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Abstract

Do Large Language Models (LLMs) produce001
output that exhibits syntactic productivity sim-002
ilar to human language? The problem is for-003
mally equivalent to a major issue in child lan-004
guage research where conclusions must be005
drawn about the underlying grammar solely on006
the basis of a child’s production data. We apply007
a mathematically rigorous and independently008
validated benchmark to quantify syntactic pro-009
ductivity with specific focus on Determiner-010
Noun (D×N) combinations. Human language011
corpora show the statistical profile of syntactic012
productivity but LLM-generated texts do not.013

1 Introduction014

The success of LLMs has spurred significant re-015

search to understand their capacities for represent-016

ing linguistic structures in comparison to human017

language learners and users.018

A prominent approach has focused on the devel-019

opment and use of benchmarks to probe for specific020

linguistic properties in LLMs. These range from021

extracting structures from internal representations022

(e.g., Hewitt and Manning, 2019; Tenney et al.,023

2019; McCoy et al., 2020; Tucker et al., 2021;024

Papadimitriou et al., 2021), to building tasks in-025

spired by psycholinguistic processing studies (e.g.,026

Chowdhury and Zamparelli, 2018; Wilcox et al.,027

2018; Hu et al., 2020), to classic acceptability028

rating tasks that theoretical linguists use to infer029

grammatical knowledge (e.g., Linzen et al., 2016;030

Warstadt et al., 2020; Huebner et al., 2021; Sinclair031

et al., 2022). While the benchmarking approach has032

provided valuable insights into LLMs’ linguistic033

capacity, they are by design limited to the specific034

structural properties identified by the researcher035

and may provide an insufficiently representative036

coverage of linguistic phenomena (McCoy et al.,037

2019; Vázquez Martínez, 2021; Wang et al., 2022;038

Guest and Martin, 2023; Vázquez Martínez et al.,039

Figure 1: Syntactic productivity measure (overlap; Sec-
tion 2) of human language corpora (children, their care-
takers, and professional writers) and 4 LLM-generated
corpora from the OpenAI API. Each point indicates a
corpus. Human corpora show measures comparable
to the expectations under a fully productive grammar
(Section 3) but LLM corpora show significantly lower
measures of productivity (Section 4). The red reference
line indicates a perfect match between the two.

2023). With the rise of generative AI models, 040

it is increasingly important to develop evaluation 041

methods for open-ended LLM output (Chang et al., 042

2024). 043

In this paper, we introduce a novel approach 044

to LLM evaluation with specific focus on syn- 045

tactic productivity.1 Our approach draws inspi- 046

ration from the study of child language, where 047

researchers frequently need to assess a learner’s 048

underlying grammar based solely on a corpus of 049

their language production. Section 2 reviews a 050

well-established statistical test (Yang, 2013) with 051

specific reference to syntactic productivity. Sec- 052

tion 3 applies the test to child and caretaker speech 053

in the CHILDES database (MacWhinney, 2000) 054

as well as the Brown Corpus (Kučera and Fran- 055

1We will update this footnote with a link to the GitHub
repository in the deanonymized version.
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cis, 1967). Results show that, as expected, these056

human language samples exhibit the statistical hall-057

marks of productivity. In Section 4, the test reveals058

that LLM-generated narrative text fails to show059

the statistical properties of productivity. Section060

5 discusses the implications of our findings and061

directions for future research.062

2 A Statistical Test for Productivity063

The defining feature of language is its infinite pro-064

ductivity, as new words and sentences can always065

be generated. Understanding the nature and devel-066

opment of productivity has been a central problem067

in linguistics, cognitive science and now AI.068

A revealing method for uncovering productivity,069

as shown in the celebrated Wug test (Berko, 1958),070

is to provide the language learner with novel input071

and assess whether appropriate output forms can be072

generated. However, such experimental approaches073

have certain task-related complications that limit074

their applications. For example, while children075

learn the English past tense suffix (-ed) before age076

3 as shown by occasional over-regularization errors077

(e.g., goed; Kuczaj 1977), not even first graders078

consistently produced -ed on the Wug test (Berko,079

1958) as children often struggle learning and us-080

ing a novel word in an artificially induced setting.081

Comprehension studies also carry extra cognitive082

demands. Even 4-year-olds fail to completely accu-083

rately distinguish the temporal reference of "was"084

and "is" in an experimental setting (Valian, 2006).085

Hence, the investigation of early child language086

has often focused on children’s naturalistic produc-087

tion, which is least subject to performance con-088

straints while also providing the most accessible089

type of acquisition data. In particular, the combi-090

nation of determiners (D) and nouns (N), or D×N091

for short, has been a major focus in child language092

research (Pine and Martindale, 1996; Valian et al.,093

2009; Pine et al., 2013). This is because determin-094

ers, especially singular determiners the and a,2 are095

highly frequent and thus well represented in child096

language. Despite its simplicity, D×N fully exhibits097

the hallmark of syntactic productivity: Any singu-098

lar noun used with the can also be used with a. A099

simple metric, dubbed overlap (Pine and Lieven,100

1997), has been widely used to quantify productiv-101

ity: the proportion of singular nouns used with both102

the and a out of those used with either. The overlap103

2The phonological variant an is treated as a as it is an
independent developmental process.

value is bounded between 0 and 1: A higher value 104

would be stronger evidence for productivity, but 105

as we will see shortly, this intuition needs to be 106

qualified. 107

Many previous studies of D×N focus on the com- 108

parison of overlap values in children and their care- 109

taker’s language. However, any corpus of caretaker 110

language is only a small sample of a learner’s input 111

data. Moreover, adults talk more and have larger 112

vocabularies than children, so it has been difficult to 113

develop “fair” comparisons across samples. A sta- 114

tistical test for syntactic productivity (Yang, 2013; 115

Goldin-Meadow and Yang, 2017) sidesteps these 116

issues. This test calculates the expected value of 117

D×N overlap in a corpus under the assumption that 118

D×N is fully productive i.e., statistically indepen- 119

dent. 120

The statistical test for overlap builds on two key 121

statistical properties of language, one universal and 122

the other specific to D×N in English. First, the test 123

assumes that the frequencies of words, especially 124

open class words such as nouns, follow Zipf or 125

inverse power law distribution (Zipf, 1949; Baroni, 126

2009). As such, if a corpus contains n unique nouns 127

in D×N combinations, the noun with rank r has 128

the expected probability 1/(raHn,a) where Hn,a 129

is the generalized harmonic number
∑

i=1...n 1/i
a 130

with a as the exponent of inverse power law. In 131

most cases a is approximately 1 following Zipf’s 132

original formulation but deviation from 1 can be 133

accommodated in the calculation. 134

Second, it is observed that in D×N combinations, 135

nouns tend to have a “favorite” determiner that 136

combines far more frequently than the other. For 137

example, bathroom greatly favors the over a but for 138

bath, the reverse is true. This imbalance, referred 139

to as bias (b), is defined as follows: 140

b =

n∑
i=1

max(Cthe×i, Ca×i)

n∑
i=1

(Cthe×i + Ca×i)

(1) 141

where Cthe/a×i is the frequency of the/a combined 142

with noun i. The bias value is not part of the gram- 143

mar per se nor does it require learning: It is un- 144

likely that children track the frequency of bodily 145

functions (“the bathroom”) or hygienic practices 146

(“a bath”). Rather, the bias value is the vagaries of 147

life reflected in language use. As bath and bath- 148

room illustrate, not all nouns have the same favorite 149

determiners. Situational factors may also skew the 150

2



bias: a pediatrician will have more balanced use151

for the and a for the noun baby than the parent of152

a newborn. Nevertheless, as we show in Section153

3, the bias value in aggregate is remarkably stable154

across samples of English at b = 0.82.155

Taken together, these two statistical properties156

greatly enhance the applicability of the test; the157

full formula is given in Appendix A. For a corpus,158

one only needs S, the total number of D×N com-159

binations, and n, the number of unique singular160

nouns. The exponent of Zipf’s Law can be ob-161

tained from frequencies of the n nouns, and one162

can easily compute the expected overlap value and163

compare it to the empirical value. If there are no164

significant differences, one can conclude that the165

D×N combinations are in fact consistent with a fully166

productive grammar.167

3 Syntactic Productivity in Humans168

The first set of human language analysis is based169

on the Manchester corpus (Theakston et al., 2001).170

There are 12 dyads of typically developing children171

and their caretakers, and the transcripts are based172

on regular recording sessions between age 2 and 3.173

The Manchester Corpus is the largest longitudinal174

records of English language development for this175

age group and has been frequently used in child176

language acquisition.177

Following previous work (Pine et al., 2013), a178

D×N combination is extracted if D is the or a and179

N is a singular noun that immediately follows D or180

with one non-noun intervening word. Data extrac-181

tion used the spaCy dependency parser (Honnibal182

and Johnson, 2015) which also provides POS tag-183

ging of the transcripts. The statistical conclusions184

of our study remain unchanged if we use the POS185

annotation provided in CHILDES.186

We found that in the Manchester Corpus, the187

nouns in both child and caretaker language show188

excellent fit for the original Zipf’s Law with an av-189

erage exponent of a = 1.03. Furthermore, as noted190

earlier, D×N combinations in English are heavily191

biased toward one of the two determiners. The bias192

value estimated from COCA based on Eq 1 is 0.82.193

Remarkably, the bias value across the 12 dyads of194

children and caretakers is almost identical (mean195

= 0.814, sd=0.03), and there is no significant dif-196

ference between the bias value in child language197

samples and caretaker language samples (paired198

t-test p=0.612). Thus in all studies we have used199

the universal bias value b = 0.82 for expected over-200

lap calculation. These values of a and b were used 201

to calculate the expected overlap value. The re- 202

sults are shown in Figure 1 with additional details 203

in Figure C1 (Appendix C). There are no statisti- 204

cally significant difference between expected and 205

empirical values in the Manchester Corpus (paired 206

t-test: p = 0.334 for children and p = 0.733 for 207

caretakers). 208

The second set of human language analysis is 209

based on the Brown Corpus (Kučera and Francis, 210

1967), a collection of professional print materi- 211

als across a wide range of genres. To make suit- 212

able comparisons with the Manchester Corpus, we 213

grouped successive files in the Brown Corpus into 214

12 samples. The D×N combinations were extracted 215

with spaCy following the method used for Manch- 216

ester Corpus. The nouns in each sample do not 217

follow the canonical Zipf’s Law with exponent of 218

1. Rather, the average exponent of the Brown Cor- 219

pus samples is 0.771. We believe that this is due to 220

the nature of the Brown Corpus, where each file is 221

a relatively short document about a particular topic. 222

Collectively, the most frequent nouns in each sam- 223

ple are much closer in frequency. By contrast, the 224

speakers in the dialog samples in the Manchester 225

Corpus had more focused and extensive conver- 226

sations about fewer topic nouns. For the Brown 227

corpus analysis, we used the exponent a = 0.771 228

along with the universal bias value b = 0.82 to cal- 229

culate the expected overlap value in comparison to 230

empirical values. Figure 1 summarizes the results 231

with additional details in Figure C2 (Appendix C). 232

Once again, the expected and the empirical overlap 233

values are not statistically significantly different 234

(paired t-test p = 0.586). 235

Note the overlap test is not limited to D×N but is 236

applicable to any rule that combines a two-member 237

closed class category with an open class category. 238

To further establish the robustness of the test, we 239

extracted the Manchester Corpus verb lemmas in- 240

flected with either -ed or -ing from the Manchester 241

corpus: the overlap measures the proportion in- 242

flected with both. Note that -ed and -ing are not 243

fully interchangeable due to irregular verbs. Thus, 244

the empirical overlap for verb lemmas over -ed and 245

-ing must be lower than the expected value, the lat- 246

ter of which is computed on the assumption of full 247

interchangeability. Indeed, across the 24 dyad sam- 248

ples, the empirical values are significantly lower 249

than the expected values (paired t-test p < 0.001). 250

However, once the irregular verbs are removed, the 251

empirical overlap value of verb lemmas for -ed 252
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and -ing are not significantly different from the ex-253

pected value across the 24 dyad samples (paired254

t-test p = 0.852) because the two suffixes are in-255

deed fully interchangeable for regular verbs.256

Taken together, the analyses of human language257

illustrate the robustness of the test for detecting258

both true positives of productivity such as adult259

usage in Manchester and Brown as well as true260

negatives, such as the counterfactual application to261

verbal inflection. We can examine whether LLMs262

constitute a true positive or a true negative of syn-263

tactic productivity.264

4 LLMs Fail Productivity Test265

To evaluate the syntactic productivity of LLMs,266

we obtained text generated by the four most267

advanced OpenAI models available to us at268

the time of writing: gpt-4o-mini-2024-07-18,269

gpt-4o-2024-11-20, o1-mini-2024-09-12, and270

o1-preview-2024-09-12.271

For each model, we composed a set of272

15 NARRATIVE_TOPICS spanning different genres273

(e.g., a science fiction story, an academic job talk,274

an economics survey, among others), each with275

three more follow up topics that keep the discourse276

coherent. To prompt the models, we constructed a277

list of NARRATIVE_TEMPLATES that can be filled in278

with each of the 15 topics and follow ups. We addi-279

tionally included a SYSTEM_PROMPT that instructs280

the model to write as coherently and in as much281

detail as possible in order to pass the Turing test.282

This yielded 15 long-form narratives for each of283

the four OpenAI models.284

As in Manchester Corpus, D×N combinations285

are extracted from LLM texts using spaCy. Em-286

pirical analysis shows that on average, the inverse287

power law exponent of the nouns across 60 texts288

is a = 0.745 – analogous to that in the Brown cor-289

pus — which is used in the expected overlap calcu-290

lation. We first used the human universal bias value291

b = 0.82 to calculate the expected value of D×N292

overlap for the LLMs in comparison to the empiri-293

cal values. The results are summarized in Figure 1294

with additional details in Figure C3 (Appendix C).295

The expected values are significantly higher than296

the empirical values (paired t-test p < 0.001 for all297

four models). The LLM text showed a higher aver-298

age bias value (0.92) than human texts but b = 0.92299

still resulted in expected values significantly higher300

than the empirical values (p < 0.05 for all four301

models). We thus conclude that unlike human lan-302

guage learners and users, LLMs do not generate 303

D×N combinations in a fully productive way. 304

5 Related and Future Work 305

Our work is most relevant to efforts on AI- 306

generated text detection, as current commercial 307

solutions tend to operate at unadvisable False Pos- 308

itive rates, perform poorly on out-of-sample data 309

(i.e. from a different generator) and are susceptible 310

to adversarial attacks (Dugan et al., 2024, 2025). 311

While high proportion of human participants are at 312

chance in discriminating between human and AI 313

text (Jannai et al., 2023; Jones and Bergen, 2024; 314

Clark et al., 2021), there is high variance in par- 315

ticipant performance, as there are outliers in the 316

Real or Fake Text (RoFT; (Dugan et al., 2023)) 317

dataset who perform well above chance, as well 318

as participants who improve significantly on the 319

task. A recent study also suggests that one factor 320

to consider is the level of exposure an individual 321

has had to AI-generated text, as annotators who fre- 322

quently used LLMs for writing-related tasks were 323

able to reliably identify AI-generated text despite 324

adversarial modifications to make them seem more 325

human-like (Russell et al., 2025). Therefore, AI- 326

generated text does have certain distinct profiles. 327

Along with methods that make use of syntactic 328

templates (Shaib et al., 2024), hierarchical parse 329

trees and discourse motifs (Kim et al., 2024a), etc., 330

our work can be seen as a formal and quantita- 331

tive metric grounded in combinatorial productivity, 332

the fundamental property of human language. Ap- 333

proaches that incorporate linguistic features may 334

lead to more robust and accurate AI-text detection. 335

While our results point to a significant differ- 336

ence in syntactic productivity between humans and 337

LLMs, it is difficult to ascertain the nature of such 338

discrepancies. A possibility may be LLMs’ over 339

reliance on the memorization of lexically specific 340

combinations (Juzek and Ward, 2025). It is a math- 341

ematical fact that memorization and retrieval of 342

D×N combinations in the input will necessarily re- 343

duce the overlap value in the output text. Even if a 344

noun is combined with both the and a in the input, 345

retrieving these combinations as holist collocations 346

will always incur a positive probability that only 347

one determiners is included in the output. We plan 348

to focus on this issue in future research: Testing 349

the statistical productivity of additional combina- 350

torial processes that meet the criteria of statistical 351

independence and full interchangeability. 352
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6 Limitations353

While the productivity test can be applied to many354

combinatorial processes, it has two inherent lim-355

itations. First, the closed class category can only356

have two members (e.g., the and a in D). Adding357

more members (e.g., this and that) makes the math-358

ematical formulation intractable. Second, the test359

assumes that the categories combine in fully in-360

terchangeable and thus statistically independent361

ways. While processes such as those studied in the362

present paper can be characterized as such, this is363

not the case for all rules in language, at least not364

in a way than lends readily to the test. For exam-365

ple, not all transitive verbs can passivize (“John366

resembles Bill" cannot be passivized as “*Bill was367

resembled by John"), not all dative verbs can ap-368

pear in both the double object construction (tell but369

not say) and the to-dative construction (tell but not370

ask). In addition, the choice of syntactic process to371

test must still be decided by the researcher as one372

needs to know the “ground truth”: Which process373

is genuinely productive and can be subjected to the374

stringent definition of productivity pursued here.375

More practically, the volume of the text needed376

to achieve statistically significant results is modest377

but not trivial. The test requires at least 1,000 D×N378

combinations in each sample, which in turn may379

require tens of thousand of words in the source text.380

For each of 60 samples generated by the OpenAI381

models, we needed a minium of roughly 1,000 lines382

of text after significant efforts to supply coherent383

prompts and keep the models both on topic and384

stop them from repeating text they had already385

generated. In a setting where one may want to386

find out whether the source of a particular text was387

AI or human, 1000+ lines of text are rare to come388

by, unless the text in question were a whole novel.389

Therefore, the utility of our test as a tool for text390

detector is currently quite limited.391

Finally, we must acknowledge the limitations of392

our prompting and text generation methods. We393

wrote all prompt topics by hand in order to ensure394

diversity of theme and genre. More diversity, more395

prompt topics, or perhaps more followups to the396

topics could have been collected, with or without397

the assistance of AI, to ensure more generalizable398

conclusions. Yet the cost incurred to produce the399

final dataset exceeded $500. We make our data400

publicly available in the hopes that it be useful to401

other researchers who study linguistic phenomena402

in long-form AI-generated text.403
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A The Productivity Test 649

The following describes the statistical test for pro- 650

ductivity (Yang, 2013). 651

The basic idea behind the productivity test is 652

straightforward. Consider the combination of the 653

determiner category D with two members (the and 654

a) and the noun category N with n members. As 655

discussed in Section 2, we assume that the n mem- 656

bers follow Zipf’s Law with exponent a: the ex- 657

pected probability of the member with rank r is: 658

pr =
1

raHn,a
whereHn,a =

n∑
i=1

1

ia
659

Suppose there are S combinations of D×N. The 660

expected overlap value of the r-th ranked noun, or 661

Er, is 662

Er = 1− (1− pr)
S

− [(b ∗ pr + 1− pr)
S − (1− pr)

S ]

− [(1− b) ∗ pr + 1− pr)
S − (1− pr)

S ]

663

where b is the bias value described in the text and 664

repeated here: 665

b =

n∑
i=1

max(Cthe×i, Ca×i)

n∑
i=1

(Cthe×i + Ca×i)

(2) 666
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And the expected overlap value for all n mem-667

bers in the D×N combinations is:668

E =
1

n

n∑
i=1

Er669

The syntactic productivity test is not limited to670

determiners and nouns but can be applied to any671

two combinatorial categories, as long as the closed672

class category has only two members and the open673

class category frequency can be approximated by674

Zipf’s Law. Moreover, it can be applied to de-675

tect both the presence and absence of productivity.676

For example, Goldin-Meadow and Yang (2017)677

adapted the test to the combinatorial structure of678

homesign, the gestural system created by deaf chil-679

dren in the absence of sign language input. The680

test finds that homesign combinations are fully pro-681

ductive, providing independent evidence for tradi-682

tional behavioral analysis. On the other hand, the683

test has been applied to the ASL sign combina-684

tions produced by Nim Chimpsky. Results show685

that Nim’s sign combinations show considerably686

less diversity than would be expected under a fully687

productive system, again supporting conclusions688

based on frame-by-frame sign analyses (Terrace689

et al., 1979).690

B Long-form AI Text Generation691

In order to accurately evaluate the syntactic pro-692

ductivity of the LLMs, we needed a sample of text693

from each model whose raw count of D×N pairs (S)694

and unique nouns (N) is comparable to that of the695

human data we use as a baseline. While we would696

most easily obtain AI-generated text from previ-697

ously generated detection tasks, these generally698

consist of short documents between 200 and 500699

tokens (Kim et al., 2024b). We therefore need to700

generate multiple long-form texts of at least 1,000701

lines or more for each LLM under evaluation. The702

method was described in the text.703

C Detailed Results of Syntactic704

Productivity Analyses705

The syntactic productivity scores for children and706

their mothers in the CHILDES Manchester corpus707

are plotted together in Figure C1. The syntactic708

productivity measures of the 12 Brown Corpus sam-709

ples are plotted in Figure C2. The syntactic produc-710

tivity measures of the narrative texts generated by711

four OpenAI models are shown in Figure C3.712

Figure C1: Scatter plot of expected and empirical pro-
ductivity measure (D×N overlap) for the 12 children and
their corresponding caretakers from the Manchester Cor-
pus (Theakston et al., 2001). No statistically significant
difference is found (paired t-test p = 0.334 children and
p = 0.771 for caretakers).

Figure C2: Scatter plot of expected and empirical pro-
ductivity measured (D×N overlap) for 12 sections of
the Brown corpus (Kučera and Francis, 1967). No sta-
tistically significant difference is found (paired t-test
p = 0.562.
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Figure C3: Scatter plot of expected and empirical pro-
ductivity measures (D×N overlap) for 15 samples of
narrative texts generated by OpenAI models. The em-
pirical values of overlap are considerably lower than the
expected values under full productivity (paired t-test,
p < 0.001).
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