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ABSTRACT

α, β-CROWN has won the last 4 VNNcomp(etitions), as the DNN verifier with the
best trade-off between accuracy and runtime. VNNcomp however is focusing on
relatively easy verification instances. In this paper, we consider harder verification
instances, on which α, β-Crown displays a large number (20−58%) of undecided
instances, that is, instances that can neither be verified, nor an explicit attack can
be found. Enabling larger time-outs for α, β-Crown only improves verification
rate by few percents, leaving a large gap of undecided instances while already
taking a considerable amount of time. Resorting to slow complete verifiers, does
not fare better even with very large time-outs: They would theoretically be able to
close the gap, but with an untractable runtime on all but small hard instances.
In this paper, we propose a novel Utility function that selects few neurons to be
encoded with accurate but costly integer variables in a partial MILP problem. The
novelty resides in the use of the solution of one (efficient LP) solver to accurately
compute a selection ε-optimal for a given input. Compared with previous at-
tempts, we can reduce the number of integer variables by around 4 times while
maintaining the same level of accuracy. Implemented in Hybrid MILP, calling
first α, β-Crown with a short time-out to solve easier instances, and then partial
MILP for those for which α, β-Crown fails, produces a very accurate yet efficient
verifier, reducing tremendously the number of undecided instances (8 − 15%),
while keeping a reasonable runtime (46s− 417s on average per instance).

1 INTRODUCTION

Deep neural networks (DNNs for short) have demonstrated remarkable capabilities, achieving
human-like or even superior performance across a wide range of tasks. However, their robustness is
often compromised by their susceptibility to input perturbations Szegedy et al. (2014). This vulnera-
bility has catalyzed the verification community to develop various methodologies, each presenting a
unique balance between completeness and computational efficiency Katz et al. (2019; 2017); Singh
et al. (2019b). This surge in innovation has also led to the inception of competitions such as VN-
NComp Brix et al. (2023b), which aim to systematically evaluate the performance of neural network
verification tools. While the verification engines are generic, the benchmarks usually focus on lo-
cal robustness, i.e. given a DNN, an image and a small neighbourhood around this image, is it the
case that all the images in the neighbourhood are classified in the same way. For the past 5 years,
VNNcomp has focused on rather easy instances, that can be solved within tens of seconds (the typ-
ical hard time-out is 300s). For this reason, DNN verifiers in the past years have mainly focused
on optimizing for such easy instances. Among them, NNenum Bak (2021), Marabou Katz et al.
(2019); Wu et al. (2024), and PyRAT Durand et al. (2022), respectively 4th, 3rd and 2sd of the last
VNNcomp’24 Brix et al. (2024) and 5th, 2sd and 3rd of the VNNcomp’23 Brix et al. (2023a); Mn-
BAB Ferrari et al. (2022), 2sd in VNNcomp’22 Müller et al. (2022), built upon ERAN Singh et al.
(2019b) and PRIMA Müller et al. (2022); and importantly, α, β-Crown Wang et al. (2021); Xu et al.
(2021), the winner of the last 4 VNNcomp, benefiting from branch-and-bound based methodology
Zhang et al. (2022); Bunel et al. (2020). We will thus focus in the following mostly on α, β-Crown.

Easy instances does not mean small DNNs: for instance, a ResNet architecture for CIFAR10 (with
tens of thousands of neurons) has been fully checked by α, β-Crown Wang et al. (2021), each in-
stance taking only a couple of seconds to either certify that there is no robustness attack, or finding a
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Network Accuracy Upper α, β-Crown α, β-Crown α, β-Crown
Perturbation Bound TO=10s TO=30s TO=2000s
MNIST 5×100 99% 90% 33% 35% 40%
ϵ = 0.026 6.9s 18.9s 1026s
MNIST 5×200 99% 96% 46% 49% 50%
ϵ = 0.015 6.5s 16.6s 930s
MNIST 8×100 97% 86% 23% 28% 28%
ϵ = 0.026 7.2s 20.1s 930s
MNIST 8×200 97% 91% 35% 36% 37%
ϵ = 0.015 6.8s 18.2s 1083s
MNIST 6×500 100% 94% 41% 43% 44%
ϵ = 0.035 6.4s 16.4s 1003s
CIFAR CNN-B-adv 78% 62% 34% 40% 42%
ϵ = 2/255 4.3s 8.7s 373s
CIFAR ResNet 29% 25% 25% 25% 25%
ϵ = 2/255 2s 2s 2s

Table 1: Images verified by α, β-Crown with different time-outs (TO) on 7 DNNs, and average
runtime per image. The 6 first DNNs are hard instances. The last DNN (ResNet) is an easy instance
(trained using Wong to be easy to verify, but with a very low accuracy level), provided for reference.

very close neighbour with a different decision. One issue is however that easy instances are trained
specifically to be easier to verify e.g. using DiffAI Mirman et al. (2018) PGD Madry et al. (2018),
which can impact the accuracy of the network, i.e. answering correctly to an unperturbed input.
For instance, this ResNet was trained using Wong, and only 29% of its answers are correct Müller
et al. (2022) (the other 71% are thus not tested). While more accurate trainers for verification have
been recently developed Xu et al. (2024), they can only simplify one given verification specification
by a limited amount before hurting accuracy, turning e.g. very hard verification instances into hard
verification instances. Also, verification questions intrinsically harder than local robustness, such as
bounding on Lipschitz constants Wang et al. (2022) globally or asking several specification at once,
makes the instance particularly harder. Last, there are many situations (workflow, no access to the
dataset...) where using specific trainers to learn easy to verify DNN is simply not possible, leading
to verification-agnostic networks Dathathri et al. (2020). The bottom line is, one cannot expect only
easy verification instances: hard verification instances need to be explored as well.

In this paper, we focused on the 6 hard ReLU-DNNs that have been previously tested in Wang et al.
(2021), which display a large gap (≥ 20%) between images that can be certified by α, β-Crown
and the upper bound when we remove those which can be falsified. In turns, hard instances does
not necessarily mean very large DNNs, the smallest of these hard DNNs having only 500 hidden
neurons, namely MNIST 5×100. We first dwelve into the scaling of α, β-Crown, to understand how
longer Time-Out (TO) affects the number of undecided images and the runtime. Table 1 reveals that
even allowing for 200 times longer time outs only improves the verification from 2% to 8%, leaving
a considerable 20% − 50% gap of undecided images, while necessitating vastly longer runtime
(300s-1000s in average per instance).

The size of the smallest DNN (500 hidden neurons) makes it believable to be solved by complete
verifiers such as Marabou 2.0, NNenum or a Full MILP encoding. While they should theoretically
be able to close the gap of undecided images, in practice, even with a large 10 000s Time-out, Table
2 reveals that only NNenum succeeds to verify images not verified by α, β-Crown, limited to 9%
more images out of the 50% undecided images, and with a very large runtime of almost 5000s per
image. It seemed pointless to test complete verifiers on larger networks.

Network Accuracy Upper Marabou 2.0 NNenum Full MILP
MNIST 5×100 99% 90% 28% 49% 40 %
ϵ = 0.026 6200s 4995s 6100s

Table 2: Result of complete verifiers on the hard 5x100 with TO = 10 000s. Complete verifier barely
(9% out of 50%) outperform α, β-Crown (40%, 1026s), despite much larger runtime.
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Our main contributions address the challenges of verifying hard DNNs efficiently:

1. We designed a novel Utility function to choose few neurons to encode with the exact MILP
encoding, while others are treated with the efficient LP relaxation, giving rise to partial
MILP (pMILP). Specifically, the novelty of Utility resides in the use of the solution to an
(efficient LP) solver on the node z we want to bound. Utility can then precisely evaluate
how much accuracy is gained by switching neuron a from LP (solution of the LP call) to the
exact MILP encoding of ReLU (exact computation from the solution, which can be made
thanks to Proposition 1), with a proved bound on the precision (Proposition 2). Because
pMILP focuses on the improvement (binary - linear), it is much more efficient (≈ 4 times
less integer variables for same accuracy (Table 6)) than previous attempts, which consider
the generic sensitivity to this neuron. To the best of our knowledge, this is the first time
such a solution of an (LP) call is used to evaluate the contribution of each neuron, including
heuristics for BaB, e.g. Bunel et al. (2020); De Palma et al. (2021).

2. We then propose a new verifier, called Hybrid MILP, invoking first α, β-Crown with short
time-out to settle the easy instances. On those (hard) instances which are neither certified
nor falsified, we call pMILP with few neurons encoded as integer variables. Experimental
evaluation reveals that Hybrid MILP achieves a beneficial balance between accuracy and
completeness compared to prevailing methods. It reduces the proportion of undecided
inputs from 20− 58% (α, β-Crown with 2000s TO) to 8− 15%, while taking a reasonable
average time per instance (46 − 420s), Table 3. It scales to fairly large networks such as
CIFAR-10 CNN-B-Adv Dathathri et al. (2020), with more than 20 000 neurons.

Limitation: We consider DNNs employing the standard ReLU activation function, though our find-
ings should extend to other activation functions, following similar extention by Huang et al. (2020).

1.1 RELATED WORK

We compare Hybrid MILP with major verification tools for DNNs to clarify our methodology and
its distinction from the existing state-of-the-art. It scales while preserving good accuracy, through
targeting a limited number of binary variables, stricking a good balance between exact encoding
of a DNN using MILP Tjeng et al. (2019) (too slow) and LP relaxation (too inaccurate). MIP-
planet Ehlers (2017b) opts for a different selection of binary variables, and execute one large MILP
encoding instead of Hybrid MILP’s many small encodings, which significantly reduce the number
of binary variables necessary for each encoding. In Huang et al. (2020), small encodings are also
considered, however with a straightforward choice of binary nodes based on the weight of outgoing
edges, which need much more integer variables (thus runtime) to reach the same accuracy.

Hybrid MILP can be seen as a refinement of α, β-Crown Wang et al. (2021), though its refined
accurate path is vastly different than the base Branch and Bound technique used in α, β CROWN,
BaBSR Bunel et al. (2020) and MN-BaB Ferrari et al. (2022), which call BaB once per output
neuron. In the worst case, this involves considering all possible ReLU configurations, though branch
and bound typically circumvents most possibilities. In simple networks, like those trained robustly,
branch and bound is highly efficient, focusing on branches crucial for verifying the actual property.
However, branch and bound hits a complexity barrier when verifying harder instances, due to an
overwhelming number of branches, as displayed in Table 1. This is not the case of Hybrid MILP,
see Table 3, which is much more accurate than α, β-Crown. That shortcoming for hard instances
was witnessed in Wang et al. (2021), and a very specific solution using the full MILP encoding for
the first few layers of a DNN was drafted, following similar proposal Singh et al. (2019c). The main
issue is that it is slow and it cannot scale to DNNs with many neurons, as every neurons are encoded
using an integer variable, making it not that accurate for intermediate networks (e.g. 9×100, 9×200,
Table 3), and not usable for larger DNNs (6×500, CNN-B-Adv), whereas Hybrid MILP does scale.

Last, ERAN-DeepPoly Singh et al. (2019b) computes bounds on values very quickly, by abstracting
the weight of every node using two functions: an upper function and a lower function. While the
upper function is fixed, the lower function offers two choices. It relates to the LP encoding through
the following new (to our knowledge) insight: Proposition 1 state that the LP relaxation precisely
matches the intersection of these two choices. Consequently, LP is more accurate (but slower) than
DeepPoly, and Hybrid MILP is considerably more precise. Regarding PRIMA Müller et al. (2022),
the approach involves explicitly maintaining dependencies between neurons.
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Finally, methods such as Reluplex / Marabou Katz et al. (2017; 2019) abstract the network: they
diverge significantly from those abstracting values such as PRIMA, α, β-CROWN)Müller et al.
(2022); Wang et al. (2021), Hybrid MILP. These network-abstraction algorithms are designed to be
complete but completeness comes at the price of significant scalability challenges, and in practice
they time-out on hard instances as shown in Table 2.

2 NOTATIONS AND PRELIMINARIES

In this paper, we will use lower case latin a for scalars, bold z for vectors, capitalized bold W
for matrices, similar to notations in Wang et al. (2021). To simplify the notations, we restrict the
presentation to feed-forward, fully connected ReLU Deep Neural Networks (DNN for short), where
the ReLU function is ReLU : R → R with ReLU(x) = x for x ≥ 0 and ReLU(x) = 0 for x ≤ 0,
which we extend componentwise on vectors.

An ℓ-layer DNN is provided by ℓ weight matrices W i ∈ Rdi×di−1 and ℓ bias vectors bi ∈ Rdi , for
i = 1, . . . , ℓ. We call di the number of neurons of hidden layer i ∈ {1, . . . , ℓ − 1}, d0 the input
dimension, and dℓ the output dimension.

Given an input vector z0 ∈ Rd0 , denoting ẑ0 = z0, we define inductively the value vectors zi, ẑi

at layer 1 ≤ i ≤ ℓ with

zi = W i · ẑi−1 + bi ẑi = ReLU(zi).

The vector ẑ is called post-activation values, z is called pre-activation values, and zi
j is used to call

the j-th neuron in the i-th layer. For x = z0 the (vector of) input, we denote by f(x) = zℓ the
output. Finally, pre- and post-activation neurons are called nodes, and when we refer to a specific
node/neuron, we use a, b, c, d, n to denote them, and Wa,b ∈ R to denote the weight from neuron
a to b. Similarly, for input x, we denote by valuex(a) the value of neuron a when the input is x.
A path π is a sequence π = (ai)k≤i≤k′ of neurons in consecutive layers, and the weight of π is
weight(π) = Wak,ak+1

× · · · ×Wak′−1,ak′ .

Concerning the verification problem, we focus on the well studied local-robustness question. Local
robustness asks to determine whether the output of a neural network will be affected under small
perturbations to the input. Formally, for an input x perturbed by ε > 0 under distance d, then the
DNN is locally ε-robust in x whenever:

∀x′ s.t. d(x,x′) ≤ ε, we have argmaxi(f(x
′)[i]) = argmaxi(f(x)[i])

3 VALUE ABSTRACTION FOR DNN VERIFICATION

In this section, we describe different value (over-)abstractions on z that are used by efficient algo-
rithms to certify robustness around an input x. Over-abstractions of values include all values for z
in the neighbourhood of x, and thus a certificate for safety in the over-abstraction is a proof of safety
for the original input x.

3.1 THE BOX ABSTRACTIONS

The concept of value abstraction involves calculating upper and lower bounds for the values of
certain neurons in a Deep Neural Network (DNN) when inputs fall within a specified range. This
approach aims to assess the network’s robustness without precisely computing the values for every
input within that range.

Firstly, it’s important to note that weighted sums represent a linear function, which can be explic-
itly expressed with relative ease. However, the ReLU (Rectified Linear Unit) function presents a
challenge in terms of accurate representation. Although ReLU is a relatively straightforward piece-
wise linear function with two modes (one for x < 0 and another for x ≥ 0), it is not linear. The
complexity arises when considering the compounded effects of the ReLU function across the vari-
ous layers of a ReLU DNN. It’s worth noting that representing ReLU(x) precisely is feasible when
x is ”stable”, meaning it’s consistently positive or consistently negative, as there’s only one linear
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Figure 1: A DNN. Every neuron is separated into 2 nodes, n pre- and n̂ post-ReLU activation.

mode involved in each scenario. Consequently, the primary challenge lies in addressing ”unstable”
neurons, where the linearity of the function does not hold consistently.

Consider the simpler abstraction, termed “Box abstraction”, recalled e.g. in Singh et al. (2019b):
it inductively computes the bounds for each neuron in the subsequent layer independently. This
is achieved by considering the weighted sum of the bounds from the previous layer, followed by
clipping the lower bound at max(0, lower bound) to represent the ReLU function, and so forth. For
all i ≥ 3, define xi = valuex(ni), where x = (x1, x2). Taking the DNN example from Fig 1,
assume x1, x2 ∈ [−1, 1]. This implies that x3, x4 ∈ [−2, 2]. After applying the ReLU function,
x̂3, x̂4 are constrained to [0, 2], leading to x5 ∈ [0, 6] and x6 ∈ [0, 2]. The bounds for n1, . . . , n4

are exact, meaning for every α within the range, an input y can be found such that valuey(ni) =
α. However, this precision is lost from the next layer (beginning with n5, n6) due to potential
dependencies among preceding neurons. For example, it is impossible for x5 = valuex(n5) to reach
6, as it would necessitate both x3 = 2 and x4 = 2, which is not possible at the same time as x3 = 2
implies x1 = x2 = 1 and x4 = 2 implies x2 = −1 (and x1 = 1), a contradiction.

In Ehlers (2017a); Singh et al. (2019b) and others, the triangular abstraction was proposed:

ReLU(x) = max(0, x) ≤ x̂ ≤ UB(n)
x− LB(n)

UB(n)− LB(n)
(1)

It has two lower bounds (the 0 and identity functions), and one upper bound. DeepPoly Singh et al.
(2019b) chooses one of the two lower bounds for each neuron x, giving rise to a greedy quadratic-
time algorithm to compute very fast an abstraction of the value of x̂ (but not that accurately).

3.2 MILP, LP AND PARTIAL MILP ENCODINGS FOR DNNS

At the other end of the spectrum, we find the Mixed Integer Linear Programming (MILP) value
abstraction, which is a complete (but inefficient) method. Consider an unstable neuron n, whose
value x ∈ [LB(n),UB(n)] with LB(n) < 0 < UB(n). The value x̂ of ReLU(x) can be encoded
exactly in an MILP formula with one integer (actually even binary) variable a valued in {0, 1}, using
constants UB(n),LB(n) with 4 constraints Tjeng et al. (2019):

x̂ ≥ x ∧ x̂ ≥ 0, ∧ x̂ ≤ LB(n) · a ∧ x̂ ≤ x−UB(n) · (1− a) (2)

For all x ∈ [LB(n),UB(n)] \ 0, there exists a unique solution (a, x̂) that meets these constraints,
with x̂ = ReLU(x) Tjeng et al. (2019). The value of a is 0 if x < 0, and 1 if x > 0, and can be either
if x = 0. This encoding approach can be applied to every (unstable) ReLU node, and optimizing
its value can help getting more accurate bounds. However, for networks with hundreds of unstable
nodes, the resulting MILP formulation will contain numerous integer variables and generally bounds
obtained will not be accurate, even using powerful commercial solvers such as Gurobi.

MILP instances can be linearly relaxed into LP over-abstraction, where variables originally restricted
to integers in {0, 1} (binary) are relaxed to real numbers in the interval [0, 1], while maintaining the
same encoding. As solving LP instances is polynomial time, this optimization is significantly more
efficient. However, this efficiency comes at the cost of precision, often resulting in less stringent
bounds. This approach is termed the LP abstraction.

In this paper, we propose to use partial MILP, to get interesting trade-offs between accuracy and
runtime: for a set of unstable neurons X , we denote by MILPX the MILP encoding where variables
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encoding X are binary, and other variables are linear variables using the LP relaxation. We say
that nodes in X are opened. To further limit the number of binary variables needed for a given
accuracy, we devise the same iterative approach as the box abstraction or DeepPoly Singh et al.
(2019b), computing lower and upper bounds LB(n),UB(n) for neurons n of a layer, that are used
when computing values of the next layer, thus necessitating less variables from previous layers.

The crucial factor in such an approach is to select few opened ReLU nodes in X which are the most
important for the accuracy. An extreme strategy was adopted in Huang et al. (2020), where only
ReLU nodes of the immediate previous layer can be opened, and the measure to choose ReLU a
when computing the bounds for neuron b was to consider |Wab|(UB(a)−LB(a)). To obtain a more
accurate measure, that is not limited to open nodes from the immediate previous layer, we invoke a
folklore result on the LP relaxation of (2), for which we provide a direct and explicit proof:

Proposition 1. The LP relaxation of (2) is equivalent with the triangular abstraction (1).

Proof. Consider an unstable neuron n, that is LB(n) < 0 < UB(n). The lower bound on x̂ is
simple, as x̂ ≥ 0 ∧ x̂ ≥ x is immediatly equivalent with x̂ ≥ ReLU(x).

We now show that the three constraints x̂ ≤ UB(n) ·a ∧ x̂ ≤ x−LB(n) · (1−a) ∧ a ∈ [0, 1] trans-
lates into x̂ ≤ UB(n) x−LB(n)

UB(n)−LB(n) . We have x̂ is upper bounded by maxa∈[0,1](min(UB(n)·a, x−
LB(n)(1−a))), and this bound can be reached. Furthermore, using standard function analysis tools
(derivative...), we can show that the function a 7→ min(UB(n)·a, x−LB(n)(1−a)) attains its max-
imum when UB(n)·a = x−LB(n)(1−a), leading to the equation (UB(n)−LB(n))a = x−LB(n)

and consequently a = x−LB(n)
UB(n)−LB(n) . This results in an upper bound x̂ ≤ UB(n) x−LB(n)

UB(n)−LB(n) ,
which can be reached, hence the equivalence.

4 UTILITY FUNCTION CHOOSING NEURONS IMPORTANT FOR ACCURACY.

In this section, we evaluate how each ReLU would impact the accuracy if encoded as a binary or
a linear variable, using Proposition 1. A ReLU is said open when it is represented as a binary
variable. For X a set of open ReLUs, we denote by MX the MILP model where variables from X
are encoded with binary variables, and other variables are using the LP linear relaxation.

Usually, heuristics to choose X are based on evaluating the sensitivity of a neuron z wrt the ReLU
nodes, that is how much a ReLU value impacts the value of z, and rank the ReLU nodes accordingly.
This is the case of Huang et al. (2020), but also more generally of heuristics for BaB, such as SR
Bunel et al. (2020) and FSB De Palma et al. (2021). Instead, Utility considers the improvement from
opening a neuron n, that is the difference for the value of z between considering ReLU(n) exactly
or using its LP relaxation LP(n). Indeed, it is not rare that z is sensitive to ReLU node n, and yet
LP(n) already provides an accurate approximation of ReLU(n). In this case, usual heuristics would
open n, while it would only improve the value of z in a limited way.

Assume that we want to compute an upper bound for neuron z on layer ℓz . We write n < z if neuron
n is on a layer before ℓz , and n ≤ z if n < z or n = z. We denote (Sol maxzX(n))n≤z a solution
of MX maximizing z. In particular, Sol maxzX(z) is the maximum of z under MX .

Consider (sol(n))n≤z = (Sol maxz∅(n))n≤z , a solution maximizing the value for z when all ReLU
use the LP relaxation. Function Improve maxz(n) = sol(z) − Sol maxz{n}(z), accurately repre-
sents how much opening neuron n < z reduces the maximum computed for z compared with using
only LP. We have Improve maxz(n) ≥ 0 as Sol maxz{n} fulfills all the constraints of M∅, so
Sol maxz{n}(z) ≤ sol(z). Similarly, we define (Sol minz∅(n))n≤z and Improve minz(n). Calling
MILP on M{n} for every neuron n ≤ z would however be very time consuming when the number
of neurons a to evaluate is large. The main novelty of our Utility function is that it uses a (single)
LP call to compute (sol(n))n≤z , with negligible runtime wrt the forthcoming MILPX call, and yet
accurately approximates Improve maxz(n) to choose a meaningful set X of open nodes (Table 6).

For a neuron b on the layer before the layer ℓz , we define:

Utility maxz(b) = Wbz × (sol(b̂)− ReLU(sol(b)))

6
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Consider b with Wbz < 0: to maximize z, the value of sol(b̂) is minimized, which is sol(b̂) =
ReLU(sol(b)) thanks to Proposition 1. Even if z is sensitive to this ReLU b, the improvement of b
is 0. Utility does not open it as Utility maxz(b) = 0, whereas usual heuristics would.

For a neuron a a two layers before ℓz , b denoting neurons in the layer ℓ just before ℓz , we define:

∆(â) = ReLU(sol(a))− sol(â)

∀b ∈ ℓ,∆(b) = Wab∆(â)

∀b ∈ ℓ,∆(b̂) =


UB(b)

UB(b)−LB(b)∆(b), if Wbz > 0

max(∆(b),−sol(b)), if Wbz < 0 and sol(b) ≥ 0

max(∆(b) + sol(b), 0), if Wbz < 0 and sol(b) < 0

Utility maxz(a) = −
∑
b∈ℓ

Wbz∆(b̂)

Informally, ∆(â),∆(b),∆(b̂) approximate the improvement on the accuracy of â, b, b̂ when com-
puting ReLU(a) using the exact MILP encoding instead of LP. Using Proposition 1, we show:
Proposition 2. 0 ≤ Improve maxz(a) ≤ Utility maxz(a).

Thus, Utility maxz(a) can be used to approximate Improve maxz(a). In particular, for all nodes
a with Waz < 0, this node will have the smallest Utility maxz(a) = 0 (thus will not get picked in
the open nodes X), and indeed it is not having any impact on Sol maxz{a}(z). This is one striking
difference (but not the only one) with choosing utility based on |Waz| Huang et al. (2020).

Proof. Consider sol′(n)n≤z with sol′(n) = sol(n) for all n /∈ {z, â} ∪ {b, b̂ | b ∈ ℓ}. In particular,
sol′(a) = sol(a). Now, define sol′(â) = ReLU(sol(a)). That is, sol′(â) is the correct value for
â, obtained if we open neuron a, compared to the LP abstraction for sol(â). We define sol′(b) =

sol(b)+∆(b) and sol′(b̂) = sol(b̂)+∆(b̂). Last, sol′(z) = sol(z)+
∑

b∈ℓ Wbz∆(b̂). We will show:

(sol′(n))n≤z satisfies the constraints in M{a} (3)

This suffices to conclude: as sol′(z) is a solution of M{a}, it is smaller or equal to the maximal
solution: sol′(z) ≤ Sol maxz{a}(z). That is, sol(z) − sol′(z) ≥ sol(z)− Sol maxz{a}(z), i.e.
Utility maxz(a) ≥ Improve maxz(a). In particular, we have that Utility maxz(a) ≥ 0, which
was not obvious from the definition.

Finally, we show (3). First, opening a changes the value of â from sol(â) to ReLU(sol(a)) =

sol(â)+∆(a), and from sol(b) to sol(b)+∆(b). The case of ∆(b̂) is the most interesting: If Wbz >

0, then according to Proposition 1, the LP solver sets sol(b̂) = sol(b) UB(b)
UB(b)−LB(b)+ Cst to maximize

z. Changing b by ∆(b) thus results in changing sol(b̂) by UB(b)
UB(b)−LB(b)∆(b). If Wbz ≤ 0, then the

LP solver sets sol(b̂) to the lowest possible value to maximize z, which happens to be ReLU(b)

according to Proposition 1. If sol(b) < 0, then we have sol(b̂) = ReLU(b) = 0 and opening a

change the 0 value only if sol(b) + ∆(b) > 0. If sol(b) > 0, then sol(b̂) = ReLU(sol(b)) = sol(b),
and the change to b̂ will be the full ∆(b), unless ∆(b) < −sol(b) < 0 in which case it is −sol(b).

We can proceed inductively in the same way to define Utility maxz(a) for deeper neurons a.

5 EXPERIMENTAL EVALUATION

We implemented Hybrid MILP in Python 3.8, and Gurobi 9.52 was used for solving LP and MILP
problems. We conducted our evaluation on an AMD Threadripper 7970X (32 cores@4.0GHz, 5nm)
with 256 GB of main memory and 2 NVIDIA RTX 4090.

The objectives of our evaluation was to answer the following questions:
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1. How does the the choice of the set X impacts the accuracy of MILPX?
2. How accurate is Hybrid MILP, and how efficient is it?

5.1 EVALUATION OF THE UTILITY FUNCTION TO CHOOSE NEURONS TO OPEN

To measure the impact of the utility function to select neurons to open, we focused on a small hard
DNN, namely 5× 100, so as to be able to compute exact bounds for the first few layers using a full
MILP encoding of the DNN for comparison purpose. We tested over the x = 59th image in the
MNIST dataset, as it has a large number of unstable ReLU nodes in the first few layers (61 in the
first and 55 in the second layer), so we can experiment with a larger choice of values) for K = |X|
the size of set X . To measure the accuracy, we measure the uncertainty of all nodes in a layer: the
uncertainty of a node is the range between its computed lower and upper bound. We then average
the uncertainty among all the nodes of the layer. Formally, the uncertainty of a node a with bounds

[LB,UB] is uncert(a) = UB− LB. The average uncertainty of layer ℓ is
∑

a∈l uncert(a)
size(ℓ)

.

We focus on the uncertainty of nodes in the third layers, wrt ReLU nodes in the first and second
layer. The bounds for nodes of the first two layers are computed exactly using the full MILP en-
coding. We report in Figure 2 the average uncertainty of MILPX following the choice of the K
heaviest neurons for our Utility function, compared with a random choice, both for nodes exclu-
sively from the previous Layer 2 or from both Layers 1 and 2. We compared with choosing based
on strength(n) = (UB(n)− LB(n)) · |Wnz| Huang et al. (2020), opening nodes in Layer 2 only.

The Utility function selects very important neurons: to achieve the same accuracy than Huang et al.
(2020), 2.5 time fewer nodes (10 vs 25) are necessary when picking in the same previous Layer 2.
The ability from Utility to compare neurons from different layers enables even better frugality: 4
time fewer nodes (5 vs 20, 10 vs 40) are necessary to reach the same accuracy than Huang et al.
(2020). Overall, choosing 35 neurons by Utility improves accuracy by 95% of what can be done if
all |X| = 116 nodes are opened compared with LP (corresponding to |X| = 0).

.
Figure 2: Average uncertainty of MILPX for nodes of the third layer, for X with K ReLU nodes of
the (1st and) 2nd layer, chosen by our Utility function vs Huang et al. (2020) vs random choice.

5.2 COMPARISON WITH α, β-CROWN

We conducted our evaluation on the neural networks tested in Wang et al. (2021) which display a
large number (≥ 20%) of images undecided by α, β-Crown. That is, these DNNs are hard to verify.
Namely, these are 6 ReLU-DNNs: 5 MNIST DNN that can be found in the ERAN GitHub (the
4th to the 8th DNNs provided) as well as 1 CIFAR CNN from Balunovic & Vechev (2020), see
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α, β-Crown α, β-Crown α, β-Crown Refined Hybrid
Network TO=10s TO=30s TO=2000s β-Crown MILP
MNIST 5×100 57% (6.9s) 55% (18.9s) 50% (1026s) 13% (92s) 13% (46s)
MNIST 5×200 50% (6.5s) 47% (17s) 46% (930s) 9% (80s) 8% (71s)
MNIST 8×100 63% (7.2s) 58% (20s) 58% (1163s) 21% (102s) 15% (61s)
MNIST 8×200 56% (6.8s) 55% (18s) 54% (1083s) 16% (83s) 8% (78s)
MNIST 6×500 53% (6.4s) 51% (16s) 50% (1002s) − 10% (402s)
CIFAR CNN-B-adv 28% (4.3s) 22% (8.7s) 20% (373s) − 11% (417s)
CIFAR ResNet 0% (2s) 0% (2s) 0% (2s) − 0% (2s)

Table 3: Undecided images (%, lower is better) as computed by α, β-Crown, Refined β-Crown and
Hybrid MILP on 7 DNNs (average runtime per image). The 6 first DNNs are hard instances. The
last DNN (ResNet) is an easy instance (trained using Wong to be easy to verify, but with a very low
accuracy level), provided for reference.

also Dathathri et al. (2020), which can be downloaded from the α, β-Crown GitHub. We commit
to the same ϵ settings as in Wang et al. (2021), that are recalled in Table 1. For reference, we also
report an easy but very large ResNet Network for CIFAR10, already tested with α, β CROWN. We
report in Table 3 the % of undecided images, that is the % of images than can be neither falsified
(by α, β-CROWN) nor verified by the tested verifier, among the 100 first images for each MNIST
or CIFAR10 benchmark. The exact same DNNs and ϵ are used in Tables 1 and 3.

Analysis: on easy instances, Hybrid MILP is virtually similar to α, β-CROWN, as it is called first
and it is sufficient to have 0% undecided images, as shown even on the very large ResNet.

On hard instances (the 6 first DNNs tested), Hybrid MILP is very accurate, only leaving 8%-15%
of images undecided, with runtime taking less than 500s in average per image, and even 10 times
less on smaller DNNs. It can scale up to quite large hard DNNs, such as CNN-B-Adv with 2M
parameters and 20K activations.

Compared with α, β-Crown with a time-out of TO=2000s, it is much more accurate, with a reduction
of undecided images by 9%− 43%. It is also from 20x faster on smaller networks to similar time on
the largest DNN. Compared with α, β-Crown with a time-out of TO=30s, the accuracy gap is even
larger (e.g. 11% for CNN-B-Adv, i.e. half undecided images), although the average runtime is also
obviously larger (solving hard istances takes longer than solving easy instances).

Last, compared with Refined β-Crown, we can observe three patterns: on the shallowest DNNs
(5×100, 5×200), Refined β-Crown can run full MILP on almost all nodes, reaching almost the same
accuracy than Hybrid MILP, but with longer runtime (up to 2 times on 5×100). On intermediate
DNNs (8×100, 8×200), full MILP invoked by Refined β-Crown can only be run on a fraction of the
neurons, and the accuracy is not as good as Hybrid MILP, with 6% − 8% more undecided images
(that is double on 8×200), while having longer runtime. Last but not least, Refined β-Crown cannot
scale to larger instances (6×500, CNN-B-Adv), while Hybrid MILP can.

5.3 FINER GRAIN EVALUATION OF ACCURACY

In order to evaluate the accuracy of Hybrid MILP in a finer way, showcasing the capabilities to have
a very accurate and efficient verifier, we consider a quantitative questions for each image, rather than
a pure yes (verified)/ no (not verified) question. Namely, we compute the ϵ for which the verifier
can certify local-robustness around a given image, which makes sense as there is little rationale in
setting a particular ϵ (which is however the usual local-robustness setting).

For that, we considered the challenging DNN MNIST 6 × 500, and the 20 first images from the
MNIST benchmark. We first run the attack from α, β-Crown for varying ϵ, using a binary search,
to set up an upper bound on ϵ (the initialization is ϵ ∈ [0, 1]). Then we run binary search with a
global time-out of 10000s, initialized from 0 to this upper bound, where each call is either to α, β-
Crown with TO=2000s, or Hybrid MILP. We report the results (upper bound, best bound verified by
α, β-Crown and by Hybrid MILP) for each image. We report the results in Fig. 3.

9

https://github.com/Verified-Intelligence/alpha-beta-CROWN


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

.

Figure 3: ϵ-robustness proved after 10000s for 6× 500 on each of the 20 first images of MNIST.

Analysis: in 90% of the cases, Hybrid MILP is very close to the upper bound. On 2 images (10 and
13), Hybrid MILP is far from the upper bound: these are also the ones where the upper bound is the
highest, so it is possible that the falsifier missed a closer attack to robustness.

Compared with α, β-CROWN, Hybrid MILP is much closer to the upper bound, except for 2 cases
(images 8 and 18) where α, β-CROWN is already very close to the upper bound. On average, the ϵ-
gap to upper bound is 0.014 for Hybrid MILP, 3 times smaller than the 0.042 gap for α, β-CROWN.

5.4 COMPARISON WITH OTHER VERIFIERS?

We voluntarily limited the comparison to α, β-Crown because it is the most efficient verifier to date,
and to consider a spectre of parameters to understand α, β-Crown scaling without too much clutter.

Notice that results for other verifiers (PRIMA Müller et al. (2022), SDP-FO Dathathri et al. (2020),
etc) were already reported on these DNNs Wang et al. (2021), with unfavorable comparison vs α, β-
CROWN. Further, we reported accuracy of complete verifiers, NNenum Bak (2021), Marabou Katz
et al. (2019); Wu et al. (2024), respectively 4th, 3rd of the last VNNcomp’24 Brix et al. (2024), as
well as full MILP Tjeng et al. (2019) in Table 2, showing that these verifiers are not competitive
on hard instances either, even on the smallest hard DNN. Concerning MnBAB Ferrari et al. (2022),
we tested it in appendix, and it compares slightly unfavorably in time and accuracy towards α, β-
CROWN on CNN-B-Adv and hard MNIST DNNs at several time-out settings. Last, Pyrat Durand
et al. (2022) (2sd in the latest VNNComp) is not open source, which made running it impossible.

6 CONCLUSION

In this paper, we developed a novel Utility function to select few ReLU nodes to consider with binary
variables to compute accurately bounds on neurons of DNNs. The novelties are that it focuses on
improvement wrt a given input, rather than on generic sensitivity of a neuron wrt to a ReLU node, and
it uses the solution of one call to an (efficient LP) solver to evaluate this improvement. This makes
the choice particularly efficient, necessitating ≈ 4x less integer variables than previous proposals
Huang et al. (2020) for the same accuracy. Our empirical studies revealed that this can yield highly
accurate results, verifying up to 40% more images than the SOTA (α, β-Crown, winner of the 4
last VNNComp), with the same runtime, for DNNs with up to 20 000 neurons. The reason is that
α, β-Crown hits a complexity barrier, similarly as other competing solutions, when considering hard
(even small) DNNs. This opens a lot of perspectives, among which: verifying efficiently other hard
instances; certifying ϵ-robustness of images for ϵ as large as possible; verifying global rather than
local properties Wang et al. (2022).

Reproducibility Statement: We tested twice outlier results to confirm them, making sure of repro-
ducibility on the given hardware. Precise details on the settings used are provided in the appendix.
Additional results (e.g. ablation studies) are also provided in the appendix. Tested DNNs as well
as MNIST and CIFAR10 DataSet are freely available. The source code of Hybrid MILP will be
provided on GitHub after acceptance (needing Gurobi as well as α, β-Crown).
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APPENDIX

A PARAMETER SETTINGS

SETTING FOR α, β-CROWN

The networks were already tested by α, β-Crown Wang et al. (2021). We thus simply reused the
parameter files from their Github, except for time-out which we explicitly mention.

e.g., for CNN-B-Adv: ”solver: batch size: 512 beta-crown: iteration: 20” and for MNIST 5x100:
”solver: batch size: 1024 beta-crown: iteration: 20”.

We did not experiment with cutting planes (GCP-CROWN Zhang et al. (2022)), as it needs an
additional package, namely IBM CPLEX solver, we do not have access to. From Zhang et al.
(2022), the number of undecided inputs of GCP-CROWN is ≤ 2% better than α, β-Crown on the
DNNs we experimented with, far from the 10 − 40% improvement seen from Hybrid MILP. The
conclusion are thus unchanged.

SETTING FOR HYBRID MILP

Hybird MILP first call α, β-Crown with short time-out (TO), then call partial MILP on those inputs
which was neither certified nor falsified by this run of α, β-Crown. We are using two settings of TO,
for smaller DNNs we use T0= 10s, and for the two larger ones, we use TO= 30s.

The setting for partial MILP for fully-connected DNNs is about how many neurons need to be
opened (once set, the selection is automatic). The runtime depending crucially upon the number of
open ReLU neurons, we set it quite tightly, only allowing few neuron deviation to accommodate to a
particularly accurate/inaccurate bound computation (measure by the weight of the remaining Utility
function). As complexity increases with the layer considered, as the size of the MILP model grows,
we lower this number with the depth, only committing to an intermediate number for the output
neuron (the number of output neurons is smaller than hidden layer, and this is the most important
computation). We experimentally set this number so that each computing the bounds in each hidden
layer takes around the same time. Remember that in layer 1, partial MILP is not necessary and
propagating bounds using interval arithmetic is already exact. We open [48,48] to compute bounds
for hidden layer 2, [21,24] for layer 3, [11,14] for layer 4, [6,9] for layer 5, [3,6] for layer 6, [2,5]
for layer 7, [1,4] for hidden layer 8 (if any), and we open [14,17] for the output layer. The exact
number of open nodes in the range [a,a+3] is decided automatically for each neuron being computed
: ReLUs are ranked according to their value by Utility, and the a top ReLUs are open. Then, ReLUs
ranked a+1,a+2, a+3 are opened if their Utility value is larger than a small threshold. We set the
threshold at 0.01. It should be seen as a way to save runtime when Utility knows that the next node
by ranking (a+i) will not impact accuracy much (thanks to the upper bound from Proposition 2).

Network TO for α, β-Crown Minimum number of Open neurons
MNIST 5× 100 10s 48,21,11,6,14
MNIST 5× 200 10s 48,21,11,6,14
MNIST 8× 100 10s 48,21,11,6,3,2,1,14
MNIST 8× 200 10s 48,21,11,6,3,2,1,14
MNIST 6× 500 30s 48,21,11,6,3,14
CIFAR CNN-B-adv 30s 200, 0, 45

Table 4: Settings of Hybrid MILP for the different hard instances
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For convolutional CNNs, the strategy is adapted, as there is much more neurons, but in a shallower
architecture and not fully connected. The second layer is computed accurately, opening 200 neurons,
which is manageable as there is only one ReLU layer to consider, and accuracy here is crucial. We
do not open any nodes in the third layer (the first fully connected layer) if the output layer is the next
one (which is the case for CNN-B-Adv), and instead rely on the choice of important nodes for the
output layer. Otherwise, we open 20 neurons. In the output layer, we open at least 45 neurons (there
is less output neurons than nodes in the previous layer), and enlarge the number of open neurons (up
to 300) till we find an upper bound, that is a best current MILP solution, of around +0.1 (this 0.1
was experimentally set as target, a good balance between accuracy and efficiency), and compute a
guaranteed lower bound (the goal is to guarantee the bound is > 0).

In Table 4, we sum-up the TO and minimum open numbers for each DNN considered.

α, β-Crown uses massively parallel (>4096 threads) GPU, while Partial MILP uses 20 CPU-threads.

Notice that a different balance between accuracy and runtime could be set. For instance, we set
up the numbers of open neurons to have similar runtime as Refined β-Crown for the first 4 DNNs
(50s − 100s). We could easily target better accuracy (e.g. for 8 × 100 with a relatively high 15%
undecided images) by increasing the number of open neurons, with a trade-off on runtime (current
runtime is at 61s). By comparison, the sweet spot for α, β-Crown seems to be around TO= 30s,
enlarging the time-out having very little impact on accuracy but large impact on runtime (Table 1).

Last, for Gurobi, we use a custom MIP-Gap (from 0.001 to 0.1) and time-out parameters, depending
on the seen improvement and the possibility to make a node stable. This is low level implementation
details that will be available in the code once the paper is accepted.

B PSEUDOCODE AND COMPLEXITY ANALYSIS

Algorithm 1: pMILP(K)
Input: Bounds [αn, βn] for input nodes n at layer 0 (input neighbourhood)
Output: Bounds [αn, βn] for every node n

1 for layer k = 1 · · · ℓ do
2 for neuron n in layer k do
3 Compute X a set of K nodes with the highest Utility for target neuron n.
4 Run MILPX to obtain [αn, βn] from bounds of neurons in layers < k

We provide the pseudo code for pMILP in Algorithm 1. pMILP(K) has a worst case complexity
bounded by O(N · MILP(N,K)), where N is the number of nodes of the DNN, and MILP(N,K)
is the complexity of solving a MILP program with K integer variables and N linear variables. We
have MILP(N,K) ≤ 2KLP(N) where LP(N) is the Polynomial time to solve a Linear Program
with N variables, 2K being an upper bound. Solvers like Gurobi are quite adept and usually do
not need to evaluate all 2K ReLU configurations to deduce the bounds. It is worth mentioning that
the ”for” loop iterating over neurons n in layer k (line 2) can be executed in parallel, because the
computation only depends on bounds from preceding layers, not the current layer k.

If K is sufficiently small, this approach is expected to be efficient. The crucial part is thus to find few
neurons which are particularly important when computing neuron n. This is where our novel Utility
function outperforms previous solutions, by using an call to an (LP) solver to obtain a solution,
which is novel as far as we know. This solutions allows to optimizing the choice of open nodes for
the particular input considers, and appears significantly better than previous attempts, explaining the
efficiency of the method.

For comparison, refined β-Crown and refined Prima used all the nodes up to a certain layer as binary
variables, which is particularly inefficient, see Table 8 and Fig. 7. Hence, it can only be applied to
small DNNs (it is implemented only up to MNNIST 8x200), while pMILP scales to at least 20.000
neurons (CNN-B-Adv). Huang et al. (2020) is the closest to pMILP, also implementing a choice of
nodes as binary variables. However, their choice is particularly inefficient, as revealed by Table 6,
needing 4 times the number of open nodes for the same accuracy as our Utility function.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

C ABLATION STUDIES

In this section, we consider ablation studies to understand how each feature enables the efficiency
of pMILP.

TIME SCALING WITH OPEN NODES

First, we explore the time scaling with different number of open nodes, for our full Utility function
using nodes in the last two layers (Layer 1 and 2), providing finer details than in Table 3, with the
same setting, i.e. previous layer being computed with full MILP.

|X| Time Uncertainty
0 2.6 1.760946128
1 7.3 1.702986873
2 11.1 1.65469034
3 16.3 1.612137282
4 15.5 1.571001109
5 15.7 1.531925404
6 15.8 1.49535638
7 16.4 1.46189314
8 15.8 1.4299535
9 17.2 1.4006364

10 22.5 1.3711203
11 27.2 1.3438245
12 21.6 1.3183356
13 28.7 1.2938690
14 29.6 1.2690507
15 24.5 1.2475106

|X| Time Uncertainty
16 31.9 1.2243065
17 28.6 1.2031791
18 30.4 1.1839474
19 34.0 1.1644653
20 42.1 1.1456181
21 47.6 1.1261252
22 62.7 1.1089745
23 70.0 1.0931242
24 70.8 1.0773088
25 139.9 1.060928
26 154.2 1.045715
27 213.1 1.030605
28 211.3 1.016058
29 373.1 1.001374

max=116 3300 0.895

Table 5: Time and uncertainty scaling of pMILP with number of nodes.

.

Figure 4: Time and uncertainty scaling of pMILP with number of nodes. Time is using logscale.
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The exponential complexity with the number of nodes can be seen on Figure 4, where time is repre-
sented using logarithmic scale. The flat area in the middle is Gurobi having good heuristic to avoid
considering all 2K cases when K < 21 is not too large, but not working so well for K > 25. Notice
that when certifying, pMILP uses |X| ∈ 21-24, which is a good trade off between time and accuracy.

We also provide in Table 6 the raw numbers used to produce Figure 2. Further, we tested with the
SR Bunel et al. (2020) and FSB heuristics De Palma et al. (2021), that chooses nodes to branch on
for BaB (Branch and Bound). When SR and FSB are used to choose open nodes for pMILP, the
accuracy is low as shown on Fig. 5: SR and FSB are worse than Huang et al. (2020) for < 35 open
ReLU nodes, although unlike the latter, they can rank ReLU nodes in several layer before (which
helps them a bit), and far worse than Utility. Further, FSB is performing worse than SR when
choosing nodes for pMILP, while to choose nodes to branch on for BaB, it is the opposite De Palma
et al. (2021). This likely means that the heuristic to choose nodes to branch for BaB is not adapted
to choose nodes to open for pMILP.

X ⊆ Layer 2, max = 55 X ⊆ Layers 1&2, max = 116
|X| Random Huang SR FSB Utility Random SR FSB Utility

0 (LP) 1.761 1.761 1.761 1.761 1.761 1.761 1.761 1.761 1.761
5 1.729 1.704 1.7200 1.7197 1.603 1.729 1.7133 1.7149 1.532

10 1.701 1.651 1.6840 1.6851 1.517 1.696 1.6674 1.6714 1.371
15 1.671 1.599 1.6502 1.6516 1.466 1.653 1.6230 1.6251 1.247
20 1.635 1.557 1.6190 1.6199 1.438 1.619 1.5764 1.5812 1.145
25 1.601 1.519 1.5887 1.5886 1.427 1.586 1.5322 1.5388 1.061
30 1.574 1.489 1.5584 1.5604 1.425 1.546 1.4914 1.4982 0.989
35 1.542 1.465 1.5289 1.5305 1.424 1.502 1.4481 1.4600 0.934
40 1.512 1.447 1.4985 1.5001 1.424 1.469 1.4070 1.4187 0.921

max 1.424 1.424 1.424 1.424 1.424 0.895 0.895 0.895 0.895

Table 6: Average uncertainty of MILPX for nodes of the third layer, with ReLU nodes of the (1st
and) 2nd layer, chosen by our Utility function vs Huang et al. (2020) vs vs SR vs FSB vs random.

.

Figure 5: Average uncertainty of MILPX for nodes of the third layer, with ReLU nodes of the (1st
and) 2nd layer, chosen by our Utility function vs Huang et al. (2020) vs vs SR vs FSB vs random.
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USEFULNESS OF COMPUTING PREVIOUS LAYERS ACCURATELY

Then, we explore the usefulness of computing accurately each layer inductively. For that, we keep
the setting of Figure 4 / Table 5, but computing the previous layer with LP rather than with full
MILP.

.

Figure 6: Comparison of accuracy in layer 3 when layer 2 is computed inaccurately using LP vs
when layer 2 computed accurately using MILP. Time is using logscale.

|X| Time With LP for layer 2 With MILP for layer 2
5 9.3 3.24737 1.532
10 10.6 3.02214 1.371
15 11.9 2.82383 1.247
20 13.1 2.63862 1.145
25 16.0 2.47324 1.061
30 28.3 2.32793 0.989
35 48.1 2.19506 0.934
40 89.4 2.07107 0.921

Table 7: Comparison of accuracy in layer 3 when layer 2 is computed inaccurately using LP vs when
layer 2 computed accurately using MILP.

This experiment explains the rationale to use divide and conquer protocol, using many calls (one for
each neuron) with relatively small number |X| of open nodes rather than fewer calls to MILP with
larger number |X| of open nodes. This is clear already with only 1 layer before.
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RESTRICTING NUMBER OF OPEN NODES (PMILP) VS SETTING TIME-OUTS (FULL MILP)

Running full MILP till a small MIP-Gap (typically 0.001) is reached is extremely time inefficient.

Instead, the standard strategy is to set a reasonable time-out and use whatever bound has been gen-
erated. We compare this standard strategy with the pMILP strategy of setting a priori a number of
open nodes.

.

Figure 7: Comparison of uncertainty at layer 7 for full MILP with different time-outs vs pMILP
with different number of open nodes. Time is using logscale.

|X| Time Uncertainty
1 14 3.233021901
2 15.2 3.140309921
3 17.21 3.059083103
4 17.4 2.986166762
5 19.2 2.856229765
6 20.9 2.799248232
7 23.7 2.746167245
8 26.6 2.69485246

(a) pMILP

Time Uncertainty
21.1 3.348236261
27.6 3.24604282
38.2 3.196640184
47.1 3.164298172
56.7 3.146913614

106.7 3.108035223
156.3 2.900438725
205.8 2.848648426
406.7 2.800268264
606.1 2.737064255

(b) full MILP

Table 8: Comparison of bounding the number of nodes for pMILP and using different time outs for
full MILP. In both settings, lower and upper bounds of previous layers are the same (computed by
pMILP).

pMILP obtains 2.8 accuracy in < 21 seconds (with 7 open nodes), while full MILP needs 400
seconds to obtain it, a 19x speed up. For 2.7 accuracy, the speedup is >> 22.

Figure 7 shows that choosing nodes is much more efficient for time/accuracy trade-off than setting
time outs and use full MILP. And this is for the smallest DNN we considered (500 hidden neurons,
far from the biggest 20k neuron DNN we experimented with)
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D COMPARISON WITH OTHER DNN VERIFIERS

In the following, we provide results comparing α, β-Crown to other verifiers, to justify our use of
α, β-Crown as state of the art for efficient verifiers as main source of comparison to Hybrid MILP
for hard DNN instance.

COMPARISON α, β-CROWN VS PRIMA

PRIMA Müller et al. (2022) is a major verifier in the ERAN toolkit. In Table 9, we report the
comparison between PRIMA and α, β-Crown, mainly from Wang et al. (2021). The setting is mainly
similar from ours, but numbers are not perfectly comparable as the images tested are not exactly the
same (1000 first or 200 first images for CNN-B-Adv), vs 100 first in Tables 3, 1. Also, time-out
settings and hardware are slightly different. The overall picture is anyway the same.

Analysis: On the 4 smallest MNIST networks, PRIMA uses a refined path comparable with Refined
β-Crown. However, it is slower and less accurate than Refined β-Crown. On larger hard networks,
PRIMA has also more undecided images than α, β-Crown, while the runtime is > 5 times larger.
Hence, Hybrid MILP is more accurate than Prima with similar runtime or faster.

Notice that kPoly Singh et al. (2019a), OptC2V Tjandraatmadja et al. (2020), SDP-FO Dathathri
et al. (2020) numbers were also reported in Wang et al. (2021) on these networks, with even more
unfavorable results.

COMPARISON α, β-CROWN VS MN-BAB

MN-BaB Ferrari et al. (2022) is an improvement built over PRIMA, using a similar Branch and
Bound technique as used in α, β-Crown. Results in Ferrari et al. (2022) are close to those of α, β-
Crown. However, none of the hard networks from Wang et al. (2021) that we consider have been
tested. We thus tested three representative hard DNNs (first 100 images) to understand how MN-
BaB fairs on such hard instances, and report the numbers in Table 10. Results are directly compara-
ble with Table 3.

Analysis: results reveal that MN-BaB is slightly slower and slightly less accurate than α, β-Crown.
Notice the specially high number of undecided images for CNN-B-Adv with TO=30s, probably
meaning that 30s is too small for MN-BaB on this large DNN. Hence, Hybrid MILP is more accurate
than MN-BaB with similar runtime or faster.

COMPARISON α, β-CROWN VS NNENUM

NNenum Bak (2021) is a complete verifier with good performance according to VNNcomp. It was
the only complete verifier tested in Table 2 to verify more images than α, β-Crown. The experiments
section in Bak (2021) does not report the hard DNNs we are considering. We tried to experiment it
on the same MNIST 6× 500 and CIFAR CNN-B-adv as we did in Table 10 for MN-BaB. Unfortu-
nately, on 6× 500, buffer overflow were reported. We report in Table 11 experiments with the same

Network α, β-Crown Refined β-Crown PRIMA
MNIST 5× 100 N/A 14.3% (102s) 33.2% (159s)
MNIST 5× 200 N/A 13.7% (86s) 21.1% (224s)
MNIST 8× 100 N/A 20.0% (103s) 39.2% (301s)
MNIST 8× 200 N/A 17.6% (95s) 28.7% (395s)
MNIST 6× 500 51% (16s) − 64% (117s)
CIFAR CNN-B-adv 18.5% (32s) − 27% (344s)
CIFAR ResNet 0% (2s) − 0% (2s)

Table 9: Undecided images (%, lower is better), as computed by α, β-Crown, Refined β-Crown,
and PRIMA, as reported in Wang et al. (2021), except for 6×500 that we run ourselves. N/A means
that Wang et al. (2021) did not report the numbers, while − means that Refined β-Crown cannot be
run on these DNNs.
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α, β-Crown α, β-Crown MN-BaB MN-BaB
Network TO=30s TO=2000s TO=30s TO=2000s
MNIST 5× 100 55% (19s) 50%(1026s) 60% (19s) 50% (1027s)
MNIST 6× 500 51% (16s) 50% (1002s) 58% (18s) 55% (1036s)
CIFAR CNN-B-adv 22% (8.7s) 20% (373s) 43% (14s) 24% (576s)

Table 10: Undecided images (%, lower is better), as computed by α, β-Crown, and MN-BaB

2000s Time-out (it was 10000s in Table 2) for a fair comparison with α, β-Crown, on both MNIST
5 × 100 and CIFAR CNN-B-Adv. On MNIST 5 × 100, NNenum is slightly more accurate than
α, β-Crown, but far from the accuracy Hybrid MILP. On CIFAR CNN-B-adv, NNenum was much
less accurate than α, β-CROWN, and thus of Hybrid MILP. In both test, the runtime of NNenum
was also much longer than for Hybrid MILP.

α, β-Crown NNenum Hybrid
Network TO=2000s TO=2000s MILP
MNIST 5× 100 50%(1026s) 44% (1046s) 13% (46s)
CIFAR CNN-B-adv 20% (373s) 40% (1020s) 11% (417s)

Table 11: Undecided images (%, lower is better), as computed by α, β-Crown and NNenum with
2000s time-out, and Hybrid MILP

.

E AVERAGE VS MAX TIME PER PMILP CALL

We provide in Table 12 the average as well as maximum time to perform MILPX calls as called by
pMILP, on a given input: image 3 for MNIST, and image 76 for CIFAR10. For 6x500, we provide
results for two different ε, following our test from Figure 3.

Network average time maximum time
MNIST 5×100 0.41s 1.87
ϵ = 0.026
MNIST 5×200 0.75s 5.31s
ϵ = 0.015
MNIST 8×100 0.39s 1.41s
ϵ = 0.026
MNIST 8×200 0.49s 1.63s
ϵ = 0.015
MNIST 6×500
ϵ = 0.035 1.4s 3.5s
ϵ = 0.1 44.6s 310s
CIFAR CNN-B-adv
ϵ = 2/255 1s 609s

Table 12: average and maximum time per MILPX calls for image 3 (MNIST) and image 76 (CI-
FAR10).

Notice that DNN 6× 500 and ϵ = 0.1 is a very hard instance as being very close to the falsification
ϵ ≈ 0.11. This is thus not representative of the average case. Also, on this image 3, pMILP succeeds
to verify ϵ = 1.054, while α, β-CROWN can only certify ϵ = 0.0467 within the 10 000s Time-out.

For CNN-B-Adv, the very long maximum time for a MILP call is an outlier: it happens only for
one output layer, for which the number K of open nodes is particularly large (around 200 out of
20000 neurons) to certify this hard image 76. Indeed, the average time is at 1s. Notice that this does
not lead to a runtime of 20.000s, as 20 threads are used by pMILP in parallel (similar to competing
solutions, except α, β-CROWN which uses > 4096 GPU cores).
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