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Abstract
Having explored an environment, intelligent
agents should be able to transfer their knowledge
to most downstream tasks within that environ-
ment without additional interactions. Referred to
as “zero-shot learning”, this ability remains elu-
sive for general-purpose reinforcement learning
algorithms. While recent works have attempted
to produce zero-shot RL agents, they make as-
sumptions about the nature of the tasks or the
structure of the MDP. We present Proto Successor
Measure: the basis set for all possible behaviors
of a Reinforcement Learning Agent in a dynami-
cal system. We prove that any possible behavior
(represented using visitation distributions) can be
represented using an affine combination of these
policy-independent basis functions. Given a re-
ward function at test time, we simply need to find
the right set of linear weights to combine these
bases corresponding to the optimal policy. We
derive a practical algorithm to learn these basis
functions using reward-free interaction data from
the environment and show that our approach can
produce the near-optimal policy at test time for
any given reward function without additional en-
vironmental interactions. Project page: agarwal-
siddhant10.github.io/projects/psm.html

1. Introduction
A wide variety of tasks can be defined within an environ-
ment (or any dynamical system). For instance, in navigation
environments, tasks can be defined to reach a goal, follow
a path, reach a goal while avoiding certain states etc. Once
familiar with an environment, humans have the wonderful
ability to perform new tasks in that environment without
any additional practice. For example, consider the last time
you moved to a new city. At first, you may have needed
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to explore various routes to figure out the most efficient
way to get to the nearest supermarket or place of work. But
eventually, you could probably travel to new places effi-
ciently the very first time you needed to get there. Like
humans, intelligent agents should be able to infer the neces-
sary information about the environment during exploration
and use this experience for solving any downstream task
efficiently. Reinforcement Learning (RL) algorithms have
seen great success at finding a sequence of decisions that
optimally solves a given task in the environment (Wurman
et al., 2022; Fawzi et al., 2022). In RL settings, tasks are
defined using reward functions with different tasks having
their own optimal agent policy or behavior corresponding
to the task reward. RL agents are usually trained for a given
task (reward function) or on a distribution of related tasks;
most RL agents do not generalize to solving any task, even
in the same environment. While related machine learning
fields like computer vision and natural language processing
have shown success at zero-shot (Ramesh et al., 2021) and
few-shot (Radford et al., 2021) adaptation to a wide range
of downstream tasks, RL lags behind in such functional-
ities. Unsupervised RL aims to extract reusable informa-
tion such as skills (Eysenbach et al., 2019; Zahavy et al.,
2023), representations (Ghosh et al., 2023; Ma et al., 2023),
world-models (Janner et al., 2019; Hafner et al., 2020), or
goal-reaching policies (Agarwal et al., 2024; Sikchi et al.,
2024a) from the environment using task-independent data to
efficiently train RL agents for any task. Recent advances in
unsupervised RL (Wu et al., 2019; Touati & Ollivier, 2021a;
Blier et al., 2021b; Touati et al., 2023) have shown some
promise towards achieving zero-shot RL.

Recently proposed pretraining algorithms (Stooke et al.,
2021; Schwarzer et al., 2021b; Sermanet et al., 2017; Nair
et al.; Ma et al., 2023) use self-supervised learning to learn
representations from large-scale data to facilitate few-shot
RL but these representations are dependent on the policies
used for collecting the data. These algorithms assume that
the large scale data is collected from a “good” policy demon-
strating expert task solving behaviors.

Several prior works aim to achieve generalization in
multi-task RL by building upon successor features (Dayan,
1993) which represent rewards as a linear combination of
state features. These methods have limited generalization
capacity to unseen arbitrary tasks. Other works (Mahadevan,
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Figure 1. Method Overview: Visitation distributions corresponding to any policy must obey the Bellman Flow constraint for the
dynamical system. This means they must lie on the plane defined by the the Bellman Flow equation. Being a plane, it can be represented
using a basis set Φ and a bias. All valid (non negative) visitation distributions lie within a convex hull on this plane. The boundary of
this hull is defined using the non negativity constraints: Φw + b ≥ 0. Each point within this convex hull corresponds to a visitation
distribution for a valid policy and is defined simply by the “coordinate” w.

2005; Machado et al., 2017; 2018; Bellemare et al., 2019;
Farebrother et al., 2023) represent value functions using
eigenvectors of the graph Laplacian obtained from a
random policy to approximate the global basis of value
functions. However, the eigenvectors from a random policy
usually cannot represent all value functions. In fact, we
show that an alternative strategy of representing visitation
distributions using a set of basis functions covers a larger
set of solutions than doing the same with value functions.
Skill learning methods (Eysenbach et al., 2019; Park
et al., 2024b; Eysenbach et al., 2022) view any policy as
a combination of skills , but as shown by (Eysenbach et al.,
2022), these methods do not recover all possible skills from
the MDP. Some recent work has attempted zero-shot RL by
decomposing the representation of visitation distributions
(Touati & Ollivier, 2021a; Touati et al., 2023), but they
learn policy representations as a projection of the reward
function which can lead to loss of task-relevant information.
We present a stronger, more principled approach for
representing any solution of RL in the MDP.

Any policy in the environment can be represented using
visitation distributions or the distributions over states and
actions that the agent visits when following a policy. We
learn a basis set to represent any possible visitation distri-
bution in the underlying environmental dynamics. We draw
our inspiration from the linear programming view (Manne,
1960; Denardo, 1970; Nachum & Dai, 2020; Sikchi et al.,
2024b) of reinforcement learning; the objective is to find
the visitation distribution that maximizes the return (the
dot-product of the visitation distribution and the reward)
subject to the Bellman Flow constraints. We show that any
solution of the Bellman Flow constraint for the visitation
distribution can be represented as a linear combination of
policy-independent basis functions and a bias. As shown

in Figure 1, any visitation distribution that is a solution of
the Bellman Flow for a given dynamical system lies on a
plane defined using policy independent basis Φ and a bias b.
On this plane, only a small convex region defines the valid
(non-negative) visitations distributions. Any visitation distri-
bution in this convex hull can be obtained simply using the
“coordinates” w. We introduce Proto-Successor Measure,
the set of basis functions and bias to represent any successor
measure (a generalization over visitation distributions) in
the MDP that can be learnt using reward-free interaction
data. At test time, obtaining the optimal policy reduces to
simply finding the linear weights to combine these basis
vectors that maximize its dot-product with the user-specified
reward. These basis vectors only depend on the state-action
transition dynamics of the MDP, independent of the initial
state distribution, reward, or policy, and can be thought to
compactly represent the entire dynamics.

The contributions of our work are (1) a novel, principled
perspective on representation learning for Markov decision
processes; (2) an efficient practical instantiation that
reduces basis learning to a single-player optimization; and
(3) evaluations of a number of tasks demonstrating the
capability of our learned representations to quickly infer
near-optimal policies.

2. Related Work
Unsupervised Reinforcement Learning: Unsupervised
RL generally refers to a broad class of algorithms that use
reward-free data to improve the efficiency of RL algorithms.
We focus on methods that learn representations to produce
optimal value functions for any given reward function. Rep-
resentation learning through unsupervised or self-supervised
RL has been discussed for both pre-training (Nair et al.; Ma
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et al., 2023) and training as auxiliary objectives (Agarwal
et al., 2021; Schwarzer et al., 2021a). While using auxiliary
objectives for representation learning does accelerate policy
learning for downstream tasks, the policy learning begins
from scratch for a new task. Pre-training methods like (Ma
et al., 2023; Nair et al.) use self-supervised learning tech-
niques from computer vision like masked auto-encoding
to learn representations that can be used directly for down-
stream tasks. These methods use large-scale datasets (Grau-
man et al., 2022) to learn representations but these are fitted
around the policies used for collecting data. These represen-
tations do not represent any possible behavior nor are trained
to represent Q functions for any reward functions. Several
prior works aim to discover intents or skills using a diversity
objective. These methods use the fact that the latents or
skills should define the output state-visitation distributions
thus diversity can be ensured by maximizing mutual infor-
mation (Warde-Farley et al., 2019; Eysenbach et al., 2019;
Achiam et al., 2018; Eysenbach et al., 2022) or minimizing
Wasserstein distance (Park et al., 2024b) between the la-
tents and corresponding state-visitation distributions. PSM
differs from these works and takes a step towards learning
representations optimal for predicting value functions as
well as a zero-shot optimal policy for any reward.

Methods that linearize RL quantities: Learning basis
vectors has been leveraged in RL to allow for transfer to new
tasks. Successor features (Barreto et al., 2017) represents
rewards as a linear combination of transition features
and subsequently the Q-functions are linear in successor
features. Several methods have extended successor features
(Lehnert & Littman, 2020; Hoang et al., 2021; Alegre et al.,
2022; Reinke & Alameda-Pineda, 2021) to learn better
policies in more complex domains.

Spectral methods like Proto Value Functions (PVFs) (Ma-
hadevan, 2005; Mahadevan & Maggioni, 2007) instead rep-
resent the value functions as a linear combination of basis
vectors. It uses the eigenvectors of the random walk op-
erator (graph Laplacian) as the basis vectors. Adversarial
Value Functions (Bellemare et al., 2019) and Proto Value
Networks (Farebrother et al., 2023) have attempted to scale
up this idea in different ways. However, deriving these
eigenvectors from a Laplacian is not scalable to larger state
spaces. (Wu et al., 2019) recently presented an approximate
scalable objective, but the Laplacian is still dependent on
random policy which usually makes it incapable of repre-
senting all behaviors or Q functions.

Similar to our work, Forward Backward (FB) Representa-
tions (Touati & Ollivier, 2021a; Touati et al., 2023) use an
inductive bias on the successor measure to decompose it
into a forward and backward representation. Unlike FB,
our representations are linear on a set of basis features. Ad-
ditionally, FB ties the reward with the representation of

the optimal policy derived using Q function maximization
which can lead to overestimation issues and instability dur-
ing training as a result of Bellman optimality backups.

3. Preliminaries
In this section we introduce some preliminaries and define
terminologies that will be used in later sections. We begin
with some MDP fundamentals and RL preliminaries fol-
lowed by a discussion on affine spaces which form the basis
for our representation learning paradigm.

3.1. Markov Decision Processes
A Markov Decision Process is defined as a tuple
⟨S,A, P, r, γ, µ⟩ where S is the state space, A is the ac-
tion space, P : S × A 7−→ ∆(S) is the transition proba-
bility (∆(·) denotes a probability distribution over a set),
γ ∈ [0, 1) is the discount factor, µ is the distribution over
initial states and r : S × A 7−→ R is the reward function.
The task is specified using the reward function r and the
initial state distribution µ. The goal for the RL agent is to
learn a policy πθ : S 7−→ A that maximizes the expected
return J(πθ) = Es0∼µEπθ

[
∑∞
t=0 γ

tr(st, at)].

In this work, we consider a task-free MDP which does not
provide the reward function or the initial state distribution.
Hence, a task-free or reward-free MDP is simply the tuple
⟨S,A, P, γ⟩. A task-free MDP essentially only captures
the underlying environment dynamics and can have infi-
nite downstream tasks specified through different reward
functions.

The state-action visitation distribution, dπ(s, a) is defined
as the normalized probability of being in a state s and tak-
ing an action a if the agent follows the policy π from a
state sampled from the initial state distribution. Concretely,
dπ(s, a) = (1 − γ)

∑∞
t=0 γ

t
P(st = s, at = a). A more

general quantity, successor measure, Mπ(s, a, s+, a+), is
defined as the probability of being in state s+ and taking ac-
tion a+ when starting from the state-action pair s, a and fol-
lowing the policy π. Mathematically, Mπ(s, a, s+, a+) =
(1 − γ)

∑∞
t=0 γ

t
P(st = s+, at = a+|s0 = s, a0 = a).

The state-action visitation distribution can be written as
dπ(s, a) = Es0∼µ(s),a0∼π(a0|s0)[Mπ(s0, a0, s, a)].

Both these quantities, state-action visitation distribution and
successor measure, follow the Bellman Flow equations:∑

a

dπ(s, a) = (1− γ)µ(s)+

γ
∑

s′∈S,a′∈A
P (s|s′, a′)dπ(s′, a′). (1)

For successor measure, the initial state distribution changes
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to an identity function∑
a+

Mπ(s, a, s+, a+) = (1−γ)
∑
a+

1[s = s+, a = a+]+

γ
∑

s′∈S,a′∈A
P (s+|s′, a′)Mπ(s, a, s′, a′). (2)

The RL objective has a well studied linear programming
interpretation (Manne, 1960). Given any task reward func-
tion r, the RL objective can be rewritten in the form of a
constrained linear program:
max
d

∑
s,a

d(s, a)r(s, a), s.t. d(s, a) ≥ 0 ∀s, a,

s.t.
∑
a

d(s, a) = (1− γ)µ(s)+

γ
∑

s′∈S,a′∈A
P (s|s′, a′)d(s′, a′)

(3)
and the unique policy corresponding to visitation d is
obtained by π(a|s) = d(s,a)∑

a d(s,a)
. The Q function can

then be defined using successor measure as Qπ(s, a) =∑
s+,a+ M

π(s, a, s+, a+)r(s+, a+) or Qπ = Mπr. Ob-
taining the optimal policies requires maximizing the Q func-
tion which requires solving argmaxπM

πr.

3.2. Affine Spaces

Let V be a vector space and b be a vector. An affine set
is defined as A = b + V = {x|x = b + v, v ∈ V}. Any
vector in a vector space can be written as a linear combi-
nation of basis vectors, i.e., v =

∑n
i αivi where n is the

dimensionality of the vector space. This property implies
that any element of an affine space can be expressed as
x = b +

∑n
i αivi. Given a system of linear equations

Ax = c, with A being an m×n matrix (m < n) and c ̸= 0,
the solution x forms an affine set. Hence, there exists alphas
αi such that x = b+

∑
i αixi. The vectors {xi} form the

basis set of the null space or kernel of A. The values (αi)
form the affine coordinates of x for the basis {xi}. Hence,
for a given system with known {xi} and b, any solution can
be represented using only the affine coordinates (αi).

We first explain the theoretical foundations of our method
in Section 4 and derive a practical algorithm following the
theory in Section 5

4. The Basis Set for All Solutions of RL
In this section, we introduce the theoretical results that form
the foundation for our representation learning approach. The
proof for all the theoretical results can be found in Appendix
8. The goal is to learn policy-independent representations
that can represent any valid visitation distribution in the
environment (i.e. satisfy the Bellman Flow constraint in
Equation 3). With a compact way to represent these dis-

tributions, it is possible to reduce the policy optimization
problem to a search in this compact representation space.
We will show that state visitation distributions and successor
measures form an affine set and thus can be represented as∑
i ϕiw

π
i + b, where ϕi are basis functions, wπ are “coor-

dinates” or weights to linearly combine the basis functions,
and b is a bias term. First, we build up the formal intuition
for this statement and later we will use a toy example to
show how these representations can make policy search
easier.

The first constraint in Equation 3 is the Bellman Flow equa-
tion. We begin with Lemma 4.1 showing that state visitation
distributions that satisfy the Bellman Flow form affine sets.

Theorem 4.1. All possible state-action visitation distribu-
tions in an MDP form an affine set.

While Theorem 4.1 shows that any state-action visitation
distribution in an MDP can be written using a linear combi-
nation of basis and bias terms, it still depend on the initial
state distribution. Moreover, as shown in Equation 1, com-
puting the state-action visitation distribution requires a sum-
mation over all states and actions in the MDP which is not
always possible. Successor measures are more general than
state-action visitation distributions as they encode the visita-
tion of the policy conditioned on a starting state-action pair.
Using similar techniques, we show that successor measures
also form affine sets.

Corollary 4.2. Any successor measure, Mπ in an MDP
forms an affine set and so can be represented as

∑d
i ϕiw

π
i +

b where ϕi and b are independent of the policy π and d is
the dimension of the affine space.

Following Corollary 4.2, for anyw, the function
∑d
i ϕiw

π
i +

b will be a solution of Equation 2. Hence, given Φ (ϕi
stacked together) and b, we do not need the second con-
straint on the linear program (in Equation 3) anymore. The
other constraint: ϕiwi + b ≥ 0 still remains which w needs
to satisfy. We discuss ways to manage this constraint in
Section 5.3. The linear program given a reward function
now becomes,

max
w

Eµ[(Φw + b)r]

s.t. Φw + b ≥ 0 ∀s, a.
(4)

In fact, any visitation distribution that is a policy-
independent linear transformation of Mπ , such as state visi-
tation distribution or future state-visitation distribution, can
be represented in the same way as shown in Corollary 4.3.

Corollary 4.3. Any quantity that is a policy-independent
linear transformation of Mπ can be written as a linear
combination of policy-independent basis and bias terms.

Extension to Continuous Spaces: In continuous spaces,
the basis matrices ϕ and bias b become functions ϕ : S×A×
S → Rd and b : S ×A× S → R. The linear equation with
matrix operations becomes a linear equation with functional
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(a)

(b)

Figure 2. (left) A Toy MDP with 2 states and 2 actions to depict
how the linear program of RL is reduced using precomputation.
(right) The corresponding simplex for w assuming the initial state
distribution is µ = (1, 0)T .

transformations, and any sum over states is replaced with
expectation under the data distribution.

Toy Example: Let’s consider a simple 2 state MDP (as
shown in Figure 2a) to depict how the precomputation
and inference will take place. Consider the state-action
visitation distribution as in Equation 1. For this simple
MDP, the Φ and b can be computed using simple alge-
braic manipulations. For a given initial state-visitation
distribution, µ and γ, the state-action visitation distribu-
tion d = (d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T can
be written as,

d = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (5)

The derivation for these basis vectors and the bias vector can
be found in Appendix A.6. Equation 5 represents any vector
that is a solution of Equation 1 for the simple MDP. Any
state-action visitation distribution possible in the MDP can
now be represented using only w = (w1, w2)

T . The only
constraint in the linear program of Equation 4 is Φw+b ≥ 0.
Looking closely, this constraint gives rise to four inequalities
in w and the linear program reduces to,

max
w1,w2

(
−γw1 − w2

1 + γ
,
−w1 − γw2

1 + γ
,w1, w2)

T r

s.t. w1 + γw2 ≤ µ(s0) + γµ(s1)

γw1 + w2 ≤ µ(s1) + γµ(s0)

w1 ≥ 0, w2 ≥ 0

. (6)

The inequalities in w give rise to a simplex as shown in Fig-
ure 2b. For any specific instantiation of µ and r, the optimal
policy can be easily found. For instance, if µ = (1, 0)T and
the reward function, r = (1, 0, 1, 0)T , the optimal w will be
obtained at the vertex (w1 = 1, w2 = 0) and the correspond-
ing state-action visitation distribution is d = (0, 0, 1, 0)T .
As shown for the toy MDP, the successor measures form a
simplex as discussed in (Eysenbach et al., 2022). Spectral
Methods following Proto Value Functions (Mahadevan &
Maggioni, 2007) have instead tried to learn policy indepen-

dent basis functions, Φvf to represent value functions as
a linear span, V π = Φvfwπ. Some prior works (Dadashi
et al., 2019) have already argued that value functions do not
form convex polytopes. We show through Theorem 4.4 that
for identical dimensionalities, the span of value functions
using basis functions represent a smaller class of value func-
tions than the set of value functions that can be represented
using the span of the successor measure.

Theorem 4.4. Given a d-dimensional basis B : Rn → Rd,
define span{B} as the span of all linear combinations of ba-
sis B. Further define span{Br} as the span of inner prod-
ucts of all linear combinations of basis B and all possible
reward functions r. Let span{Φvf} denote the space of the
value functions spanned by Φvf while {span{Φ}r} denotes
the space of value functions using the successor measures
spanned by Φ. For the same dimensionality of task (policy
or reward) independent basis, span{Φvf} ⊆ {span{Φ}r}
for some Φ.

Approaches such as Forward Backward Representations
(Touati & Ollivier, 2021a) have also been based on repre-
senting successor measures but they force a latent variable
z representing the policy to be a function of the reward for
which the policy is optimal. The linear one-to-one mapping
between reward functions and corresponding policies are
incorrect as there can be many rewards leading to the same
optimal policy as well as many optimal policies correspond-
ing to a single reward function. In addition, the forward
map that they propose is a function of this latent z. We,
on the other hand, propose a representation that is truly
independent of the policy or the reward.

5. Method
In this section, we start by introducing the core practical
algorithm for representation learning inspired by the theory
discussed in Section 4 for obtaining Φ and b. We then
discuss the inference step, i.e., obtaining w for a given
reward function.

5.1. Learning Φ and b

For a given policy π, its successor measure under our frame-
work is denoted byMπ = Φwπ+b with wπ the only object
depending on policy. Given an offline dataset with density ρ,
we follow prior works (Touati & Ollivier, 2021a; Blier et al.,
2021b) and model densities mπ =Mπ/ρ learned with the
following objective:

Lπ(Φ, b, wπ) = −(1− γ)Es,a∼ρ[mΦ,b,wπ

(s, a, s, a)]

+
1

2
Es,a,s′∼ρ,s+,a+∼ρ[(m

Φ,b,wπ

(s, a, s+, a+)−

γm̄Φ̄,b̄,w̄π

(s′, π(s′), s+, a+))2]. (7)
The above objective only requires samples (s, a, s′) from the
reward-free dataset and a random state-action pair (s+, a+)
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(also sampled from the same data) to compute L(π).

A Φ and b that allows for minimizing the L(π) for all π ∈ Π
forms a solution to our representation learning problem. But
how do we go about learning such Φ and b? A naı̈ve way to
implement learning Φ and b is via a bi-level optimization.
We sample policies from the policy space of Π, for each
policy we learn a wπ that optimizes the policy evaluation
loss (Eq 7) and take a gradient update w.r.t Φ and b. In
general, the objective can be optimized by any two-player
game solving strategies with [Φ, b] as the first player and
wπ as the second player. Instead, in the next section, we
present an approach to simplify learning representations to
a single-player game.

5.2. Simplifying Optimization via a Discrete Codebook
of Policies

Learning a new wπ for each specific sampled policy π does
not leverage precomputations and requires retraining from
scratch. We propose parameterizing w to be conditional on
policy, which allows leveraging generalization between poli-
cies that induce similar visitation and as we show, will allow
us to simplify the two player game into a single player opti-
mization. In general, policies are high-dimensional objects
and compressing them can result in additional overhead.
Compression by parameterizing policies with a latent vari-
able z is another alternative but presents the challenge of
covering the space of all possible policies by sampling z.
Instead, we propose using a discrete codebook of policies as
a way to simulate uniform sampling of all possible policies
with support in the offline dataset.

Discrete Codebook of Policies: Denote z as a compact
representation of policies. We propose to represent z as
a random sampling seed that will generate a determinis-
tic policy from the set of supported policies as Equation
8. In other words, z will be a random integer (z ≤ 2h

(represented using h bits) that will represent a deterministic
policy.
π(a|s, z) = Uniform Sample(seed = z + hash(s)). (8)

The above sampling strategy defines a unique mapping from
a seed to a policy. If the seed generator is unbiased, the
approach provably samples from among all possible deter-
ministic policies uniformly. Now, with policy πz and wz
parameterized as a function of z we derive the following
single-player reduction to learn Φ, b, w jointly.
PSM-objective: argmin

Φ,b,w(z)

Ez[Lπz (Φ, b, w(z))]. (9)

The disentanglement between the policies sampled during
training and the corresponding reward makes Equation 9
more stable than similar looking objectives like FB (Touati
& Ollivier, 2021b). Equation 9 is absent of any policy learn-
ing via maximization of a moving reward function. In partic-
ular, PSM uses a relatively mild form of off-policy learning

that is more stable than the one derived by maximization
(Farebrother et al., 2023).

5.3. Fast Inference on Downstream Tasks

After obtaining Φ and b via the pretraining step, the only
parameter to compute for obtaining the optimal Q function
for a downstream task in the MDP is w. As discussed
earlier, Q∗ = maxw(Φw + b)r but simply maximizing this
objective will not yield a Q function. The linear program
still has a constraint of Φw + b ≥ 0,∀s, a. We solve the
constrained linear program by constructing the Lagrangian
dual using Lagrange multipliers λ(s, a). The dual problem
is shown in Equation 10. Here, we write the corresponding
loss for the constraint as min(Φw + b, 0).

max
λ≥0

min
w

−Φwr −
∑
s,a

λ(s, a)min(Φw + b, 0). (10)

Once w∗ is obtained, the corresponding M∗ and Q∗ can
be easily computed. The policy can be obtained as π∗ =
argmaxaQ

∗(s, a) for discrete action spaces and via DDPG
style policy learning for continuous action spaces.

6. Connections to Successor Features
In this section, we uncover the theoretical connections be-
tween PSM and successor features. Successor Features (Bar-
reto et al., 2017) (ψπ(s, a)) are defined as the discounted
sum of state features φ(s), ψπ(s, a) = Eπ[

∑
t γ

tφ(st)].
These state features can be used to span reward functions as
r = φz. Using this construction, the Q function is linear in z
as Q(s, a) = ψπ(s, a)z. We can establish a simple relation
between Mπ and ψπ , ψπ(s, a) =

∫
s′
Mπ(s, a, s′)φ(s′)ds′.

This connection shows that, like successor measures, suc-
cessor features can also be represented using a similar basis.

Theorem 6.1. Successor Features ψπ(s, a) belong to an
affine set and can be represented using a linear combination
of basis functions and a bias.

Interestingly, instead of learning the basis of successor mea-
sures, we show below that PSM can also be used to learn
the basis of successor features. While traditional successor
feature-based methods assume that the state features φ are
provided, PSM can be used to jointly learn the successor
feature and the state feature. We begin by introducing the
following Lemma 6.2 from (Touati et al., 2023) which con-
nects an a specific decomposition for successor measures
to the ability of jointly learning state features and successor
representations,

Lemma 6.2. (Theorem 13 of (Touati et al., 2023)) For
an offline dataset with density ρ, if the successor measure
is represented as Mπ(s, a, s+) = ψπ(s, a)φ(s+)ρ(s+),
then ψ is the successor feature ψπ(s, a) for state feature
φ(s)T (Eρ(φφT ))−1.
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According to Lemma 6.2, if Mπ(s, a, s+) =
ψπ(s, a)φ(s+)ρ(s+), then the corresponding suc-
cessor feature is ψπ(s, a) and the state feature is
φ(s)T (Eρ(φφT ))−1. PSM represents successor measures
as Mπ(s, a, s+) = ϕ(s, a, s+)wπρ(s+) (for simplicity,
combining the bias within the basis without loss of
generality). It can be shown that if the basis learned for
successor measure using PSM, ϕ(s, a, s+) is represented
as a decomposition ϕψ(s, a)

Tφ(s+), ϕψ(s, a) forms
the basis for successor features for the state features
φ(s)T (Eρ(φφT ))−1. Formally, we present the following
theorem,

Theorem 6.3. For the PSM representation Mπ(s, a, s+) =
ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)

Tφ(s+), the suc-
cessor feature ψπ(s, a) = ϕψ(s, a)w

π for the state feature
φ(s)T (Eρ(φφT ))−1.

Thus, successor features can be obtained by enforcing
a particular inductive bias to decompose ϕ in PSM. For
rewards linear in state features (r(s) = ⟨φ(s) · z⟩ for
some weights z), the Q-functions remain linear given by
Qπ(s, a) = ϕψ(s, a)w

πEρ[φ(s)z]. A natural question to
ask is, with this decomposition, do we lose the express-
ibility of PSM compared to the methods that compute ba-
sis spanning value functions, thus contradicting Theorem
4.4? The answer is negative, since (1) even though the
value function seems to be linear combination of some ba-
sis with weights wπ, these weights are not tied to z or the
reward. The relationship between the optimal weights wπ

∗

and z defining the reward function is not necessarily lin-
ear as the prior works assume, and (2) the decomposition
ϕ(s, a, s+) = ϕψ(s, a)φ(s

+) reduces the representation
capacity of the basis. While prior works are only able to
recover features pertaining to this reduced representation
capacity, PSM does not assume this decomposition and can
learn a larger representation space. Additionally, a number
of SF methods assume access to these features or learn them
using an auxiliary objective, assuming that the obtained fea-
tures would be sufficient to span successor measures. On
the other hand, PSM is able to extract the features relevant
for learning Mπ for all π.

7. Experimental Study
Our experiments evaluate how PSM can be used to encapsu-
late a task-free MDP into a representation that will enable
zero-shot inference on any downstream task. In the ex-
periments we investigate a) the quality of value functions
learned by PSM (Section 7.2, b) the zero-shot performance
of PSM in contrast to other baselines on discrete tasks (Sec-
tion 7.1 and Appendix C.2), c) the ability to learn general
goal-reaching skills arising from the PSM objective on a
robot manipulation task (Section7.2)and finally d) Suitabil-
ity of learned PSM representations for enabling zero-shot
RL in continuous state-action space tasks. (Section 7.3)

Baselines: We compare against methods that are commonly
used and are the state of the art in spanning the space of
reward functions: Laplacian features (Wu et al., 2018),
Forward-Backward (Touati et al., 2023) and HILP (Park
et al., 2024a). Laplacian features learn features of a state by
considering eigenvectors of a graph Laplacian induced by a
random walk. These features ψ(s) ∈ Rd obtained for each
state are used to define a reward function conditioned on
a reward r(s;ψ) = ψ(s) · z where z is sampled uniformly
from a unit d-dimensional sphere. For each z an optimal
policy is pretrained from the dataset on the induced reward
function. During inference the corresponding z for a given
reward function is obtained as a solution to the following
linear regression: minz Es[(ψ⊤ · z − r(s))2]. Similar to
Laplacian features, we consider a couple other features in
the SF framework, one that uses one-step forward dynamics
predictability (method named “FDM”) and one that uses
SVD decomposition of successor representation (method
named “SVD”). Forward-backward (FB) learns both the
optimal policy and state features jointly for all reward that
are in the linear span of state-features. FB methods typically
assume a goal-conditioned prior during pretraining which
typically helps in learning policies that reach various states
in the dataset. HILP (Park et al., 2024a) makes two changes
to FB: a) Reduces the tasks to be goal reaching and b) Uses
a more performant offline RL method, IQL (Kostrikov et al.,
2021) to learn features. We provide detailed experimental
setup and hyperparameters in Appendix B.3.

7.1. Zero shot Value function and Optimal Policy
prediction

PS
M

FB
La

pl
ac

e

(a) Gridworld

PS
M

FB
La

pl
ac

e

(b) Four-room

Figure 3. Qualitative results on a gridworld and four-room: G
denotes the goal sampled for every episode. The black regions are
the boundaries/obstacles. The agent needs to navigate across the
grid and through the small opening (in case of four-room) to reach
the goal. We visualize the optimal Q-functions inferred at test time
for the given goal in the image. The arrows denote the optimal
policy. (Top row) Results for PSM, (Middle Row) Results for FB,
(Bottom row) Results for Laplacian Eigenfunctions.
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Task Laplace FDM SVD FB HILP PSM

W
al

ke
r Stand 243.70 ± 151.40 834.42 ± 39.36 822.52 ± 99.25 902.63± 38.94 607.07 ± 165.28 872.61 ± 38.81

Run 63.65 ± 31.02 269.27 ± 27.52 332.06 ± 12.87 392.76 ± 31.29 107.84 ± 34.24 351.50 ± 19.46
Walk 190.53 ± 168.45 647.76 ± 180.99 852.06 ± 13.67 877.10 ± 81.05 399.67 ±39.31 891.44 ± 46.81
Flip 48.73 ± 17.66 441.09 ± 66.48 444.43 ± 106.56 206.22 ± 162.27 277.95 ± 59.63 640.75 ± 31.88

Average(*) 136.65 548.14 612.76 594.67 348.13 689.07

C
he

et
ah Run 96.32 ± 35.69 161.90 ± 63.51 171.55 ± 15.05 257.59 ± 58.51 68.22 ±47.08 244.38 ± 80.00

Run Backward 106.38 ± 29.4 280.16 ± 17.76 199.79 ± 28.05 307.07 ± 14.91 37.99 ±25.16 296.44 ± 20.14
Walk 409.15 ± 56.08 589.85 ± 177.14 672.03 ± 115.86 799.83 ±67.51 318.30 ± 168.42 984.21 ± 0.49

Walk Backward 654.29 ± 219.81 945.91 ± 63.13 858.33 ± 42.89 980.76 ± 2.32 349.61 ± 236.29 979.01 ± 7.73

Average(*) 316.53 494.46 475.42 586.31 193.53 626.01

Q
ua

dr
up

ed Stand 854.50 ± 41.47 940.01 ± 29.69 894.30 ± 35.79 740.05 ± 107.15 409.54 ± 97.59 842.86 ± 82.18
Run 412.98 ± 54.03 434.08 ± 21.85 433.66 ± 21.89 386.67 ± 32.53 205.44 ± 47.89 431.77 ± 44.69
Walk 494.56 ± 62.49 459.43 ± 32.44 457.74 ± 64.93 566.57 ± 53.22 218.54 ±86.67 603.97±73.67
Jump 642.84 ± 114.15 709.07 ± 71.99 687.75 ± 40.59 581.28 ± 107.38 325.51 ±93.06 596.37 ±94.23

Average(*) 601.22 635.65 618.36 568.64 289.75 618.74

Po
in

tm
as

s Top Left 713.46 ± 58.90 891.56 ± 49.16 853.79 ± 35.49 897.83 ± 35.79 944.46 ± 12.94 831.43 ± 69.51
Top Right 581.14 ± 214.79 379.75 ± 84.38 442.92 ± 123.84 274.95 ± 197.90 96.04 ± 166.34 730.27 ± 58.10

Bottom Left 689.05 ± 37.08 563.53 ± 213.60 517.19 ± 142.36 517.23 ± 302.63 192.34 ± 177.48 451.38 ± 73.46
Bottom Right 21.29 ± 42.54 10.96 ± 13.51 57.74 ± 80.87 19.37±33.54 0.17 ± 0.29 43.29 ± 38.40

Average(*) 501.23 461.45 467.91 427.34 308.25 514.09

Table 1. Table shows comparison (over 5 seeds) of zero-shot RL performance between different methods with representation size of
d = 128. PSM demonstrates a marked improvement over prior methods. (*) denotes statistically significant through Mann-Whitney U
Test with level 0.05.

In this section, we consider goal-conditioned rewards on a
discrete gridworld and the classic four-room environments.

Task Setup: Both environments have discrete state and
action spaces. The action space consists of five actions:
{up, right, down, left, stay}. We collect transitions in the
environment by uniformly spawning the agent and taking
a random-uniform action.This allows us to form our of-
fline reward-free dataset will full coverage to train Φ and
b. During inference, we sample a goal and infer the opti-
mal Q function on the goal. Since the reward function is
given by r(s) = 1s=g, the inference looks like Q(s, a) =
maxw Φ(s, a, g)w s.t. Φ(s, a, s′)w + b(s, a, s′) ≥
0 ∀s, a, s′. Figure 3 shows the Q function and the cor-
responding optimal policy (when executed from a fixed start
state) on the gridworld and the four-room environment. As
illustrated clearly, for both the environments, the optimal Q
function and policy can be obtained zero-shot for any given
goal-conditioned downstream task. The error rate of each
of the method on these tasks are presented in Appendix C.2

Comparison to baselines: We can draw a couple of con-
clusions from the visualization of the Q functions inferred
by the different methods. First, the Q function learnt by
PSM is more sharply concentrated on optimal state-action
pairs compared to the two baselines. Both baselines have
more uniform value estimates, leaving only a minor differ-
ential over state values. Secondly, the baselines produce far
more incorrect optimal actions (represented by the green
arrows) compared to PSM.

7.2. Learning zero-shot policies for manipulation

We consider the Fetch-Reach environment (Figure 4)
with continuous states and discrete actions (Touati & Ol-
livier, 2021a). A dataset of size 1M is constructed using
DQN+RND. FB, Laplacian and PSM all use this dataset to
learn pretrained objects that can be used for zero-shot RL.

We observe that PSM outperforms baselines FB and Lapla-
cian in its ability to learn a zero-shot policy. One key obser-
vation is that PSM learning is stable whereas FB exhibits
a drop in performance, likely due to the use of Bellman
optimality backups resulting in overestimation bias during
training. Laplacian’s capacity to output zero-shot policies is
far exceeded by PSM because Laplacian methods construct
the graph Laplacian for random policies and may not be
able to represent optimal value functions for all rewards.

7.3. Learning Zero-shot Policies for Continuous Control
We use the ExoRL suite (Yarats et al., 2022) for obtaining
exploratory datasets collected by running RND (Burda et al.,
2019). PSM objective in Equation 9 directly enables learn-
ing the basis for successor measures. We decompose the
basis representation ϕ(s, a, s+) to ϕψ(s, a)Tφ(s+) as dis-
cussed in detail in Section 6. PSM thus ensures that φ(s+)
can be used to construct basic features to span any reward
function. Note that this is not a limiting assumption, as
the features can be arbitrarily non-linear in states. In these
experiments, we compare the ability of PSM to obtain these
representations as compared to prior zero-shot RL methods.
Experimental details can be found in Appendix B.3.

Table 1 compares PSM’s zero-shot performance in contin-
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Figure 4. Quantitative results on FetchReach: The success rates
(averaged over 3 seeds) are plotted (along with the standard devia-
tion as shaded) with respect to the training updates for PSM, FB
and Laplacian. PSM quickly reaches optimal performance while
FB shows instability in maintaining its optimality. Laplacian is far
from the optimal performance.

uous state-action spaces to representative methods - Lapla-
cian, FB, and HILP. We note that to make the comparisons
fair, we use the same representation dimension of d = 128,
the same discount factor, and the same inference and pol-
icy extraction across environments for a particular method.
Overall, PSM performs consistently better or is competitive
to baselines across the environments. Ablations studying
effect of latent dimensionality can be found in Appendix C.

8. Conclusion
This paper introduces Proto Successor Measures (PSM), a
zero-shot RL method that compresses any MDP to allow
for optimal policy inference for any reward function with-
out additional environmental interactions. This framework
marks a step in the direction of moving away from com-
mon ideology in RL to solve single tasks optimally, and
rather pretraining reward-free agents that are able to solve
an infinite number of tasks. PSM is based on the principle
that successor measures are solutions to an affine set and
proposes an efficient and mathematically grounded algo-
rithm to extract the basis for the affine set. Our empirical
results show that PSM can produce the optimal Q function
and the optimal policy for a number of goal-conditioned as
well as reward-specified tasks in a number of environments

outperforming prior baselines.

Limitations and Future Work: PSM shows that any MDP
can be compressed to a representation space that allows
zero-shot RL, but it remains unclear as to what the size of
the representation space should be. A large representational
dimension can lead to increased compute requirements and
training time with a possible chance of overfitting, and a
small representation dimension can fail to capture nuances
about environments that have non-smooth environmental dy-
namics. An interesting future direction would be to study the
impact of dataset coverage on zero-shot RL performance.
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Appendix

A. Theoretical Results
In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and 6.

A.1. Proof of Theorem 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, dπ(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,
(S − γPT )dπ = (1− γ)µ, (13)

where S is the matrix for
∑
a of size |S| × |S||A| with only |A| entries set to 1 corresponding to the state denoted by the

row. This equation is an affine equation of the form Ax = b whose solution set forms an affine set. Hence all state-visitation
distributions dπ form an affine set.

In the continuous spaces, the visitation distributions would be represented as functions: dπ : S ×A→ R rather than vectors
in [0, 1]S×A. The state-action visitation distribution dπ(s, a) will satisfy the following continuous Bellman Flow Equation,∫

A

dπ(s, a)da = (1− γ)µ(s) + γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (14)

This equation is the same as Equation 11 except, the vectors representing distributions are replaced by functions and the
discrete operator

∑
is replaced by

∫
.

The Bellman Flow operator can be defined as T that acts on dπ as,

T [dπ](s) =

∫
A

dπ(s, a)da− γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (15)

From Equation 14, T [dπ](s) = (1− γ)µ(s). The operator T is a linear operator, hence dπ(s, a) forms an affine space.

A.2. Proof of Corollary 4.2

Corollary 4.2. Any successor measure, Mπ, in an MDP forms an affine set and so can be represented as
∑d
i ϕiw

π
i + b

where ϕi and b are independent of the policy π and d is the dimension of the affine space.

Proof. Using Theorem 4.1, we have shown that state-action visitation distributions form affine sets. Similarly, successor
measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:

Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+] + γ
∑

s′,a′∈SA
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+). (16)

Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can be written by
rearranging as,

(S − γPT )Mπ = (1− γ)1[s = s+]. (17)
With similar arguments as in Lemma 4.1, Mπ also forms an affine set.

Following the previous proof, in continuous spaces, Mπ becomes a function Mπ : S ×A× S ×A→ R and the Bellman
Flow equation transforms to,

Mπ(s, a, s+, a+) = (1− γ)p(s = s+, a = a+) + γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+)ds′da′. (18)
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Integrating both sides over a+, the Bellman Flow operator T can be constructed that acts on Mπ ,

T [Mπ](s, a, s+) =

∫
A

Mπ(s, a, s+, a+)da+ − γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)ds′da′ (19)

=⇒ T [Mπ](s, a, s+) = (1− γ)p(s = s+, a = a+) (20)
As T is a linear operator, Mπ belongs to an affine set.

Any element x of an affine set of dimensionality d, can be written as
∑d
i ϕiwi + b where ⟨ϕi⟩ are the basis and b is a bias

vector. The basis is given by the null space of the matrix operator (S − γPT ) (T in case of continuous spaces). Since the
operator (S − γPT ) (and T ) and the vector (1− γ)1[s = s+] (and function (1− γ)p(s = s+, a = a+)) are independent of
the policy, the basis Φ and the bias b are also independent of the policy.

A.3. Proof of Theorem 4.4

Theorem 4.4. Given a d-dimensional basis B : Rn → Rd, define span{B} as the span of all linear combinations of basis
B. Further define span{Br} as the span of inner products of all linear combinations of basis B and all possible reward
functions r. Let span{Φvf} denote the space of the value functions spanned by Φvf while {span{Φ}r} denotes the space
of value functions using the successor measures spanned by Φ. For the same dimensionality of task (policy or reward)
independent basis, span{Φvf} ⊆ {span{Φ}r} for some Φ.

Proof. We need to show that any element that belongs to the set span{Φvf} also belongs to the set {span{Φ}r}.

Any element belonging to the set {span{Φvf}} is represented by,
V π(s) =

∑
i

βπi Φ
vf
i (s).

βπi can be written as βπ
i

ki
ki where ki =

∑
s′ r(s

′) for some r. This means,

V π(s) =
∑
i

[βπi
ki

∑
s′

r(s′)
]
Φvfi (s)

=
∑
i

wπi
∑
s′

Φi(s, s
′)r(s′)

where wπi =
βπ
i

ki
, Φi(s, s′) = Φvfi (s)1s=s′ . This implies, for every instance of V π ∈ span{Φvf}, there exists some

instance in {span{Φ}r} for some Φ and r.

Lets see when an element in {span{Φ}r} belongs in span{Φvf}. We start from an element belonging to set {span{Φ}r}
as represented by,

V π(s) =
∑
i

wπi
∑
s′

Φi(s, s
′)r(s′)

If we assume a special Φi(s, s′) = σi(s)ηi(s
′),

V π(s) =
∑
i

wπi
∑
s′

Φi(s, s
′)r(s′)

=
∑
i

[
wπi

∑
s′

ηi(s
′)r(s′)

]
σi(s)

=
∑
i

βπi Φ
vf
i (s)

where βπi =
[
wπi

∑
s′ ηi(s

′)r(s′)
]

and Φvf (s) = σi(s). This implies for only for the special case Φi(s, s
′) = σi(s)ηi(s

′),
Value functions belong to the set span{Φvf} and in general, this may not hold.

A.4. Proof of Theorem 6.1

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a linear combination of basis
functions and a bias.
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Proof. Given basic state features, φ : S → R|d|, the successor feature is defined as, ψπ(s, a) = Eπ[
∑
t γ

tφ(st+1)]. It
can be correspondingly connected to successor measures as ψπ(s, a) =

∑
s′ M(s, a, s′)φ(s′) (replace

∑
s′ with

∫
s′

for
continuous domains). In Linear algebra notations, let Mπ be a (S × A)× S dimensional matrix representing successor
measure. Define Φs as the S × d matrix containing φ for each state concatenated row-wise. The (S × A) × d matrix
representing Ψπ can be given as,

Ψπ =MπΦs

=⇒ Ψπ =
∑
i

ϕiw
π
i Φs (Mπ is affine for basis ϕ)

=⇒ Ψπ =
∑
s′

∑
i

ϕi(·, ·, s′)wπi φ(s′)

=⇒ Ψπ =
∑
i

∑
s′

ϕi(·, ·, s′)φ(s′)wπi

=⇒ Ψπ =
∑
i

ϕψ,iw
π
i (ϕψ =

∑
s′

ϕi(·, ·, s′)φ(s′))

=⇒ Ψπ = Φψw
π

Hence, the successor features are affine with policy independent basis Φψ .

A.5. Proof of Theorem 6.3

Theorem 6.3. If Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)
Tϕs(s

+), the successor feature ψπ(s, a) =
ϕψ(s, a)w

π for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Proof. Consider ϕ(s, a, s+) ∈ Rd as the set of d− 1 basis vectors and the bias with wπ ∈ Rd being the d− 1 weights to
combine the basis and wπd = 1. Clearly from Theorem 4.2, Mπ(s, a, s+) can be represented as ϕ(s, a, s+)wπ. Further,
ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+) where ϕψ(s, a) ∈ Rd×d and ϕs(s+) ∈ Rd. So,

Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Lemma 6.2, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Note: In continuous settings, we can use the dataset marginal density as described in Section 5. The basic features become
ϕs(s)

T (Eρ[ϕsϕTs ])−1.

A.6. Deriving a basis for the Toy Example

Consider the MDP shown in Figure 5. The state action visitation distribution is written as d =
(d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T . The corresponding dynamics can be written as,

P =

s0, a0 s1, a0 s0, a1 s0, a1[ ]
s0 0 1 1 0
s1 1 0 0 1
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Figure 5. The Toy MDP described in Section 4.

The Bellman Flow equation thus becomes,

∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

=⇒
[
1 1 0 0
0 0 1 1

]
d(s0, a0)
d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)
+ γ

[
0 1 1 0
1 0 0 1

]
d(s0, a0)
d(s1, a0)
d(s0, a1)
d(s1, a1)



=⇒
[
1 1− γ −γ 0
−γ 0 1 1− γ

]
d(s0, a0)
d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)

This affine equation can be solved in closed form using Gauss Elimination to obtain
d(s0, a0)
d(s1, a0)
d(s0, a1)
d(s1, a1)

 = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (21)

B. Experimental Details
B.1. Environments

B.1.1. GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base to build upon the grid-
world and 4 room experiments. The task is to reach a goal state that is randomly sampled at the beginning of every episode.
The reward function is 0 at all non-goal states while 1 at goal states. The episode length for these tasks are 200.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space consists of five actions:
{up, right, down, left, stay}.

B.1.2. FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent which contains the Fetch
environments with discretized action spaces. The state space is unchanged but the action space is discretized to produce
manhattan style movements i.e. move one-coordinate at a time. These six actions are mapped to the true actions of Fetch as:
{0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 : [0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. Fetch has an episode length
of 50.
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Figure 6. DM Control Environments: Visual rendering of each of the four DM Control environments we use: (from left to right) Walker,
Cheetah, Quadruped, Pointmass

B.1.3. DM-CONTROL ENVIRONMENTS

These continuous control environments have been discussed in length in DeepMind Control Suite (Tassa et al., 2018). We
use these environments to provide evaluations for PSM on larger and continuous state and action spaces. The following four
environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6 dimensional action space where
each dimension of action lies in [−1, 1]. The system represents a planar walker. At test time, we test the following four
tasks: Walk, Run, Stand and Flip, each with complex dense rewards.

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6 dimensional action space
where each dimension of action lies in [−1, 1]. The system represents a planar biped “cheetah”. At test time, we test the
following four tasks: Run, Run Backward, Walk and Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12 dimensional action space
where each dimension of action lies in [−1, 1]. The system represents a 3-dimensional ant with 4 legs. At test time, we test
the following four tasks: Walk, Run, Stand and Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space (x, y, vx, vy) and 2-
dimensional action space. The four tasks that we test on are Reach Top Left, Reach Top Right, Reach Bottom Left and Reach
Bottom Right each being goal reaching tasks for the four room centers respectively.

All DM Control tasks have an episode length of 1000.

B.2. Datasets

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random action. Each of the
three method is trained on the reward-free exploratory data. At test time, a random goal is sampled and the optimal Q
function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al., 2013) training with RND reward (Burda et al.,
2019) taken from https://github.com/iDurugkar/adversarial-intrinsic-motivation. 20000 tra-
jectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite (Yarats et al., 2022) collected using RND exploration.

B.3. Implementation Details

B.3.1. BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot reinforcement learning. In
particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al., 2018; Koren, 2003): This method constructs a graph Laplacian for the MDP induced by a
random policy. Eigenfunctions of this graph Laplacian gives a representation for each state ϕ(s), or the state feature. These
state-features are used to learn the successor features; and trained to optimize a family of reward functions r(s) = ⟨ϕ(s) · z⟩,
where z is usually sampled from a unit hypersphere uniformly (same for all baselines). The reward functions are optimized
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via TD3.

2. Forward-Backward (Blier et al., 2021a; Touati & Ollivier, 2021a; Touati et al., 2023): Forward-backward algorithm
takes a slightly different perspective: instead of training a state-representation first, a mapping is defined between reward
function to a latent variable (z =

∑
s ϕ(s).r(s)) and the optimal policy for the reward function is set to πz , i.e the policy

conditioned on the corresponding latent variable z. Training for optimizing all reward functions in this class allows for
state-features and successor-features to coemerge. The reward functions are optimized via TD3.

3. HILP (Park et al., 2024a): Instead of letting the state-features coemerge as in FB, HILP proposes to learn features from
offline datasets that are sufficient for goal reaching. Thus, two states are close to each other if they are reachable in a few
steps according to environmental dynamics. HILP uses a specialized offline RL algorithm with different discounting to learn
these state features which could explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: We build upon the codebase for FB https://github.com/facebookresearch/
controllable_agent and implement all the algorithms under a uniform setup for network architectures and same
hyperparameters for shared modules across the algorithms. We keep the same method agnostic hyperparameters and use the
author-suggested method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Table 2. Hyperparameters for baselines and PSM.
Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 128
Batch size 1024
Discount factor γ 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3× 10−4

Momentum coefficient for target networks 0.99
Stddev σ for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2× 106

Batch size for task inference 104

Regularization weight for orthonormality loss (ensures diversity) 1
FB specific hyperparameters
Hidden units (F ) 1024
Number of layers (F ) 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters
Hidden units (ϕ) 256
Number of layers (ϕ) 2
Hidden units (ψ) 1024
Number of layers (ψ) 3
Discount Factor for ϕ 0.96
Discount Factor for ψ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters
Hidden units (ϕ, b) 1024
Number of layers (ϕ, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD lr 1e-4

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations compared to
Laplacian or HILP as we are not biased by behavior policy or only learn representations sufficient for goal reaching.
Compared to FB, our representation learning phase is more stable as we learn representations by Bellman evaluation backups
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and do not need Bellman optimality backups. Thus, our approach is not susceptible to learning instabilities that arise from
overestimation that is common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table 2.

19



Proto Successor Measure: Representing the Behavior Space of an RL Agent

B.3.2. PSM REPRESENTATION LEARNING PSUEDOCODE

1 def psm_loss(
2 self,
3 obs: torch.Tensor,
4 action: torch.Tensor,
5 discount: torch.Tensor,
6 next_obs: torch.Tensor,
7 next_goal: torch.Tensor,
8 z: torch.Tensor,
9 step: int

10 ) -> tp.Dict[str, float]:
11 metrics: tp.Dict[str, float] = {}
12 # Create a batch_size x batch_size for learning Mˆ\pi(s,a,s+)
13 idx = torch.arange(obs.shape[0]).to(obs.device)
14 mesh = torch.stack(torch.meshgrid(idx, idx, indexing=’xy’)).T.reshape(-1, 2)
15 m_obs = obs[mesh[:, 0]]
16 m_next_obs = next_obs[mesh[:, 0]]
17 m_action = action[mesh[:, 0]]
18 m_next_goal = next_goal[mesh[:, 1]]
19 perm = torch.randperm(obs.shape[0])
20

21 # compute PSM loss
22 with torch.no_grad():
23 target_phi, target_b = self.psm_target(m_next_obs, m_next_goal)
24 target_w = self.w_target(z)
25 target_phi = target_phi[torch.arange(target_phi.shape[0]), next_actions.

squeeze(1)]
26 target_b = target_b[torch.arange(target_b.shape[0]), next_actions.squeeze(1)]
27 target_M = torch.einsum("sd, sd -> s", target_phi, target_w) + target_b
28

29

30 phi, b = self.psm(m_obs, m_next_goal)
31 phi = phi[torch.arange(phi.shape[0]), m_action.squeeze(1)]
32 b = b[torch.arange(b.shape[0]), m_action.squeeze(1)]
33 M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b
34 M = M.reshape(obs.shape[0], obs.shape[0])
35 target_M = target_M.reshape(obs.shape[0], obs.shape[0])
36 I = torch.eye(*M.size(), device=M.device)
37 off_diag = ˜I.bool()
38 psm_offdiag: tp.Any = 0.5 * (M - discount * target_M)[off_diag].pow(2).mean()
39 psm_diag: tp.Any = -((1 - discount) * (M.diag().unsqueeze(1))).mean()
40 psm_loss = psm_offdiag + psm_diag
41

42

43 # optimize PSM
44 self.opt.zero_grad(set_to_none=True)
45 self.actor_opt.zero_grad(set_to_none=True)
46 psm_loss.backward()
47 self.opt.step()
48 self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz CPUS and NVIDIA
GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.

C. Additional Experiments
C.1. Ablation on dimension of the affine space: d

We perform the experiments described in Section 7.3 for two of the conitnuous environments with varying dimensionality of
the affine space (or corresponding successor feature in the inductive construction), d. Interestingly, the performance of PSM
does not change much across different values of d ranging from 32 to 256. This is in contrast to methods like HILP which
sees significant drop in performance by modifying d.
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Environment Task d = 32 d = 50 d = 128 d = 256

Walker Stand 898.98 ± 48.64 942.85 ± 19.43 872.61 ± 38.81 911.25 ± 32.86
Run 359.51 ± 70.66 392.76 ± 31.29 351.50 ± 19.46 372.39 ± 41.29
Walk 825.66 ± 60.14 822.39 ± 60.14 891.44 ± 46.81 886.03 ± 28.96
Flip 628.92 ± 94.95 521.78 ± 29.06 640.75 ± 31.88 593.78 ± 27.14

Average 678.27 669.45 689.07 690.86

Cheetah Run 298.98 ± 95.63 386.75 ± 55.79 276.41 ± 70.23 268.91 ± 79.07
Run Backward 295.43 ± 19.72 260.13 ± 24.93 286.13 ± 25.38 290.89 ± 14.36
Walk 942.12 ± 84.25 893.89 ± 91.69 887.02 ± 59.87 920.50 ± 68.98
Walk Backward 978.64 ± 8.74 916.68 ± 124.34 980.90 ± 2.04 982.29 ± 0.70

Average 628.79 615.61 607.61 615.64

Table 3. Table shows comparison (averaged over 5 seeds) between different representation sizes (or affine space dimensionality d) for
PSM.

C.2. Quantitative Results on Gridworld and Discrete Maze

We provide quantitative results for the experiments performed in Section 7.1.

Environment Laplace FB FB-biased PSM

Gridworld 19.28 ± 2.34 14.53 ± 0.68 2.13 ± 0.73 2.05 ± 1.20

Discrete Maze 38.47 ± 7.01 28.80 ± 10.50 12.9 ± 1.63 11.54 ± 1.07

Table 4. Table shows average error (averaged over 3 seeds) for the predicted policy
from different zero-shot RL methods with respect to the oracle optimal policy.

Quantitative Experiment Description: For
each randomly sampled goal, we obtain the
inferred value function and the inferred pol-
icy using PSM and the baselines. At every
state in the discrete space, we check if the
policy inferred by these algorithms is optimal
or not. The oracle or the optimal policy can
be obtained by running the Bellman Ford al-
gorithm in the discrete gridworld or maze. We report (in Table 4) the average error (# incorrect policy predictions/Total # of
states) for 10 randomly sampled goal (over 3 seeds).

The original FB method assumes that tasks are goal-conditioned, implicitly biasing the training to a smaller set of reward
functions. We remove that bias in our gridworld experiments to ensure an apples-to-apples comparison. We present the
results for the biased goal-conditioned sampling as “FB-biased” in Table 4.

As clearly seen, the average error for PSM is significantly less than the baselines which augments the qualitative results
presented in Section 7.1.
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