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Abstract

Do Large Language Models (LLMs) produce
output that exhibits syntactic productivity sim-
ilar to human language? The problem is for-
mally equivalent to a major issue in child lan-
guage research where conclusions must be
drawn about the underlying grammar solely on
the basis of a child’s production data. We apply
a mathematically rigorous and independently
validated benchmark to quantify syntactic pro-
ductivity with specific focus on Determiner-
Noun (DxN) combinations. Human language
corpora show the statistical profile of syntactic
productivity but LLM-generated texts do not.

1 Introduction

The success of LLMs has spurred significant re-
search to understand their capacities for represent-
ing linguistic structures in comparison to human
language learners and users.

A prominent approach has focused on the devel-
opment and use of benchmarks to probe for specific
linguistic properties in LLMs. These range from
extracting structures from internal representations
(e.g., Hewitt and Manning, 2019; Tenney et al.,
2019; McCoy et al., 2020; Tucker et al., 2021;
Papadimitriou et al., 2021), to building tasks in-
spired by psycholinguistic processing studies (e.g.,
Chowdhury and Zamparelli, 2018; Wilcox et al.,
2018; Hu et al., 2020), to classic acceptability
rating tasks that theoretical linguists use to infer
grammatical knowledge (e.g., Linzen et al., 2016;
Warstadt et al., 2020; Huebner et al., 2021; Sinclair
etal., 2022). While the benchmarking approach has
provided valuable insights into LLMs’ linguistic
capacity, they are by design limited to the specific
structural properties identified by the researcher
and may provide an insufficiently representative
coverage of linguistic phenomena (McCoy et al.,
2019; Vazquez Martinez, 2021; Wang et al., 2022;
Guest and Martin, 2023; Vazquez Martinez et al.,
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Figure 1: Syntactic productivity measure (overlap; Sec-
tion 2) of human language corpora (children, their care-
takers, and professional writers) and 4 LLM-generated
corpora from the OpenAl API. Each point indicates a
corpus. Human corpora show measures comparable
to the expectations under a fully productive grammar
(Section 3) but LLM corpora show significantly lower
measures of productivity (Section 4). The red reference
line indicates a perfect match between the two.

2023). With the rise of generative Al models,
it is increasingly important to develop evaluation
methods for open-ended LLM output (Chang et al.,
2024).

In this paper, we introduce a novel approach
to LLM evaluation with specific focus on syn-
tactic productivity.! Our approach draws inspi-
ration from the study of child language, where
researchers frequently need to assess a learner’s
underlying grammar based solely on a corpus of
their language production. Section 2 reviews a
well-established statistical test (Yang, 2013) with
specific reference to syntactic productivity. Sec-
tion 3 applies the test to child and caretaker speech
in the CHILDES database (MacWhinney, 2000)
as well as the Brown Corpus (Kucera and Fran-
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cis, 1967). Results show that, as expected, these
human language samples exhibit the statistical hall-
marks of productivity. In Section 4, the test reveals
that LLM-generated narrative text fails to show
the statistical properties of productivity. Section
5 discusses the implications of our findings and
directions for future research.

2 A Statistical Test for Productivity

The defining feature of language is its infinite pro-
ductivity, as new words and sentences can always
be generated. Understanding the nature and devel-
opment of productivity has been a central problem
in linguistics, cognitive science and now Al.

A revealing method for uncovering productivity,
as shown in the celebrated Wug test (Berko, 1958),
is to provide the language learner with novel input
and assess whether appropriate output forms can be
generated. However, such experimental approaches
have certain task-related complications that limit
their applications. For example, while children
learn the English past tense suffix (-ed) before age
3 as shown by occasional over-regularization errors
(e.g., goed; Kuczaj 1977), not even first graders
consistently produced -ed on the Wug test (Berko,
1958) as children often struggle learning and us-
ing a novel word in an artificially induced setting.
Comprehension studies also carry extra cognitive
demands. Even 4-year-olds fail to completely accu-
rately distinguish the temporal reference of "was"
and "is" in an experimental setting (Valian, 2006).

Hence, the investigation of early child language
has often focused on children’s naturalistic produc-
tion, which is least subject to performance con-
straints while also providing the most accessible
type of acquisition data. In particular, the combi-
nation of determiners (D) and nouns (N), or DxN
for short, has been a major focus in child language
research (Pine and Martindale, 1996; Valian et al.,
2009; Pine et al., 2013). This is because determin-
ers, especially singular determiners the and a,? are
highly frequent and thus well represented in child
language. Despite its simplicity, DxN fully exhibits
the hallmark of syntactic productivity: Any singu-
lar noun used with the can also be used with a. A
simple metric, dubbed overlap (Pine and Lieven,
1997), has been widely used to quantify productiv-
ity: the proportion of singular nouns used with both
the and a out of those used with either. The overlap

>The phonological variant an is treated as a as it is an
independent developmental process.

value is bounded between 0 and 1: A higher value
would be stronger evidence for productivity, but
as we will see shortly, this intuition needs to be
qualified.

Many previous studies of DxN focus on the com-
parison of overlap values in children and their care-
taker’s language. However, any corpus of caretaker
language is only a small sample of a learner’s input
data. Moreover, adults talk more and have larger
vocabularies than children, so it has been difficult to
develop “fair” comparisons across samples. A sta-
tistical test for syntactic productivity (Yang, 2013;
Goldin-Meadow and Yang, 2017) sidesteps these
issues. This test calculates the expected value of
DXN overlap in a corpus under the assumption that
DxN is fully productive i.e., statistically indepen-
dent.

The statistical test for overlap builds on two key
statistical properties of language, one universal and
the other specific to DxN in English. First, the test
assumes that the frequencies of words, especially
open class words such as nouns, follow Zipf or
inverse power law distribution (Zipf, 1949; Baroni,
2009). As such, if a corpus contains n unique nouns
in DXN combinations, the noun with rank r has
the expected probability 1/(r*H,, ,) where H,
is the generalized harmonic number »,_,  1/i®
with a as the exponent of inverse power law. In
most cases a is approximately 1 following Zipf’s
original formulation but deviation from 1 can be
accommodated in the calculation.

Second, it is observed that in DxN combinations,
nouns tend to have a “favorite” determiner that
combines far more frequently than the other. For
example, bathroom greatly favors the over a but for
bath, the reverse is true. This imbalance, referred
to as bias (b), is defined as follows:

Z maX(CtheXia Caxi)
b="1 (1)
> (Cihexi + Caxi)

=1

where Cipesax; is the frequency of the/a combined
with noun ¢. The bias value is not part of the gram-
mar per se nor does it require learning: It is un-
likely that children track the frequency of bodily
functions (“the bathroom™) or hygienic practices
(“a bath”). Rather, the bias value is the vagaries of
life reflected in language use. As bath and bath-
room illustrate, not all nouns have the same favorite
determiners. Situational factors may also skew the



bias: a pediatrician will have more balanced use
for the and a for the noun baby than the parent of
a newborn. Nevertheless, as we show in Section
3, the bias value in aggregate is remarkably stable
across samples of English at b = 0.82.

Taken together, these two statistical properties
greatly enhance the applicability of the test; the
full formula is given in Appendix A. For a corpus,
one only needs .5, the total number of DXN com-
binations, and n, the number of unique singular
nouns. The exponent of Zipf’s Law can be ob-
tained from frequencies of the n nouns, and one
can easily compute the expected overlap value and
compare it to the empirical value. If there are no
significant differences, one can conclude that the
DxN combinations are in fact consistent with a fully
productive grammar.

3 Syntactic Productivity in Humans

The first set of human language analysis is based
on the Manchester corpus (Theakston et al., 2001).
There are 12 dyads of typically developing children
and their caretakers, and the transcripts are based
on regular recording sessions between age 2 and 3.
The Manchester Corpus is the largest longitudinal
records of English language development for this
age group and has been frequently used in child
language acquisition.

Following previous work (Pine et al., 2013), a
DxN combination is extracted if D is the or a and
N is a singular noun that immediately follows D or
with one non-noun intervening word. Data extrac-
tion used the spaCy dependency parser (Honnibal
and Johnson, 2015) which also provides POS tag-
ging of the transcripts. The statistical conclusions
of our study remain unchanged if we use the POS
annotation provided in CHILDES.

We found that in the Manchester Corpus, the
nouns in both child and caretaker language show
excellent fit for the original Zipf’s Law with an av-
erage exponent of ¢ = 1.03. Furthermore, as noted
earlier, DxXN combinations in English are heavily
biased toward one of the two determiners. The bias
value estimated from COCA based on Eq 1 is 0.82.
Remarkably, the bias value across the 12 dyads of
children and caretakers is almost identical (mean
= 0.814, sd=0.03), and there is no significant dif-
ference between the bias value in child language
samples and caretaker language samples (paired
t-test p=0.612). Thus in all studies we have used
the universal bias value b = 0.82 for expected over-

lap calculation. These values of ¢ and b were used
to calculate the expected overlap value. The re-
sults are shown in Figure 1 with additional details
in Figure C1 (Appendix C). There are no statisti-
cally significant difference between expected and
empirical values in the Manchester Corpus (paired
t-test: p = 0.334 for children and p = 0.733 for
caretakers).

The second set of human language analysis is
based on the Brown Corpus (Kucera and Francis,
1967), a collection of professional print materi-
als across a wide range of genres. To make suit-
able comparisons with the Manchester Corpus, we
grouped successive files in the Brown Corpus into
12 samples. The DxN combinations were extracted
with spaCy following the method used for Manch-
ester Corpus. The nouns in each sample do not
follow the canonical Zipf’s Law with exponent of
1. Rather, the average exponent of the Brown Cor-
pus samples is 0.771. We believe that this is due to
the nature of the Brown Corpus, where each file is
a relatively short document about a particular topic.
Collectively, the most frequent nouns in each sam-
ple are much closer in frequency. By contrast, the
speakers in the dialog samples in the Manchester
Corpus had more focused and extensive conver-
sations about fewer topic nouns. For the Brown
corpus analysis, we used the exponent a = 0.771
along with the universal bias value b = 0.82 to cal-
culate the expected overlap value in comparison to
empirical values. Figure 1 summarizes the results
with additional details in Figure C2 (Appendix C).
Once again, the expected and the empirical overlap
values are not statistically significantly different
(paired t-test p = 0.586).

Note the overlap test is not limited to DxN but is
applicable to any rule that combines a two-member
closed class category with an open class category.
To further establish the robustness of the test, we
extracted the Manchester Corpus verb lemmas in-
flected with either -ed or -ing from the Manchester
corpus: the overlap measures the proportion in-
flected with both. Note that -ed and -ing are not
fully interchangeable due to irregular verbs. Thus,
the empirical overlap for verb lemmas over -ed and
-ing must be lower than the expected value, the lat-
ter of which is computed on the assumption of full
interchangeability. Indeed, across the 24 dyad sam-
ples, the empirical values are significantly lower
than the expected values (paired t-test p < 0.001).
However, once the irregular verbs are removed, the
empirical overlap value of verb lemmas for -ed



and -ing are not significantly different from the ex-
pected value across the 24 dyad samples (paired
t-test p = 0.852) because the two suffixes are in-
deed fully interchangeable for regular verbs.

Taken together, the analyses of human language
illustrate the robustness of the test for detecting
both true positives of productivity such as adult
usage in Manchester and Brown as well as true
negatives, such as the counterfactual application to
verbal inflection. We can examine whether LLMs
constitute a true positive or a true negative of syn-
tactic productivity.

4 LLMs Fail Productivity Test

To evaluate the syntactic productivity of LLMs,
we obtained text generated by the four most
advanced OpenAl models available to us at
the time of writing: gpt-40-mini-2024-07-18,
gpt-40-2024-11-20, 01-mini-2024-09-12, and
ol-preview-2024-09-12.

For each model, we composed a set of
15 NARRATIVE_TOPICS spanning different genres
(e.g., a science fiction story, an academic job talk,
an economics survey, among others), each with
three more follow up topics that keep the discourse
coherent. To prompt the models, we constructed a
list of NARRATIVE_TEMPLATES that can be filled in
with each of the 15 topics and follow ups. We addi-
tionally included a SYSTEM_PROMPT that instructs
the model to write as coherently and in as much
detail as possible in order to pass the Turing test.
This yielded 15 long-form narratives for each of
the four OpenAl models.

As in Manchester Corpus, DxN combinations
are extracted from LLM texts using spaCy. Em-
pirical analysis shows that on average, the inverse
power law exponent of the nouns across 60 texts
is a = 0.745 —analogous to that in the Brown cor-
pus — which is used in the expected overlap calcu-
lation. We first used the human universal bias value
b = 0.82 to calculate the expected value of DxN
overlap for the LLMs in comparison to the empiri-
cal values. The results are summarized in Figure 1
with additional details in Figure C3 (Appendix C).
The expected values are significantly higher than
the empirical values (paired t-test p < 0.001 for all
four models). The LLM text showed a higher aver-
age bias value (0.92) than human texts but b = (.92
still resulted in expected values significantly higher
than the empirical values (p < 0.05 for all four
models). We thus conclude that unlike human lan-

guage learners and users, LLMs do not generate
DxN combinations in a fully productive way.

5 Related and Future Work

Our work is most relevant to efforts on Al-
generated text detection, as current commercial
solutions tend to operate at unadvisable False Pos-
itive rates, perform poorly on out-of-sample data
(i.e. from a different generator) and are susceptible
to adversarial attacks (Dugan et al., 2024, 2025).
While high proportion of human participants are at
chance in discriminating between human and Al
text (Jannai et al., 2023; Jones and Bergen, 2024;
Clark et al., 2021), there is high variance in par-
ticipant performance, as there are outliers in the
Real or Fake Text (RoFT; (Dugan et al., 2023))
dataset who perform well above chance, as well
as participants who improve significantly on the
task. A recent study also suggests that one factor
to consider is the level of exposure an individual
has had to Al-generated text, as annotators who fre-
quently used LLMs for writing-related tasks were
able to reliably identify Al-generated text despite
adversarial modifications to make them seem more
human-like (Russell et al., 2025). Therefore, Al-
generated text does have certain distinct profiles.
Along with methods that make use of syntactic
templates (Shaib et al., 2024), hierarchical parse
trees and discourse motifs (Kim et al., 2024a), etc.,
our work can be seen as a formal and quantita-
tive metric grounded in combinatorial productivity,
the fundamental property of human language. Ap-
proaches that incorporate linguistic features may
lead to more robust and accurate Al-text detection.
While our results point to a significant differ-
ence in syntactic productivity between humans and
LLMs, it is difficult to ascertain the nature of such
discrepancies. A possibility may be LLMs’ over
reliance on the memorization of lexically specific
combinations (Juzek and Ward, 2025). It is a math-
ematical fact that memorization and retrieval of
DxN combinations in the input will necessarily re-
duce the overlap value in the output text. Even if a
noun is combined with both the and a in the input,
retrieving these combinations as holist collocations
will always incur a positive probability that only
one determiners is included in the output. We plan
to focus on this issue in future research: Testing
the statistical productivity of additional combina-
torial processes that meet the criteria of statistical
independence and full interchangeability.



6 Limitations

While the productivity test can be applied to many
combinatorial processes, it has two inherent lim-
itations. First, the closed class category can only
have two members (e.g., the and a in D). Adding
more members (e.g., this and that) makes the math-
ematical formulation intractable. Second, the test
assumes that the categories combine in fully in-
terchangeable and thus statistically independent
ways. While processes such as those studied in the
present paper can be characterized as such, this is
not the case for all rules in language, at least not
in a way than lends readily to the test. For exam-
ple, not all transitive verbs can passivize (“John
resembles Bill" cannot be passivized as “*Bill was
resembled by John"), not all dative verbs can ap-
pear in both the double object construction (fell but
not say) and the fo-dative construction (fell but not
ask). In addition, the choice of syntactic process to
test must still be decided by the researcher as one
needs to know the “ground truth”: Which process
is genuinely productive and can be subjected to the
stringent definition of productivity pursued here.

More practically, the volume of the text needed
to achieve statistically significant results is modest
but not trivial. The test requires at least 1,000 DxN
combinations in each sample, which in turn may
require tens of thousand of words in the source text.
For each of 60 samples generated by the OpenAl
models, we needed a minium of roughly 1,000 lines
of text after significant efforts to supply coherent
prompts and keep the models both on topic and
stop them from repeating text they had already
generated. In a setting where one may want to
find out whether the source of a particular text was
Al or human, 1000+ lines of text are rare to come
by, unless the text in question were a whole novel.
Therefore, the utility of our test as a tool for text
detector is currently quite limited.

Finally, we must acknowledge the limitations of
our prompting and text generation methods. We
wrote all prompt topics by hand in order to ensure
diversity of theme and genre. More diversity, more
prompt topics, or perhaps more followups to the
topics could have been collected, with or without
the assistance of Al to ensure more generalizable
conclusions. Yet the cost incurred to produce the
final dataset exceeded $500. We make our data
publicly available in the hopes that it be useful to
other researchers who study linguistic phenomena
in long-form Al-generated text.
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A The Productivity Test

The following describes the statistical test for pro-
ductivity (Yang, 2013).

The basic idea behind the productivity test is
straightforward. Consider the combination of the
determiner category D with two members (the and
a) and the noun category N with n members. As
discussed in Section 2, we assume that the n mem-
bers follow Zipf’s Law with exponent a: the ex-
pected probability of the member with rank r is:

n

1

where H,, , = —
— 1@
=1

Dr =

a
T 1Inq

Suppose there are .S combinations of DxN. The
expected overlap value of the r-th ranked noun, or
E,,is

E.=1-(1-p)°
- [(b*pr+1 _pr)s_ (1_pr‘)s]
—[(1=b)*pr+1-p,)° = (1=p,)°]

where b is the bias value described in the text and
repeated here:

> max(Cexi; Caxi)
b="1 )
(Cihexi + Caxi)

n
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And the expected overlap value for all n mem-
bers in the DxN combinations is:

1 n
E:nZ;E

The syntactic productivity test is not limited to
determiners and nouns but can be applied to any
two combinatorial categories, as long as the closed
class category has only two members and the open
class category frequency can be approximated by
Zipf’s Law. Moreover, it can be applied to de-
tect both the presence and absence of productivity.
For example, Goldin-Meadow and Yang (2017)
adapted the test to the combinatorial structure of
homesign, the gestural system created by deaf chil-
dren in the absence of sign language input. The
test finds that homesign combinations are fully pro-
ductive, providing independent evidence for tradi-
tional behavioral analysis. On the other hand, the
test has been applied to the ASL sign combina-
tions produced by Nim Chimpsky. Results show
that Nim’s sign combinations show considerably
less diversity than would be expected under a fully
productive system, again supporting conclusions
based on frame-by-frame sign analyses (Terrace
et al., 1979).

B Long-form AI Text Generation

In order to accurately evaluate the syntactic pro-
ductivity of the LLMs, we needed a sample of text
from each model whose raw count of D xN pairs (S)
and unique nouns (N) is comparable to that of the
human data we use as a baseline. While we would
most easily obtain Al-generated text from previ-
ously generated detection tasks, these generally
consist of short documents between 200 and 500
tokens (Kim et al., 2024b). We therefore need to
generate multiple long-form texts of at least 1,000
lines or more for each LLM under evaluation. The
method was described in the text.

C Detailed Results of Syntactic
Productivity Analyses

The syntactic productivity scores for children and
their mothers in the CHILDES Manchester corpus
are plotted together in Figure C1. The syntactic
productivity measures of the 12 Brown Corpus sam-
ples are plotted in Figure C2. The syntactic produc-
tivity measures of the narrative texts generated by
four OpenAl models are shown in Figure C3.
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Figure C1: Scatter plot of expected and empirical pro-
ductivity measure (D xN overlap) for the 12 children and
their corresponding caretakers from the Manchester Cor-
pus (Theakston et al., 2001). No statistically significant
difference is found (paired t-test p = 0.334 children and
p = 0.771 for caretakers).
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Figure C2: Scatter plot of expected and empirical pro-
ductivity measured (DxN overlap) for 12 sections of
the Brown corpus (Kucera and Francis, 1967). No sta-
tistically significant difference is found (paired t-test
p = 0.562.
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Figure C3: Scatter plot of expected and empirical pro-
ductivity measures (DxN overlap) for 15 samples of
narrative texts generated by OpenAl models. The em-
pirical values of overlap are considerably lower than the
expected values under full productivity (paired t-test,
p < 0.001).
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