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ABSTRACT

Spatiotemporal systems comprise a collection of spatially distributed yet interde-
pendent entities each generating unique dynamic signals. Highly sophisticated
methods have been proposed in recent years delivering state-of-the-art (SOTA)
forecasts but few have focused on interpretability. To address this, we propose
the Future Decomposition Network (FDN), a novel forecast model capable of (a)
providing interpretable predictions through classification (b) revealing latent ac-
tivity patterns in the target time-series and (c) delivering forecasts competitive
with SOTA methods at a fraction of their memory and runtime cost. We conduct
comprehensive analyses on FDN for multiple datasets from hydrologic, traffic,
and energy systems demonstrating its improved accuracy and interpretability.

1 INTRODUCTION

A spatiotemporal system represents a collection of spatially distributed but interdependent entities
each with unique activity (Li et al., 2017; Zeng et al., 2023). This activity, such as traffic flow, is
driven by a complex set of interactions resulting in emergent behaviors that are difficult to understand
from observed data. In the case of traffic systems, traffic congestion generally coincides with high
traffic volume and network bottlenecks. We observe similar dynamics in streamflow networks where
high streamflow events and subsequent dissipation regularly coincide with major precipitation.

In this paper, we propose that system behavior can largely be explained by a finite set of fundamental
activity patterns. In the context of spatiotemporal learning, a pattern represents a temporal signature
of the target variable that recurs frequently and follows specific system rules. For instance, the
rise and fall of streamflow during flood events follows major precipitation, hence, we can expect to
observe this pattern during similar weather events. These temporal patterns resemble filters used in
image processing to detect specific features (Krizhevsky et al., 2012).

We propose a model that aims to detect these recurring patterns, as they are likely to reappear in the
future. However, future patterns may not precisely match past ones. Therefore, we frame the prob-
lem as a soft classification task, estimating the probability of different patterns contributing to the
forecast. Using the classification probabilities, we interpolate from a set of learned patterns to make
final predictions. We refer to this approach as the Future Decomposition Network (FDN): a model
which decomposes system activity (the training data) into important patterns, (softly) classifies past
activity, and predicts the future as an interpolation of these patterns.

As evidence, we can represent a system of N entities containing B, O-time-step patterns as a matrix
F ∈ RN ·O×B . While F captures all known system behavior, it is highly redundant and may be
closely reproduced by a small set of K fundamental patterns F̂ ∈ RO×K shared by all entities. For
example, in the Wabash River data analyzed in this paper, 70 years of localized streamflow across
1,276 subbasins can be effectively represented by about K=200 patterns as shown in Figure 1a.
Figure 1b illustrates eight of these streamflow patterns, where the first two patterns capture the high
flow and subsequent dissipation observed during flood events.

Over the past decade, significant progress has been made in spatiotemporal machine learning (Shi
& Yeung, 2018; Wang et al., 2020; Bai et al., 2020). Most existing methods rely on a combination
of temporal and spatial encodings to capture interactions among system components, but they often
lack interpretability, failing to reveal how forecasts are generated. FDN addresses this limitation
with a novel approach that decomposes spatiotemporal systems into a finite set of patterns and then
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(a) Error in low-rank approximation of F. (b) Eight most significant patterns using sin-
gular value decomposition (SVD) of F.

Figure 1: Low-rank approximation error and important patterns of the 7-day matrix F ∈ R8932×25189

of Wabash River’s training set. The entire training set (F) can be reasonably approximated by a
relatively small (K = 200) set of patterns.

uses these patterns for prediction. As a result, FDN delivers accurate forecasts and provides valuable
insights into the fundamental patterns driving system behaviors.

The contributions of this work include:

• A novel forecast model architecture utilizing classification and interpolation for direct in-
terpretability.

• The Future Decomposition layer – a novel forecast operator capable of revealing funda-
mental activity patterns of the system.

• A novel attention layer for localized filtering in multi-variate spatiotemporal systems.
• Using streamflow, traffic, and energy systems, we demonstrate that FDN outperforms state-

of-the-art (SOTA) models while providing interpretable forecasts.

2 RELATED WORK

Spatiotemporal system forecasting is a highly active sub-field of ML research, primarily originating
in the study of traffic systems (Li et al., 2017) and now advancing into multi-domain application (Wu
et al., 2020; Cao et al., 2020; Zhou et al., 2021; 2022; Zeng et al., 2023; Majeske & Azad, 2024). In
the pursuit of greater forecast accuracy, increasingly sophisticated encoding and decoding schemes
have emerged but development of the forecast operator has been limited. The forecast operator
refers to the inflection point in each forecast model where the past/input sequence is transformed
into the future/output sequence. At a high level, contemporary forecast models follow a three-part
architecture (shown in Figure 2a) consisting of (1) an encoder module to project the input sequence
from input to embedding space (2) a forecast operator to transform the input sequence into an output
sequence and (3) a decoder module to project the output sequence from embedding to output space.
We summarize recent encoder modules and forecast operators currently in use but we do not cover
decoder modules since most methods apply simple linear projection or decoding coincides with the
forecast operator (e.g. with 1× 1 kernels in convolution operators, multi-head attention, etc.).

2.1 ENCODING MODULES

The encoding module aims to capture information relevant to each node during the projection from
input to embedding space. Spatiotemporal systems exhibit both spatial and temporal dynamics
which must be properly embedded to support the subsequent forecast operator and decoding module.
The system’s dependency structure (e.g. streamflow network, road network, etc.) significantly
influences the local dynamics of each node, and many methods leverage graph convolution (Kipf &
Welling, 2016) to encode it. STGCN, DCRNN, T-GCN, A3T-GCN, and STGM (Yu et al., 2017; Li
et al., 2017; Zhao et al., 2019; Bai et al., 2021; Lablack & Shen, 2023) utilize pre-defined graphs
but recent methods have opted to learn the dependency structure including MTGNN, StemGNN,
AGCRN, SCINet, and MMR-GNN (Wu et al., 2020; Cao et al., 2020; Bai et al., 2020; Liu et al.,
2022; Majeske & Azad, 2024).
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(a) General architecture of forecast models.

(b) Identity Operator (c) Fully-Connected Operator (d) Auto-Regressive Operator

Figure 2: Overview of the forecast model architecture and three of the five forecast operators found
in recent literature. τ denotes the current time-step.

Embedding of temporal dynamics continues to develop though many methods still employ RNNs
despite their age. While T-GCN, A3T-GCN, and StemGNN (Zhao et al., 2019; Bai et al., 2021; Cao
et al., 2020) use vanilla RNN, GRU, or LSTM cells to succeed, other methods (Kratzert et al., 2019;
Bai et al., 2020; Majeske & Azad, 2024) have adapted these cells specifically to spatiotemporal data.
Temporal convolution networks (TCNs) were introduced in (Lea et al., 2017) and have subsequently
been applied in many methods including STGCN, Graph WaveNet, and MTGNN (Yu et al., 2017;
Wu et al., 2019; 2020). Recent efforts have adapted the Transformer architecture (Vaswani, 2017)
including GMAN and STGM (Zheng et al., 2020; Lablack & Shen, 2023) for traffic forecasting
and Informer, Autoformer, and FEDformer (Zheng et al., 2020; Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022) for general long-term forecasting. New methods continue to arise with SCINet
proposing recursive time-series down-sampling and (Zeng et al., 2023) questioning the suitability of
Transformer-based forecast models by showing success with simple fully-connected networks.

2.2 FORECAST OPERATORS

From the recent literature, we find five forecast operators in use including the identity, fully-
connected (FC), convolution, auto-regressive (AR), and attention operators. Section A.2 discusses
these operators in detail and table 3 enumerates forecast models that apply them, but we offer a
brief description here. The identity operator (Figure 2b) involves selecting the last O elements of
the encoded input sequence. The FC operator (Figure 2c) utilizes all-to-all connections to transform
the encoded sequence into the output sequence. Convolution operators treat the encoded sequence
as image data to transform I input color channels / time-steps into O output color channels / time-
steps using O filters of I kernels. The AR operator (Figure 2d) auto-regressively feeds the encoded
sequence for O steps to produce the output sequence; typically via an RNN cell. Finally, attention
operators compute each element of the output sequence as an attention-weighted sum of the entire
input sequence and are central to transformer-based forecast models.

We note that the FC, convolution, and attention operators are fundamentally similar. In fact, 1×1
and 1×H kernels (where H is the embedding dimension) are common and nearly identical to FC.
Furthermore, only attention provides direct interpretability through the examination of final attention
scores. Our review reveals that the forecast operator has been overlooked in favor of more sophisti-
cated encoding schemes. With FDN, we propose the Future Decomposition layer: a novel forecast
operator based on classification and interpolation that can reveal fundamental activity patterns.
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Figure 3: The classifier-interpolator architecture of FDN. Past signals X of each node are soft
classified into the likelihood of K possible future patterns. Final prediction Ŷ is constructed as an
interpolation of the K patterns using the classifier’s confidences as weights.

3 METHODS

3.1 PROBLEM FORMULATION

A spatiotemporal system consists N spatially distributed entities (e.g. solar panels, traffic sensors,
stream gauges, etc.) each generating dynamic signals (e.g. power in MW, traffic speed in mph,
streamflow in cm3, etc.). The dependency between entities (explicit or correlative) is defined by
a graph G = (V,E) with nodes V (entities) and edges E (dependencies). At current time-step τ ,
each node of the system generates F features (e.g. precipitation, temperature, and streamflow) as
Xτ ∈ RN×F leading to X ∈ RN×T×F as a sample of T contiguous time-steps. One feature is
selected as the forecast target Y ∈ X and we solve Eq. 1:

argmin
θ

L(Y(τ+1):(τ+O),Fθ(X(τ−I+1):τ ;G)) (1)

where {Xτ−I+1, Xτ−I+2, ..., Xτ} = X(τ−I+1):τ ∈ RN×I×F is the observation,
{yτ+1,yτ+2, ...,yτ+O} = Y(τ+1):(τ+O) ∈ RN×O is the horizon, and L is forecast loss. We look
to learn Fθ capable of predicting the next O time-steps of the target signal Y(τ+1):(τ+O) given the
past I time-steps of the system X(τ−I+1):τ and its dependency structure G.

3.2 MODEL DESIGN

3.2.1 HIGH-LEVEL ARCHITECTURE

The goal of FDN is to learn patterns of the past (i.e. preambles) that predict particular patterns of the
future. To capture the coupling of such past and future patterns, we utilize a classifier-interpolator
architecture shown in Figure 3. The classifier aims to determine the correct future pattern based on
past activity and features five internal stages to support soft classification accuracy. These include
(a) feature filtering to remove noise (b) adding information to identify the location (c) encoding of
spatial/dependency dynamics (d) adding information to identify the point-in-time and (e) encoding
of temporal dynamics. Future patterns seldom follow past patterns exactly, thus, FDN utilizes soft
classification in the selection of a future. Rather than discretize probabilities to select the future
pattern of highest likelihood (classification), we apply these probabilities directly (soft classification)
to select the future as an interpolation between K futures patterns.

The forward pass of FDN is defined by Eq. 2 where the past of each node is soft classified to
produce the K-class likelihood matrix C ∈ RN×K . Here, each row vector indicates the classifier’s
confidence as to which pattern should follow amongst K possibilities. The interpolation module
then generates the prediction as a linear combination/interpolation of K patterns using the classifier’s
confidence scores as weights. The following sections give a detailed discussion of FDN’s classifier
module and our novel FD layer for prediction and pattern discovery.

Classifier(X(τ−I+1):τ , G) → C ∈ RN×K

Interpolator(C, F̂) → Ŷ(τ+1):(τ+O) ∈ RN×O
(2)
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Figure 4: Overview of FDN’s classifier module. Features are first filtered by the localized dynamic
attention (LDA) layer. Node embeddings are then concatenated onto filtered features for spatial
conditioning. Node dependency is then encoded via a Chebyshev GCN layer using the dense graph
created from learned node embeddings E. Periodic embeddings P(τ−I+1):τ are then concatenated
for temporal conditioning. A GRU layer encodes the observation window and a fully-connected
(FC) layer with softmax activation (denoted by σ) computes the K-class likelihood matrix C.

3.2.2 PREAMBLE CLASSIFICATION

FDN’s classifier is defined by Eq. 3 and shown in Figure 4 with an accompanying step-by-step de-
scription. In effect, this classifier produces a spatiotemporal embedding Est containing information
of each node’s past features (in X(τ−I+1):τ ), the past features of its depended nodes (from GCN),
features to identify that node and its unique dynamics (from E), and features to identity the current
moment in time (from P(τ−I+1):τ ). The purpose of LDA, graph convolution, node embeddings,
periodic embeddings, and GRU is to encode all relevant information into Est to maximize preamble
classification accuracy.

σ(E ·ET ) → G

LDA(X(τ−I+1):τ ,E) → X∗
(τ−I+1):τ ∈ RN×I×F

[X∗
(τ−I+1):τ ,E] → X∗

(τ−I+1):τ ∈ RN×I×(F+D)

Chebyshev-GCN(X∗
(τ−I+1):τ , G) → Es ∈ RN×I×H

[Es,P(τ−I+1):τ ] → Es ∈ RN×I×(H+ρ)

GRU(Es) → Est ∈ RN×H

σ(FC(Est)) → C ∈ RN×K

(3)

3.2.3 LEARNED EMBEDDINGS FOR CONDITIONING

To support preamble classification, we spatially and temporally condition the model via two embed-
ding forms learned through the minimization of forecast loss. By conditioning, we refer to the ad-
dition of information that identifies the current node (spatial) and point-in-time (temporal) for more
precise classification. For spatial conditioning, FDN utilizes learned node embeddings E ∈ RN×D

to represent each node’s latent dynamics. These node embeddings serve three functions (a) to learn
node feature importance and dynamically filter input signals via LDA (b) to add node information
(via concatenation onto X∗

(τ−I+1):τ ) for spatial conditioning and (c) to learn graph G and encode
node inter-dependency via GCN.

To temporally condition the encoding, FDN utilizes learned periodic embeddings P ∈ RM×ρ where
M defines the number of moments in a known seasonal period and ρ is embedding dimension. The
periodic index function p(t) maps each time-step (as a unique time-stamp) to its moment index m
and we apply it at the observation window to retrieve P(τ−I+1):τ ∈ RI×ρ. These embeddings are
then concatenated onto Es to condition the encoding to the current moment of the seasonal period.
Section A.7 provides evidence of the seasonal period of each forecast variable studied in this paper.
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Figure 5: The forward pass of Localized Dynamic Attention on node v. Weight matrix Wv is
computed as a weighted combination of the D channels in W using node embedding vector Ev ∈
RD as weights. Softmax activation σ(·) derives dynamic attention matrix Âv and the Hadamard
product produces filtered features X∗

v .

p(t) → m ∈ [1,M ]

{Pp(τ−I+1),Pp(τ−I+2), ...,Pp(τ)} → P(τ−I+1):τ ∈ RI×ρ
(4)

3.2.4 LOCALIZED DYNAMIC ATTENTION

In multi-variate settings (F > 1), each node generates multiple signals which potentially correlate
to the target time series. For example, we should expect traffic volume to have a strong negative cor-
relation with traffic speed (e.g. as volume increases, speed decreases due to congestion). However,
these correlations may be highly specific to each node (i.e. localized). For example, the correlation
between traffic volume and speed is likely stronger in highways susceptible to congestion (e.g. con-
taining bottlenecks) than in highways that are not. We look to learn these dynamics and accordingly
filter node features with LDA.

The forward pass is defined in Eq. 5 where Â aims to capture the complete attention tensor
A ∈ RN×I×F which defines the exact feature importance at each node. The process to filter the
features of node v is demonstrated in figure 5. Specifically, W defines D dynamic attention weight
matrices (Wd ∈ RI×F ) and E defines the mixture of these matrices for each node of the system. By
constraining LDA to a lower dimension (D ≪ N ) we can control its precision to avoid over-fitting
and reduce memory consumption.

W ∈ RD×I×F

σ(EW ) → Â ∈ RN×I×F

Â⊙X(τ−I+1):τ → X∗
(τ−I+1):τ ∈ RN×I×F

(5)

3.2.5 FUTURE DECOMPOSITION LAYER

The classifier produces matrix C ∈ RN×K indicating its confidence of the future pattern amongst
K possibilities. For each node, FD uses its likelihood vector to compute the prediction as a linear
combination/interpolation of the K patterns. For example, if the classifier shows high confidence of
future flooding the prediction will be a unique flood pattern largely constructed from the subset of
patterns indicating a flood event. The forward pass is defined by Eq. 6 where F̂ ∈ RO×K is the set
of patterns intended to capture F ∈ RN ·O×B ; the matrix containing all O-time-step samples of the
system’s training set. But, how do we determine F̂?

CF̂T → Ŷ(τ+1):(τ+O) ∈ RN×O (6)

We may apply SVD and take the first K columns of the left-singular matrix U to produce K patterns.
However, SVD is cumbersome for sufficiently large systems and we are uncertain of its optimality
for forecasting. With this in mind, we design FD to operate on a learned F̂ to automatically discover
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Table 1: Technical details of all studied datasets.

Dataset Time-steps Nodes F G Resolution Horizons

Wabash River 31,046 1,276 5 ✓ 1 day 1, 4, 7
E-PEMS-BAY 52,116 325 5 ✓ 5 minute 1, 6, 12
Solar-Energy 52,560 137 1 ✗ 10 minute 1, 6, 12

the K patterns through stochastic gradient descent (SGD). In this way, we can avoid a costly pre-
processing step and be certain of the optimality of F̂ to forecasting.

4 EXPERIMENTS

We evaluate FDN and all baseline models on three publicly available datasets from hydrology, traffic,
and energy. These datasets are formally known as Wabash River, E-PEMS-BAY, and Solar-Energy
and we discuss each in detail in Section A.1 of the appendix. Dataset properties are provided in
Table 1 including sample size (time-steps), system size (nodes), number of features (F ), whether a
pre-defined graph exists (G), sample resolution, and the various prediction horizons we study.

Data Preparation. In all experiments, we standardize the features of a node using the mean and
standard deviation computed from the training set of that node. All models are trained on standard-
ized features but forecasts are inversely standardized before final evaluation. Only E-PEMS-BAY
contains missing values (≈ 2.5%) and we impute with local periodic means. That is, we compute
and utilize the periodic mean (separate mean for the 288, 5-minute moments in a day) of each feature
and node during imputation.

Evaluation Metrics. All models are evaluated according to Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE). Metrics are masked to
exclude imputed values and ensure model performance quantification is a consequence of forecasts
made on ground truth samples only. Imputed values are also masked in the computation of forecast
loss during SGD. Experiments are executed three times using three pseudo-randomly generated
initialization seeds and results are given as the mean and standard deviation of these trials. Due to
space limitations, standard deviations are presented in section A.3 of the appendix.

Model Baselines. We evaluate FDN against 11 forecast models found throughout the literature.
This includes simpler models designed for single time-series forecasting, complex models designed
for multiple time-series, and highly sophisticated SOTA models designed for multiple time-series
forecasting across multiple domains. Implementations of these models were acquired from their
published GitHub repositories except for T-GCN and A3T-GCN implemented in PyTorch Geometric
Temporal (Rozemberczki et al., 2021). All experiments were conducted on an Nvidia A100 GPU
with 40GB of memory. Each model is trained using MAE (PyTorch’s L1Loss) as forecast loss.

4.1 MAIN RESULTS

Forecast performance metrics for all models and prediction horizons are presented in Table 2. Model
efficiency metrics are reported and discussed at length in section A.4 due to space limitations. Over-
all, FDN matches or exceeds the performance of other SOTA methods. For longer prediction hori-
zons, FDN consistently outperforms the next best model across all datasets. The most notable im-
provement is observed for E-PEMS-BAY, with a 9.1% reduction in MAPE and a 2.5% reduction in
RMSE. FDN also gives a 6.3% MAPE reduction while nearly matching RMSE for Wabash River,
and a 1% and 12% reduction in MAPE and RMSE for Solar-Energy for the largest horizon.

Since the metrics of Table 2 represent mean forecast performance over hundreds of nodes, it is
difficult to gauge improvement fully. Figures 9, 10, and 11 from section A.6 plot percentage change
in MAPE and RMSE (where negative indicates improvement) at all nodes of Wabash River, E-
PEMS-BAY, and Solar-Energy for FDN relative to the second-best model. The x-axis shows baseline
model performance while node color intensity / size is determined by the coefficient of variation
(CoV) in the forecast variable. Here, we observe greater improvement at higher variance nodes
suggesting FDN is particularly suited to capturing large changes in the forecast variable.
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Table 2: Average MAE, MAPE, and RMSE from all horizons on three datasets. The best perfor-
mance is emboldened while the second-best is underlined. GCN-based models, which require a
pre-defined graph, are incompatible with Solar-Energy data, as it lacks such a structure. “N/A” in-
dicates this model incompatibility. The standard deviations are presented in the appendix.

Hori- Metric GRU TCN FED- LTSF T-GCN A3T- STGM Stem- MTGNN AGCRN SCINet FDN
zon former DLinear GCN GNN

W
ab

as
h

R
iv

er

1
MAE 3.517 3.499 3.868 3.631 6.975 7.035 3.938 3.700 3.355 2.945 3.476 3.127
MAPE 17.210 17.731 31.746 17.508 26.657 26.684 25.480 19.087 19.943 17.658 18.367 16.292
RMSE 10.655 10.678 10.068 10.972 14.658 14.788 10.963 11.036 10.015 8.978 10.425 9.583

4
MAE 7.173 7.400 7.634 7.326 9.664 9.696 8.515 7.363 6.895 6.649 7.444 6.624
MAPE 28.337 28.542 41.893 28.166 35.477 35.684 43.242 29.565 30.719 27.996 31.434 26.183
RMSE 18.727 19.306 18.368 19.125 21.067 21.086 19.563 19.037 18.124 17.518 18.985 17.890

7
MAE 9.604 9.812 10.153 9.887 11.552 11.575 11.028 10.025 9.242 9.128 10.184 9.122
MAPE 35.441 39.157 47.402 35.063 41.771 41.574 47.421 39.401 36.663 35.085 40.243 32.978
RMSE 23.175 23.742 23.022 23.803 24.882 24.898 24.170 23.824 22.473 22.719 23.604 22.611

E
-P

E
M

S-
B

A
Y

1
MAE 0.974 0.942 1.354 1.000 2.040 2.021 1.558 0.916 1.185 1.034 0.987 0.937
MAPE 1.912 1.835 2.797 1.945 4.207 4.157 2.909 1.787 2.707 2.046 1.962 1.875
RMSE 1.826 1.776 2.492 1.987 3.280 3.284 2.398 1.746 2.199 1.868 1.866 1.757

6
MAE 1.587 1.588 2.021 1.689 2.420 2.383 5.380 1.549 1.817 1.705 1.598 1.475
MAPE 3.334 3.279 4.232 3.493 5.109 5.005 10.242 3.263 4.064 3.571 3.402 3.106
RMSE 3.414 3.502 3.974 3.664 4.200 4.218 7.345 3.276 3.749 3.406 3.181 3.076

12
MAE 2.076 2.117 2.329 2.225 2.708 2.719 12.531 1.971 2.604 2.083 1.950 1.792
MAPE 4.459 4.555 4.891 4.684 5.781 5.774 21.043 4.245 5.929 4.371 4.208 3.857
RMSE 4.465 4.655 4.657 4.858 4.900 4.955 16.393 4.125 5.364 4.166 3.897 3.803

So
la

r-
E

ne
rg

y

1
MAE 0.292 0.293 0.915 0.319 N/A N/A N/A 1.419 0.285 0.247 0.277 0.238
MAPE 68.163 67.696 71.959 68.519 N/A N/A N/A 76.452 68.097 66.927 67.037 66.815
RMSE 0.817 0.786 1.600 0.854 N/A N/A N/A 2.840 0.779 0.704 0.768 0.705

6
MAE 0.752 0.789 1.281 0.987 N/A N/A N/A 2.032 0.590 0.592 0.642 0.557
MAPE 73.144 73.410 74.525 74.566 N/A N/A N/A 79.889 71.429 71.249 71.954 70.899
RMSE 1.894 1.902 2.244 2.249 N/A N/A N/A 3.961 1.511 1.518 1.583 1.422

12
MAE 1.241 1.451 1.788 1.645 N/A N/A N/A 2.092 0.870 0.901 0.962 0.869
MAPE 76.957 77.961 76.697 78.337 N/A N/A N/A 80.719 74.019 74.049 74.670 73.267
RMSE 2.950 3.166 3.027 3.472 N/A N/A N/A 4.117 2.215 2.270 2.332 1.977

(a) Wabash River (b) E-PEMS-BAY (c) Solar-Energy

Figure 6: Forecasts of select nodes in Wabash River, E-PEMS-BAY, and Solar-Energy. The ground
truth signal is shown in black, the second-best model in blue, and FDN in orange.

Predictions from FDN and the second-best performer are shown in Figure 6. FDN shows an im-
provement during high streamflow events in the Wabash River by capturing the many peaks more
closely than AGCRN. In Solar-Energy, FDN shows less over-prediction relative to MTGNN dur-
ing the peak hours of early afternoon. Finally, in E-PEMS-BAY, FDN predicts the sudden halt of
traffic during rush hour and returned flow in the late evenings whereas StemGNN is late and early
to predict these events. FDN delivers accurate forecasts and, as we will see in the next section, its
classifier-interpolator architecture allows us to easily interpret its prediction process.

4.2 LEARNED PATTERNS AND INTERPRETABILITY

Figure 7 shows FDN’s prediction process for streamflow, traffic speed, and power production in the
left, middle, and right columns respectively. The top row shows a real-time prediction where dashed
vertical lines indicate the observation and horizon windows. The observed/preamble signal, shown
in the observation window as green, is classified to produce the next forecast, shown in the horizon
window as dotted red. The preamble classification is used to interpolate from FD’s K learned
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Figure 7: Real-time FDN predictions (top row) for Wabash River, E-PEMS-BAY, and Solar-Energy,
in left, middle, and right columns respectively. We show ground truth in black, past predictions
in red, observation/preamble in green, and selected/interpolated patterns for the next forecast in
dashed red lines. In the bottom row, we show ten of the learned patterns and indicate current soft
classification probability by the darkness of their background. That is, the patterns are arranged
from left to right in the ascending order of the classifier’s confidence.

patterns, shown in the bottom row. For clarity, we show the top ten patterns, with their respective
likelihood indicated by the darkness of their background.

Considering the figures more closely, FDN’s predictions become clear. On the descent from a pe-
riod of high streamflow, FDN predicts this process to continue with high confidence in a “descent
pattern”. Towards the end of a period of traffic congestion, we can see FDN has detected the uptick
in vehicle speed and correctly predicts the return of traffic flow. Finally, FDN correctly detects the
halt of solar power production at approximately 4:30pm; the sunset time for Alabama, USA in late
December 2006.

Overall, FDN shows remarkable interpretability. Through classification, we can directly observe the
choice of FDN’s next forecast. Moreover, learned patterns reveal some of the fundamental activities
present in each system. Here we observe a few patterns that indicate flood dissipation, traffic relief,
and time of sunset.

4.3 MODEL GENERALIZATION

We can think of the FD layer as attempting to learn K vectors which capture all information of the
training set F ∈ RN ·O×B , similar to SVD. Noting that F̂ is a set of vectors in O dimensions, FD at-
tempts to learn a vector space that encloses F in its entirety. Figure 8a shows the 64 learned patterns
(in black) and all ground truth and predicted samples for E-PEMS-BAY reduced to two dimensions
by principle component analysis (PCA). Black dashed lines connect the outer-most learned patterns
as a convex hull to indicate FD’s learned vector space. In this case, we see evidence of good gen-
eralization as F̂ nearly captures all training set samples, shown in blue, and all testing set samples,
shown in orange. Additionally, the high level of coverage of testing set samples (orange) by testing
set predictions (red) indicates forecast accuracy.

4.4 ABLATION STUDY

We now study the contribution of each component in FDN to forecast accuracy. Specifically, we test
(a) increasing the number of learned patterns (b) no attention versus various attention layers includ-
ing LDA (c) node inter-dependency learning from GCN (d) learned node embedding dimension (e)
regularization of the learned patterns (f) moment resolution and (g) learned periodic embedding di-
mension. Each ablation study was conducted on the longest prediction horizon and results show the

9
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(a) FDN’s fit to training (blue) and testing (orange) sets,
along with the train (green) and test (red) predictions,
within the vector space learned by FD’s K patterns.
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(b) Ablation study results for the number of
learned patterns K.

Figure 8: (a) Model generalization by the learned patterns and (b) the impact K on forecasting error.

average of three trials. We discuss the first ablation below showing results in figure 8b but discuss
the other studies and their results in section A.5 due to space limitations.

Learned Patterns. The FD layer learns a set of patterns to capture F which, as demonstrated in
Figure 1a, is greatly benefited by increasing the rank / number of patterns. Here, we test increasing
the number of patterns learned by FD to improve its ability to capture F. Table 10 and Figure
8b demonstrate the effectiveness of FD as we observe a saturation in forecast performance when
learning as few as eight patterns.

Node Embedding Dimension. FDN’s learned node embeddings condition the classifier to each
node, determine their feature filtering, and learn the graph for dependency encoding. The node
embedding dimension controls the specificity of node conditioning, LDA, and the learned graph and
must be tuned for proper generalization. Table 13 shows the result of increasing dimension D and
we observe a saturation in forecasting performance at approximately D = 10.

Periodic Moment Resolution. Periodic embeddings consist of a sequence of ρ-dimensional embed-
dings representing moments in the known period/season of the forecast variable. Moment resolution
ranges from the duration of the period (M = 1) to the duration of each time step (M ≫ 1) and
must be tuned to avoid over-fitting. Table 15 shows increasing moment resolution starting from pe-
riod/season duration (M = 1) and increasing up to time-step duration (M=366 in Wabash River).
Wabash River shows saturation at 3-months (capturing the 4 seasons of the year) while E-PEMS-
BAY and Solar-Energy benefit from high-resolution moments.

5 CONCLUSION

This paper presents FDN, a novel forecast model architecture which leverages classification and
interpolation to produce accurate and interpretable forecasts. FDN utilizes the Future Decomposi-
tion layer, a new forecast operator to the literature capable of revealing latent patterns of the target
time-series. We demonstrate FDN’s forecast accuracy by meeting or exceeding the performance of
current SOTA forecast models across three datasets from hydrologic, traffic, and energy systems.
Finally, FDN shows exceptional efficiency with faster epoch runtimes and far fewer parameters than
its competitors. We are excited to present FDN and feel confident its novel architecture can inspire
new avenues of spatiotemporal forecasting research that advance interpretability.

10
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A APPENDIX

A.1 STUDIED DATASETS

This section offers a detailed description of the three datasets used to evaluate FDN: Wabash River,
E-PEMS-BAY, and Solar-Energy.

Wabash River. The Wabash River dataset (Majeske et al., 2022) contains many hydrologic and
meteorologic features recorded at various gauging stations across the Wabash River Basin. This
basin spans three US states including eastern Illinois, western Ohio, and central Indiana and consists
1276 subbasins (nodes). Measurements of temperature (min and max), precipitation, soil water, and
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streamflow are recorded at each subbasin in 1-day intervals. For each subbasin, we utilize the past
seven days of all five features to forecast streamflow for the next one, four, and seven days. The
Wabash River dataset contains a pre-defined dependency structure in the form of its streamflow
network (a tree).

E-PEMS-BAY. The E-PEMS-BAY dataset contains many highway traffic features recorded from
a sample of the Caltrans PeMS’s (Varaiya, 2007) traffic sensor network. Specifically, this dataset
contains samples drawn from 325 sensors (nodes) of the north-western region of California’s Santa
Clara district. These sensors record total samples (across all lanes), percent observed (non-imputed
data points), total flow (vehicles/5-min), average occupancy (as a 0-1 rate), and average speed (mph)
in 5-minute intervals. For each sensor, we consider the past hour (12, 5-minute time-steps) of all
five features to forecast average speed for the next 5, 30, and 60 minutes (1, 6, and 12 time-steps).
E-PEMS-BAY includes a pre-defined dependency structure but it is inferred from sensor features
(Majeske & Azad, 2024) rather than a ground truth network.

Solar-Energy. The Solar-Energy dataset contains synthetic solar photovoltaic power plant samples
produced by a 2006 integration study (NREL, 2006) of the US. In this work, we consider the 137
solar power plants from Alabama state following (Lai et al., 2018; Wu et al., 2020; Liu et al., 2022).
Only one feature is recorded at each plant (node) of this system which is the photovoltaic power
(in mega-Watts) produced. The original dataset comes in 5-minute resolution but we use the down-
sampled (10-minute) version following many others (Lai et al., 2018; Wu et al., 2020; Liu et al.,
2022). For each plant, we utilize the past six hours (36, 10-minute time-steps) of photovoltaic power
to forecast the next 10, 60, and 120 minutes of photovoltaic power (1, 6, and 12 time-steps). No
pre-defined dependency structure exists for the 137 power plants.

A.2 RELATED WORK CONTINUED

This section offers a more detailed discussion of each forecast operator including their core operation
and some limitations. We refer to the input/encoded sequence x as containing I time-steps, and
output/decoded sequence ŷ as containing O time-steps, and current time-step as τ .

Identity Op. The identity operator (Figure 2b) involves selecting the last O elements of the encoded
input sequence. This operator requires the input sequence be equal to or greater in length than the
output sequence. For certain encoders, such as RNNs, important information may be omitted since
only the final element of the output sequence is a function of all input time-steps.

Fully-Connected Op. The fully-connected (FC) operator (Figure 2c) utilizes all-to-all connections
to transform the encoded sequence into the output sequence. As a result, each of the O output
time-steps are a function of all I input time-steps. This allows any arbitrary mapping I → O but
incorporates all input time-steps which may contain redundant/noisy information for long sequences.

Convolution Op. This operator applies a convolution layer by treating the encoded sequence as
image data where time-steps are handled as color-channels and filters. Specifically, I input time-
steps are transformed into O output time-steps by applying a convolution layer of O filters each with
I kernels. The operator can perform any mapping I → O and is very similar to FC since each output
time-step is a summation of kernels applied at every input time-step.

Auto-Regressive Op. The auto-regressive (AR) operator (Figure 2d) recurrently feeds the encoded
sequence for O steps to produce the output sequence. The AR operator is primarily seen in recurrent
neural networks (RNNs) where a decoder cell auto-regressively feeds the encoded sequence pro-
duced by a separate encoder cell. AR can perform any mapping I → O and output time-steps are
strictly causal but RNNs bring challenges to gradient stability.

Attention Op. Attention operators compute each element of the output sequence as an attention-
weighted sum of the entire input sequence. This operator was popularized by Transformers
(Vaswani, 2017) (designed for language translation) but recent methods (Zhou et al., 2021; Wu
et al., 2021; Zhou et al., 2022) have adapted the Transformer architecture to long-term series fore-
casting. Specifically, these methods zero-pad the latter half of the input sequence to match the output
sequence length and use it as the query. The encoded input sequence is used as key and value and
fed with the query to multi-head attention to produce the output sequence.
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Table 3: Forecast operators of models found throughout recent literature.

Forecast Operator Forecast Models

Identity EA-LSTM Kratzert et al. (2019), STGCN Yu et al. (2017)

Fully-Connected (FC) LTSF Linear, LTSF NLinear, LTSF DLinear Zeng et al. (2023)
T-GCN Zhao et al. (2019), A3T-GCN Bai et al. (2021), StemGNN Cao et al. (2020)

Convolution ASTGCN Guo et al. (2019), Graph WaveNet Wu et al. (2019)
MTGNN Wu et al. (2020), AGCRN Bai et al. (2020)
SCINet Liu et al. (2022), STGM Lablack & Shen (2023)

Auto-Regression (AR) RNN, GRU, LSTM Majeske et al. (2022), TCN Lea et al. (2017)
MMR-GNN Majeske & Azad (2024)

Attention GMAN Zheng et al. (2020), Informer Zhou et al. (2021)
Autoformer Wu et al. (2021), FEDformer Zhou et al. (2022)

Classifier-Interpolator (CI) FDN

Table 4: Forecast MAE, MAPE, and RMSE from all horizons on the Wabash River Basin.

Horizon 1 4 7
Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

GRU 3.517 ± 0.004 17.210 ± 0.186 10.655 ± 0.060 7.173 ± 0.032 28.337 ± 0.158 18.727 ± 0.052 9.604 ± 0.011 35.441 ± 0.278 23.175 ± 0.018
TCN 3.499 ± 0.005 17.731 ± 0.470 10.678 ± 0.019 7.400 ± 0.079 28.542 ± 0.864 19.306 ± 0.218 9.812 ± 0.033 39.157 ± 0.807 23.742 ± 0.096
FEDformer 3.868 ± 0.002 31.746 ± 0.007 10.068 ± 0.009 7.634 ± 0.017 41.893 ± 0.465 18.368 ± 0.018 10.153 ± 0.006 47.402 ± 0.011 23.022 ± 0.017
LTSF DLinear 3.631 ± 0.000 17.508 ± 0.000 10.972 ± 0.000 7.326 ± 0.000 28.166 ± 0.000 19.125 ± 0.000 9.887 ± 0.000 35.063 ± 0.001 23.803 ± 0.000
TGCN 6.975 ± 0.023 26.657 ± 0.404 14.658 ± 0.015 9.664 ± 0.012 35.477 ± 0.484 21.067 ± 0.038 11.552 ± 0.034 41.771 ± 0.303 24.882 ± 0.110
A3TGCN 7.035 ± 0.010 26.684 ± 0.095 14.788 ± 0.010 9.696 ± 0.036 35.684 ± 0.199 21.086 ± 0.075 11.575 ± 0.015 41.574 ± 0.242 24.898 ± 0.013
STGM 3.938 ± 0.000 25.480 ± 0.000 10.963 ± 0.000 8.515 ± 0.103 43.242 ± 0.192 19.563 ± 0.132 11.028 ± 0.000 47.421 ± 0.000 24.170 ± 0.000
StemGNN 3.700 ± 0.057 19.087 ± 0.340 11.036 ± 0.294 7.363 ± 0.020 29.565 ± 0.432 19.037 ± 0.016 10.025 ± 0.172 39.401 ± 1.802 23.824 ± 0.233
MTGNN 3.355 ± 0.107 19.943 ± 1.140 10.015 ± 0.271 6.895 ± 0.052 30.719 ± 1.019 18.124 ± 0.046 9.242 ± 0.075 36.663 ± 0.353 22.473 ± 0.294
AGCRN 2.945 ± 0.033 17.658 ± 0.453 8.978 ± 0.143 6.649 ± 0.006 27.996 ± 0.325 17.518 ± 0.068 9.128 ± 0.017 35.085 ± 0.141 22.719 ± 0.082
SCINet 3.476 ± 0.079 18.367 ± 0.026 10.425 ± 0.319 7.444 ± 0.057 31.434 ± 0.406 18.985 ± 0.047 10.184 ± 0.084 40.243 ± 0.922 23.604 ± 0.135
FDN 3.127 ± 0.011 16.292 ± 0.108 9.583 ± 0.060 6.624 ± 0.009 26.183 ± 0.599 17.890 ± 0.044 9.122 ± 0.029 32.978 ± 0.070 22.611 ± 0.015

Table 5: Forecast MAE, MAPE, and RMSE from all horizons on E-PEMS-BAY.

Horizon 1 6 12
Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

GRU 0.974 ± 0.013 1.912 ± 0.022 1.826 ± 0.019 1.587 ± 0.012 3.334 ± 0.036 3.414 ± 0.016 2.076 ± 0.002 4.459 ± 0.059 4.465 ± 0.016
TCN 0.942 ± 0.019 1.835 ± 0.025 1.776 ± 0.023 1.588 ± 0.002 3.279 ± 0.010 3.502 ± 0.008 2.117 ± 0.006 4.555 ± 0.079 4.655 ± 0.016
FEDformer 1.354 ± 0.003 2.797 ± 0.006 2.492 ± 0.007 2.021 ± 0.047 4.232 ± 0.087 3.974 ± 0.042 2.329 ± 0.007 4.891 ± 0.013 4.657 ± 0.007
LTSF DLinear 1.000 ± 0.000 1.945 ± 0.000 1.987 ± 0.000 1.689 ± 0.000 3.493 ± 0.000 3.664 ± 0.000 2.225 ± 0.000 4.684 ± 0.000 4.858 ± 0.000
TGCN 2.040 ± 0.030 4.207 ± 0.068 3.280 ± 0.025 2.420 ± 0.021 5.109 ± 0.044 4.200 ± 0.034 2.708 ± 0.006 5.781 ± 0.011 4.900 ± 0.002
A3TGCN 2.021 ± 0.044 4.157 ± 0.089 3.284 ± 0.040 2.383 ± 0.015 5.005 ± 0.035 4.218 ± 0.009 2.719 ± 0.018 5.774 ± 0.048 4.955 ± 0.012
STGM 1.558 ± 0.225 2.909 ± 0.324 2.398 ± 0.147 5.380 ± 0.186 10.242 ± 0.416 7.345 ± 0.225 12.531 ± 1.749 21.043 ± 2.548 16.393 ± 2.619
StemGNN 0.916 ± 0.006 1.787 ± 0.015 1.746 ± 0.016 1.549 ± 0.045 3.263 ± 0.079 3.276 ± 0.048 1.971 ± 0.028 4.245 ± 0.040 4.125 ± 0.029
MTGNN 1.185 ± 0.081 2.707 ± 0.312 2.199 ± 0.130 1.817 ± 0.037 4.064 ± 0.098 3.749 ± 0.046 2.604 ± 0.137 5.929 ± 0.288 5.364 ± 0.280
AGCRN 1.034 ± 0.014 2.046 ± 0.018 1.868 ± 0.010 1.705 ± 0.009 3.571 ± 0.014 3.406 ± 0.025 2.083 ± 0.078 4.371 ± 0.114 4.166 ± 0.160
SCINet 0.987 ± 0.005 1.962 ± 0.019 1.866 ± 0.003 1.598 ± 0.006 3.402 ± 0.033 3.181 ± 0.015 1.950 ± 0.006 4.208 ± 0.021 3.897 ± 0.020
FDN 0.937 ± 0.010 1.875 ± 0.025 1.757 ± 0.017 1.475 ± 0.029 3.106 ± 0.081 3.076 ± 0.043 1.792 ± 0.024 3.857 ± 0.083 3.803 ± 0.031

Table 6: Forecast MAE, MAPE, and RMSE from all horizons on Solar-Energy.

Horizon 1 6 12
Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

GRU 0.292 ± 0.003 68.163 ± 0.025 0.817 ± 0.006 0.752 ± 0.003 73.144 ± 0.073 1.894 ± 0.001 1.241 ± 0.045 76.957 ± 0.309 2.950 ± 0.067
TCN 0.293 ± 0.010 67.696 ± 0.117 0.786 ± 0.003 0.789 ± 0.009 73.410 ± 0.139 1.902 ± 0.017 1.451 ± 0.022 77.961 ± 0.282 3.166 ± 0.046
FEDformer 0.915 ± 0.023 71.959 ± 0.097 1.600 ± 0.023 1.281 ± 0.007 74.525 ± 0.029 2.244 ± 0.001 1.788 ± 0.034 76.697 ± 0.249 3.027 ± 0.035
LTSF DLinear 0.319 ± 0.000 68.519 ± 0.000 0.854 ± 0.000 0.987 ± 0.000 74.566 ± 0.000 2.249 ± 0.000 1.645 ± 0.000 78.337 ± 0.010 3.472 ± 0.000
TGCN N/A N/A N/A N/A N/A N/A N/A N/A N/A
A3TGCN N/A N/A N/A N/A N/A N/A N/A N/A N/A
STGM N/A N/A N/A N/A N/A N/A N/A N/A N/A
StemGNN 1.419 ± 0.157 76.452 ± 0.852 2.840 ± 0.452 2.032 ± 0.121 79.889 ± 0.536 3.961 ± 0.252 2.092 ± 0.175 80.719 ± 0.277 4.117 ± 0.391
MTGNN 0.285 ± 0.010 68.097 ± 0.105 0.779 ± 0.012 0.590 ± 0.006 71.430 ± 0.101 1.511 ± 0.012 0.870 ± 0.018 74.019 ± 0.113 2.215 ± 0.028
AGCRN 0.247 ± 0.004 66.927 ± 0.060 0.704 ± 0.001 0.592 ± 0.007 71.249 ± 0.094 1.518 ± 0.012 0.901 ± 0.006 74.049 ± 0.080 2.270 ± 0.008
SCINet 0.277 ± 0.005 67.037 ± 0.310 0.768 ± 0.005 0.642 ± 0.004 71.954 ± 0.050 1.583 ± 0.007 0.962 ± 0.007 74.670 ± 0.051 2.332 ± 0.013
FDN 0.238 ± 0.001 66.815 ± 0.006 0.705 ± 0.001 0.557 ± 0.005 70.899 ± 0.058 1.422 ± 0.005 0.869 ± 0.021 73.267 ± 0.193 1.977 ± 0.035

A.3 ADDITIONAL RESULTS

This section includes the extended results for all horizons on each dataset. Tables 4, 5, and 6 provide
mean and standard deviation of MAE, MAPE, and RMSE across the three trials for Wabash River,
E-PEMS-BAY, and Solar-Energy respectively.
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Table 7: Total model parameters and average epoch runtime from all horizons on Wabash River.

Horizon 1 4 7
Metric Parameters Runtime Parameters Runtime Parameters Runtime

GRU 2753 2.030 ± 0.060 2753 2.540 ± 0.016 2753 3.034 ± 0.042
TCN 3025 9.821 ± 0.159 2833 35.847 ± 0.183 2833 61.514 ± 0.136
FEDformer 17263884 8.769 ± 0.278 17329420 9.010 ± 0.477 17460492 9.252 ± 0.231
LTSF DLinear 20416 259.021 ± 3.431 81664 256.407 ± 5.117 142912 255.115 ± 3.483
TGCN 25985 16.810 ± 0.045 26180 16.784 ± 0.101 26375 17.844 ± 0.082
A3TGCN 62208 207.513 ± 0.057 62511 207.190 ± 0.470 62814 198.638 ± 7.634
STGM 777065 271.4 ± 0 777065 269.820 ± 0.276 777065 272.305 ± 0
StemGNN 5275264 95.957 ± 9.793 5275288 94.023 ± 8.233 5275312 99.721 ± 3.392
MTGNN 24676161 1650.085 ± 0.013 1930420 88.088 ± 0.048 1930807 88.442 ± 0.260
AGCRN 773145 129.839 ± 0.133 773340 126.759 ± 0.088 773535 129.498 ± 0.486
SCINet 9693452 43.655 ± 0.282 9693476 45.114 ± 0.981 9693500 43.816 ± 0.918
FDN 62044 53.180 ± 0.020 184540 53.315 ± 0.013 307036 53.344 ± 0.004

Table 8: Total model parameters and average epoch runtime from all horizons on E-PEMS-BAY.

Horizon 1 6 12
Metric Parameters Runtime Parameters Runtime Parameters Runtime

GRU 2753 3.667 ± 0.045 2753 4.115 ± 0.046 2753 4.783 ± 0.072
TCN 4113 10.938 ± 0.144 3921 58.752 ± 0.942 3921 112.923 ± 0.320
FEDformer 12557653 14.707 ± 0.438 12754261 15.592 ± 0.427 12950869 16.786 ± 0.189
LTSF DLinear 8450 96.849 ± 0.223 50700 98.296 ± 0.507 101400 98.667 ± 0.908
TGCN 25985 23.746 ± 0.178 26310 23.852 ± 0.161 26700 23.953 ± 0.052
A3TGCN 62213 440.995 ± 7.798 62718 437.942 ± 1.662 63324 434.706 ± 4.697
STGM 829473 106.171 ± 0.317 829473 105.687 ± 0.354 829473 106.174 ± 0.408
StemGNN 1366452 39.667 ± 0.271 1366517 39.746 ± 0.422 1366595 39.521 ± 0.081
MTGNN 6553905 648.331 ± 4.056 576454 29.128 ± 0.144 577228 29.049 ± 0.368
AGCRN 763635 56.718 ± 0.069 763960 56.227 ± 0.492 764350 56.315 ± 0.527
SCINet 628152 60.520 ± 0.758 628212 61.030 ± 1.108 628284 61.053 ± 1.274
FDN 35150 36.419 ± 0.105 35470 36.520 ± 0.085 35854 36.439 ± 0.200

Table 9: Total model parameters and average epoch runtime from all horizons on Solar-Energy.

Horizon 1 6 12
Metric Parameters Runtime Parameters Runtime Parameters Runtime

GRU 2561 6.687 ± 0.299 2561 7.021 ± 0.065 2561 7.751 ± 0.098
TCN 6097 10.809 ± 0.107 6097 49.139 ± 0.251 6097 94.920 ± 0.362
FEDformer 12381337 20.847 ± 0.733 12577945 20.850 ± 0.057 12774553 22.135 ± 0.340
LTSF DLinear 10138 36.980 ± 0.557 60828 38.347 ± 0.254 121656 37.908 ± 0.029
TGCN 25217 N/A 25542 N/A 25932 N/A
A3TGCN 61037 N/A 61542 N/A 62148 N/A
STGM N/A N/A N/A N/A N/A N/A
StemGNN 9353900 31.416 ± 0.230 9354085 31.254 ± 0.282 9354307 31.409 ± 0.159
MTGNN 2947377 360.215 ± 1.217 891270 28.930 ± 0.761 892044 28.573 ± 0.714
AGCRN 746395 83.924 ± 0.570 746720 84.572 ± 0.507 747110 83.614 ± 1.144
SCINet 106992 61.431 ± 0.153 107172 61.577 ± 0.234 107388 60.910 ± 1.350
FDN 10654 35.049 ± 0.005 10974 35.022 ± 0.044 11358 34.778 ± 0.143

A.4 MODEL EFFICIENCY RESULTS

This section covers metrics for model efficiency including total parameter counts and per-epoch
runtimes. Tables 7, 8, and 9 list these metrics for Wabash River, E-PEMS-BAY, and Solar-Energy
across all studied horizons. In Wabash River, we see FDN has from 1/12 to 1/2 as many parameters
and an ≈2.4 runtime speed-up compared to AGCRN. In E-PEMS-BAY, FDN has 1/38 as many
parameters as StemGNN and nearly matches it in runtime. And in Solar-Energy, FDN uses from
1/276 to 1/78 as many parameters as MTGNN and sees a ≈10.2 speed-up in single-step forecasting but
is slower for multi-step. Overall, FDN shows excellent memory and runtime performance relative
to its direct competitors.
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A.5 ABLATION STUDY RESULTS

Tables 10, 11, 13, 12, 14, 15, and 16 present the results of all ablation studies. The best result
is emboldened and the second-best is underlined. For each entry, we run three trials and present
the mean result for MAE, MAPE, and RMSE. All ablation studies were conducted on the longest
horizon which includes 7 days for Wabash River, 1 hour (12 time-steps) for E-PEMS-BAy, and 2
hours (12 time-steps) for Solar-Energy. Note that results for Solar-Energy in Table 11 are identical
since this dataset is uni-variate.

Learned Patterns. The FD layer learns a set of patterns to capture F which, as demonstrated in
Figure 1a, is greatly benefited by increasing the rank / number of patterns. Here, we test increasing
the number of patterns learned by FD to improve its ability to capture F. Table 10 and Figure
8b demonstrate the effectiveness of FD as we observe a saturation in forecast performance when
learning as few as eight patterns.

Attention Layers. Here we test the effectiveness of LDA in FDN. We compare no attention to
four attention layers of increasing specificity including (a) static attention (A) A ∈ RF (b) dynamic
attention (DA) A ∈ RI×F (c) complete localized dynamic feature attention (CLDA) A ∈ RN×I×F

and (d) our proposed LDA A ∈ RD×I×F . Results are provided in Table 11. Note that attention is
not applicable to Solar-Energy since it is uni-variate. E-PEMS-BAY benefits significantly from LDA
but Wabash River does not. This suggests that the importance of minimum/maximum temperature,
precipitation, and soil moisture to streamflow is not specific to individual subbasins (i.e. localized).

Dependency Embedding. FDN encodes node inter-dependency applying Chebyshev graph con-
volution. Table 12 shows a significant improvement to forecast performance from the inclusion of
node inter-dependency learning.

Node Embedding Dimension. FDN’s learned node embeddings condition the classifier to each
node, determine their feature filtering, and learn the graph for dependency encoding. Node embed-
ding dimension controls the specificity of node conditioning, LDA, and the learned graph and must
be tuned for proper generalization. Table 13 shows the result of increasing dimension D and we
observe a saturation in forecasting performance at approximately D = 10.

Pattern Regularization. In SVD, the left matrix U is orthogonal to capture the highest degree of
variance in K column vectors. Following this, we constrain the patterns to be dissimilar by adding
their similarity to forecast loss as a regularization term. Table 14 shows increasing pattern regulation,
from which, Wabash River and Solar-Energy gain the most benefit.

Periodic Moment Resolution. Periodic embeddings consist of a sequence of ρ-dimensional embed-
dings representing moments in the known period/season of the forecast variable. Moment resolution
ranges from the duration of the period (M = 1) to the duration of each time-step (M ≫ 1) and
must be tuned to avoid over-fitting. Table 15 shows increasing moment resolution starting from pe-
riod/season duration (M = 1) and increasing up to time-step duration (M=365 in Wabash River).
Wabash River shows saturation at 3-months (capturing the 4 seasons of the year) while E-PEMS-
BAY and Solar-Energy benefit from high-resolution moments.

Periodic Embedding Dimension. The dimensionality of each moment embedding controls its
specificity and the extent of temporal conditioning. Table 16 shows increasing periodic embed-
ding dimension starting from ρ=0 where periodic embeddings are omitted from FDN. Periodic em-
beddings generally improve forecast accuracy but each dataset/signal requires a precise embedding
dimension.

A.6 HIGH RESOLUTION METRICS

Figures 9, 10, and 11 show node-level forecast metrics for Wabash River, E-PEMS-BAY, and Solar-
Energy. These figures plot percentage change in MAPE and RMSE (where negative indicates im-
provement) at all nodes for FDN relative to the second-best model. The x-axis shows baseline model
performance while node color intensity / size is determined by the coefficient of variation (CoV) in
the forecast variable.
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Table 10: Increasing the number of patterns learned by FDN.

Wabash River E-PEMS-BAY Solar-Energy
K MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

1 29.477 73.619 48.740 5.195 10.631 9.608 4.928 98.400 9.366
2 9.474 35.687 23.224 1.993 4.356 4.228 1.240 76.310 2.649
3 9.306 34.178 22.926 1.853 4.001 3.871 0.906 73.321 1.992
4 9.234 34.060 22.883 1.858 4.049 3.904 0.923 73.200 1.990
6 9.176 33.491 22.691 1.820 3.937 3.832 0.871 72.985 1.954
8 9.209 33.230 22.750 1.809 3.903 3.832 0.848 72.946 1.933

12 9.173 33.105 22.778 1.804 3.880 3.799 0.871 73.262 1.973
16 9.206 32.951 22.826 1.806 3.873 3.810 0.884 73.203 1.974
32 9.122 32.978 22.611 1.806 3.898 3.801 0.843 73.118 1.945
64 9.203 32.948 22.806 1.792 3.857 3.803 0.869 73.267 1.977
128 9.177 32.795 22.744 1.792 3.837 3.794 0.852 72.922 1.944

Table 11: Attention layers of increasing specificity including no attention (7), static attention (A),
dynamic attention (DA), full-rank localized dynamic attention (LDA), and low-rank localized dy-
namic attention (LDA).

Wabash River E-PEMS-BAY Solar-Energy
Attention MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

✗ 9.122 32.978 22.611 1.999 4.290 4.086 0.869 73.267 1.977
A 9.169 32.876 22.758 1.934 4.173 4.014 0.869 73.267 1.977

DA 9.190 33.039 22.836 1.857 3.983 3.874 0.869 73.267 1.977
CLDA 9.178 32.704 22.814 1.952 4.245 4.035 0.869 73.267 1.977
LDA 9.248 33.178 22.904 1.792 3.857 3.803 0.869 73.267 1.977

Table 12: Applying graph convolution to learn node inter-dependencies.

Wabash River E-PEMS-BAY Solar-Energy
GCN MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

✗ 9.321 32.445 22.982 1.801 3.828 3.951 1.042 74.205 2.370
✓ 9.122 32.978 22.611 1.792 3.857 3.803 0.869 73.267 1.977

Table 13: Increasing learned node embedding dimension.

Wabash River E-PEMS-BAY Solar-Energy
D MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

1 9.364 33.075 23.059 2.077 4.511 4.266 0.892 73.452 2.031
2 9.250 33.269 22.777 2.097 4.634 4.329 0.886 73.165 2.005
3 9.254 33.178 22.761 2.014 4.346 4.173 0.850 73.170 1.966
4 9.251 32.927 22.816 1.967 4.310 4.106 0.877 73.361 1.989
6 9.254 33.099 22.810 1.861 4.013 3.895 0.857 73.261 1.953
8 9.170 32.809 22.751 1.818 3.904 3.838 0.870 73.013 1.955

10 9.122 32.978 22.611 1.792 3.857 3.803 0.869 73.267 1.977
12 9.132 32.766 22.611 1.821 3.911 3.840 0.913 73.265 2.006

A.7 FORECAST SIGNAL SEASONALITY

Figures 12a, 12b, and 12c show average mutual information (AMI) of the forecast variable at each
node of the system for Wabash River, E-PEMS-BAY, and Solar-Energy. The x-axis shows the time-
step lag t between current and past measurements for which the mutual information is calculated
as I(Yτ ;Yτ−t). We expect streamflow to have yearly seasonality and traffic speed and solar power
to be have daily seasonality. We see this seasonality in each signal where AMI returns at a delay
of 1 year (t = 365) for Wabash River and 1 day for E-PEMS-BAY (t = 288) and Solar-Energy
(t = 144).
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Table 14: Increasing regularization of learned patterns.

Wabash River E-PEMS-BAY Solar-Energy
λ MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

0.0000 9.171 32.623 22.839 1.792 3.857 3.803 0.869 73.267 1.977
0.0625 9.153 32.774 22.698 1.788 3.852 3.797 0.850 73.194 1.949
0.1250 9.172 32.991 22.634 1.813 3.929 3.862 0.849 73.242 1.957
0.2500 9.184 33.049 22.661 1.800 3.886 3.807 0.865 73.141 1.962
0.5000 9.167 32.847 22.736 1.819 3.901 3.824 0.850 73.253 1.958
1.0000 9.122 32.978 22.611 1.798 3.901 3.814 0.848 73.099 1.943

Table 15: Increasing moment resolution of learned periodic embeddings.

Wabash River (period: yearly) E-PEMS-BAY (period: daily) Solar-Energy (period: daily)
M MAE MAPE RMSE M MAE MAPE RMSE M MAE MAPE RMSE

1-yr 9.160 33.266 22.658 1-day 1.786 3.830 3.792 1-day 0.903 74.309 2.274
6-mon 9.213 33.194 22.613 12-hr 1.787 3.795 3.776 12-hr 0.940 73.498 2.091
3-mon 9.122 32.978 22.611 6-hr 1.792 3.857 3.803 6-hr 0.869 73.267 1.977
1-mon 9.140 32.941 22.702 3-hr 1.806 3.886 3.796 3-hr 0.857 73.076 1.950
7-day 9.166 33.025 22.815 1-hr 1.775 3.818 3.756 1-hr 0.841 72.898 1.922
1-day 9.336 33.197 23.063 5-min 1.757 3.794 3.733 10-min 0.851 72.889 1.945

Table 16: Increasing learned periodic embedding dimension. At dimension 0, periodic embeddings
are omitted from FDN entirely.

Wabash River E-PEMS-BAY Solar-Energy
ρ MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

0 9.181 32.802 22.718 1.866 4.047 3.920 0.899 74.308 2.257
1 9.122 32.978 22.611 1.792 3.857 3.803 0.869 73.267 1.977
2 9.229 33.087 22.807 1.836 3.977 3.877 0.876 73.201 1.977
4 9.173 33.236 22.676 1.773 3.803 3.758 0.895 73.188 2.000
8 9.204 32.736 22.870 1.802 3.896 3.775 0.864 72.989 1.955

(a) MAPE (b) RMSE

Figure 9: Distribution of forecast error between AGCRN and FDN across subbasins of the Wabash
River. Values are given as a percentage change where negative indicates a reduction in forecast error
by FDN.

A.8 FDN PARAMETER SETTINGS

Here we cover all settings of FDN on each dataset for reproducibility. Table 17 provides the model
parameter settings for each dataset. Parameters shared across all datasets include (a) a 200 epoch
limit (b) a patience of 15 epochs (c) mini-batch size 64 (d) the Adam optimizer (Kingma & Ba,
2014) (e) a learning rate of 0.003 (f) Kaiming normal initialization (He et al., 2015) and (g) L1Loss
as forecast loss.
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(a) MAPE (b) RMSE

Figure 10: Distribution of forecast error between StemmGNN and FDN across stations of E-PEMS-
BAY. Values are given as a percentage change where negative indicates a reduction in forecast error
by FDN.

(a) MAPE (b) RMSE

Figure 11: Distribution of forecast metrics between MTGNN and FDN across plants of Solar-
Energy. Values are given as a percentage change where negative indicates a reduction in forecast
error by FDN.

(a) Wabash River (b) E-PEMS-BAY (c) Solar-Energy

Figure 12: Average mutual information of the forecast variable for each node in the dataset. The
x-axis indicates time-step lag between x and y when calculating I(x; y).

Table 17: Model parameter settings for each dataset.

Dataset K H Attn D λ M ρ

Wabash River 32 32 ✗ 10 1.0 3-months 1
E-PEMS-BAY 64 64 LDA 10 0.0 6-hours 1
Solar-Energy 64 64 N/A 10 0.0 6-hours 1
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