0.04

0.06

0.08

Lo
ss

Rolling average loss per epoch
Raw validation
Raw train
Augmented validation
Augmented train

(a) Loss vs epoch

Raw Augmented
0.000

0.002

0.004

0.006

0.008

0.010

0.012

` 1
di

st
an

ce

`1 distance from prediction to truth or random rotation

Validation loss

SE(3) divergence

(b) Loss and SE(3) divergence

Figure 3: (a) Training and validation loss per epoch in a low data setting. The rolling average of the last
500 epochs is shown. Raw coordinates show large divergence between training and validation loss whereas
randomly rotated coordinates show near perfect alignment, resulting in a substantially lower validation
loss. (b) The final validation loss is very close to the average predicted distance between randomly rotated
structures, indicating that the validation loss is minimized by learning a more SE(3)-invariant measure of
distance.

We measured the average ℓ1 distance between predictions of randomly rotated structures for the models
trained with and without random rotations, as a measure of SE(3) divergence (Figure 3b). In both cases
the SE(3) divergence was almost the same as the validation loss, indicating that randomly rotating training
structures reduces overfitting by encouraging models to learn an SE(3)-invariant measure of distance.

3.2 Proteins

Proteins are a natural fit for structural Transformers because they are composed of linear sequences embedded
in 3D space. As such, their properties depend on both sequential and structural features. We considered
two tasks in protein modelling: predicting masked tokens as a pretraining objective and predicting protein
function conditioned on embeddings generated by pretrained models. For all protein experiments we used
the GO PDB dataset from DeepFRI (Gligorijević et al., 2021) which comprises ∼36K protein chains.

3.2.1 Pretraining a structural protein language model

To test a Transformer’s ability to learn useful structural patterns in proteins, we trained an ESM/BERT-
style (Rives et al., 2021; Devlin et al., 2019) model to complete masked token prediction. We trained two
models: one with coordinates (‘coords model’) and the other without (‘non-coords model’). The version
with coordinates added a linear embedding of the coordinates to the token embedding in the same way as
the simulated experiments. Both models were very similar to the smallest publicly released ESM1 model,
consisting of a 6-layer Transformer encoder with a hidden dimension of 768, 12 attention heads, a feedforward
dimension of 2048, and GeLU activation (Hendrycks & Gimpel, 2023). As in ESM, we omitted dropout. To
prevent the model from focusing too much on linear positional information, we used Sinusoidal Positional
Encodings rather than Rotary Positional Encodings (Su et al., 2022). As is common in masked token
prediction, we masked 15% of tokens. Of the masked tokens, 80% were replaced with a [MASK] token, 10%
were replaced with a random amino acid, and 10% were left unchanged. We clustered the data by 50%
sequence identity using MMSeqs2 (Steinegger & Söding, 2017) and randomly held out 1% of the clusters
to use as a validation set. We trained each model for 100 epochs with a fixed batch size of 24, resulting
in approximately 150K updates. We used the Adam optimizer with 4,000 warmup steps to a peak learning
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Figure 4: (a) Masked token prediction loss per epoch. Adding coordinates to the model hugely improves
training and validation accuracy, as the model quickly learns to use coordinates to measure distance and
compute structural features. (b) Sequence recovery rate for each amino acid type. The height of each bar
represents the recovery rate for the coords model and the orange portion is the recovery rate for the non-
coords model (the coords model had at least as high a recovery rate as the non-coords model for all amino
acid types). The recovery rates for glycine and proline were substantially higher in the coords model, which
may correspond to identification of beta turns.

rate of 2.3×10−4, followed by inverse square decay. Each time a structure was loaded, its coordinates were
recentred, randomly rotated, and rescaled.

As shown in Figure 4a, adding coordinates substantially improved the model, leading to a final training
perplexity of 6.5 with coordinates vs 11.9 without. The final training loss for the version without coordinates
(after 100 epochs) was surpassed by the version with coordinates after 8 epochs. Additionally, the final
validation loss was surpassed after only 4 epochs which may indicate that the structural features learned
early in training are more robust to dissimilarity in sequence space.

We also investigated the difference in sequence recovery rates between the two models. The total sequence
recovery rate was ∼23% for the non-coords model compared to ∼38% for the coords model. Figure 4b shows
a breakdown of the recovery rates per amino acid type. The recovery rate for the coords model was greater
than or equal to that of the non-coords model for all amino acid types. The difference was particularly stark
for glycine and proline, which may be related to their distinct backbone conformational preferences (Ho &
Brasseur, 2005; Beck et al., 2008).

3.2.2 Pretrained models learn to measure distance

In the model trained in the previous paragraph, there are three inputs to the model for each token: amino
acid type, sequential position, and 3D coordinates. To test if the pretrained model with coordinates was
learning to measure distance as predicted, we plotted the average attention paid by each pair of tokens
across all heads in a layer as a function of distance. We also plotted the average attention paid to each
token as a function of relative sequence distance. To isolate the effect of each feature, we fixed all amino
acids to alanine. We also fixed the linear sequence index to a constant value for all tokens while measuring
3D dependence and fixed the 3D position to (0, 0, 0) while measuring linear dependence. For the distance
measurements, we rounded each pairwise distance to the nearest Angstrom and computed the average for
each distance value.

Figure 5 shows the plots for 3D and linear positional dependence for all layers for both models as well as
the amplitude and standard deviation of the fit Gaussian for each layer. As expected, the model without
coordinates shows no correlation with Euclidean distance. Conversely, the model with coordinates shows a
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strong dependence in the early layers which is well-approximated by a Gaussian. Both models progressively
widen their field of view as information passes through the layers. This may correspond to a system of rea-
soning where the model collects information about the local environment before processing this information
alongside global patterns. We provide a similar plot without isolating each of the factors in Appendix A.3.

(a) Linear position, with coordinates

(b) 3D position, with coordinates

(c) Linear position, no coordinates

(d) 3D position, no coordinates
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Figure 5: Average attention paid per layer to linear and 3D positional information (a-d). Fit Gaussian
functions are shown in blue for each plot. The model which was trained with coordinates learns to filter
heavily by linear and 3D positional information whereas the model trained without coordinates only filters
by linear information in early layers. Amplitudes (e) and standard deviations (f) of the fit Gaussians show
that both models pay attention to local features early and then gradually widen their fields of view.
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Table 1: GO molecular function prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

DeepFRI (∼10M) DeepFRI ✗ 0.427 0.438
✓ 0.446 0.019 0.460 0.022

None DeepCNN ✗ 0.363 0.385

Ours (∼35K)
MLP ✗ 0.361 0.377

✓ 0.460 0.099 0.465 0.088

Finetuned ✗ 0.381 0.421
✓ 0.566 0.185 0.575 0.154

3.2.3 Protein function prediction

Finally, we tested whether the pretrained protein model embeddings could improve accuracy on a downstream
task. We trained models to predict protein molecular function Gene Ontology labels (Ashburner et al., 2000).
Protein function prediction has been studied extensively, and has been shown to benefit from both language
and structural features (Gligorijević et al., 2021). We trained models to predict protein function based on the
mean token embedding output by the pretrained models, using the same data splits as DeepFRI (Gligorijević
et al., 2021). We compare our results to the DeepFRI and DeepCNN versions which were trained on PDB
sequences. DeepFRI provided a useful comparison since it achieved state of the art performance on protein
function prediction before models were trained using ESM embeddings. Thus we could pretrain our model
on the same data as DeepFRI and evaluate the specific contributions of model architectures. DeepFRI is
an ensemble of Graph Convolutional Networks (Kipf & Welling, 2022) with different propagation rules, as
in Dehmamy et al. (2019). The graph structure is defined by connecting the k-nearest neighbours for each
amino acid in the protein structure. DeepFRI uses a pretrained LSTM model (Graves, 2014) to generate
language model embeddings for node features. DeepCNN is a Convolutional Neural Network (LeCun et al.)
meant to replicate DeepGO (Kulmanov et al., 2018) but retrained on the same sequences as DeepFRI (and
our model).

We train two models based on the pretrained models from the previous section. Our first model is based
on the simple MLP model from Kulmanov et al. (2024), which is a simple 2 layer MLP block of 1,024
dimensions with a residual connection. The input to the model is a learned linear embedding of the mean
token embedding output by the pretrained models.

Our second model is a finetuned version of the pretrained masked token prediction models. As in BERT
(Devlin et al., 2019) the output is a learned linear projection of the final start token embedding. Each model
(coords/no coords) is finetuned for 20 epochs with a constant learning rate of 3×10−5.

The results are shown in Table 1. Additional results for predicting biological process and cellular component
are provided in Appendix A.4. Our sequence-only MLP model compared competitively with DeepCNN and
our sequence-structure MLP model compared competitively with DeepFRI. The MLP models are very simple,
taking less than 2 minutes to train on a single GPU, since they are O(1) in sequence length after obtaining
the mean sequence embeddings. This indicates that the pretrained models have learned rich embeddings of
sequence and structure.

Additionally, the finetuned structure model achieves a substantially better AUPRC (0.566 vs 0.446) and max
F1 score (0.575 vs 0.460) than DeepFRI. The gap between our structural and non-structural models is much
wider than that of DeepFRI, indicating that our model derives a greater benefit from structural information,
despite the fact that DeepFRI uses established models for structural processing.
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4 Conclusions

In this work we show that standard Transformers are capable of performing structural reasoning by learning
an approximately SE(3)-invariant distance filter on attention. We predict that even linearly embedded
positions can produce Gaussian attention filters of distance and validate this prediction using experiments
on simulated points and proteins. The protein model naturally learns to use the 3D coordinates to measure
distance which substantially improves its ability to predict masked tokens. The structural information also
materially improves the model’s ability to inform function prediction, providing even greater benefit than
existing custom-built structural models.

We show that Transformers can learn to measure distance and operate as hybrid structure/language models.
In contrast to many conventional structure models which are based on GNNs, Transformers do not explicitly
model edges. This admits memory-efficient implementations such as FlashAttention (Dao et al., 2022; Dao,
2023) which allow for fast, fully-connected updates in linear memory. Most structure models store distance
in edges which use quadratic memory for fully-connected graphs. Practically, this means that Transformers
can perform structural reasoning on more highly connected structures, which may allow them to “see” more
while making decisions.

As shown in Section 3.2.2, the pretrained protein model trained with coordinates showed a strong positional
dependence in attention in early layers followed by a weak positional dependence in the last few layers. It is
possible that this corresponds to the model identifying structural features such as secondary structure and
local physics, before encoding these and performing long-range sequential processing. This corresponds with
the contemporary trend of preprocessing structural information to create structural tokens for Transformers
compared to the more traditional approach of using language model embeddings as input to structural GNNs.

In this work we explore two protein tasks: masked token prediction and function prediction. Virtually all
protein learning tasks benefit from combined sequence and structure processing and so this work could be
applied across areas including inverse folding, structure prediction, and arbitrary property prediction. As is
common in tasks such as inverse folding, the input structures could include more atoms from the backbone.
This could be achieved by simply projecting these atom coordinates to the input representation, unlike GNN-
based methods which require explicitly including all pairwise distances in the edge features. Additionally,
while proteins are a natural fit for structural Transformers due to their combined sequential and spatial
data, there are many other possible applications of this type of model. Some of these include tasks with
explicit 3D information such as small molecules and 3D objects. However, there are also tasks where learning
an approximate relationship between entities in Euclidean space could help with reasoning, such as vision
Transformers (Dosovitskiy et al., 2021) or even large language models.

5 Reproducibility

Proofs for claims made in Section 2 are available in the Appendix. Code to replicate the experiments is
available in an anonymous zipped directory in the supplementary materials. This includes code for models,
data download/processing, model training, and evaluation.
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A Appendix

A.1 Coordinates can be rescaled for better approximations

The validity of the approximations shown so far depends on the coordinates being small. Figure A1 shows
how well (cLN(Elin( x1

c )))·cLN(Elin( x2
c )) approximates a quadratic as a function of c and how well the

resulting exponential approximates a Gaussian. The scaling parameter c can be learned by the input and
output linear maps of the embedding or by the LayerNorm gain parameters. In this way, all coordinates can
be rescaled such that the previous sections produce arbitrarily good approximations.

x

c = 1 c = 2 c = 4 c = 8

−
x
2

x

ex
p
(−

x
2
)

x x x

Figure A1: Linear and quadratic approximation and resulting Gaussian approximation of cLN(Elin( x
c )) as

a function of c. Target functions are shown in black and approximations are shown in blue. Increasing the
scaling parameter c results in a better approximation without changing the shape of the underlying Gaussian.

A.2 Embedding proofs

A.2.1 Trigonometric embeddings

Consider the embedding Etrig:

Etrig(x) = (cos(x), − cos(x), sin(x), − sin(x)) (A1)

Then the mean, µ(Etrig(x)), is:

µ(Etrig(x)) = 0 (A2)

and the variance, σ(Etrig(x)), is:
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σ(Etrig(x)) =
√

1
4(sin(x)2 + (− sin(x))2 + cos(x)2 + (− cos(x))2)

=
√

1
2(sin(x)2 + cos(x)2)

= 1√
2

(A3)

So

LN(Etrig(x)) = Etrig(x) − µ

σ
= Etrig(x) − 0

1√
2

=
√

2Etrig(x) (A4)

LN(Etrig(x1)) · LN(Etrig(x2)) =
√

2
2
(2 cos(x1) cos(x2) + 2 sin(x1) sin(x2))

= 4(cos(x1 − x2))
≈ 4 − 2(x1 − x2)2

(A5)

A.2.2 Layer normalization can learn approximately quadratic functions of input

Consider the first-order approximation of Etrig, Elin:

Elin(x) = (1, −1, x, −x) (A6)

We have

µ(Elin(x)) = 1 − 1 + x − x = 0 (A7)

σ(Elin(x)) =
√

1
4(12 + (−1)2 + x2 + (−x)2)

=
√

1
2(1 + x2)

≈
√

1
2(1 + x2 + x4

4 )

=
√

1
2(1 + x2

2 )2

= 1√
2

(1 + x2

2 )

(A8)
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1 − µ

σ
= 1

1√
2 (1 + x2

2 )

=
√

2
1 − x2

2
(1 + x2

2 )(1 − x2

2 )

=
√

2
1 − x2

2
1 − x4

4

≈
√

2(1 − x2

2 )

(A9)

x − µ

σ
= x

1√
2 (1 + x2

2 )

≈
√

2(x)
(A10)

So,

LN((1, −1, x, −x)) ≈
√

2((1 − x2

2 ), −(1 − x2

2 ), x, −x) (A11)

In this way, layer normalization can be used to generate approximately quadratic functions of the input. In
particular,

LN(Elin(x1)) · LN(Elin(x2)) ≈
√

2
2
(2(1 − x2

1
2 )(1 − x2

2
2 ) + 2(x1x2))

= 4(1 − x2
1

2 − x2
2

2 + x2
1x2

2
4 + x1x2)

= 4(1
2(2 − (x2

1 − 2x1x2 + x2
2) + x2

1x2
2

2 ))

= 2(−(x1 − x2)2 + 2 + x2
1x2

2
2 )

≈ −2(x1 − x2)2 + 4

(A12)

A.2.3 Gated linear units provide a better approximation

Lemma A.1. ReGLU and SwiGLU can produce functions of x2. In particular:

ReGLU(x) + ReGLU(−x) = SwiGLU(x) + SwiGLU(−x) = x2

Proof.

ReGLU(x) + ReGLU(−x) = max(0, x)x + max(0, −x)x
= max(−x, x)x
= |x|x
= x2

(A13)

Similarly,
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SwiGLU(x) + SwiGLU(−x) = x2

1 + e−x
+ (−x)2

1 + e−(−x)

= x2(1 + ex)
(1 + e−x)(1 + ex) + x2(1 + e−x)

(1 + ex)(1 + e−x)

= x2(1 + ex) + x2(1 + e−x)
1 + e−x + ex + ex−x

= x2(2 + ex + e−x)
2 + ex + e−x

= x2

(A14)

Theorem A.2. With input x⃗ = (1, x, x2), there exists a linear embedding, E, and a linear map L such that
L(LN(E(x⃗))) = (1, x, x2)/σ where 1 ≤ σ ≤ 1 + x4

8

Proof. Consider the second-order approximation of Etrig, Equad(x):

Equad(x) = (1 − x2

2 , −(1 − x2

2 ), x, −x) (A15)

We have

µ(Equad(x)) = 0 (A16)

σ(Equad(x)) =
√

1
4(x2 + (−x)2 + (1 − x2

2 )2 + (−(1 − x2

2 ))2)

=
√

1
4(2 + 2x4

4 )

= 1√
2

√
1 + x4

4

≈ 1√
2

√
1 + x4

4 + x8

64

= 1√
2

√
(1 + 1

8x4)2

= 1√
2

(1 + 1
8x4)

(A17)

The error for the LayerNorm-only approximation of x and x2 was O(n3) and O(n4) respectively. In compar-
ison, the error given x2 as input for x and x2 is O(n5) and O(n6). Thus, simple combinations of ReGLU or
SwiGLU layers give us a better approximation of x and x2, which in turn gives us a better approximation
of d2. In practice, this may mean that x need not be as small for reasonable approximations to hold which
may allow for more stable gradients.
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(a) Linear position, with coordinates

(b) 3D position, with coordinates

(c) Linear position, no coordinates

(d) 3D position, no coordinates
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(f) Gaussian standard deviations

Figure A2: Average attention paid per layer to linear and 3D positional information (a-d) for the unmodified
inputs. Fit Gaussian functions are shown in blue for each plot. Amplitudes (e) and standard deviations (f)
of the fit Gaussians are shown. The amplitudes are higher and the fits are worse due to the cross-correlation
between relative position, 3D distance, and amino acid type.

A.3 Raw attention plots

In Section 3.2.2, we showed that the attention paid to positional and 3D distance are well-fit by Gaussians.
Here, in Figure A2, we provide the same plots but without isolating each of the factors. Note that relative
distance, position, and amino acid type are all correlated with one another, especially at linear/3D distance
0.
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A.4 Extended experiments

Here, we report the results of two additional experiments on predicting biological process (Table 2) and
molecular function (Table 3) labels, also from the DeepFRI dataset. We were unable to compare these results
to DeepFRI because the PDB-only results were not reported. As in the molecular function experiments,
the inclusion of structure improved the performance of all models. In these experiments, the performance
of the MLP and finetuned Transformers were comparable, and the sequence-only MLP outperformed the
sequence-only Transformer for cellular component prediction. It is possible that this is the result of the more
expressive Transformer model overfitting to sequence training data, which is then mitigated by the inclusion
of structure.

Table 2: GO biological process prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

Ours (∼35K)
MLP ✗ 0.197 0.247

✓ 0.235 0.038 0.286 0.039

Finetuned ✗ 0.191 0.232
✓ 0.244 0.053 0.280 0.048

Table 3: GO cellular component prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

Ours (∼35K)
MLP ✗ 0.281 0.335

✓ 0.306 0.025 0.350 0.015

Finetuned ✗ 0.230 0.271
✓ 0.308 0.078 0.343 0.062

A.5 Model parameter counts

In Table 4, we list the parameter counts for all models used in the paper. The simulated parameter counts
will vary slightly as described in the details of each experiment. The pretrained models have the same number
of parameters both with and without coordinates. The finetuned models have a slightly higher number of
parameters than the pretrained because of the final linear layer which projects to the number of classes. The
MLP parameter counts are relatively low because they are conditioned on the (fixed) pretrained embeddings.

Table 4: Parameter counts for all models.

Model name count
Simulated model 1,597,504

Pretrained models 33,129,242
Finetuned models (cc) 33,375,322
Finetuned models (mf) 33,505,283
Finetuned models (bp) 34,623,409

MLP models (cc) 2,169,152
MLP models (mf) 2,342,377
MLP models (bp) 3,832,727
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