
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GOFA: A GENERATIVE ONE-FOR-ALL MODEL FOR
JOINT GRAPH LANGUAGE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models, such as Large Language Models (LLMs) or Large Vision
Models (LVMs), have emerged as one of the most powerful tools in the respective
fields. However, unlike text and image data, graph data do not have a definitive
structure, posing great challenges to developing a Graph Foundation Model (GFM).
For example, current attempts at designing general graph models either transform
graph data into a language format for LLM-based prediction or still train a GNN
model with LLM as an assistant. The former can handle unlimited tasks, while
the latter captures graph structure much better—yet, no existing work can achieve
both simultaneously. In this paper, we first identify three key desirable properties
of a GFM: self-supervised pretraining, fluidity in tasks, and graph awareness. To
account for these properties, we extend the conventional language modeling to the
graph domain and propose a novel generative graph language model GOFA. The
model interleaves randomly initialized GNN layers into a frozen pre-trained LLM
so that the semantic and structural modeling abilities are organically combined.
GOFA is pre-trained on newly proposed graph-level next-word prediction, question-
answering, structural understanding, and information retrieval tasks to obtain the
above GFM properties. The pre-trained model is further instruction fine-tuned to
obtain the task-solving ability. Our GOFA model is evaluated on various down-
stream tasks unseen during the pre-training and fine-tuning phases, demonstrating
a strong ability to solve structural and contextual problems in zero-shot scenarios.

1 INTRODUCTION

With the emergence of Large Language Models (LLMs), the field of artificial intelligence is undergo-
ing a profound transformation, shifting from specialized, fragmented models to universal foundation
models. A foundation model is pre-trained on large-scale datasets and can be further adapted to
diverse downstream tasks using fine-tuning (Hu et al., 2022) or in-context learning (Bommasani et al.,
2021; Touvron et al., 2023). Foundation models have been developed in different domains to handle
text (Brown et al., 2020; Touvron et al., 2023), image (Kirillov et al., 2023; Bai et al., 2023), and
even multi-modal data (Zhang et al., 2023c; Li et al., 2023; Alayrac et al., 2022). Because of their
versatility and generalizability, foundation models have become prevalent in these domains.

However, despite preliminary efforts, a foundation model in the graph domain has arguably yet to be
proposed. In the graph domain, data are highly flexible and dynamic. For example, social networks
receive millions of new connections daily (Hardiman & Katzir, 2013), and novel molecules and
protein structures are frequently discovered (Abramson et al., 2024; Gilmer et al., 2017). While
past researchers have proposed specialized models to learn graph data (Ying et al., 2021; Kipf &
Welling, 2017), the models require retraining to accommodate new graphs (Dai et al., 2022; Mo et al.,
2022). Moreover, trained models are usually tied to specific applications and cannot be generalized
to new domains and tasks. It becomes increasingly difficult for models to adjust to the ever-evolving
nature of graph data. Hence, a graph foundation model (GFM) applicable to new domains/tasks
with minimal or no adaptation costs is urgently needed, spurring recent endeavors to study general
graph models. In particular, a strong zero-shot ability is both challenging and fascinating for GFM
researchers.

The success of LLMs inspired a series of preliminary attempts which use LLMs to develop general
graph models. They can be roughly divided into two categories: LLM as a predictor and LLM

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

📦

📦📦📦💬💬💬💬

🌐

🌐🌐🌐📄
📄
📄

Sentence Completion Task Question Answering Task Structural Understanding Task Information Retrieval Task

Which type of Rock is commonly
used for construction and why?

Sedimentary rock. It is easy
to extract, cut, and shape.

Are there any other types of rocks
used for construction?

Yes. Igneous rocks like granite
are used for their durability.

Q A Q A

P

A B
C

B

A C

D P

A

B

C

This is [Node D]. Wikipedia entry:
quickdraw. A graphics software …D

This is [Node C]. Wikipedia entry:
system_7. Seventh major release of …A This is [Node A]. Product: Wireless

Controller for Switch or OLED…

D This is [Node D]. Product: Amazon
Fire TV, 4-series 4K UHD smart TV…

Q

A
Q

A

This is [Node B]. Title: Attention is all
you need. Abstract: The dominant
sequence transduction models …

Abstract: We present graph attention
networks (GATs), novel neural network
architectures that operate on graph …

P Do certain regions or cultures
have preference of rocks?

Yes, limestone is commonly used in
UK because it can withstand high
levels of rainfall and humidity.

P
Compute the shortest path
between [Node A] and [Node D]
and generate all shortest paths
from [Node A] to [Node D].

The shortest path distance is 2.
Shortest path: [Node A] -> [Node B]
-> [Node D] .

P

A
TAG
Raw
Text

Prompt

Answer

TAG

Task

B

This is [Node A]. Title: Graph Attention
Networks.

C
This is [Node C]. Title: Adam: A method
for stochastic optimization. Abstract:
We introduce Adam, an algorithm for …

Please output the
content of [Node D] .

Wikipedia entry: system_7. Seventh
major release of the classic Mac
OS operating system for Macintosh …

This is [Node A]. Wikipedia entry: unix.
Unix is a family of multitasking…

This is [Node B]. Product: Nintendo
Switch with Blue and Red Joy-Con…

A

PD

C B

📄D

No prompt for sentence
completion task.

Figure 1: Examples of our pre-training tasks.

as an enhancer (Chen et al., 2023). The LLM as a predictor approach transforms graph data
into representations that LLMs can understand and use LLMs to generate predictions (Tang et al.,
2023). However, as suggested by a recent study (Wang et al., 2023), such an approach falls short of
understanding graph structures. This inspired the LLM as an enhancer approach, which adopts
LLM to process and unify diverse graph data and feeds them to a GNN to train general graph
models (Liu et al., 2023a; Huang et al., 2023a). Nevertheless, because GNN outputs fixed-sized
representations/predictions, they can only handle specific tasks such as classification, and cannot
generalize to arbitrary, new tasks due to the lack of generation ability. In summary, the current two
approaches cannot fully utilize structural information and be generative simultaneously. We discuss
the pros and cons of existing approaches in detail in Section 2.

In this paper, we first identify three desirable properties of a graph foundation model (GFM), namely
large-scale self-supervised pre-training, fluidity in tasks, and graph understanding. To achieve the
first property, we propose a generic graph self-supervised learning problem similar to the next-
token prediction problem in LLMs, allowing label-agnostic and continual training on highly diverse
graph data. We then propose a generative model termed Generative One-For-All (GOFA) that
interleaves GNN layers into an LLM to achieve the second and third properties. Such a novel design
systematically integrates GNN into an LLM, granting the LLM graph structural learning ability
while keeping LLM’s original free-form text generation ability. Meanwhile, this design allows the
pipeline of the original LLM to remain intact, giving GOFA a close-to-LLM level of task fluidity. We
pre-train the model with large-scale real-world graph data, Question-Answer (QA) chain data adopted
from the NLP domain, and graph structural data to empower the model with the aforementioned
foundational abilities in the graph domain (Examples in Figure 1). After pre-training, we further
instruction fine-tune the model on a small amount of data (relative to the pre-training data) to make it
understand task formats. The fine-tuned model is finally evaluated on various downstream datasets
unseen during pre-training and fine-tuning. GOFA achieved impressive results on the zero-shot
scenario, which demonstrates the strong potential of GOFA to serve as a graph foundation model.

2 A DESIRED FOUNDATION MODEL FOR GRAPH

In this section, we elaborate on three crucial properties a true graph foundation model should possess
to motivate our GOFA model design. We note that many contemporary works (partly) propose similar
ideas to ours and thus we do not claim the credit. We kindly refer readers to the latest surveys (Liu
et al., 2023b; Jin et al., 2023; Zhang et al., 2023d) for more discussions on GFMs.

Large-Scale Self-Supervised Pre-training: One fundamental design of LLM is that it unifies all
NLP tasks into a single next-token-prediction paradigm, which enables self-supervised pre-training
on a large corpus collected from different sources. For pre-training graph models, while numerous
efforts have been made from both the LLM as a predictor and LLM as an enhancer approaches,
these attempts usually require the learning target to be labeled (Liu et al., 2023a; Chen et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, a graph foundation model should have no constraint on the input graph (has labels or not)
and can learn cross-domain knowledge from large-scale graph data in a self-supervised fashion.

Fluidity in Tasks: A graph foundation model should also possess the same level of versatility and
fluidity in handling different tasks as an LLM. Specifically, such ability can be broken down into
three levels: (a) The graph foundation model can naturally respond appropriately to different graph
tasks based on user instructions without requiring task-specific adjustment (e.g., the same model
performs classification and question-answering tasks without any modification.) (b) With appropriate
instruction-tuning, the model should have in-context learning ability on unseen tasks (e.g., a model
tuned on citation network also performs well on knowledge graphs with proper instructions). (c) Users
should be able to define new, previously unseen tasks by modifying the graph structure and features
in a way that aligns with the universal input representation of the model. They can continuously train
the model on new data without special adaptation. Existing approaches that use GNN models as the
predictors are usually either restricted in the output format (Liu et al., 2023a; Xia et al., 2024; He
et al., 2024a) or need additional fine-tuning on the task head (Sun et al., 2023; Wang et al., 2022).
Consequently, despite having better structural modeling ability, such models cannot accommodate
task changes or deal with novel tasks, e.g., shifting from a classification task to a question-answering
task that requires outputting all shortest paths between two nodes.

Graph Understanding: Since the LLM as a predictor approach uses a generative LLM to take
text input and produce text output, it naturally has the fluidity to accept varied prompts to tackle
different tasks. However, such an approach processes the structural information poorly (Wang et al.,
2023), making the utility of these models limited on many graph tasks. More importantly, even
though some recent variants can use auxiliary graph models (such as GNNs) to incorporate structural
information (Tang et al., 2023; He & Hooi, 2024; Zhang et al., 2024), the graph models are frozen
and not responsive to different prompts, and the output from the graph models may not be the most
relevant to the input prompt. On the contrary, a graph foundation model should account for the
unique structural information of graphs such as node degrees, shortest paths, common neighbors,
etc., and generate graph representations dependent on the input prompt. It should not only have
LLM’s prompt learning capability but also learn graph structure and semantic information jointly.

3 METHOD

In this section, we first propose a generative modeling framework for graphs, serving as the graph
counterpart of traditional language modeling. Next, we introduce a novel GNN-LLM architecture for
the proposed graph generative modeling problem. Finally, we describe the unified pre-training tasks
to train GOFA towards the proposed GFM properties.

3.1 GENERATIVE MODELING FOR GRAPH

Unifed task formats. A generative model usually takes existing contexts, such as user prompts
and passages, as input to generate conditional output related to the contexts, such as answers and
completed sentences. Defining unified input and output formats for tasks in language applications
is easy, as they are purely text-based. Further, because both the pre-training and downstream tasks
are constructed in the same format (i.e., next-token-prediction), the downstream tasks conveniently
adapt the knowledge from pre-training tasks, resulting in surprising capabilities, such as zero-shot
learning. However, graph data from different domains vary significantly by input feature (e.g., nodes
in a citation network have completely different vector representations as nodes in a knowledge graph)
and output target, preventing direct knowledge transfer between tasks. Hence, the first challenge is
to define a unified format for graph tasks, such that the model can do large-scale self-supervised
pre-training on arbitrary graphs and transfer to downstream tasks seamlessly.

To unify graph task input, we follow the previous work OFA (Liu et al., 2023a) and extend the
definition of Text-Attribute Graph (TAG) beyond graphs with text features such as citation and product
networks. In fact, any node and edge features can be represented by texts. For example, textual
attributes of metabolites and metabolic reactions replace the node and edge features in metabolic
networks. Similarly, in airline networks, airport and flight route details can be converted into textual
descriptions for nodes and edges. Non-textural features, like numerical data, can also be transformed
into text strings, as in LLMs. Even for graphs without any features, we can still attach sentences like

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

"The degree of this node is 3" to nodes. Formally, a TAG is a graph G = {V,E,XV , XE} where
V and E are the sets of nodes and edges. Each node v ∈ V (edge e ∈ E) corresponds to a text
description x(v) ∈ XV (x(e) ∈ XE). Such a format encodes almost all existing graph data and
serves well as a general input representation.

For self-supervised language modeling, the generated output essentially completes the input sentence.
Such a task requires the model to have a deep semantic and logical understanding of the provided
contexts, which is crucial for downstream applications. Similarly, in graph modeling, we aim to
achieve the same level of understanding through graph completion tasks. Given a TAG, the output
should complete the graph conditioned on its semantic and structural information. We choose to
use natural language as the most tangible output format to complete a TAG. Succinctly, all natural
language tasks can be modeled as sentence completion, and similarly, we aim to model all graph
tasks with graph completion.

Generative Graph Modeling. We then formally define the generative graph modeling framework
for graph completion. This framework supports various graph-related tasks, including classification
and free-form question answering. An LLM starts generating only from the end of the input sentence.
However, in a TAG, every end of a sentence on a node is a potential generation starting point, but
users might only be interested in generating output for specific nodes. To accommodate this, we
introduce Nodes of Generation (NOG), allowing users to specify starting points for generation. The
modeling task is to take a TAG as input and complete the TAG logically and sensibly by completing
the sentences on the potentially user-specified nodes.

We define graph generative modeling as the likelihood of the text y associated with the NOG v:

p(y|v,G) =

L∏
l=1

p(yl|y<l, v,G), (1)

NOG text:

v

Jason has 4 apples.

Kim has 3 apples.

Alfred has 5 bananas.

In my neighbor, bananas are …

more popular than apples.
Target:

Sentence Completion

Jason has 3 apples.

Alfred has 4 bananas.

Kim has 5 apples.

NOG text:
In my neighbor, bananas are …

more popular than apples.

Sentence Completion

Target:

Figure 2: Task examples in TAG. Sen-
tence completion/Next-word prediction.
Orange node v represents NOG.

where yl is the l-th token of y, and y<l is its preceding
tokens. The NOG v is a completion target node with initial
corresponding text x(v), and x(v) can be empty. G con-
tains structural and textual information of neighbor nodes
to help the model generate y. Under this framework, we
can design a range of self-supervised learning tasks. For
example, the graph completion task is shown on Figure 2,
where the text on the NOG v is incomplete, and the goal
is to complete the sentence on it using the existing text
and the neighbor information. This task is covered by
Equation (1), which encourages the model to have a strong
graph structure and feature comprehension ability. Thus,
the importance of the framework is that a model properly
solves such modeling problems can possess the three prop-
erties of GFM discussed in Section 2, thus can benefit
diverse downstream tasks, even in the zero-shot fashion.
Section F.2 discusses how the proposed framework applies
to various tasks related to the three properties.

3.2 GOFA : GENERATIVE ONE-FOR-ALL MODEL

To solve the generative graph modeling problem proposed in Equation (1), we design the GOFA
architecture shown in Figure 3. Overall, GOFA consists of a graph language encoder and an LLM
decoder. The graph language encoder interleaves GNN layers with LLM compressor layers to learn
node representations containing joint structural and semantic information. The LLM decoder is then
used to generate texts from the NOG representation. The LLM compressor and decoders are all
pre-trained decoder-only transformers. We describe each component in detail as follows.

LLM compressor: Because GNNs require node and edge representations to have the same input
dimension, many previous works propose to pool all tokens’ output embeddings from the LLM as
the node and edge vector representations and feed them to a GNN (Liu et al., 2023a; Huang et al.,
2023a; He & Hooi, 2024). While this approach shows effectiveness in tasks of fixed form, such as
classification and regression, it is insufficient in more complex tasks such as generation, as 1) the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

GNN
Layer

k

This node is a paper
in citation graph.
Title: LLaMA: Open and
Efficient Foundation
Language Models. GNN

Layer
L

❄ ! !

Graph Language EncoderTAG Raw Text

We introduce LLaMA, a collection of foundation language

LLM Decoder

Text Tokens

Memory Tokens

Completion Target:
Abstract: We introduce
LLaMA, a collection of
foundation language
models ranging from 7B to
65B parameters.

Teacher Forcing

Memory Embedding

Edge
V

Cross Attention

+

Feed-forw
ard

Tanh

+TanhK

Q!!

!"
Token-level Message Passing

Node

LLM
Compressor

Layer1

❄

LLM
Compressor

Layer k

❄

LLM
Compressor

Layer L

We introduce LLaMA, a collection of foundation language models

Figure 3: GOFA Architecture. Text tokens of TAG’s node/edges are concatenated with memory
tokens to be input to Graph Language Encoder. GNN layers are interleaved into LLM Compressor
layers, where memory embeddings from LLM Compressor Layer are used as node/edge features for
token-level GNN message passing. Memory embedding will be used for teacher-forcing training.

pooling process inevitably loses semantic information, 2) standard LLMs are not trained in a way
such that the pooled output embedding is a summarization of the input sentence, and 3) the pooled
representation space is no longer compatible with the space of the downstream LLM decoder. Hence,
we adopt a pre-trained sentence compressor (Ge et al., 2023) that preserves as much information as
possible from the original sentence in fixed-size multi-token embeddings. The core idea is to compress
a sentence into K embeddings instead of one embedding. Specifically, the sentence compressor
has the same architecture as a decoder-only LLM, but the sentence to be compressed {q(xi)}li=1 is
appended by a sequence of K memory tokens {q(mj)}Kj=1, and the t-th layer of the LLM is:

{Qt+1
x , Qt+1

m,x} ={qt+1(x1), ..., q
t+1(xl), q

t+1(m1), ..., q
t+1(mK)}

=LLM t({qt(x1), ..., q
t(xl), h

t(m1), ..., h
t(mK)}) = LLM t({Qt

x, H
t
x}).

(2)

We use Qt
x and Qt

m,x to represent the t-th LLM layer outputs corresponding to actual text tokens in
sentence x and the K memory tokens appended at the end of text tokens, respectively. We use Ht

x to
represent the t-th GNN layer output, which will be explained later. In Equation (2), the text tokens
(Qt

x) and memory tokens (Ht
x, processed by the previous GNN layer) are concatenated as a single

sequence of embeddings, which are fed to the current LLM layer. Because the last K tokens attend to
all previous tokens, they can compress all information in the sentence into the output embeddings of
the K tokens. This compressor architecture is inspired by ICAE (Ge et al., 2023). The compression
ability is obtained through auto-encoder-style fine-tuning, as discussed in Appendix A.1.

Token-level GNN: Conventional GNNs take one embedding vector for each node/edge. However,
now each node/edge sentence is compressed into K memory token embeddings Qm,x. Hence, we
propose a simple extension of GNNs to the token level. For node v ∈ V , the t-th GNN layer is

Ht
x(v)[k] = GNN(Qt

m,x(v)[k], {(Q
t
m,x(u)[k], Q

t
m,x(euv)

[k])|u ∈ N (v)}), k = 1...K. (3)

In the GNN layer, tokens at different indices do not communicate. If we directly stack these GNN
layers, they degenerate into multiple isolated GNNs for each token. Nevertheless, because we
interleave the GNN layers into the LLM layers, as shown in Figure 3, the isolated tokens exchange
information in the subsequent self-attention layers of the LLM. This approach significantly reduces
memory usage because we do not allow cross-token attention between different nodes. While edge
memory tokens Qt

m,x(e) are passed into GNN to assist message passing, their representations are not
updated in the GNN layer but directly passed to the next LLM layer, hence Ht

x(e) = Qt
m,x(e). In

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GOFA, we use a modified Transformer Convolutional GNN (Shi et al., 2021) to be consistent with
the transformer architecture of LLM (see Appendix A.3 for details).

We insert one GNN layer between two transformer layers, while the first and the last layer are always
transformer layers. In GOFA, we only insert GNN between the last few transformer layers, but
this can be flexible depending on the computational resources. Following previous practice, we
incorporate feed-forward (FF) layers into the GNN to increase expressivity and residual connections
to stabilize training. Moreover, GOFA should maintain the functions of an LLM on plain texts, hence,
inspired by the gating mechanism in earlier works (Hochreiter & Schmidhuber, 1997; Alayrac et al.,
2022), we apply a tanh gate, initialized at 0, to the GNN and FF layer outputs so that the initial model
ignores the information from GNN layers and is equivalent to the pre-trained LLM. We introduce
weight decay in the gating module to promote gate value staying in large non-zero values only when
graph information helps generate more accurate final text outputs.

LLM decoder: After applying the model to the textual graph, the memory tokens Qm,x of every node
contain information about the text on the node, the surrounding node text, and the graph structure
due to the message-passing process in the GNN layers. Then, for the NOG v and its corresponding
target text y, we insert Qm,x at the front of the token embeddings of the target text to generate and
use teacher-forcing to maximize the standard log-likelihood of y using the next-token-prediction
objective. In this way, we have modeled the problem in Equation (1). The compressor, decoder,
and GNN parameters can be jointly or separately optimized, potentially with PEFT methods like
LoRA (Hu et al., 2022). In this paper, we use ICAE (Ge et al., 2023) as our backbone LLM, but the
GOFA architecture is not tied to any specific LLM. More details are discussed in Appendix A.2.

Discussion. Our proposed graph language encoder has several advantages over existing methods.
Suppose a graph has V nodes, E edges, and the average number of tokens for all nodes is k. The
complexity of one GOFA layer is O(V k2), as the self-attention only happens within each node. Note
that we have omitted the extra computation complexity of message-passing because it only happens
at individual indices with O(E) ≪ O(V k2) in practical graphs. Instead, if we concatenate texts
in all nodes and input them to a regular LLM, the complexity of one layer is O((V k)2), which is
significantly larger than GOFA. Further, introducing GNN layers in LLMs is theoretically more
powerful than pure LLMs for modeling graph structures, which is discussed in Appendix E.2.

3.3 UNIFIED TASK REPRESENTATION IN GOFA

The formulation in Equation (1) provides a natural way for users to query the graph by selecting a
NOG. Users can combine NOG with graph prompting techniques on subgraphs to solve tasks unique
to the graph domain, such as node-, link-, and graph-level tasks. Following OFA (Liu et al., 2023a),
we convert all tasks into tasks on k-hop rooted subgraphs extracted around the target nodes. For
node-level tasks, the target node is a single node in the graph. For link-level tasks, the target nodes
are the node pair. If the target node is not specified (e.g., the task is a graph task), we set the default
target nodes to all nodes in the graph. We connect a prompt node with the user query as NOG to all
target nodes. GOFA completes the prompted input TAG by answering the query on the NOG, which
still aligns with the proposed generative modeling framework. This design has several advantages: (1)
All tasks are represented by a NOG, so the distribution of all tasks can be unified into a single space,
helping the model generalize to unseen tasks from learned task representations; (2) The text feature
for the prompt node describes the task details. Connecting the prompt node to target nodes enables
the prompt node to query the most important knowledge from the input graph through attention. This
ensures the output embedding for NOG is conditionally learned from the GNN process subject to the
different prompts. Conversely, most of the previous works (He & Hooi, 2024; Tang et al., 2023; 2024;
Zhang et al., 2024) only computed a fixed embedding for each node before any prompt is introduced.

3.4 LARGE-SCALE PRE-TRAINING

As discussed in Section 2 and Section 3.1, we design self-supervised pre-training tasks based on the
three GFM properties to train GOFA. The training datasets include MAG240M (Hu et al., 2021a) to
upscale the model’s text understanding ability, Pubmed and Arxiv (Hu et al., 2021b) for academic
knowledge, Wikikg90mv2 (Hu et al., 2021a) and WikiGraph (proposed by us) for semantic diversity,
and Ultrachat200k (Ding et al., 2023) dataset for question-answering ability. Details about the
datasets can be found in Appendix C. Each node is assigned a unique ID (e.g., [Node A]) to enable

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

node querying in the graph. We design four pre-training tasks as shown in Figure 1. We describe
the rationale of each task below and leave some implementation details and additional discussion in
Appendix F and Appendix E.3.

Sentence Completion Task. This task aims for large-scale pre-training (GFM property one) by
training GOFA to predict the remaining text in a node based on both the existing node text and
the surrounding graph information. Such a task can be applied to any TAG without labeling, thus
facilitating large-scale pre-training for GOFA to acquire diverse knowledge.

Structural Understanding Task. This task aims to provide structural modeling ability for GOFA
(GFM property three). The structural task connects NOG randomly selected node pairs to generate
the actual shortest path or common neighbors between them. Through these two tasks, the model is
expected to gain the ability to identify basic graph structures fundamental for graph-related problems.

Question Answering Task. This task aims to ensure fluidity in generation for GOFA (GFM property
two). Unlike language corpus, which naturally contains many question-and-answer (QA) pairs, graph
data usually only contain objective descriptions of entities. Hence, we convert natural language
Question-Answer sequences into chain graphs and connect a NOG with a question to the chain graph
for open-ended answer generation. This essential task enables GOFA to be responsive to arbitrary
downstream applications expressed in free-form text questions.

Information Retrieval Task. In most downstream tasks, GOFA links a prompt node to target nodes
in the graph to address related problems. To facilitate effective information extraction, we design
an information retrieval task where a NOG queries a target node using its node ID. The model
must retrieve and isolate information specific to the queried node from the remaining target nodes,
encouraging a message-passing process conditioned on the input, as discussed in Section 3.2.

4 RELATED WORK

Here we mainly discuss the two tracks of general graph models, and leave discussion about graph
prompt learning and graph neural networks to Appendix D.

LLMs as enhancers: One direction uses LLMs to convert the text features of graphs to unified
representations (Liu et al., 2023a; Chen et al., 2023; Li et al., 2024; He et al., 2024a; Plenz & Frank,
2024) for downstream graph models to distinguish and transfer knowledge between different domains.
For example, OFA (Liu et al., 2023a) uses LLM to unify the input features in different datasets and
transforms multiple types of graph classification tasks into a unified binary classification format.
TAPE (He et al., 2024a) utilizes LLM to generate question answers and explanations as enhanced
node features. Such approaches have good structural modeling ability, but they usually cannot
generate free-form output to handle arbitrary tasks.

LLMs as predictors: Another line of research proposes using LLMs as predictors and aligning
graph representation with LLM inputs. Preliminary attempts flatten graphs into text representations
and feed them into LLM (Chen et al., 2023; Zhao et al., 2023b; Guo et al., 2023; Zhao et al., 2023a;
Qian et al., 2023). These approaches can benefit from LLM for task fluidity but fail to model
structural information unique to graph data properly (Zhao et al., 2023b; Mao et al., 2024; Ye et al.,
2023). Realizing this problem, follow-up work extends methods in vision-language domain (Alayrac
et al., 2022; Li et al., 2023) to the graph domain and train adapters to link graph model outputs
to LLM (Tang et al., 2023; 2024; Huang et al., 2024; Zhang et al., 2024; He & Hooi, 2024). For
example, GraphGPT (Tang et al., 2023) first implements a text-structure alignment between graph
representation and text embedding to pretrain a GNN. LLaGA (Chen et al., 2024) creatively uses
a template to represent a subgraph with pooled node embeddings for LLM input. Inspired by
Q-former (Li et al., 2023), GraphTranslator (Zhang et al., 2024) aligns node and text tokens from pre-
trained GNN and LLM. UniGraph (He & Hooi, 2024) pretrains GNN using masked word prediction
and then tuning a projector to map graph embedding to language space and enable zero-shot learning.
However, the GNN and LLM parts of these methods are usually detached, meaning the prompt
information can not attend to the message-passing process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot experiment results with instruction tuning (Accuracy).
Task Cora-Node WikiCS Products ExplaGraphs Cora-Link

Way 7 2 10 5 47 10 5 2 2

LLama2-7B 47.92 73.45 40.10 58.77 27.65 58.71 64.33 57.76 48.15
Mistral-7B 60.54 88.39 63.63 71.90 43.99 70.16 74.94 68.77 49.43

OFA-Llama2 28.65 56.92 21.20 35.15 19.37 30.43 39.31 51.36 52.22
GraphGPT 44.65 - - - 18.84 - - - 50.74
UniGraph 69.53 89.74 43.45 60.23 38.45 66.07 75.73 - -

ZeroG 64.21 87.83 31.26 48.25 31.24 51.24 71.29 - -
LLaGA 51.85 62.73 - - 23.10 34.15 39.72 - 88.09

GOFA-T 70.81 85.73 71.17 80.93 54.60 79.33 87.13 79.49 85.10
GOFA-F 69.41 87.52 68.84 80.62 56.13 80.03 88.34 71.34 86.31

5 EXPERIMENT

This section evaluates the proposed methods by answering the following four questions: Q1: Are the
pre-training tasks in GOFA effective for graph-language modeling and structure understanding? Q2:
Does the pre-trained GOFA help with critical general graph model application, zero-shot learning?
Q3: Is using GOFA more advantageous than LLMs in graph tasks? Q4: Does GOFA have the fluidity
to handle open-ended graph-related tasks? Additionally, we also include supervised experiments in
Appendix F.5.

5.1 GOFA PRE-TRAINING

Table 1: Evaluation for pre-
trained GOFA . (RMSE for SPD
and CN)

Perplexity ↓ SPD ↓ CN ↓
Mistral-7B 30.12 1.254 1.035

GOFA-SN 26.20 - -
GOFA 21.34 0.634 0.326

To answer Q1, we pre-train the GOFA model using ICAE
models on Mistral-7B (Jiang et al., 2023), optimizing the ob-
jective in Equation (1) using the proposed tasks. The training
details can be found in Appendix F.3. After training, we eval-
uate the perplexity of both GOFA and base LLM on Cora,
Product, and Wikics datasets (all three are not included in the
pre-training). We report the perplexity in Table 1. Note that
during pre-training, we only update the weight of the GNN
layers, and GOFA ’s lower perplexity shows that the structural
and semantic information in the node’s neighbor can effectively help complete the sentence with
more relevance than the original LLM. Further, to validate that training of GOFA will not affect the
original LLMs’ ability, we input GOFA with single node graphs without any connections (denoted
as GOFA-SN) to evaluate the perplexity, as shown in Table 1. We can see that without connection
information around the center node, generation on a single node graph remains comparable to LLM
and even better due to the pre-training process, showing that GOFA training does not destroy the
desirable property of a pre-trained LLM. Besides sentence completion, another important GOFA
pre-training objective is the structure learning ability. We report shortest path distance and common
neighbor count prediction results in Table 1, compared with LLM models whose inputs are textualized
graphs, with descriptions of edge connections. The datasets we used are Cora and Product. We see a
significant performance improvement of GOFA over base LLM, showing that a difficult graph task
for LLM can be well solved by the GNN layers with better structure modeling ability.

5.2 ZERO-SHOT LEARNING WITH GOFA

To answer Q2, we performed zero-shot experiments on various graph tasks. Despite using QA-chain
data in the pre-training stage, the graph data does not include knowledge about task formats like
classification and does not output exact matches to the answers. Hence, we first instruction-tuned
the pre-trained GOFA in Section 5.1 on a small amount of data. We report the zero-shot results
of two GOFA instruction tuning settings named GOFA-T and GOFA-F, as shown in Table 2 and
Table 3. GOFA-T includes node and link classification tasks from Arxiv and Pubmed and GOFA-F
addtionally adds MAG240M and Wiki90mv2 datasets. The instruction-tuning details can be found in
Appendix F.4. Note that the zero-shot datasets are unseen during both pre-training and instruction

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Zero-shot experiment re-
sults with instruction tuning on
FB15K237 and Scene Graphs.

Task FB15K237 SceneGraphs
Format 10-Way QA

Llama2-7B 48.32 38.62
Mistral-7B 62.48 45.95
GOFA-T 73.59 34.06
GOFA-F 80.69 31.36

3 4 5 6 7
Billions of Tokens

55

60

65

70

75

80

85

Ac
cu

ra
cy

FB15K237
Products

WikiCS
Cora-Link

Cora-Node

Figure 4: Performance vs
pre-training sample size.

FB15K237 Products CoraLink
20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

w/o R+W w/o R Full

Figure 5: Pre-training Tasks
Ablation Study.

Table 4: Comparison between GOFA and LLM with the same input.

Task ExplaGraphs Time WikiCS Time Cora-Link Time FB15k237 Time
Metric Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓

LLM-N 74.13 1.50 OOM OOM 50.36 3.84 51.25 3.92
GOFA-F 79.49 0.48 71.17 2.43 85.10 1.67 73.49 3.37

Improvement 7.23% 68.00% NA NA 68.98% 56.51% 43.40% 14.03%

finetuning. The goal of instruction fine-tuning is not to let the model learn particular knowledge from
these datasets but to make the model understand the task format described in Appendix F.4.

While the instruction-tuning dataset only covers the relatively small spectrum of the graph datasets,
we observe that GOFA achieves very non-trivial performance on all node-level (Cora-Node, WikiCS,
Products), link-level (FB15K237, Cora-Link), and graph-level (ExplaGraphs, SceneGraphs) tasks.
GOFA also generalizes to different ways and even question-answering (SceneGraphs) tasks, showing
its desirable fluidity. GOFA outperforms LLM and graph foundation model baselines on most
datasets and exceeds best baselines by a large margin (> 10%) on WikiCS, Products, FB15K237 and
ExplaGraphs, showing GOFA’s ability to combine the advantage of both LLM and graph models.
GOFA not only achieves remarkable results on the knowledge graph and academic graph, which
are proximal to the trained data but also excels in Products and ExplaGraphs whose distribution
shifts significantly from training data, which further highlights GOFA ’s substantial generalizability.
Meanwhile, we observe that GOFA is only achieving comparable performance to LLM on the
SceneGraph dataset. We suspect that the instruct-tuning data contains information-dense texts,
reducing the model’s ability on common sense questions that this dataset requires. In the future, we
plan to diversify instruction-tuning datasets with common sense knowledge to enhance such ability.

We further conducted the same experiments on intermediate pre-training checkpoints, and show
results in Figure 4. We observe that as the model witnesses more pre-training samples/tokens, the
downstream task performance also increases significantly, confirming the importance of large-scale
pre-training on graph data. The performance continues to improve, meaning that the model can
potentially scale to higher capability with more samples; we leave this to future work. In Figure 5,
we plot the instruction-tuning performance when we remove the Wikipedia datasets and information
retrieval task (w/o R+W), only remove the retrieval task, (w/o R), and full tasks. We can see that
Wikipedia datasets improve the model performance of all the datasets for the diverse corpus it
introduced. The retrieval tasks particularly improve the knowledge graph performance due to the
improved ability to retrieve key correlations between target entities. These show the necessity and
effectiveness of the overall pre-training task selection and design.

5.3 COMPARING GOFA WITH LLMS

Answering Q3 is critical to understanding the necessity of the GNN layers and the effectiveness of
GOFA as a general graph model. We compare GOFA to LLM whose textual prompt contains the
same information as the input graph to GOFA. Specifically, for a GOFA input graph, we concatenate
all node texts as the prompt and append the connection information to it, as in "Node A connects
to Node B". The text is then combined with task and question descriptions as input to an LLM for
classification tasks. Approaches similar to this are widely adopted and acknowledged (Chen et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Given these connected
papers, please creatively think
about some research ideas.

Please summarize the core
concept of these papers.

Please output the shortest path
distance between [NODE.F] and
[NODE.H] and all shortest paths.

P

P

P

P

vP

F

H

P

Answer:
Based on the papers you have provided, here are some potential research ideas:
1. Adversarial attacks on generative models: The paper "Adversarial Examples in
the Physical World" demonstrates that adversarial examples can be crafted in
real-world settings. We could extend it to GANs to create adversarial examples
capable of deceiving these models… 2. Generative models for drug discovery ...

Answer:
The core concept of these papers is the application of GANs to generate realistic
images. The first paper introduces a new loss function for GANs that incentivizes
the generator to create images that closely resemble real ones, rather than
merely aligning with those judged as similar by the discriminator. The second
paper...

Answer:

The shortest path distance is 3.
The shortest paths between [NODE.F] and [NODE.H] are:
[NODE.F] → [NODE.X] → [NODE.K] → [NODE.H]
and [NODE.F] → [NODE.Z] → [NODE.S] → [NODE.H].

Input Graph GOFA Generated Answer

Figure 6: GOFA diverse responses to open-ended questions.

2023; Fatemi et al.). We present both the classification performance and per sample inference time in
Table 4 and denote the LLM method as LLM-N. We observe impressive performance improvement
of GOFA on all datasets, even when the LLM is prompted with the same information, showing that
GOFA, with the help of the GNN and interleaving design, utilizes the graph information much more
effectively. Moreover, we also observe a fundamental reduction in inference costs, confirming our
analysis in Section 3.2 that, with the same input, GOFA is more efficient than LLMs. Note that when
the input size is large, such as in WikiCS, LLM struggles with high memory consumption of the long
sequence, whereas the GOFA avoids that by leveraging the sparsity of graph data and using edge
information to compute the most important attention information.

5.4 GOFA RESPONSES ON DIVERSE TASKS

Finally, we answer Q4 by providing generation examples of GOFA in Figure 6, where we prompt
the same citation graph differently and achieved corresponding and high-quality responses. The top
and middle examples have the same connection for their NOGs (both connected to the same five
nodes), but when we change the prompt text on the NOGs, the generated texts also adjust accordingly,
utilizing the neighbor node information, validating that the message-passing is conditioned on the
prompt. As in the bottom example, we can also prompt the graph differently by connecting the NOG
to two target nodes and querying about the shortest path distance. In this case, the model successfully
generates actual paths between the two nodes, which is an ability not seen in traditional graph models
that can only output numerical predictions about the path length. These examples demonstrate
GOFA’s outstanding ability to answer open-ended questions. More examples are provided in B.2.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We introduce GOFA, a generative One-for-All graph foundation model. GOFA is pre-trained
under graph completion framework to enable large-scale self-supervised learning. By integrating
GNN layers with LLM layers, GOFA combines the generative capabilities of LLMs for free-form
output with the structural learning strengths of GNNs for understanding complex graph connections.
Our experiments demonstrate that GOFA, when fine-tuned with a small number of data, achieves
impressive zero-shot performance, highlighting its potential as a robust graph foundation model.
One limitation of our work is the extensive training time required due to the use of abundant graph
data. Additionally, we employ a frozen LLM compressor in our architecture; hence, the compression
capability is not dynamically integrated with the graph data, potentially impacting the efficiency and
adaptability of the model. We believe finetuning a graph language compressor can further enhance
the performance of GOFA and will explore it in the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan Yuille, Trevor Darrell, Jitendra
Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large vision models.
arXiv preprint arXiv:2312.00785, 2023.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
S. Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel,
Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon,
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie,
Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, O. Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin Newman, Allen
Nie, Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel J. Orr, Isabel
Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan,
Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher
R’e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srinivasan,
Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A.
Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou,
and Percy Liang. On the opportunities and risks of foundation models. ArXiv, abs/2108.07258,
2021. URL https://api.semanticscholar.org/CorpusID:237091588.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170, 2024.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms)
in learning on graphs, 2023.

Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning via
adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 35(5):4908–4922, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

11

https://api.semanticscholar.org/CorpusID:237091588
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=nN3aVRQsxGd.

Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen. Ex-
tending the design space of graph neural networks by rethinking folklore weisfeiler-lehman.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 9029–9064. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/1cac8326ce3fbe79171db9754211530c-Paper-Conference.pdf.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In The Twelfth International Conference on Learning
Representations, 2023.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Conference on
Learning Representations, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data ? an empirical evaluation and benchmarking,
2023.

Stephen J Hardiman and Liran Katzir. Estimating clustering coefficients and size of social networks
via random walk. In Proceedings of the 22nd international conference on World Wide Web, pp.
539–550, 2013.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
nessing explanations: LLM-to-LM interpreter for enhanced text-attributed graph representation
learning. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=RXFVcynVe1.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering, 2024b.

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from natural
language. arXiv preprint arXiv:2402.13630, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs, 2021a.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021b.

12

https://openreview.net/forum?id=nN3aVRQsxGd
https://proceedings.neurips.cc/paper_files/paper/2023/file/1cac8326ce3fbe79171db9754211530c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1cac8326ce3fbe79171db9754211530c-Paper-Conference.pdf
https://openreview.net/forum?id=RXFVcynVe1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. arXiv preprint arXiv:2305.12600,
2023a.

Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei Chai, and Qi Zhu.
Can gnn be good adapter for llms? arXiv preprint arXiv:2402.12984, 2024.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
graph neural networks with i2-GNNs. In The Eleventh International Conference on Learning
Representations, 2023b. URL https://openreview.net/forum?id=kDSmxOspsXQ.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Lecheng Kong, Yixin Chen, and Muhan Zhang. Geodesic graph neural network for efficient
graph representation learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=6pC5OtP7eBx.

Lecheng Kong, Jiarui Feng, Hao Liu, Dacheng Tao, Yixin Chen, and Muhan Zhang.
Mag-gnn: Reinforcement learning boosted graph neural network. In A. Oh, T. Neu-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 12000–12021. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/2788b4cdf421e03650868cc4184bfed8-Paper-Conference.pdf.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. arXiv preprint arXiv:2402.11235, 2024.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2023a.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Towards graph foundation models: A survey and beyond. arXiv
preprint arXiv:2310.11829, 2023b.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip. Graph self-
supervised learning: A survey. IEEE transactions on knowledge and data engineering, 35(6):
5879–5900, 2022.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023,
2023c.

13

https://openreview.net/forum?id=kDSmxOspsXQ
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=6pC5OtP7eBx
https://proceedings.neurips.cc/paper_files/paper/2023/file/2788b4cdf421e03650868cc4184bfed8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2788b4cdf421e03650868cc4184bfed8-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Michael
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint arXiv:2402.02216, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2022.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph repre-
sentation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 7797–7805, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, pp. 4602–4609, 2019.

Moritz Plenz and Anette Frank. Graph language models, 2024. URL https://arxiv.org/
abs/2401.07105.

Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and Yong Liu. Can large language models
empower molecular property prediction?, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, pp. 2120–2131, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599256. URL
https://doi.org/10.1145/3580305.3599256.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models, 2023.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. Higpt:
Heterogeneous graph language model. arXiv preprint arXiv:2402.16024, 2024.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković,
and Michal Valko. Bootstrapped representation learning on graphs. In ICLR 2021 Workshop on
Geometrical and Topological Representation Learning, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

14

https://arxiv.org/abs/2401.07105
https://arxiv.org/abs/2401.07105
https://doi.org/10.1145/3580305.3599256

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
language models solve graph problems in natural language?, 2023.

Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. Task-adaptive few-shot node
classification. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1910–1919, 2022.

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong
Cheng, Wei Chen, Yun Xiong, et al. Can graph learning improve task planning? arXiv preprint
arXiv:2405.19119, 2024.

Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models.
arXiv preprint arXiv:2403.01121, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit S, Guangzhong
Sun, and Xing Xie. Graphformers: GNN-nested transformers for representation learning on textual
graph. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=yILzFBjR0Y.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all
a graph needs, 2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=OeWooOxFwDa.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang. Generalized
graph prompt: Toward a unification of pre-training and downstream tasks on graphs, 2023.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests, 2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=r9hNv76KoT3.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023c. URL https://
arxiv.org/abs/2306.02858.

Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng
Yang, and Chuan Shi. Graphtranslator: Aligning graph model to large language model for
open-ended tasks. arXiv preprint arXiv:2402.07197, 2024.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

15

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=yILzFBjR0Y
https://openreview.net/forum?id=yILzFBjR0Y
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=r9hNv76KoT3
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=Hcr9mgBG6ds.

Ziwei Zhang, Haoyang Li, Zeyang Zhang, Yijian Qin, Xin Wang, and Wenwu Zhu. Graph meets
llms: Towards large graph models. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning,
2023d.

Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhi-Hong Deng, Lingpeng Kong, and
Qi Liu. Gimlet: A unified graph-text model for instruction-based molecule zero-shot learning,
2023a.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space, 2023b.

16

https://openreview.net/forum?id=Hcr9mgBG6ds

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

A IMPLEMENTATION DETAILS

A.1 IN-CONTEXT AUTOENCODER (ICAE)

This section briefly introduces ICAE and how it helps build the GOFA model; please refer to ICAE
paper (Ge et al., 2023) for the specifics of the model. ICAE contains two decoder-only LLMs. One
serves as a language compressor that compresses sentences into a fixed-length sequence of vectors,
and the other serves as a language decoder that decodes or queries into the compressed sentence
representations. Specifically, during training, an input token sequence x = {x1, ..., xl} is appended
by a K memory tokens {m1, ...,mk} with trainable embeddings. The concatenated sequence is fed
to the LLM compressor with a LoRA adapter (Hu et al., 2022).

{h(x1), ..., h(xl), h(m1), ..., h(mK)} = LLMcomp({e(x1), ..., e(xl), e(m1), ..., e(mK)}), (4)

where e(·) and h(·) are the token embeddings and LLM outputs. Then, the decoder LLM only attends
to the memory token outputs and tries to decode the original sentence from the memory tokens.

{l(m1), ..., l(mK), l(x1), ..., l(xl)} = LLMdec({h(m1), ..., h(mK), e(x1), ..., e(xl)}),
min
Θcomp

CrossEntropy({l(mK), l(x1), ..., l(xl−1)}, {x1, ..., xl}). (5)

The ICAE model is also trained on QA and Language modeling tasks to have more diverse embed-
dings.

By training this auto-encoder objective on a large-scale, the compressor model learns to compress
all information about a sentence to the memory token outputs like in a conventional auto-encoder
model. In Table 5, we provide a few examples of the comparison between the original text and the
text decoded from the compressed memory tokens by ICAE’s decoder. Because the compressed
representation contains as much information as possible, GNN can pass messages between nodes
with minimal information loss.

Table 5: Comparison between original texts and decoded text from the compressed representation.

Original Text Decoded Text

Actress Halle Berry has been sharing a number
of stunning photos from the time she has spent
in Morocco and she just posted a new one to her
Instagram page that fans will not want to miss.

Halle Berry has been sharing a number of stun-
ning photos from the time she has spent in Mo-
rocco and just posted a new one on her Instagram
page that fans won’t want to miss.

Utah avoided the turnover bug on Saturday for the
first time since its season opener. In addition, the
running game was clicking and the defense was
dominant as the Utes snapped a two-game win-
ning streak on the road, beating Pittsburgh 26-14.
Five keys to Utah’s victory: 1. Utah running back
John White IV: Running strong and with purpose
from the beginning, White was a big reason why
the Utes were within striking distance at halftime.
White, who took a couple pops that dislodged his
helmet and caused a cut below his ear, seemed to
get stronger as the game wore on. He finished the
afternoon with 171 yards on 36 carries.

Utah avoided the turnover bug on Saturday for the
first time since its season opener. In addition, the
running game was clicking and the defense was
dominant as the Utes snapped a two-game win-
ning streak on the road, beating Pittsburgh 26-14.
Five keys to Utah’s victory: 1. 2. 3. 4. 5. Utah
running back John John White IV IV ran strong
and with purpose from the beginning, being a big
reason why the Utes were within striking distance
at halftime. He took a couple of shots that dis-
lodged his helmet and caused a cut below his ear,
but seemed to get stronger as the game went on.
He finished the afternoon with 171 yards on 36
carries.

A.2 LLM CHOICES OF GOFA

Because ICAE preserves as much information in a sentence as possible, we can use it in the GOFA
model to comprehensively pass information between sentences, as shown in Section 3.2. However,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the GOFA model is not limited to ICAE. Users can first train an ICAE-like objective on any existing
LLM and apply the GOFA model to the trained LLM. Or, users can apply the GOFA directly to
a pre-trained LLM and train the GOFA without the auto-encoder training. Note that the ICAE
architecture has a function similar to an encoder-decoder LLM. We do not use an off-the-shelve
encoder-decoder LLM because its encoder output is still subject to the sentence length, which does
not fit GNN’s need for fixed-sized input.

The design of GOFA can be extended beyond a compressor-decoder architecture. For example, we
can have a decoder-only GOFA whose LLM layer is,

{Qt+1
x , Qt+1

m,x, Q
t+1
y } = LLM t({Qt

x, H
t
x, Q

t
y}), (6)

where the GNN is still applied on K memory tokens inserted between the node text x and target
text y. This allows the target text to attend to the node text, which may improve the performance of
GOFA. However, this formulation forces every node to have a target text, which is usually not what
users desire and poses extra computation costs. We will explore this architecture in our future work.

A.3 TRANSFORMER CONVOLUTIONAL GNN

As mentioned in Section 3.2, we customize a Transformer Convolutional GNN(TransConv) (Shi
et al., 2021) as the GNN used in Equation 3. Since GNN layers operate on token representations and
tokens at different indices do not communicate, we describe the GNN at one index for simplicity.
The t-th GNN layer on node i and its neighbors N (i) is:

ht+1(i) = Wo(
∑

j∈N (i)

αi,j(Wv,nodeh
t(j) +Wv,edgeh(ei,j))),

αi,j = Softmax(
Wqh

t(i) ∗ (Wk,nodeh
t(j) +Wk,edgeh(ei,j))√
d

),

(7)

h(·) represents input node and edge features. W represents query (q), key (k), value (v), output (o) lin-
ear projection for nodes and edges. The formulation closely follows the transformer design (Vaswani
et al., 2017) and its GNN adaptation (Shi et al., 2021). This formulation does not aggregate the last
layer embedding ht(i) into the next layer, because we already add residual to maintain the same
effect. We use pre-layer normalization following Llama (Touvron et al., 2023).

B ADDITIONAL EXPERIMENTS

B.1 SUPERVISED EXPERIMENT RESULTS

In this section, we conduct supervised learning experiment with the pre-trained GOFA . In the
supervised experiment, GOFA ’s prompt does not include class optional. We show the supervised
results in Table 6. Specifically, we compare the result of GOFA with the following baselines: 1.
basic GNNs, which are trained individually on each dataset, including GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018). 2. The contrastive learning methods, including DGI (Veličković
et al., 2018) and BGRL (Thakoor et al., 2021). For these methods, we directly report the best
result from (He & Hooi, 2024). 3. Graph foundation model, including OFA (Liu et al., 2023a)
and UniGraph (He & Hooi, 2024). GOFA achieved competitive performance on most datasets. In
particular, GOFA achieved SOTA performance on the Pubmed dataset, demonstrating that GOFA can
transfer pre-trained knowledge to downstream tasks. We also notice that GOFA is not performing
as well on some datasets, possibly because in a supervised setting, we only train a small portion of
the data for one epoch (specific numbers in the experimental details section in Appendix F.5), and
in the supervised setting, it is important to see training samples multiple times to ensure detailed
understanding of the distribution. As we pre-train the model with more diverse datasets, GOFA can
potentially obtain world knowledge as an LLM, which makes transfer learning in the supervised
setting more accurate.

B.2 EXAMPLE OF GOFA’S FREE-FORM ANSWER

Figure 6 in the main body illustrates GOFA’s capability to respond to various questions based on the
same graph from ogbn-arXiv. In this section, we provide additional examples in Figure 7 to further
show the ability of GOFA’s free-form text answer.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Experiment results in supervised learning. Bold and underlined shows best and runner-up
results.

Cora Cora PubMed PubMed Arxiv WikiCS WN FB Products
Task type Link Node Link Node Node Node Link Link Node

Metric Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑

GCN 78.9±0.6 82.3±1.1 77.5±0.4 77.8±0.7 73.9±0.6 77.0±0.6 82.7±0.4 90.1±0.3 80.0±0.7
GAT 80.1±0.3 80.4±0.4 80.5±0.2 76.6±0.5 75.8±0.3 79.8±0.5 88.8±0.3 93.6±0.1 81.4±0.2

DGI - 51.99±0.45 - 55.76±0.56 55.21±0.21 67.11±0.12 52.04±0.22 26.99±0.22 64.21±0.32
BGRL - 56.73±0.23 - 63.77±0.23 62.21±0.21 70.12±0.15 56.44±0.21 64.91±0.22 63.77±0.23

OFA 87.97 75.34 95.89 77.89 73.44 77.62 98.31 95.78 -
UniGraph - 81.43±0.55 - 74.33±0.23 72.91±0.42 79.98±1.21 85.45±0.34 94.81±1.32 80.11±0.23

GOFA 89.54 76.50 93.97 83.83 74.77 79.96 92.16 88.21 79.98

Given these products, please
find the majority category
among them.

Given these wikipedia page
names, please generate more
wikipedia page names that
should be related to them.

P

P

P

A

B

P

B

Answer:
The majority category for these
products is phone accessories.

Answer:
Wikipedia: Linux kernel. Wikipedia:
Open source software 3. Wikipedia:
Free software. Wikipedia: Software
development methodologies.
Wikipedia: Software achietecture.

Input Graph GOFA Generated Answer
Text Feature of Nodes
Connected with Prompt Node

Node.A: Tech Armor HD Clear Screen Protectors
with Lifetime Warranty for Samsung Galaxy S3 S III.
Node.B: Refill Band Value Packs - 600 Multicolored
Polka Dot with 25 S Clips.
Node.C: DandyCase 2in1 Hybrid High Impact Hard
Vintage Sea Green Floral Pattern + Pink Silicone
Case Cover For Samsung Galaxy S3 i9300 +
DandyCase Screen Cleaner.

A

C

Node.A: Wikipedia entry. Entry name: Linux. Entry
content: linux linux family open source unix-like …
Node.B: Wikipedia entry. Entry name:
Microsoft_Windows. Entry content: microsoft windows
microsoft windows group several …
Node.C: Wikipedia entry. Entry name:
ARM_architecture. Entry content: arm architecture arm
previously advanced risc machine …
Node.D: Wikipedia entry. Entry name: PlayStation_2.
Entry content: playstation 2 playstation 2 officially
abbreviated ps2 …

C
D

Products

WikiCS

Figure 7: Demonstration of GOFA’s ability to respond to any question to the given graph. Above
is an example of the products dataset, where the model need to output the majority category of its
connected nodes. Below is another example on wikics dataset, GOFA is asked to generate Wikipedia
page named based on the graph information.

C DATASETS

Cora. The Cora dataset is a co-citation network, where nodes are papers related to artificial intelli-
gence. Edges mean the connected two papers are co-cited by other papers. The Cora dataset contains
2708 nodes and 10556 edges. We collect the Cora dataset and its raw text from OFA (Liu et al.,
2023a). We evaluate the performance of the baseline and our proposed model on Cora for both
node-level and link-level tasks. For the node-level task, the aim is to classify the node into the correct
paper category from 7 different categories. The split is obtained from OFA. It contains 140/500/2068
samples for train/val/test set respectively. For the link-level task, the object is to predict whether two
paper nodes are co-cited or not. We follow the setting of OFA (Liu et al., 2023a) and randomly split
all edges into train/val/test sets with a ratio of 0.85/0.05/0.1.

PubMed. The PubMed dataset is a co-citation network, where nodes are papers related to diabetes
mellitus. Edges mean the connected two papers are co-cited by other papers. The PubMed dataset
contains 19717 nodes and 88648 edges. We collect the PubMed dataset and its raw text from
OFA (Liu et al., 2023a). We evaluate the performance of the baseline and our proposed model on
PubMed for both node-level and link-level tasks. For the node-level task, papers have 3 different
categories. The goal is to classify the node into the correct paper category. We obtain the split directly
from original source. It contains 60/500/19157 samples for train/val/test set respectively. For the
link-level task, the object is to predict whether two paper nodes are co-cited or not. We follow the
setting of OFA (Liu et al., 2023a) and randomly split all edges into train/val/test sets with a ratio of
0.85/0.05/0.1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Arxiv. The Arxiv dataset is a citation network, where nodes are papers related to computer science
and edges mean two papers have a citation relationship. The Arxiv dataset contains 169343 nodes
and 1166243 edges. We collect the Arxiv dataset and its raw text from OGB (Hu et al., 2021b). We
evaluate the node classification on the Arxiv dataset. The goal is to classify the paper node into
the correct category from 40 possible categories. We obtain the split directly from OGB (Hu et al.,
2021b). It contains 90941/29799/48603 samples for train/val/test set, respectively.

WikiCS. The WikiCS dataset is a graph obtained from Wikipedia. The nodes in WikiCS are Wikipedia
terms and their descriptions. The edges mean there is a hyperlink between two terms. We collect
the WikiCS dataset and its raw text from (Mernyei & Cangea, 2020). There are 11701 nodes and
216123 edges in the graph. We evaluate the performance of WikiCS on the node classification task.
There are 10 different classes. We follow the same split as OFA (Liu et al., 2023a), which contains
580/1769/5847 samples for the train/val/test set, respectively.

Products. The Products dataset is a co-purchase graph. The nodes in the graph represent product
items from the Amazon platform, and the edges represent that two products are co-purchased together.
We obtain the Products and their raw texts from TAPE (He et al., 2024a), which is a subset from the
original ogbn-Products (Hu et al., 2021b) dataset. It contains 54025 nodes and 144638 edges. We
evaluate the node classification performance on Products. The data from the original source contains
47 different categories. However, we found that there are two classes with missing labels. To be
consistent with previous literature, we adopt the approach in LLaGA to replace the label name with
special symbols. There are 14708/1572/37745 samples for the train/val/test set, respectively.

FB15K237. The FB15K237 is a knowledge graph generated from Free Base. Nodes in the dataset
represent entities in the world and edges represent the relation between entities. We obtained the
dataset from OFA (Liu et al., 2023a). The FB15K237 is used to evaluate the link classification. The
dataset contains 237 unique classes. We follow the setting of OFA (Liu et al., 2023a) and split the
dataset with a ratio of 0.85/0.05/0.1, which results in a total of 272115/17535/20466 samples for
train/val/test set, respectively.

ExplaGraphs. The ExplaGraphs is a graph question answering dataset on commonsense concepts.
Nodes in the dataset represent a common sense concept and edges represent the relation between two
concepts. We obtain the dataset from G-retriever (He et al., 2024b) The ExplaGraphs can be used for
question-answering on graphs. We obtain the split directly from G-retriever (He et al., 2024b). It
contains 1659/553/554 graph samples from the train/val/test set.

SceneGraphs. The SceneGraphs is a graph question answering dataset on scene graphs. Nodes in
the dataset represent an object in an image and edges represent the relation between two objects. We
obtain the dataset from G-retriever (He et al., 2024b) The SceneGraphs can be used for question-
answering on graphs. We obtain the split directly from G-retriever (He et al., 2024b). It contains
59978/19997/20025 graph samples from the train/val/test set.

MAG240M. The MAG240M dataset is a citation network generated from Microsoft Academic
Graphs. The nodes represent academic papers and the links represent a citation relation between
two papers. We obtained the dataset and raw text from OGB-lsc (Hu et al., 2021a). However, the
original dataset is extremely large and contains nodes without text features (author and institution
nodes), since we mainly use the dataset for pre-training, we further downsample the original dataset.
Specifically, we only keep paper nodes and citation links between papers. Further, we downsample
the edges in the following ways. First, we selected all nodes in the train/val/test split provided by
OGB-lsc (Hu et al., 2021a). Next, we filter the edges through two rounds. In the first round, we
only keep the edge if either the source or the target is in the selected nodes. If any node in the added
edge is not in the selected nodes, we add it to the node set. Next, in the second round, we include
additional edges where both the source and target are in the selected nodes (additional nodes are
added in the first round). The procedure results in a total of 5875010 nodes and 26434726 edges.

Ultrachat200k. The Ultrachat200k is a question-answering dataset. each sample is a multi-round
conversation obtained from the web. We obtained the Ultrachat200k from (Ding et al., 2023).
However, the original dataset is not a network. To convert it to a graph dataset, we manually create
a graph structure for it. Specifically, if the original sample has k round of conversation, we will
generate k − 1 graph sample. The i-th graph will contain the first i round of conversation. Each node
in the graph is either a question or an answer. The question and answer are linked by a directed edge
indicating the order of the conversation. The conversation of i+ 1 round will be the question-answer

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

pair for this graph. Since we mainly use the dataset for pre-training. We only include train-sft subset.
After the conversion, there are a total of 449929 graphs in total.

Wikikg90m. Wikikg90m is an encyclopedic knowledge graph dataset extracted from Wikidata
knowledge base. We obtain the original Wikikg90m from OGB-LSC (Hu et al., 2021a). It contains
91,230,610 entities, 1,387 relations, and 601,062,811 edges.

WikiGraph. The WikiGraph dataset is designed to increase the diversity of the training texts. Hence,
we use WikiText (Merity et al., 2022) dataset as the seed dataset. It contains plain sentences from
Wikipedia pages. We generate graphs for sentences with more than 500 characters. Specifically, we
first prompt an LLM to extract meaningful entities or concepts from a sentence, and these entities
become the nodes in the graph. We then randomly pair concepts to generate edges. Again, we use
LLM to generate a description of the relationship between the paired concepts and use the description
as the edge text.

D RELATED WORK EXTENDED

Prompt Learning in Graph: The success of foundation models inspired many works to adapt their
power to the graph domain. Earlier attempts designed a graph prompting mechanism such that a
trained model can adapt to new data by fine-tuning a soft prompting vector (Liu et al., 2023c; Yu
et al., 2023; Sun et al., 2023; Xia et al., 2024). GraphPrompt (Liu et al., 2023c; Yu et al., 2023)
pretrains on link prediction tasks, and then finetune a prompt matrix for each downstream node or
graph classification task. All in One (Sun et al., 2023) designs prompt tokens that are used to modify
node features and then take a meta-learning paradigm for multi-task learning. Subsequent works
extend graph prompts to allow in-context learning without weight update (Huang et al., 2023a; Galkin
et al., 2023). However, these works only tackle limited types of tasks and do not generalize to new
domains. Hence, researchers propose integrating LLM into the graph learning.

GNNs and Transformers: In recent years, GNNs have become the most popular method for dealing
with graph learning problems due to their extraordinary ability in structural learning. Particularly,
Previous works (Xu et al., 2018; Morris et al., 2019) show that the expressive power of message-
passing GNNs can be as powerful as the 1-dimensional Weisfeiler-Lehman test, a powerful algorithm
for graph isomorphism problems. Many recent works also try to design more powerful GNNs that
beyond the 1-WL test (Zhang & Li, 2021; Kong et al., 2022; Feng et al., 2022; Huang et al., 2023b;
Zhang et al., 2023b;a; Feng et al., 2023; Kong et al., 2023) for better structural ability like learning
distance between nodes or counting cycles in graph. Some works try to combine the GNN with
the transformer. particularly, GraphFormers (Yang et al., 2021) and GROVER (Rong et al., 2020)
also insert a GNN layer between consecutive transformer layers for modeling graph inductive bias.
Different from us, their transformer layers are randomly initialized and directly tuned on downstream
tasks without text.

E ADDITIONAL DISCUSSIONS

E.1 GRAPH STRUCTURE QUESTION EXAMPLE OF LLM

We assessed the ability of LLMs to respond to questions related to graph structures, including shortest
path distances and common neighbor counting. For this evaluation, graph edges were described using
plain text, and the LLM was tasked with generating the answers. The results of this evaluation are
presented in Table 1. These findings indicate that LLMs struggle to comprehend graph structures
effectively. We include examples of the questions posed and the corresponding answers generated by
the LLM in Table 7, to illustrate these challenges.

E.2 THEORETICAL ADVANTAGES OF GOFA’S GRAPH LANGUAGE ENCODER

In GOFA, we innovatively integrate GNN layers into LLMs to help LLMs understand graph structures.
This approach is theoretically more powerful and suitable for designing GFMs than using pure
LLMs. Graph data have unique properties, such as node permutation invariance without fixed
ordering (Keriven & Peyré, 2019), making sequential models like LLMs unsuitable for modeling
graphs. For a graph with n nodes, the number of possible orders is n!, which means sequential

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Comparison of LLM-generated answers with correct answers for graph structure questions.

Question Answer Correct Answer

In the graph node 8 connects to
1, node 13 connects to 9, node 8
connects to 7, node 3 connects to
13, node 3 connects to 4, node 6
connects to 6, node 11 connects
to 8, node 12 connects to 11, node
2 connects to 12, node 14 con-
nects to 7, node 6 connects to 3,
node 6 connects to 9, node 2 con-
nects to 8, node 2 connects to 9,
node 5 connects to 8, node 3 con-
nects to 11, node 8 connects to
5, node 10 connects to 11, node
2 connects to 9, node 9 connects
to 10, what is a shortest path be-
tween node 8 and node 9?

To find the shortest path between
node 8 and node 9, we can use
Dijkstra’s algorithm or any other
shortest path algorithm. However,
since this graph is small, we can
find it manually. Here’s one of
the shortest paths between node 8
and node 9: Start at node 8. Move
from node 8 to node 5 (neigh-
bor). Move from node 5 to node
8 (neighbor). Move from node 8
to node 2 (neighbor). Move from
node 2 to node 9 (neighbor). So,
the shortest path between node 8
and node 9 is: 8 -> 5 -> 2 -> 9.

8 -> 2 -> 9

In the graph node 8 connects to
1, node 13 connects to 9, node 8
connects to 7, node 3 connects to
13, node 3 connects to 4, node 6
connects to 6, node 11 connects
to 8, node 12 connects to 11, node
2 connects to 12, node 14 con-
nects to 7, node 6 connects to 3,
node 6 connects to 9, node 2 con-
nects to 8, node 2 connects to 9,
node 5 connects to 8, node 3 con-
nects to 11, node 8 connects to 5,
node 10 connects to 11, node 2
connects to 9, node 9 connects to
10, what are common neighbors
between 13 and 5?

To find the common neighbors be-
tween nodes 13 and 5, we need to
identify all nodes that are neigh-
bors of both nodes 13 and 5.
From the provided connections:
Node 13 is connected to node 9
and node 3. Node 5 is connected
to node 8. Therefore, the com-
mon neighbor between node 13
and node 5 is node 8.

No common neighbors.

models like LLMs will need factorial sample complexity to learn that all of them correspond to the
same graph. Existing works therefore use random or heuristic order to represent a graph, resulting in
suboptimality and poor generalization on structure-related tasks. One empirical example from the task
planning experiments of LLM agents in (Wu et al., 2024) shows that LLMs can only perform well on
task graphs with a specific node ordering but cannot maintain this accuracy after nodes are reordered.
Methods like LLaGA (Chen et al., 2024) also fall into this category and are suboptimal if the task
requires deep structure understanding. Instead, GNNs are a powerful choice widely accepted by the
literature for encoding both features and the structure of graphs. They are permutation equivariant
to graph order and can learn invariant structure information. Our GOFA , interleaving GNN layers
into LLMs, naturally preserves this property. Specifically, for LLM layers, each node is processed
individually, which is obvious that we can keep the permutation invariance. As GNN layers are
permutation invariant, this conclude that the GOFA is permutation invariant to input graph.

E.3 ADVANTAGES OF GOFA’S SELF-SUPERVISED LEARNING TASKS

Our proposed self-supervised learning tasks are enlightened by existing graph and NLP SSL tasks.
However, our tasks are novel compared to existing methods from several perspectives.

In graph SSL, most prior work aims to recover original features or graph structure contrastively or
generatively (Liu et al., 2022), using learned embeddings for downstream classifiers. In contrast,
our tasks aim to learn embeddings that enable downstream natural language generation. Concretely,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

our SSL shortest path prediction task requires the model to output multiple actual paths (e.g., node
a→node b→node c) between two nodes in text format; this requires a more fine-grained and in-depth
model understanding of the graph structure. Regular graph SSL tasks such as link prediction and
shortest path distance prediction only cares about a simple objective (binary classification for link
and single number for distance). Conversely, our generation-oriented design allows a unified task
format to query into the graph from different aspects with different granularity (e.g. shortest path
and common neighbor can be incorporated under the same natural language generation framework),
whereas traditional SSL tasks inevitability lose much detailed information and may need artificial
complicated design to accommodate multiple SSL targets.

SSL in NLP (e.g. next-word-prediction) only takes texts as input. One may think of directly
converting graphs to text and doing a similar SSL. However, as many previous works show (Wang
et al., 2023), converting graphs directly to texts for LLM generation is ineffective. Hence, we design
the sentence completion task directly on the graph to use connection information to help the model
attend to correct nodes for subsequent generation.

In summary, our SSL design cares more about training the model to generate any answers in
natural language format so that it can accommodate arbitrary tasks, which differs from traditional
graph SSL that normally focuses on classification/regression (actually any graph SSL tasks can be
incorporated into our natural language generation framework). Compared to NLP SSL, our novel
SSL design focuses on sentence completion using neighboring sentence information rather than pure
auto-regression, strengthening the model’s power to leverage joint graph-text information.

F EXPERIMENTAL SETTINGS

F.1 GENERAL SETTINGS

Subgraph sampling: In the GOFA , for node/link/graph-level tasks, the input format is unified as a
subgraph task. Namely, for node/link-level tasks, we will select a k-hop subgraph surrounding the
target nodes as the input graph for the model. We follow a similar subgraph sampling strategy as
OFA (Liu et al., 2023a). Specifically, for node-level tasks, we directly sample the k-hop subgraph
rooted at the target node. Meanwhile, we set a threshold for maximum nodes per hop. If the nodes in
a certain hop exceed the threshold, we will randomly sample maximum nodes from all nodes. For
link-level tasks, we doing the sampling on both two nodes.

Implementations. Both the GOFA and all baselines are implemented using Python with Pytorch,
transformers, and PyG (Fey & Lenssen, 2019) packages.

F.2 DESIGN OF PRE-TRAINING TASKS

In this section, we describe the self-supervised pre-training of GOFA . The goal of the pre-training
is to let the GOFA model obtain the ability to query graph structure and context but retain the
ability to reason about plain text. Specifically, we perform the pre-training task using multiple
existing graph datasets, including MAG240M (Hu et al., 2021a), Arxiv (Hu et al., 2021b), Pubmed,
Wikikg90mv2 (Hu et al., 2021a), and Ultrachat200k (Ding et al., 2023) datasets. Further, we create
another graph dataset called WikiGraph, whose graphs are generated from sentences in the pure
textual WikiData dataset (Merity et al., 2022) using LLM. Details about the datasets can be found
in Appendix C. We randomly generate a unique node ID (such as [Node A]) for each node in the
training sample and append it to the original node text. This ID will serve as a basis for querying
nodes in the graph. We design four pre-training tasks: sentence completion, structural understanding,
question-answering, and information retrieval tasks. Figure 1 shows an example of each task. We
describe the rationale of each task below and leave some implementation details to Appendix F. We
also include an additional discussion of the advantages of our designed tasks in Appendix E.3.

Sentence completion task. The objective of the sentence completion task is to train GOFA to reason
about the rest of the text in a node given both the existing text and the information in the rest of the
graph. Given an input training sample, we randomly select n nodes in the graph as the target nodes.
All selected nodes’ texts are split into halves. The first half forms node text x(v), and the second
half becomes the target y to generate. The length of the first half will also be randomly determined.
Finally, the output representation of these n nodes will be directly input to the decoder (no prompt

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

node will be connected) and we minimize the loss between model decoded text and target y. This
sentence-completion pre-training task adapts LLMs’ standard ability to the graph context.

Structural understanding tasks. The objective of the structural tasks is to pre-train GOFA to
understand basic graph structural properties. In light of this, we design the shortest paths and common
neighbors reasoning tasks between nodes. Specifically, For each training subgraph sample, we
randomly sample n node pairs as the selected targets. For each selected node pair, we ask the model
to compute the shortest path distance between two nodes and output all possible shortest paths
between them using the assigned node IDs. Meanwhile, we also ask the model to output the number
of common neighbors the two nodes have and the node IDs of their common neighbors. For the
structural understanding task, a prompt node vp will connect to both two nodes since our structural
tasks need the model to reason about two nodes simultaneously. The text in the prompt node will be
the corresponding question. Through these two tasks, the model is expected to gain the ability to
identify basic graph structures, which are critical to downstream tasks.

Question answering task. Unlike language corpus, which naturally contains many question-and-
answer (QA) pairs, graph data usually only contain objective descriptions of entities. Nevertheless,
for the model to be fluid in tasks, we need the model to understand user prompts and be sensitive to
different tasks. Hence, we synthesize a QA-chain dataset from Ultrachat200k, as shown in Figure 1.
A language QA sequence is converted to a chain graph where nodes with question texts alternate
with nodes with answer texts, which are connected by directed edges to represent the conversation
order. The last question becomes the text on prompt node vp, which is connected to every node in the
chain, and the last answer is the target text y (see Figure 1 QA-Chain Task for an example). This QA
task provides QA pseudo-graphs missing from the common graph corpus, and we found it critical for
enabling the model to be responsive to arbitrary tasks expressed in free-form text questions.

Information retrieval task. For most of the downstream tasks, GOFA requires a prompt node to link
to all target nodes in the graph to solve related problems. To enable the prompt node to effectively
maintain related information for solving the task in the decoding stage, we design an information
retrieval task to realize these goals. Specifically, for each input graph, we randomly select n nodes and
we connect a prompt node to these n nodes. Next, the information retrieval task is further divided into
two parts: key-to-content and content-to-key. For key-to-content, we provide a node ID (randomly
chosen from the selected n nodes) in the prompt node and ask the model to retrieve the text of that
node. For the content-to-key task, we provide the content of one node (selected the same as above) in
the prompt node and ask the model to return the correct node ID of that node. This task enhances the
ability of GOFA to utilize our provided node IDs to retrieve and maintain correct information in the
prompt node, which proves useful for many downstream tasks requiring information retrieval.

F.3 PRE-TRAIN IMPLEMENTATION DETAILS OF GOFA

Dataset and task construction. As we discussed, we designed four different pre-training tasks for
GOFA . Here we describe some implementation details about each task and then discuss how we
construct each task on each dataset.

For the sentence completion task, the node text is split by the following rule: for each node, if the
node text is less than 256 words, we set the maximum left-halve length to be the half of node sentence
length. Otherwise, we set it to 128. Next, we randomly choose a length from 0 to maximum left
length as the final cut point to cut the sentence into two pieces. For the shortest path task, we ask the
model to output both the shortest path distance and all possible shortest paths. Since there may be
multiple paths, to ensure the uniqueness of the answer, we first order all paths based on the node ID
(the ascending order of alphabets) for nodes in each path and ask the model to learn this order. The
construction of common neighbor task is similar. Finally, for information retrieval, given an input
graph sample, we randomly select 2 to the number of nodes in the graph to be the target nodes.

For pre-training datasets, we use multiple datasets including MAG240M, Arxiv, Pubmed,
Wikikg90mv2, Ultrachat200k, and WikiGraph. For MAG240M, Arxiv, and Pubmed datasets, each
training sample is a subgraph sampled around a node. Next, sentence completion, shortest path, and
common neighbor tasks are constructed. For each sample, there are 4 complete sentences, 3 shortest
path, and 3 common neighbor tasks. We will also construct information retrieval tasks on these
datasets. However, to ensure a moderated graph size, the information retrieval task will be constructed

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Detailed question and answer example in pertaining task.

Task Question example Answer example

Sentence completion Complete the sentence of the tar-
get node.

The rest of the sentence in the tar-
get node.

Complete the sentence of the
node[NODE.A].

The rest of the sentence in node
[NODE.A].

Shortest paths Compute the shortest path dis-
tance between the target node
[NODE.L] and node [NODE.B]
and generate all shortest paths
from the target node to the
node [NODE.B]. Please separate
nodes in the path with ->. If mul-
tiple paths exist, generate all of
them with an ascending order of
node sequences and separate dif-
ferent paths with ;.

The shortest path distance is 2.
Shortest paths: [NODEID.L] ->
[NODEID.G] -> [NODEID.B].

Common Neighbors Is there any common neighbor be-
tween the target node [NODE.L]
and node [NODE.B]? If it exist,
please give the total number and
list all common neighbors in as-
cending order of node, separate
nodes with ;.

There is 1 common neighbor
between two nodes, including
[NODEID.G].

QA-Chain What are the rules and restric-
tions in place for COVID-19 in
the city?

I don’t have any live data regard-
ing the covid-19 rules and restric-
tions. Please check with the local
authorities or health department
for the latest guidelines and re-
strictions in your city.

Information Retrieval Please output the content of
[NODE.A].

Content on [NODE.A].

Given this node content: {node
content}, please output the node
id.

[NODEID].

separately from the above tasks and also for both key-to-content and content-to-key tasks. For each
information retrieval task sample, there will be only one task. For Wikikg90m, each training sample
is a subgraph sampled around an edge. In Wikikg90m, we additionally include a link prediction
task. That is, for each input graph, we randomly mask e edges and ask the model to recover the
content in the edge. For each sample, there are 4 complete sentences, 2 shortest paths, and 2 common
neighbor tasks, and 2 link prediction tasks. At the same time, the information retrieval task will also
be generated separately. For WikiGraph, each sample is itself a graph. Similar to Wikikg90mv2,
each sample consists of 4 complete sentences, 2 shortest paths, 2 common neighbor tasks, and 2
link prediction tasks and information retrieval task will also be generated separately. Finally, for
Ultracha200k, we only include question answer task and each sample only contains one task. The
detailed task prompts and answer examples are shown in Table 8.

Training details. The initial weight of the LLM compressor and decoder is obtained from ICAE (Ge
et al., 2023). The initial weight of all GNN layers is randomly initialized. The value of all gates in
the residual connection is set to 0 to ensure the initialized model performs the same as the original
language model. During the training, we only tune the GNN layers. For each training epoch, the
training corpus includes 500,000 MAG240M samples, 50,000 Arxiv samples, 5,000 PubMed samples,
100,000 Ultrachat200k samples, 80,000 WikiGraph samples, 100,000 Wikikg90mv2 samples. At

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

the meantime, for MAG240M, Arxiv, Pubmed, WikiGraph, and Wikikg90mv2, we will include
10,000 key-to-content and 10,000 content-to-key information retrieval tasks. This resulted in 935,000
samples for each training epoch and we trained the model for 3 epochs. The training is conducted on
8 NVIDIAA100_SXM4_80GB GPUs with DeepSpeed stage 2 (Rajbhandari et al., 2020) parallelism.
The detailed training parameters are set the same for both two models and are listed in Table 9. We
use AdamW optimizer with β = (0.9, 0.95). We use a cosine annealing learning rate scheduler, and
the minimum learning rate is 10% of the initial learning rate. We restarted the learning rate 2 times
on one-third and two-thirds of the training.

Table 9: Hyper-parameters for pretraining.

lr weight_decay batch_size dropout grad_clip gradient_accum llm_max_length optimizer

0.0001 0.1 8 0.0 0.5 8 128 AdamW

F.4 ZERO-SHOT LEARNING

Setting. For the zero-shot learning, we select Cora-link, Cora-node, WikiCS, Products, ExplaGraphs,
and SceneGraphs as evaluation datasets. For all datasets, we directly evaluate baselines and GOFA
on the test set.

Baseline Details: We compare the performance of GOFA with two categories of baseline methods.
The first category includes models that directly utilize large language models (LLMs). For this, we
select Llama2-7B and Mistral-7B (Jiang et al., 2023) as baselines. We input the content of all target
nodes into these pre-trained models and concatenate the same prompt used in GOFA for evaluation.
The second category consists of Graph LLM models that have zero-shot ability. We include OFA (Liu
et al., 2023a), GraphGPT (Tang et al., 2023), UniGraph (He & Hooi, 2024), ZeroG (Li et al., 2024),
and LLaGA (Chen et al., 2024) as baselines. For OFA, we extend the datasets by adding Products
and ExplaGraphs and follow the original source code to train the model on Arxiv and FB15K237 for
30 epochs, using Llama2-7B as the embedding model. All other settings remain consistent with the
default OFA configuration, and we report the test performance accordingly. For GraphGPT, we use
the results reported in the LLaGA paper. For UniGraph, we use the results from the original paper.
For ZeroG, we use the results in UniGraph paper. For LLaGA, we rerun the source code, adapting
the settings of ways to align with our experimental setup.

Detail of GOFA. For the GOFA, we fine-tune the model from the pre-training checkpoint. In
fine-tuning, we will train the parameters of GNN and LoRA layers in the LLM decoder. To com-
prehensively evaluate the performance of GOFA, We separately fine-tune the GOFA on different
datasets. Specifically, we design two different settings. In the first setting, we fine-tune the model
using the Arxiv and Pubmed datasets with both the node classification and link prediction tasks. In
the second setting, we add mag240m and Wikikg90m additionally. We denote GOFA-T and GOFA-F,
respectively. For GOFA-T, we sample 40000, 80000, 10000, 10000 for Arxiv_link, Arxiv_node,
Pubmed_link, and Pubmed_node, respectively. For GOFA-F, we sample 10000, 10000, 40000,
50000, 10000, 10000 for MAG240M, Wikikg90m, Arxiv_link, Arxiv_node, Pubmed_node, and
Pubmed_link, respectively. For all evaluation and pre-training datasets, we design multiple prompt
templates with instructions to let the model select the correct label from the provided label list. For
each label in each dataset, we use the GPT-4 to generate a short description for the label. The detailed
prompt examples for all datasets are shown in Table 10 and Table 11. For all MAG240M, Wikikg90m,
and Arxiv, since it is hard to include all ways in the prompt, we randomly sampled 10 ways during
the training for each sample. For each pre-training dataset, we randomly sample a fixed number of
training samples in a random way. The detailed parameters for fine-tuning are listed in Table 12. All
parameters not listed in the table are the same as the pre-training setting. For all training versions, we
directly evaluate the model on the test set of all evaluation datasets. We evaluate the model on the test
set. For datasets with less than 15000 test samples, we evaluate on the whole set. Otherwise, we only
randomly select 15000 samples for evaluation, due to the time constraint. For evaluation, we will
match the text output generated by the GOFA with the ground true label to compute the accuracy of
the classification task. For the regression task, we will extract the number from the output text and
compute the metric with the correct value.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 10: Prompt examples of GOFA for each training dataset in Zero-shot learning.

Dataset Prompt

MAG240M This is a citation network from microsoft academic graph platform. Nodes repre-
sent academic papers and edges represent citation relationship. You are an expert
in computer science. You need to choose the correct paper category based on the
paper content and its citation network. For example, if the paper [NODEID] {<la-
bel_description>, choose <label>;}. What is the most likely paper category for the
target paper? Choose from the following: {<label>}.

Pubmed-
link

This is a co-citation network from the Pubmed platform focusing on diabetes mellitus.
Nodes represent academic papers and edges represent two papers that are co-cited
by other papers. You are a diabetes mellitus expert tasked with determining whether
two given papers [NODEID1] and [NODEID2] are co-cited by another paper based
on their content and network characteristics. Evaluate the following criteria: assess
whether the topics of the two papers are similar, check if the shortest path distance
between the two papers is small, and verify whether the papers have a large number
of common neighbors in the citation network. If the answer to most of these questions
is Yes, choose Yes; if the answer to most of these questions is No, choose No.

PubMed-
node

This is a co-citation network from the Pubmed platform focusing on diabetes mellitus.
Nodes represent academic papers and edges represent two papers that are co-cited by
other papers. You are an expert on diabetes mellitus. You need to choose the correct
paper category based on the paper content and its co-citation network. For example,
if the paper [NODEID] {<label_description>, choose <label>;}. What is the most
likely paper category for the target paper? Choose from the following: {<label>}.

Wikikg90m This is a graph extracted from the entire Wikidata knowledge base. You are an expert
in knowledge graph reasoning. You need to choose the correct relation type between
two target entities based on their existing relations. For example, if two relations
involve {<label_description>, choose <label>;}. What is the relationship between
two target entities? Choose from the following list: {<label>}."

Arxiv_node This is a citation network from Arxiv platform focusing on the computer science area.
Nodes represent academic papers and edges represent citation relationships. You are
an expert in computer science. You need to choose the correct paper category based
on the paper content and its citation network. For example, if the paper [NODEID]
{<label_description>, choose <label>;}. What is the most likely paper category for
the target paper? Choose from the following: {<label>}.

Arxiv_link This is a citation network from Arxiv platform focusing on the computer science area.
Nodes represent academic papers and edges represent citation relationships. You
are a computer science expert tasked with determining whether two given papers
[NODEID1] and [NODEID2] are co-cited by another paper based on their content
and network characteristics. Evaluate the following criteria: assess whether the
topics of the two papers are similar, check if the shortest path distance between the
two papers is small, and verify whether the papers have a large number of common
neighbors in the citation network. If the answer to most of these questions is Yes,
choose Yes; if the answer to most of these questions is No, choose No.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 11: Prompt examples of GOFA for each evaluation dataset in Zero-shot learning.

Dataset Prompt

Cora-node This is a co-citation network focusing on artificial intelligence, nodes represent aca-
demic papers and edges represent two papers that are co-cited by other papers. You
are an expert in computer science. You need to choose the correct paper category
based on the paper content and its co-citation network. For example, if the paper
[NODEID] {<label_description>, choose <label>;}. What is the most likely paper
category for the target paper? Choose from the following: {<label>}.

Cora-link This is a co-citation network focusing on artificial intelligence, nodes represent aca-
demic papers, and edges represent two papers that are co-cited by other papers. You
are a computer science expert tasked with determining whether two given papers
are co-cited by another paper based on their content and network characteristics.
Evaluate the following criteria: assess whether the topics of the two papers are similar,
check if the shortest path distance between the two papers is small, and verify whether
the papers have a large number of common neighbors in the citation network. If the
answer to most of these questions is Yes, choose Yes; if the answer to most of these
questions is No, choose No.

WikiCS This is a Wikipedia graph focusing on computer science. Nodes represent Wikipedia
terms and edges represent two terms that have hyperlinks. You are an expert in
computer science. You need to choose the correct category of Wikipedia term based on
the term content. For example, if the term [NODEID] {<label_description>, choose
<label>;}. What is the most like category for this Wikipedia entry? Choose from the
following: {<label>}.

Products This is a co-purchase network from the Amazon platform. Nodes represent the products
sold on Amazon and edges represent two products that are co-purchased together. For
example, if the product [NODEID] {<label_description>, choose <label>;}. What is
the most like category for this product? Choose from the following: {<label>}.

FB15K237 This is a knowledge graph from the FreeBase. Nodes represent knowledge entities and
edges represent relations between two entities. You are an expert in knowledge graph
reasoning. You need to choose the correct relation type between two target entities
based on their existing relations. For example, if two relations {<label_description>,
choose <label>;}. What is the relationship between two target entities? Choose from
the following list: {<label>}."

ExplaGraphs This is a graph constructed from commonsense logic. Nodes represent commonsense
objects and edges represent the relation between two objects. You are a logic expert
tasked with analyzing the logical relationship between two arguments related to
connected entities. Determine if the arguments support or counter each other based
on their logical coherence. If there is no logical conflict between the two arguments
and they are in agreement, choose Support; if the arguments exhibit a logical conflict
or contradiction, choose Counter.

SceneGraphs This is a scene graph generated from an image. Nodes represent an object in the image
and edges represent the relationship between two objects. <Question>

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 12: Hyper-parameters for zero-shot instruction fine-tuning.

lr weight_decay gradient_accum llm_max_length

0.0001 0.1 64 256

F.5 SUPERVISED-LEARNING

Table 13: Hyper-parameters for supervised fine-tuning.

lr weight_decay grad_clip gradient_accum llm_max_length

0.0001 0.1 0.5 32 256

Setting. For the supervised-learning setting, we select Cora (node/link), PubMed (node/link), Arxiv,
WikiCS, WN18RR, FB15K237, and Products datasets for the evaluation. For all datasets, we utilize
the default split described in Appendix C. To ensure a fair comparison, we employ subgraph sampling
for GOFA and all baseline methods. For all datasets, the sampling hop is 3 and the maximum nodes
per hop are 5.

Detail of baselines. For the traditional GNN methods, we include GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018). To ensure a fair comparison, we use Llama2-7B to convert raw
texts in all datasets to sentence embedding and use this as the model’s input node/edge features. We
re-implement both methods in order to adapt the original method with subgraph input. Specifically,
for but node/link-level tasks, we will add labeling trick (Zhang et al., 2021) to the target nodes at
the beginning. After message passing, we will use the summation pooling on all target nodes and
use the result embedding for the prediction. For traditional GNN methods, we train and evaluate
each dataset independently. For all datasets, we search the number of layers and dropout parameters.
For each parameter set, we repeat the experiment 4 times select the parameter set with the best
validation performance, and report the performance on the test set. For constrastive learning methods,
we include DGI (Veličković et al., 2018) and BGRL (Thakoor et al., 2021). We directly report
results from UniGraph (He & Hooi, 2024) . For the graph foundation model, we include OFA (Liu
et al., 2023a) and UniGraph (He & Hooi, 2024) as the baseline. The OFA is simultaneously trained
and evaluated on all datasets. To ensure a fair comparison, we get their code from the original
source and train the model on Cora (node/link), PubMed (node/link), Arxiv, WikiCS, WN18RR,
and FB15K237 dataset using the Llama2-7b as base LLM model. Similarly, for OFA, we use the
same subgraph sampling parameters as all other methods. For other parameters, we use the default
parameter provided in their code. We only run the model one time and report the final performance.
For UniGraph, we directly report results from their original paper.

Detail of GOFA. For the GOFA, we fine-tune the model from the pre-training checkpoint. In fine-
tuning, we will train the parameters of GNN and LoRA layers in the LLM decoder. We simultaneously
fine-tune the model on the train set of Cora-node, Cora-link, PubMed-node, PubMed-link, Arxiv,
WikiCS, WN18RR, FB15K237, and Products. For each dataset, we will randomly sample a fixed
number of training samples for each epoch with random sampling. The sample numbers for each
dataset is 3000, 40000, 3000, 80000, 105000, 12000, 60000, 120000, and 38000, respectively. We
fine-tune the model for 1 epochs. The detailed parameters for fine-tuning are listed in Table 13. For
each dataset, we create a prompt for the LLM decoder to generate the desired answer. In a supervised
setting, we ask the LLM model directly to generate the correct answer, instead of doing the selection
from the given list. The detailed prompt for each dataset is listed in Table 14. For evaluation, we will
match the text output generated by the GOFA with the ground true label to compute the accuracy
of the classification task. We evaluate the model on the test set. For datasets with less than 15000
test samples, we evaluate on the whole set. Otherwise, we only randomly select 15000 samples for
evaluation, due to the time constraint.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 14: Detailed prompt of GOFA for each dataset in supervised learning.

Dataset Prompt

Cora-node This is a co-citation network focusing on artificial intelligence, nodes
represent academic papers and edges represent two papers are co-cited
by other papers. What is the most likely paper category for the target
paper? Please directly answer the category.

Cora-link This is a co-citation network focusing on artificial intelligence, nodes
represent academic papers and edges represent two papers are co-cited
by other papers. Is the two target papers co-cited or not? Please only
answer yes or no.

PubMed-node This is a co-citation network from Pubmed platform focusing on dia-
betes mellitus. Nodes represent academic papers and edges represent
two papers are co-cited by other papers. What is the most likely paper
category for the target paper? Please directly answer the category.

PubMed-link This is a co-citation network from Pubmed platform focusing on dia-
betes mellitus. Nodes represent academic papers and edges represent
two papers are co-cited by other papers. Is the two target papers
co-cited or not? Please only answer yes or no.

Arxiv This is a citation network from arxiv platform focusing on the computer
science area. Nodes represent academic papers and edges represent
citation relationships. What is the most likely paper category for the
target Arxiv paper? please directly answer the category.

WikiCS This is a Wikipedia graph focusing on computer science. Nodes rep-
resent Wikipedia terms and edges represent two terms have hyperlink.
What is the most likely category for this Wikipedia term? Please directly
answer the category.

WN18RR This is a knowledge graph from WordNet. Nodes represent an English
word and edges represent the relationship between two words. What is
the relationship between two target words? Please directly answer the
relationship.

FB15K237 This is a knowledge graph from freebase. Nodes represent knowledge
entities and edges represent relations between two entities. What is the
relationship between two target entities? Please directly answer the
relationship.

Products This is a co-purchase network from the Amazon platform. Nodes repre-
sent the products sold on Amazon and edges represent two products are
co-purchased together. What is the most like category for this product?
Please directly answer the category.

30

	Introduction
	A Desired Foundation Model for Graph
	Method
	Generative Modeling for Graph
	GOFA : Generative One-For-All Model
	Unified Task Representation in GOFA
	Large-Scale Pre-training

	Related work
	Experiment
	GOFA pre-training
	Zero-shot learning with GOFA
	Comparing GOFA with LLMs
	GOFA Responses on Diverse Tasks

	Conclusion, Limitations, and Future Works
	Implementation Details
	In-context autoencoder (ICAE)
	LLM choices of GOFA
	Transformer Convolutional GNN

	Additional Experiments
	Supervised Experiment Results
	Example of GOFA's Free-form Answer

	Datasets
	Related Work Extended
	Additional Discussions
	Graph Structure Question Example of LLM
	Theoretical Advantages of GOFA's Graph Language Encoder
	Advantages of GOFA's Self-supervised Learning Tasks

	Experimental settings
	General settings
	Design of pre-training tasks
	Pre-train implementation details of GOFA
	Zero-shot learning
	Supervised-learning

