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ABSTRACT

We study cross-domain lossy compression, where the encoder observes a de-
graded source while the decoder reconstructs samples from a distinct target dis-
tribution. The problem is formulated as constrained optimal transport with two
constraints on compression rate and classification loss. With shared common
randomness, the one-shot setting reduces to a deterministic transport plan, and
we derive closed-form distortion-rate-classification (DRC) and rate-distortion-
classification (RDC) tradeoffs for Bernoulli sources under Hamming distortion.
In the asymptotic regime, we establish analytic DRC/RDC expressions for Gaus-
sian models under mean-squared error. The framework is further extended to
incorporate perception divergences (Kullback-Leibler and squared Wasserstein),
yielding closed-form distortion-rate-perception-classification (DRPC) functions.
To validate the theory, we develop deep end-to-end compression models for super-
resolution (MNIST), denoising (SVHN, CIFAR-10, ImageNet, KODAK), and in-
painting (SVHN) problems, demonstrating the consistency between the theoretical
results and empirical performance.

1 INTRODUCTION

Classical rate-distortion (RD) theory provides a single-letter characterization of the minimal distor-
tion achievable when reproducing a source under a rate constraint (Cover & Thomas, 1999). This
foundation has guided decades of research in lossy compression and inspired the design of mod-
ern learned codecs. However, standard RD formulations assume that reconstructions should remain
close to the observed input distribution. In many setting, this assumption is misaligned: the encoder
observes a degraded sample X (e.g., noisy or low-resolution), while the desired output is a restored
sample Y that lies in a different, target distribution pY (e.g., clean or high-resolution). Moreover,
beyond fidelity, the compressed representation must remain informative for downstream tasks such
as classification, introducing additional constraints that are not captured by classical RD.

Perception-aware RD extends the RD framework by incorporating a divergence between the source
and reconstruction distributions, highlighting an intrinsic rate-distortion-perception (RDP) tradeoff
and motivating generative compression approaches (Blau & Michaeli, 2018; 2019; Theis & Wag-
ner, 2021). In restoration tasks, the target is not the degraded input pX but the clean domain pY ,
so enforcing perceptual closeness between pY and pX is conceptually mismatched. Task-aware
extensions such as rate-distortion-classification (RDC) or rate-distortion-perception-classification
(RDPC) explicitly account for classification performance (Wang et al., 2025), but typically assume
that reconstructions remain in a single domain rather than supporting cross-domain mappings with
distinct marginals. In parallel, compression has also been studied as a denoising mechanism. Weiss-
man et al. (Weissman & Ordentlich, 2005) showed that optimal lossy compression followed by post-
processing can asymptotically achieve the fundamental denoising limit, while more recent work (Za-
fari et al., 2025b) introduced neural compression-based denoising, including a zero-shot framework
with theoretical guarantees and algorithmic instantiations. These results highlight the value of com-
pression as a denoising prior but do not address cross-domain alignment or task-aware constraints.
Finally, optimal transport (OT) provides a principled tool for coupling distributions (Villani, 2009),
and has been leveraged in unsupervised restoration (Wang et al., 2023a). However, OT by itself
ignores coding constraints and does not account for downstream requirements. Related to our work,
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Liu et al. (2022) formulated cross-domain lossy compression as entropy-constrained OT and showed
that shared randomness can decouple coding from transport, but classification constraints were not
included. Unsupervised image restoration has also been studied in (Zhang et al., 2017; Menon et al.,
2020; Pan et al., 2021) with a fixed reconstruction distribution; however, these approaches neither
investigate compression constraints nor incorporate classification-awareness for downstream tasks.

To that end, we formulate cross-domain restoration as compression, through a constrained lossy
optimal transport framework. Given degraded samples from pX and desired reconstructions from
pY , with distortion function, we optimize couplings pX,Y that simultaneously (i) minimize expected
distortion, (ii) satisfy a rate constraint, and (iii) preserve task utility by constraining the uncertainty
of the downstream label S given the reconstruction Y . Following Liu et al. (2022); Theis & Agusts-
son (2021); Theis & Wagner (2021), we exploit shared common randomness between the encoder
and decoder to show that, in the one-shot regime, the system reduces to selecting a deterministic
transport plan with effective rate and classification constraints. In the asymptotic regime, this leads
to a mutual-information-constrained transport problem with an additional classification constraint,
yielding a Shannon-style single-letter characterization. Our work makes the following contributions.

• We introduce constrained lossy optimal transport, generalizing OT by incorporating both coding
and classification constraints. With common randomness, transport (reconstructing Y to match pY )
and compression (coding Y ) structurally decouple, extending Liu et al. (2022) to task-aware settings.
Closed-form characterizations are provided for (i) one-shot Bernoulli sources under Hamming dis-
tortion, where DRC and RDC functions admit piecewise-linear forms, and (ii) asymptotic Gaussian
sources under mean-squared error (MSE), where analytic expressions are derived.

• The framework is further extended to the distortion-rate-perception-classification (DRPC) setting
with two perception divergences: Kullback-Leibler (KL) and squared Wasserstein. For Gaussian
sources, extremality results yield closed-form DRPC characterizations that, to our knowledge, are
the first to explicitly incorporate classification.

• We implement deep end-to-end compression frameworks, incorporating (i) universal quantization
for shared randomness, (ii) an entropy model for rate estimation, (iii) a WGAN discriminator for
aligning reconstructions with pY , and (iv) a classifier head for controlling classification loss. Ex-
periments on super-resolution (MNIST), denoising (SVHN, CIFAR-10, ImageNet, KODAK), and
inpainting (SVHN), demonstrate strong agreement with the theoretical results.

2 SYSTEM MODEL AND ONE-SHOT SETTING RESULTS

Encoder Decoder𝑍 

𝑈 

𝑆 መ𝑆 

Distortion Loss
𝔼[𝑑(𝑋, 𝑌)]

Classification Loss
𝐻(𝑆|𝑌)

Figure 1: System model: a noisy input X ∼ pX is re-
stored as Y ∼ pY , supporting classification with label S.

We study a scenario where the encoder
observes an input X ∼ pX , which rep-
resents a degraded version (e.g., cor-
rupted by noise, reduced resolution) of
an underlying clean source. Associated
with each sample is a classification la-
bel S ∼ pS , with a prescribed covari-
ance between X and S as Cov(X,S) =
E[(X − µX)(S − µS)]. Following the
approach in Liu et al. (2022), we uti-
lize shared randomness between the en-
coder and decoder to enhance perfor-
mance. Specifically, we introduce a
common random variable U , accessible at both sides, which is independent of the input X , i.e.,
I(X;U) = 0. This assumption ensures that the decoder has no prior knowledge of X beyond the
transmitted representation. In practice, U can be realized by pre-agreeing on a pseudo-random
number generator with a shared seed, enabling both parties to generate identical randomness.
The encoder must map X into a compressed representation Z under a rate constraint, namely
H(Z|U) ≤ R. The decoder, given Z, produces a reconstruction Y that should follow a target
distribution pY .

We consider pX and pY as probability distributions over X ,Y ⊆ Rn. Formally, we enforce similar-
ity between X and Y through a fidelity criterion defined by a distortion function d : X × Y → R.
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We assume d(X,Y ) = 0 if and only ifX = Y . For instance, d(X,Y ) can be the Hamming distance
or the MSE distortion. In addition, we require the reconstruction to remain useful for downstream
classification, specifically, the uncertainty of S conditioned on Y is constrained as H(S|Y ) ≤ C for
some C > 0 (Wang et al., 2025).

The main objective of source restoration (e.g., denoising or super-resolution) in our setting is three-
fold: (i) Degradation removal: mitigate artifacts and imperfections present in the degraded input
X; (ii) Information preservation: retain as much information as possible about the underlying clean
source X ′ contained in X; (iii) Classification utility: ensure that the reconstructed Y yields high
classification performance. As an example, consider X as a noisy image and Y as its clean re-
construction. Figure 1 provides a schematic of the full system, where compression and restoration
jointly yield a sample Y ∼ pY that serves both fidelity and classification purposes. We interpret
this formulation through the lens of optimal transport: the problem reduces to identifying a joint
distribution pX,Y consistent with given marginals pX and pY , subject to a distortion cost d(·, ·), rate
constraint R, and classification constraint C. We next connect this framework to optimal transport
and describe how our formulation of classification-aware lossy compression naturally extends it.

2.1 ONE-SHOT CONSTRAINED OPTIMAL TRANSPORT

Definition 1 (Optimal Transport). Let Γ(pX , pY ) denote the set of all joint distributions pX,Y with
marginals pX and pY . The classical optimal transport problem identifies a coupling in this set that
minimizes the expected transportation cost:

D(pX , pY ) = inf
pX,Y ∈Γ(pX ,pY )

E[d(X,Y )], (1)

where d(·, ·) is a prescribed distortion (or cost) function and pX,Y ∈ Γ(pX , pY ) is a transport plan.

The transport plan in Definition 1 minimizes the average distortion between input and output, subject
only to the marginal distributions pX and pY . Our goal is to extend this framework by requiring the
transport plan to additionally satisfy a rate constraint and a classification constraint, as formalized
in the following definition.

Definition 2 (Constrained Optimal Transport). LetX ∼ pX denote the degraded source, Y ∼ pY be
the reconstruction, and S ∼ pS be the associated classification variable with covariance Cov(X,S)
with S ↔ X ↔ Y . Define M(pX , pY ) as the set of joint distributions pU,X,Z,Y with marginals
pX , pY that factorize as pU,X,Z,Y = pU pX pZ|X,U pY |Z,U , where U is the shared common ran-
domness. The constrained optimal transport problem with rate constraint R, classification loss C,
and shared randomness is given by

D(R,C, pX , pY ) = inf
pU,X,Z,Y ∈M(pX ,pY )

E[d(X,Y )] (2)

s.t. H(Z|U) ≤ R, H(S|Y ) ≤ C,

Given an input X and shared randomness U , the encoder produces a compressed representation
Z ∼ pZ|X,U . Leveraging U , the representation can be further losslessly encoded at an average
rate not exceeding R. By standard coding theorems, any discrete Z admits a variable-length code
with expected length at most H(Z|U) + 1 bits. The decoder, with access to (Z,U), reconstructs Y
via pY |Z,U , where the reconstruction is required to satisfy H(S|Y ) ≤ C. The optimization in (2) is
carried out jointly over the distribution of shared randomness pU and the stochastic mappings pZ|X,U

(encoder) and pY |Z,U (decoder). Furthermore, the constrained cost satisfies D(R,C, pX , pY ) ≥
D(pX , pY ), where D(pX , pY ) is the classical optimal transport cost from Definition 1. The next
result provides a simplification of this architecture.

Theorem 1. Define Q(pX , pY ) as the set of joint distributions pU,X,Y with marginals pX , pY that
factorize as pU,X,Y = pU pX pY |X,U . Then, the constrained optimal transport cost in Definition 2
admits the representation

D(R,C, pX , pY ) = inf
pU,X,Y ∈Q(pX ,pY )

E[d(X,Y )] (3)

s.t. H(Y |X,U) = 0, I(X;U) = 0,

H(Y |U) ≤ R, H(S|Y ) ≤ C.
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Proof. The result follows by adapting Theorem 3 in Liu et al. (2022). For completeness, a detailed
proof is provided in Appendix A.1.1.

𝑝𝑍|𝑋,𝑈 𝑝𝑌|𝑍,𝑈𝑍𝑋 𝑌

𝑈

𝑆 መ𝑆𝐻(𝑆|𝑌)

𝔼[𝑑(𝑋, 𝑌)]

𝑝𝑌|𝑋,𝑈𝑋 𝑌

𝑈

𝑆 መ𝑆𝐻(𝑆|𝑌)

𝔼[𝑑(𝑋, 𝑌)]

Figure 2: System architecture of Theorem 1.

Following Liu et al. (2022), the problem can be
equivalently expressed using only the conditional
distribution pY |X,U , which generates the recon-
struction Y directly without an intermediate repre-
sentation Z, similar to the classical optimal trans-
port formulation in Definition 1. The condition
H(Y |X,U) = 0 ensures that the transport plan
is deterministic once the shared randomness U is
fixed, with U providing the sole source of stochas-
ticity. In this architecture, the encoder maps (X,U)
to Y (transport), then compresses Y losslessly at an
average rate approaching H(Y |U) (compression),
while enforcing H(S|Y ) ≤ C to preserve classifi-
cation accuracy. The decoder simply decompresses
and outputs Y .

2.2 BERNOULLI CASE EXPRESSIONS

We now investigate the constrained optimal transport framework for Bernoulli sources. Let X ∼
Bern(qX) and Y ∼ Bern(qY ) with 0 ≤ qX , qY ≤ 1

2 . Using ⊕ for modulo-2 addition, note
that X ⊕ Y = 1 iff X ̸= Y . The classification variable S is modeled as S = X ⊕ S1, where
S1 ∼ Bern(qS1

) with 0 ≤ qS1
≤ 1

2 . This yields the marginal distribution qS = P (S = 1) =
qX + qS1

− 2qXqS1
.

We adopt the Hamming distortion dH(X,Y ) = 1{X ̸= Y }. For any coupling of X and Y with
these marginals, let pxy = P (X = x, Y = y). The expected distortion is

E[dH(X,Y )] = P (X ̸= Y ) = p01 + p10 = qX + qY − 2p11.

Thus, minimizing (resp. maximizing) Pr(X ̸= Y ) is equivalent to maximizing (resp. minimizing)
p11 subject to the Fréchet-Hoeffding bounds (Nelsen, 2006, Sec. 2.5): max{0, qX + qY − 1} ≤
p11 ≤ min{qX , qY }. The minimum distortion is attained at p11 = min{qX , qY }, realized by the
monotone coupling. Specifically, let U ∼ Unif[0, 1], with X = 1{U ≤ qX} and Y = 1{U ≤ qY }.
Then, D(B)

min = mincouplings P (X ̸= Y ) = |qX − qY |. The maximum distortion is attained at
p11 = max{0, qX + qY − 1}, realized by the antimonotone coupling: X = 1{U ≤ qX} and
Y = 1{U ≥ 1− qY }. Since qX , qY ≤ 1

2 , we obtain D(B)
max = maxcouplings P (X ̸= Y ) = qX + qY .

For the independent coupling, p11 = qXqY , yielding D(B)
ind = P (X ̸= Y ) = qX(1 − qY ) + (1 −

qX)qY = qX + qY − 2qXqY . Building on these extremal couplings and benchmark distortions, we
next derive the DRC tradeoff under common randomness.
Theorem 2. Consider a Bernoulli source X ∼ Bern(qX), Y ∼ Bern(qY ), and a classification
variable S with the binary symmetric joint distribution given by S = X ⊕ S1 where S ∼ Bern(qS)
and S1 ∼ Bern(qS1

) (0 ≤ qX , qS , qS1
≤ 1

2 ). The problem (3) is feasible if C ≥ Hb(qS1
). Assume

the Hamming distortion measure. Under common randomness, we have

D(B)(R,C, qX , qY ) =



−2(1− qX)qX(Hb(m)− C)

Hb(m)−Hb(qS1
)

+D
(B)
ind ,

Hb(qs1) ≤ C ≤ R(Hb(qS1
)−Hb(m))

Hb(qX) +Hb(m)

−2(1− qX)qXR

Hb(qX)
+D

(B)
ind , C >

R(Hb(qS1)−Hb(m))

Hb(qX)
+Hb(m)

D
(B)
min, C > Hb(qS) and R > Hb(qX).

where m = (1 − qX)(1 − qS1
) + qXqS1

, qS = qX + qS1
− 2qXqS1

and Hb(.) denotes the binary
entropy function.

Proof. The proof is provided in Appendix A.1.2.
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Theorem 2 reveals three regimes. With a loose classification constraint C, distortion decreases
linearly with rate R, approaching the independent coding distortion D

(B)
ind . In the intermediate

regime, distortion depends jointly on R and C, capturing the tradeoff between compression effi-
ciency and task fidelity. When R exceeds the source entropy and C is sufficiently large, the min-
imal distortion D(B)

min becomes achievable. Similarly, the definition and closed-form expression of
R(B)(D,C, qX , qY ) are provided in Appendix A.2.

3 SYSTEM MODEL AND ASYMPTOTIC SETTING RESULTS

3.1 ASYMPTOTIC CONSTRAINED OPTIMAL TRANSPORT

Figure 3: D(B)(R,C, qX , qY ) ver-
sus R with C = 0.8, qX = 0.3,
qY = 0.25, qS1 = 0.2.

Classical rate-distortion theory is usually considered in the
asymptotic block-length regime, where arbitrarily long i.i.d.
sequences are compressed and coding theorems yield single-
letter characterizations. Motivated by this, we now extend
our one-shot constrained optimal transport formulation to the
asymptotic case, where large block lengths are allowed. This
generalization allows us to connect to Shannon’s original set-
ting and to establish information-theoretic characterizations
that hold in the limit. Let {Xi}∞i=1, {Yi}∞i=1, and {Si}∞i=1 be
i.i.d. processes with marginals pX , pY , and pS , respectively.

Definition 3 (Asymptotic Constrained Optimal Transport).
Consider i.i.d. random variables Xi ∼ pX , Yi ∼ pY , and Si ∼ pS . The asymptotic constrained
optimal transport problem with rate constraint R, classification loss C, and shared randomness U
in the asymptotic regime (n→ ∞) is defined as

D(∞)(R,C, pX , pY ) = inf
pU,Xn,Z,Y n∈M(⊗n

i=1pX ,⊗n
i=1pY )

1

n

n∑
i=1

E[d(Xi, Yi)]

s.t.
1

n
H(Z|U) ≤ R,

1

n

n∑
i=1

H(Si|Yi) ≤ C.

Theorem 3. In the asymptotic regime, the DRC function admits the single-letter characterization

D(∞)(R,C, pX , pY ) = inf
pX,Y ∈Γ(pX ,pY )

E[d(X,Y )] (4)

s.t. I(X;Y ) ≤ R, H(S|Y ) ≤ C.

Proof. The result follows from Saldi et al. (2015b, Theorem 7), combined with the arguments in
Wang et al. (2025, Appendix F).
Remark 1. As in the one-shot formulation, shared common randomness U can be leveraged in the
asymptotic regime for the constrained optimal transport problem. However, since coding theorems
in the block-length limit already allow randomized mappings without rate penalty, the asymptotic
characterization in Theorem 3 coincides with the one-shot formulation, and the role of U does not
further tighten the bound.

3.2 GAUSSIAN CASE EXPRESSIONS

We now investigate the constrained optimal transport framework for Gaussian sources under MSE
distortion. Let X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y ) be Gaussian random variables, and let S ∼

N (µS , σ
2
S) denote the associated classification variable with θ1 ≜ Cov(X,S). In the Gaussian case,

we derive a single-letter characterization of the asymptotic DRC tradeoffs with shared randomness.

Theorem 4. Consider X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) with MSE distortion, and let S ∼

N (µS , σ
2
S) be a classification variable with Cov(X,S) = θ1. The problem (4) is feasible if C ≥
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1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S). Under shared randomness, the asymptotic DRC tradeoff is

D(G)(R,C, qX , qY ) =



(µX − µY )
2 + σ2

X + σ2
Y − 2σSσ2

XσY

θ1

√
1− e−2h(S)+2C ,

1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) ≤ C ≤ 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S),

(µX − µY )
2 + σ2

X + σ2
Y − 2σXσY

√
1− 2−2R,

C > 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S),

0, C > h(S) and R > h(X).

Proof. A detailed proof is given in Appendix A.1.3.

We provide the definition and closed-form expression of R(G)(D,C, qX , qY ) in Appendix A.3.

3.3 ASYMPTOTIC DRPC FUNCTION FOR GAUSSIAN SOURCES

Figure 4: D(G)(R,C, qX , qY ) ver-
sus R with C = 2, X,Y, S ∼
N (0, 1), θ1 = 0.6.

Classical asymptotic RD analysis yields single-letter charac-
terizations in the block-length limit. We extend this perspec-
tive to the DRPC setting, where reconstructions are required
not only to satisfy fidelity and rate constraints but also to pre-
serve classification performance (Wang et al., 2025) and align
with a perceptual target distribution (Blau & Michaeli, 2019;
Theis & Wagner, 2021).
Definition 4 (Asymptotic DRPC Function). For i.i.d. random
variables Xi ∼ pX , Yi ∼ pY , and Si ∼ pS , the DRPC func-
tion with common randomness in the asymptotic regime is de-
fined as

D(∞)(R,P,C, pX , pY ) = inf
pU,Xn,Z,Y n

1

n

n∑
i=1

E[d(Xi, Yi)]

s.t.
1

n
H(Z|U) ≤ R,

1

n

n∑
i=1

H(Si|Yi) ≤ C,
1

n

n∑
i=1

ϕ(pXi
, pYi

) ≤ P.

where ϕ(·, ·) is a nonnegative divergence capturing perceptual quality.
Theorem 5. In the asymptotic regime, the DRPC function admits the single-letter characterization

D(∞)(R,P,C, pX , pY ) = inf
pX,Y ∈Γ(pX ,pY )

E[d(X,Y )]

s.t. I(X;Y ) ≤ R, H(S|Y ) ≤ C, ϕ(pX , pY ) ≤ P.

where Γ(pX , pY ) is the set of all couplings with marginals pX and pY .

Proof. The result follows the asymptotic analysis in Theis & Wagner (2021); Saldi et al. (2015a)
and adapting the arguments in Wang et al. (2025, Appendix F).

We investigate two perception divergences of particular interest. The first is the Kullback-
Leibler divergence, defined as ϕ(pX , pY ) = ϕKL(pY ∥pX) = E

[
log pY (Y )

pX(Y )

]
. The second di-

vergence we consider is the squared quadratic Wasserstein distance, defined as W 2
2 (pX , pY ) =

infpXY ∈Γ(pX ,pY ) E[(X − Y )2].

Since the source variables {Xi} are i.i.d. and so are the reconstructions {Yi}, the divergence term
ϕ(pXi , pYi) is independent of i. Thus, DRPC coding can be viewed as output-constrained source
coding, where the reconstruction distribution is restricted to the set {pY : ϕ(pX , pY ) ≤ P}. Ac-
cordingly, the DRPC function is given by

D(∞)(R,P,C) = inf
pY :ϕ(pX ,pY )≤P

D(∞)(R,C, pX , pY ).
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Unlike D(∞)(R,C, pX , pY ), the reconstruction distribution in D(∞)(R,P,C) is not fixed but only
required to satisfy the perceptual constraint ϕ(pX , pY ) ≤ P . Leveraging the jointly Gaussian struc-
ture, we obtain closed-form characterizations of the DRPC tradeoff under MSE distortion, subject
to both classification and perception constraints. In particular, explicit expressions are derived when
the perception measure is chosen as either the KL divergence or the quadratic Wasserstein distance.
Theorem 6. Let X ∼ N (µX , σ

2
X) be a Gaussian source and S ∼ N (µS , σ

2
S) a classification

variable jointly Gaussian withX , such that Cov(X,S) = θ1. Consider Y ∼ N (µY , σ
2
Y ) with mean

E[Y ] = µY , variance Var(Y ) = σ2
Y , and covariance Cov(X,Y ) = θ2. Define YG as a Gaussian

random variable such that (X,YG) is jointly Gaussian with the same first and second moments as
(X,Y ): E[YG] = µY , Var(YG) = σ2

Y , and Cov(X,YG) = θ2. Under the MSE distortion with
constraints I(X;Y ) ≤ R, h(S|Y ) ≤ C, and ϕ(qX , qY ) ≤ P , the function D(∞)(R,P,C, qX , qY )
is attained by such a jointly Gaussian YG when the perception measure is either W 2

2 (qX , qY ) or
ϕKL(qY ∥qX).

Proof. The proof is provided in Appendix A.1.4.

Theorem 7. Let X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be two Gaussian random variables. Let

S ∼ N (µS , σ
2
S) be an associated classification variable with a covariance of Cov(X,S) = θ1 and

be jointly Gaussian. For the case d(X,Y ) = (X − Y )2 and ϕ(pX , pY ) = ϕKL(pY ∥pX), we have

D
(G)
KL(R,P,C)

=



σ2
X − σ2

X(1− 2−2R), σ(P ) ≤ σX
√
1− 2−2R and C >

1

2
log

(
1− θ21(1− 2−2R)

σ2
Sσ

2
X

)
+ h(S)

σ2
X + σ2(P )− 2σXσ(P )

√
1− 2−2R,

σ(P ) > σX
√
1− 2−2R and C > 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S)

σ2
X − σ2

Sσ
4
X

θ21
(1− 2−2h(S)+2C), σ(P ) ≤ σSσ

2
X

θ1

√
1− 2−2h(S)+2C

and
1

2
log

(
1− θ21

σ2
Sσ

2
X

)
+ h(S) ≤ C ≤ 1

2
log

(
1− θ21(σ

2
X − σ2

X2−2R)

σ2
Sσ

4
X

)
+ h(S)

σ2
X + σ2(P )− 2σSσ

2
Xσ(P )

θ1

√
1− 2−2h(S)+2C , σ(P ) >

σSσ
2
X

θ1

√
1− 2−2h(S)+2C

and
1

2
log

(
1− θ21

σ2
Sσ

2
X

)
+ h(S) ≤ C ≤ 1

2
log

(
1− θ21(σ

2
X − σ2

X2−2R)

σ2
Sσ

4
X

)
+ h(S)

0, C > h(S) and R > h(X).

where σ(P ) is the unique number σ ∈ [0, σX ] satisfying ψ(σ) = P and ψ(σY ) = log σX

σY
+

σ2
Y −σ2

X

2σ2
X

.

Proof. A complete proof is given in Appendix A.1.5.

A detailed derivation of the closed-form expression for D(∞)(R,P,C) under the quadratic Wasser-
stein distance can be found in Appendix A.4.

4 RELATED WORKS

Classical rate-distortion theory characterizes the fundamental limits of lossy compression with the
best achievable distortion at a given rate (Cover & Thomas, 1999), while the information bottleneck
links compression with task relevance (Chechik et al., 2003). Task-aware extensions, CDP (Liu
et al., 2019a;b) and the RDC/RDPC formulations (Zhang, 2023; Wang et al., 2025), make explicit
how accuracy constraints reshape the RD function, yet they typically operate within a single domain.
Perception-aware RD augments RD tradeoff with a divergence between source and reconstructions
(Blau & Michaeli, 2018; 2019; Theis & Wagner, 2021), inspiring generative codecs based on ad-
versarial learning and distribution-preserving objectives (Goodfellow et al., 2014; Arjovsky et al.,
2017; Gulrajani et al., 2017; Tschannen et al., 2018; Agustsson et al., 2019; Mentzer et al., 2020).
Modern learned codecs pair analysis-synthesis transforms with entropy models and tighter rate es-
timation (Ballé et al., 2017; 2018; Minnen et al., 2018; Theis et al., 2017; Williams et al., 2020;
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Johnston et al., 2018; Agustsson et al., 2017; Mentzer et al., 2018; Wu et al., 2020; Alemi et al.,
2018; Brekelmans et al., 2019; Huang et al., 2020; Park et al., 2020). Beyond fidelity, compression
has been used as a denoising prior from asymptotic limits (Weissman & Ordentlich, 2005) to recent
neural and zero-shot frameworks with theoretical guarantees (Zafari et al., 2025a;b). Optimal trans-
port provides a principled way to couple marginals (Villani, 2009) and has informed unsupervised
restoration (Wang et al., 2023a). Most relevant to our work, cross-domain lossy compression has
been cast as entropy-constrained OT with shared randomness that decouples coding and transport
(Liu et al., 2022). Unsupervised image restoration has also been explored in (Zhang et al., 2017;
Menon et al., 2020; Pan et al., 2021) with a fixed reconstruction distribution, but these approaches
neither impose compression constraints nor incorporate classification-awareness for downstream
tasks. Common randomness and stochastic encoders, realized via universal/dithered quantization,
enable output constraints and “free” synthesis randomness (Saldi et al., 2015a; 2013; Schuchman,
1964; Gray & Stockham, 1993; Ziv, 1985; Li & El Gamal, 2018a; Theis & Agustsson, 2021). Our
work extends this line by introducing rate- and classification-constrained optimal transport, provid-
ing one-shot and asymptotic characterizations with closed-form tradeoffs, and validating the theory
through deep generative compression models.

5 EXPERIMENTAL RESULTS

5.1 TRAINING SETUP

We consider the setting where the encoder observes degraded samples X ∼ pX (e.g., noisy or
low-resolution) and the goal is to reconstruct outputs from a distinct target distribution Y ∼ pY
(e.g., clean or high-resolution). The objective is to compress X while ensuring that reconstructions
preserve semantic content, align with pY , and remain predictive of the downstream label S. Note
that Y is drawn from the clean dataset distribution, but does not correspond to the exact clean
counterpart of X . In this unsupervised setting, only unpaired noisy and clean samples are available.

𝑋 ෨𝑌Encoder
(𝑓)

Decoder 
(𝑔)

+ -Quantizer Z

𝑈

Classifier
(𝑐)

Classification 
Loss

Distortion 
Loss

Discriminator 
(𝑑)

Wasserstein 
Loss

𝑆

መ𝑆

𝑌

Figure 5: Experimental architecture: a stochastic autoencoder with classifier and WGAN discrimi-
nator, conditioned on shared randomness U .

Following Liu et al. (2022); Wang et al. (2025), we adopt a stochastic autoencoder consisting of an
encoder f , quantizer Q, decoder g, classifier c, and WGAN discriminator d. Distortion is measured
by MSE, while classification is enforced via cross-entropy loss CE(S, Ŝ), which upper bounds the
conditional entropy H(S|Y ) (Boudiaf et al., 2021; Wang et al., 2025). The rate is upper bounded
by h log2 L, where h is the encoder output dimension and L the quantization level. Formally, for a
target rate R and shared randomness U , the system solves

min
f,g,Q

E
[
∥X − g(Q(f(X,U)))∥22

]
s.t. pg(Q(f(X,U))) = pY , H(Q(f(X,U))) ≤ R, H(S|g(Q(f(X,U)))) ≤ C.

Letting Ỹ = g(Q(f(X,U))), the WGAN discriminator aligns pỸ with pY via a Wasserstein-1
penalty (Arjovsky et al., 2017). Shared randomness is implemented through universal quantiza-
tion (Ziv, 1985; Theis & Agustsson, 2021). With trained encoder f and decoder g, restoration is
obtained as Ỹ = g(Q(f(X) +U)−U), where U is common randomness available to both encoder
and decoder. In practice, we optimize the relaxed loss

L = E[∥X − Ỹ ∥2] + λpW1(pY , pỸ ) + λc CE(S, Ŝ),
which balances fidelity, distributional alignment, and classification.
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5.2 RESULTS

Figure 6 presents the tradeoffs between rate, distortion, and accuracy. As expected, higher rates
yield lower MSE and improved classification performance. We report both quantitative curves and
qualitative results for super-resolution (MNIST) and denoising (SVHN). At low rates (e.g., R = 4
in Figure 6(c)), reconstructions capture coarse structure but remain blurry, stylized, or even ambigu-
ous. At higher rates (e.g., R = 32), both distortion and perceptual quality improve substantially,
producing reconstructions that closely match the high-resolution targets. A similar trend holds for
denoising, where noisy digits progressively sharpen and become recognizable as the rate increases.

(a) Accuracy vs. rate (MNIST). (b) MSE vs. rate (MNIST).

R = 20 R = 32

R = 4

R = 8

HR LR R = 4

R = 8 R = 20 R = 32

(c) Reconstructions (MNIST).

(d) Accuracy vs. rate (SVHN). (e) MSE vs. rate (SVHN).

R = 30

R = 60 R = 100 R = 120

Clear Noisy R = 30

R = 60 R = 100 R = 120

(f) Reconstructions (SVHN).

Figure 6: Experimental results: 4× super-resolution on MNIST and denoising on SVHN with Gaus-
sian noise with σ = 20. Higher rates yield clearer reconstructions and improved classification per-
formance.

Additional results on entropy model-based rate estimation for super-resolution (MNIST) and denois-
ing (SVHN, CIFAR-10, ImageNet, KODAK) are provided in Appendix B.1. We further examine
the inpainting problem on SVHN under both supervised and unsupervised settings in Appendix B.2.
Together, these experiments enrich the empirical study of the RDC tradeoff and provide additional
evidence that the observed behaviors align closely with the theoretical predictions of our framework.

6 CONCLUSION

We studied cross-domain lossy compression, where the decoder reconstructs samples from a target
distribution distinct from the degraded source observed by the encoder. By casting the problem
as constrained optimal transport, compression rate and classification loss were unified into a sin-
gle information-theoretic framework. In the one-shot regime with shared randomness, the problem
reduces to a deterministic transport plan, and we derived closed-form DRC/RDC expressions for
Bernoulli sources under Hamming distortion. In the asymptotic regime, analytic DRC/RDC trade-
offs were obtained for Gaussian sources under MSE. The framework was further extended to include
perception divergences, such as KL and quadratic Wasserstein, leading to closed-form DRPC func-
tions. To bridge theory and practice, we implemented deep end-to-end compression frameworks
incorporating universal quantization for shared common randomness, entropy modeling for rate
estimation, adversarial distribution alignment, and a task-specific classifier. Experiments on super-
resolution (MNIST), denoising (SVHN, CIFAR-10, ImageNet, KODAK), and inpainting (SVHN)
confirmed that empirical performance closely matches the theoretical predictions.
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Supplementary Material of “Cross-Domain Lossy Compression via Rate- and
Classification-Constrained Optimal Transport”

A THEORETICAL RESULTS

A.1 PROOFS OF THEORETICAL RESULTS IN THE MAIN PAPER

A.1.1 PROOF OF THEOREM 1
Theorem 1. Define Q(pX , pY ) as the set of joint distributions pU,X,Y with marginals pX , pY
that factorize as pU,X,Y = pU pX pY |X,U . Then, the constrained optimal transport cost in
Definition 2 admits the representation

D(R,C, pX , pY ) = inf
pU,X,Y ∈Q(pX ,pY )

E[d(X,Y )]

s.t. H(Y |X,U) = 0, I(X;U) = 0,

H(Y |U) ≤ R, H(S|Y ) ≤ C.

Proof. Recall the formulation from Definition 2:

D(R,C, pX , pY ) = inf
pU,X,Z,Y ∈M(pX ,pY )

E[d(X,Y )]

s.t. H(Z|U) ≤ R,

H(S|Y ) ≤ C.

where M(pX , pY ) =
{
pU,X,Z,Y : pU,X,Z,Y = pU pX pZ|X,U pY |Z,U

}
. Let Q(pX , pY ) ={

pU,X,Y : pU,X,Y = pU pX pY |U,X , H(Y |U,X) = 0
}

.

Upper bound. Fix any pU,X,Y ∈ Q(pX , pY ) that satisfies H(Y |U) ≤ R and H(S|Y ) ≤ C, and set
Z ≜ Y . Then pU,X,Z,Y = pU pX δZ=Y (X,U) δY=Z ∈ M(pX , pY ), with H(Z|U) = H(Y |U) ≤ R
and the same E[d(X,Y )] and H(S|Y ). Hence

D(R,C, pX , pY ) ≤ inf
pU,X,Y ∈Q(pX ,pY )

E[d(X,Y )]

s.t. H(Y |U,X) = 0, I(X;U) = 0,

H(Y |U) ≤ R, H(S|Y ) ≤ C.

Tightness. Take any feasible pU,X,Z,Y ∈ M(pX , pY ) with H(Z|U) ≤ R and H(S|Y ) ≤ C. By
the functional representation lemma (El Gamal & Kim, 2011; Li & El Gamal, 2018b), there exist:
(i) a random seed V1 independent of (U,X) and a measurable ϕ1 such that Z = ϕ1(U,X, V1) in
distribution (for pZ|X,U ); (ii) a random seed V2 independent of (U,X, V1) and a measurable ϕ2 such
that Y = ϕ2(U,Z, V2) in distribution (for pY |Z,U ).

Let U ′ ≜ (U, V1, V2). Then, Y = ϕ2
(
U, ϕ1(U,X, V1), V2

)
is deterministic given (U ′, X),

so H(Y |U ′, X) = 0 and (U ′, X, Y ) ∈ Q(pX , pY ). The marginal (X,Y ) is preserved, hence
E[d(X,Y )] and H(S|Y ) are unchanged.

For the rate term, conditioning reduces entropy, and determinism gives

H(Z|U) ≥ H(Z|U, V1, V2) = H(Z|U ′) ≥ H(Y |U ′),

and H(Y |U ′) ≤ R. Therefore,

D(R,C, pX , pY ) ≥ inf
pU′,X,Y ∈Q(pX ,pY )

E[d(X,Y )]

s.t. H(Y |U ′, X) = 0, I(X;U ′) = 0,

H(Y |U ′) ≤ R, H(S|Y ) ≤ C.

Since the auxiliary alphabet is unrestricted, we can relabel U ′ as U inside the infimum. Combining
the two bounds, the proof is completed.
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A.1.2 PROOF OF THEOREM 2
Theorem 2. Consider a Bernoulli source X ∼ Bern(qX), Y ∼ Bern(qY ), and a classification
variable S with the binary symmetric joint distribution given by S = X ⊕ S1 where S ∼
Bern(qS) and S1 ∼ Bern(qS1) (0 ≤ qX , qS , qS1 ≤ 1

2 ). The problem (3) is feasible if C ≥
Hb(qS1). Assume the Hamming distortion measure. Under common randomness, we have

D(B)(R,C, qX , qY ) =



−2(1− qX)qX(Hb(m)− C)

Hb(m)−Hb(qS1
)

+D
(B)
ind ,

Hb(qs1) ≤ C ≤ R(Hb(qS1
)−Hb(m))

Hb(qX) +Hb(m)

−2(1− qX)qXR

Hb(qX)
+D

(B)
ind , C >

R(Hb(qS1)−Hb(m))

Hb(qX)
+Hb(m)

D
(B)
min, C > Hb(qS) and R > Hb(qX).

where m = (1 − qX)(1 − qS1
) + qXqS1

, qS = qX + qS1
− 2qXqS1

, Hb(qS) = Hb(m), and
Hb(.) denotes the binary entropy function.

Proof. Since H(Y |U) = I(X;Y |U) + H(Y |U,X) = I(X;Y |U) and H(Y |U,X) = 0, we can
equivalently view Y as a deterministic function of (X,U), i.e., Y = f(X,U). The problem (3),
under the Hamming distortion measure, reduces to finding a distribution pU such that

D(B)(R,C, qX , qY ) = inf
pU

P (X ̸= Y )

s.t. H(Y |U,X) = 0, I(X;U) = 0,

I(X;Y |U) ≤ R, H(S|Y ) ≤ C.

Because Shannon entropy is defined only for discrete random variables, the auxiliary variable U
must be chosen such that Y |U = u is discrete for each u, even in continuous (X,Y ) settings (Liu
et al., 2022). Here, pU is supported on U ≜ {1, 2, . . . , |Y||X |} and {fu : u ∈ U} denotes the set of
all distinct mappings fu : X → Y . By the support lemma (Appendix C, p. 631 of El Gamal & Kim,
2011), it suffices to assign positive probability to at most |Y|+ 1 such functions.

The optimization can be expressed as follows

D(B)(R,C, qX , qY ) = min
pU

∑
u∈U

pU (u)P (X ̸= Y |U = u)

s.t.
∑
u∈U

pU (u) I(X;Y |U = u) ≤ R,∑
u∈U

pU (u)P (fu(X) = y) = qY , ∀y ∈ Y,∑
u∈U

pU (u)H(S|fu(X)) ≤ C.

Without loss of optimality, the size of the alphabet of U can be restricted to at most four. There are
exactly four distinct mappings from {0, 1} to {0, 1}: f1(x) = x, f2(x) = 1 − x, f3(x) = 0, and
f4(x) = 1 with x ∈ {0, 1}. Hence, Y = X if U = 1; Y = 1 −X if U = 2; Y = 0 if U = 3; and
Y = 1 if U = 4. Therefore, we obtain

P (X ̸= Y ) =
∑
u∈U

pU (u)P (X ̸= Y |U = u) = pU (2) + qXpU (3) + (1− qX)pU (4),

I(X;Y |U) =
∑
u∈U

pU (u)I(X;Y |U = u) =
∑
u∈U

pU (u)H(fu(X)) = Hb(qX)(pU (1) + pU (2)),

P (Y = 1) = qY =
∑
u∈U

pU (u)P (fu(X) = y) = pU (1)qX + (1− qX)pU (2) + pU (4).

By the data-processing inequality (Cover & Thomas, 1999) and the Markov relation S↔X↔Y ,

H(S|Y ) ≥ H(S|X) = H(X ⊕ S1|X) = H(S1) = Hb(qS1
).
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The classification constraint is feasible only if C ≥ H(S1).

The evaluation of H(S|Y ) for each mapping is derived as follows

• For U = 1: H(S|Y,U = 1) = H(S|X) = Hb(qS1
).

• For U = 2: H(S|Y,U = 2) = H(S|X) = Hb(qS1
).

• For U = 3: P (S = 0) = (1− qX)(1− qS1
) + qXqS1

,
⇒ H(S|Y,U = 3) = H(S|U = 3) = Hb((1− qX)(1− qS1) + qXqS1).

• For U = 4: H(S|Y,U = 4) = H(S|U = 4) = Hb((1− qX)(1− qS1
) + qXqS1

).

Hence,

H(S|Y ) =
∑
u∈U

pU (u)H(S|fu(X))

= (pU (1) + pU (2))Hb(qS1) + (pU (3) + pU (4))Hb

(
(1− qX)(1− qS1) + qXqS1

)
.

Let m = (1− qX)(1− qS1) + qXqS1 , we have
H(S|Y ) = (pU (1) + pU (2))Hb(qS1

) + (pU (3) + pU (4))Hb(m).

The final optimization problem is represented as

D(B)(R,C, qX , qY ) = min
pU (1), pU (2), pU (3), pU (4)

pU (2) + qXpU (3) + (1− qX)pU (4) (5)

s.t. Hb(qX) (pU (1) + pU (2)) ≤ R, (6)
qXpU (1) + (1− qX)pU (2) + pU (4) = qY , (7)
(pU (1) + pU (2))Hb(qS1) + (pU (3) + pU (4))Hb(m) ≤ C, (8)
pU (1) + pU (2) + pU (3) + pU (4) = 1, (9)
pU (1), pU (2), pU (3), pU (4) ≥ 0. (10)

The activity of the nonnegative constraints. From (9) and (7), we have
pU (3) = 1− [pU (1) + pU (2)]− pU (4) and pU (4) = qY − qXpU (1)− (1− qX)pU (2).

The objective is: E[dH(X,Y )] = D
(B)
ind − 2(1− qX)qXpU (1) + 2(1− qX)qX pU (2).

For 0 ≤ qX ≤ 1
2 , the distortion E[dH(X,Y )] is strictly increasing in pU (2) and decreasing in pU (1);

hence it is optimal to take pU (2) = 0 and pU (1) > 0. We can also write
pU (4) = qY − qX [pU (1) + pU (2)] + (2qX − 1) pU (2),

pU (3) = (1− qY )− (1− qX)[pU (1) + pU (2)]− (2qX − 1) pU (2).

With pU (2) = 0, it follows that

pU (4) = qY − qXpU (1) ≥ 0 ⇒ pU (1) ≤
qY
qX

,

pU (3) = 1− qY − (1− qX)pU (1) ≥ 0 ⇒ 0 < pU (1) ≤
1− qy
1− qX

.

We state a supporting fact that will be used repeatedly in the arguments as follows.

Lemma A.1. We have,
Hb(m) ≥ Hb(qS1),

with equality if only if qX ∈ {0, 1} or qS1
= 1

2 .

Proof of Lemma A.1. The identity for m is immediate:
m = (1− qX)(1− qS1

) + qXqS1
= 1

2 +
(
qX − 1

2

)(
2qS1

− 1
)
,

m− 1
2 =

(
qX − 1

2

)(
2qS1 − 1

)
⇒
∣∣m− 1

2

∣∣ = 2
∣∣qX − 1

2

∣∣ ∣∣qS1 − 1
2

∣∣ ≤
∣∣qS1 − 1

2

∣∣
since |qX − 1

2 | ≤
1
2 for qX ∈ [0, 1]. The binary entropy is maximized at 1

2 and strictly decreases
with |p− 1

2 |, hence Hb(m) ≥ Hb(qS1
), with equality if only if |qX − 1

2 | =
1
2 (i.e., qX ∈ {0, 1}) or

|qS1 − 1
2 | = 0 (i.e., qS1 = 1

2 ).
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We will invoke Lemma A.1 in the analysis below to justify the sign of denominators of the form
Hb(m)−Hb(qS1

). Note that,

pU (2)+qXpU (3)+(1− qX)pU (4)=−(1− qX)pU (1)+qXpU (2)+(2qX − 1)pU (3)+(1− qX).

Combining constraints (7) and (9), we obtain pU (3) = −(1− qX)pU (1)− qXpU (2) + (1− qY ).

Since problem (5) is a linear program, it can be solved efficiently using standard convex optimization
tools such as CVX in MATLAB (CVX Research, Inc., 2012; Grant & Boyd, 2008) or CVXPY in
PYTHON (Diamond & Boyd, 2016; Agrawal et al., 2018). Alternatively, an analytical solution can
be derived via the Karush-Kuhn-Tucker (KKT) conditions. In practice, our approach systematically
explores all possible combinations of active and inactive rate and classification constraints to fully
characterize the optimal solution.

Case 1. Constraint (6) is active and constraint (8) is inactive.

Using pU (2) ≥ 0 and the fact that (6) is active, we obtain

R = Hb(qX)(pU (1) + pU (2)) ≥ Hb(qX) pU (1) ⇒ pU (1) ≤
R

Hb(qX)
.

Moreover,

pU (2)+qXpU (3)+(1− qX)pU (4)=−2(1− qX)qX(pU (1)+pU (2))+4(1− qX)qXpU (2)+D
(B)
ind

≥−2(1− qX)qX(pU (1)+pU (2))+D
(B)
ind

≥−2(1− qX)qXR

Hb(qX)
+D

(B)
ind .

Thus, D(B)(R,C, qX , qY ) =
−2(1−qX)qXR

Hb(qX) +D
(B)
ind .

This lower bound is tight, achieved by

p⋆U (1) =
R

Hb(qX) , p⋆U (2) = 0,

p⋆U (3) =
−(1−qX)R
Hb(qX) + 1− qY , p⋆U (4) =

−qXR
Hb(qX) + qY .

Constraint (8) is inactive if

(pU (1) + pU (2))Hb(qS1) + (pU (3) + pU (4))Hb(m) < C,

C >
R(Hb(qS1

)−Hb(m))

Hb(qX)
+Hb(m).

Case 2. Constraint (8) is active and constraint (6) is inactive.

The constraint (8) is active if

(pU (1) + pU (2))Hb(qS1) + (pU (3) + pU (4))Hb(m) = C

From the constraint (9), we have

(pU (1) + pU (2))Hb(qS1
) + (1− pU (1)− pU (2))Hb(m) = C,

pU (1) + pU (2) =
C −Hb(m)

Hb(qS1)−Hb(m)
.

Since pU (2) ≥ 0, which implies

E[dH(X,Y )] = −2(1− qX)qX(pU (1) + pU (2)) + 4(1− qX)qXpU (2) +D
(B)
ind

≥ −2(1− qX)qX(C −Hb(m))

Hb(qS1
)−Hb(m)

+D
(B)
ind .

This lower bound is tight, achieved by

p⋆U (1) =
C−Hb(m)

Hb(qS1
)−Hb(m) , p⋆U (2) = 0,

p⋆U (3) =
−(1−qX)(C−Hb(m))

Hb(qS1
)−Hb(m) + 1− qY , p⋆U (4) =

−qX(C−Hb(m))
Hb(qS1

)−Hb(m) + qY .
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The constraint (6) is inactive if

Hb(qX)(pU (1) + pU (2)) < R⇒ C <
R(Hb(qS1)−Hb(m))

Hb(qX)
+Hb(m).

Case 3. Both constraints (6) and (8) are active.

From case 2, the classification constraint (8) is active if pU (1) + pU (2) = C−Hb(m)
Hb(qS1

)−Hb(m) and

D(B)(R,C, qX , qY ) =
−2(1−qX)qX(C−Hb(m))

Hb(qS1
)−Hb(m) +D

(B)
ind .

The rate constraint (6) is active if C =
R(Hb(qS1

)−Hb(m))

Hb(qX) +Hb(m).

Case 4. Both constraints (6) and (8) are inactive. WhenC > Hb(qS), implying that the classification
constraint (8) is inactive, and the rate R is sufficiently large such that R > Hb(qX), meaning the
rate constraint (6) is also inactive, the minimum achievable distortion D(B)(R,C, qX , qY ) reaches
its theoretical lower bound, i.e., D(B)(R,C, qX , qY ) = D

(B)
min.

In summary, combining all of the cases, the closed-form expression for D(B)(R,C, qX , qY ) under
Hamming distortion is given by Theorem 2.

A.1.3 PROOF OF THEOREM 4
Theorem 4. Consider X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y ) with MSE distortion, and let

S ∼ N (µS , σ
2
S) be a classification variable with Cov(X,S) = θ1. The problem (4) is feasible

if C ≥ 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+h(S). Under shared randomness, the asymptotic DRC tradeoff is

D(G)(R,C, qX , qY ) =



(µX − µY )
2 + σ2

X + σ2
Y − 2σSσ2

XσY

θ1

√
1− e−2h(S)+2C ,

1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) ≤ C ≤ 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S),

(µX − µY )
2 + σ2

X + σ2
Y − 2σXσY

√
1− 2−2R,

C > 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S),

0, C > h(S) and R > h(X).

Proof. We now consider problem (4) with the MSE distortion criterion. Formally,

D(G)(R,C, qX , qY ) = inf
qX,Y ∈Γ(qX ,qY )

E[(X − Y )2]

s.t. I(X;Y ) ≤ R,

h(S|Y ) ≤ C.

Using the closed-form expression for the mutual information of Gaussian variables (Cover &
Thomas, 1999), we obtain

I(X;Y ) ≥ −1

2
log

(
1− θ22

σ2
Xσ

2
Y

)
, (11)

where θ2 = Cov(X,Y ) = E[(X − µX)(Y − µY )]. The equality holds if and only if X and Y are
jointly Gaussian random variables.

Since (X,Y, S) are jointly Gaussian and satisfy the Markov chain S → X → Y , we have
Cov(S, Y ) = E

[
E[S − µS |X]E[Y − µY |X]

]
= θ1θ2

σ2
X

. For the classification constraint,

h(S|Y ) = h(S)− I(S;Y ) ≤ C ⇒ − 1
2 log

(
1− θ21

σ2
Sσ

4
X

· θ
2
2

σ2
Y

)
≥ h(S)− C.

The MSE between X and Y admits the decomposition (Zhang et al., 2025):

E[(X − Y )2] = (µX − µY )
2 + σ2

X + σ2
Y − 2θ2. (12)
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Hence, the optimization problem can be formulated as

D(G)(R,C, qX , qY ) = min
θ2

(µX − µY )
2 + σ2

X + σ2
Y − 2θ2 (13a)

s.t. − 1

2
log

(
1− θ22

σ2
Xσ

2
Y

)
≤ R, (13b)

− 1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
≥ h(S)− C. (13c)

To ensure (13b) is well-defined, it is necessary that 1 − θ2
2

σ2
Xσ2

Y
> 0 ⇒ θ2

2

σ2
Y
< σ2

X . Under this
condition, the mutual information between S and Y satisfies

I(S;Y ) = −1

2
log

(
1− θ21

σ2
Sσ

4
X

× θ22
σ2
Y

)
≤ −1

2
log

(
1− θ21

σ2
Sσ

2
X

)
.

Thus, constraint (13c) is infeasible whenever C < 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S). To guarantee feasi-

bility, we assume throughout that C ≥ 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S).

The optimization problem (13) can then be analyzed using the KKT conditions. By systematically
considering all possible combinations of active and inactive constraints, we can fully characterize
the optimal solution.

Case 1. Constraint (13b) is active, while constraint (13c) is inactive.

From the entropy inequality and the fact that (13b) holds with equality, we obtain

R = I(X;Y ) = h(X) + h(Y )− h(X,Y ) =
1

2
log(2πeσ2

X) +
1

2
log(2πeσ2

Y )− h(X,Y )

≥ 1

2
log(2πeσ2

X) +
1

2
log(2πeσ2

Y )−
1

2
log((2πe)2(σ2

Xσ
2
Y − θ22)) =

1

2
log

(
σ2
Xσ

2
Y

σ2
Xσ

2
Y − θ22

)
.

The equality holds if only if X and Y are two jointly Gaussian random variables. This implies that

θ2 ≤ σXσY
√
1− 2−2R. (14)

Substituting (14) into (12) yields

D(G)(R,C, qX , qY ) ≥ (µX − µY )
2 + σ2

X + σ2
Y − 2σXσY

√
1− 2−2R.

The classification constraint is inactive if − 1
2 log

(
1− θ2

1

σ2
Sσ4

X

θ2
2

σ2
Y

)
> h(S) − C, which reduces to

C > 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S).

Case 2. Constraint (13b) is inactive, while constraint (13c) is active.

When (13c) is tight, we have

−1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
= h(S)− C ⇒ θ2 =

σSσ
2
XσY
θ1

√
1− 2−2h(S)+2C . (15)

Substituting (15) into the distortion expression gives

E[(X − Y )2] = (µX − µY )
2 + σ2

X + σ2
Y − 2σSσ

2
XσY
θ1

√
1− 2−2h(S)+2C .

The corresponding mutual information is I(X;Y ) = − 1
2 log

(
1− σ2

Sσ2
X

θ2
1

(1− 2−2h(S)+2C)
)

.

Thus, the rate constraint is inactive whenever

− 1

2
log

(
1− σ2

Sσ
2
X

θ21

(
1− 2−2h(S)+2C

))
< R⇒ C <

1

2
log

(
1− θ21(1− 2−2R)

σ2
Sσ

2
X

)
+ h(S).
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Case 3. Both constraints (13b) and (13c) are active.

From Case 2, when the classification constraint is tight, we have θ2 =
σSσ2

XσY

θ1

√
1− 2−2h(S)+2C .

This yields the distortion

E[(X − Y )2] = (µX − µY )
2 + σ2

X + σ2
Y − 2σSσ

2
XσY
θ1

√
1− 2−2h(S)+2C .

The rate constraint holds with equality: I(X;Y ) = − 1
2 log

(
1− σ2

Sσ2
X

θ2
1

(
1− 2−2h(S)+2C

))
= R,

which implies C = 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S).

Case 4. Both constraints (13b) and (13c) are inactive.

When C > h(S), the classification constraint (13c) is inactive, and if the rate satisfies R > h(X),
the rate constraint (13b) is also inactive. In this regime, the minimum distortionD(G)(R,C, qX , qY )
achieves its theoretical bound of zero, realized by setting Y = X , which yields E[(X − Y )2] = 0.
All constraints are satisfied since I(X;Y ) = h(X) < R and h(S|Y ) = h(S|X) ≤ h(S) < C.

In summary, combining all of the cases, the closed-form expression for D(G)(R,C, qX , qY ) under
MSE distortion is given by Theorem 4.

A.1.4 PROOF OF THEOREM 6

Theorem 6. Let X ∼ N (µX , σ
2
X) be a Gaussian source and S ∼ N (µS , σ

2
S) a classification

variable jointly Gaussian with X , such that Cov(X,S) = θ1. Consider Y ∼ N (µY , σ
2
Y ) with

mean E[Y ] = µY , variance Var(Y ) = σ2
Y , and covariance Cov(X,Y ) = θ2. Define YG

as a Gaussian random variable such that (X,YG) is jointly Gaussian with the same first and
second moments as (X,Y ): E[YG] = µY , Var(YG) = σ2

Y , and Cov(X,YG) = θ2. Under the
MSE distortion with constraints I(X;Y ) ≤ R, h(S|Y ) ≤ C, and ϕ(qX , qY ) ≤ P , the function
D(∞)(R,P,C, qX , qY ) is attained by such a jointly Gaussian YG when the perception measure
is either W 2

2 (qX , qY ) or ϕKL(qY ∥qX).

Proof. Consider the DRPC problem (5) with MSE distortion as follows.

D(∞)(R,P,C, qX , qY ) = inf
qX,Y ∈Γ(qX ,qY )

E[(X − Y )2]

s.t. I(X;Y ) ≤ R, h(S|Y ) ≤ C,

ϕ(qY , qX) ≤ P.

Distortion objective equality. For any Y , E[(X − Y )2] = (µX − µY )
2 + σ2

X + σ2
Y − 2 θ2, which

depends only on first and second moments. Since Y and YG share (µY , σ
2
Y , θ2), then E[(X−Y )2] =

E[(X − YG)
2].

Rate constraint under Gaussian. We begin with a lemma from estimation theory that compares
the performance of Gaussian and non-Gaussian estimators with matched second-order statistics.

Lemma A.2. (Willsky & Wornell, 2005) Let Y be a random variable with mean E[Y ] = µY ,
variance Var(Y ) = σ2

Y , and covariance Cov(X,Y ) = θ2. Let YG be jointly Gaussian with X
and share the same mean, variance, and covariance as Y . Then,

E[(X − E[X|YG])2] ≥ E[(X − E[X|Y ])2].

This result implies that the MMSE of a general (possibly non-Gaussian) estimator Y is always less
than or equal to that of a Gaussian estimator with the same first and second-order moments.
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Following the derivation approach in (Zhang et al., 2025), we show that the mutual information
I(X;Y ) is minimized when Y is constrained to be jointly Gaussian with X . Specifically, we have:

I(X;Y ) = h(X)− h(X|Y )

≥ h(X)− h(X − E[X|Y ])

(a)

≥ h(X)− 1
2 log

(
2πeE

[
(X − E[X|Y ])2

])
(b)

≥ h(X)− 1
2 log

(
2πeE

[
(X − E[X|YG])2

])
= h(X)− h(X − E[X|YG])
(c)
= h(X)− h(X|YG)
= I(X;YG).

where inequality (a) follows from the fact that the Gaussian distribution maximizes differential en-
tropy for a given variance; inequality (b) follows from Lemma A.2; and equality (c) holds because
the estimation error is independent of YG. Hence, if I(X;Y ) ≤ R then I(X;YG) ≤ R.

Perception divergence under Gaussian. From Xie et al. (2025), we have the following proposition

Proposition 1. Xie et al. (2025) For X ∼ N (µX , σ
2
X) and any distribution qY with E[Y 2] < ∞,

we obtain

ϕKL(qY ∥qX) ≥ ϕKL

(
N (µY , σ

2
Y ) ∥N (µX , σ

2
X)
)
= log

σX
σY

+
(µX − µY )

2 + σ2
Y − σ2

X

2σ2
X

.

Therefore, ϕKL(qY ∥qX) ≥ ϕKL(N (µY , σ
2
Y )∥N (µX , σ

2
X)) = ϕKL(qYG

, qX).

Similarly, for the case of W2(qX , qY ), we have

Proposition 2. Givens & Shortt (1984) proved that for distributions pX and pY with E[X2] < ∞
and E[Y 2] <∞,

W 2
2 (pX , pY ) ≥W 2

2

(
N (µX , σ

2
X),N (µY , σ

2
Y )
)
= (µX − µY )

2 + (σX − σY )
2.

Note that by expanding out W2(qX , qY ), one can see that the optimal coupling is identified only
through the cross-term between X and Y ; since every coupling of qX and qY induces a Gaussian
coupling of qX and qYG

with the same covariance, it follows that W 2
2 (qX , qY ) ≥ W 2

2 (qX , qYG
).

Hence, if ϕ(qY , qX) ≤ P , then ϕ(qYG
, qX) ≤ P .

Classification constraint under Gaussian. We now demonstrate that the jointly Gaussian estimator
YG for X is optimal. To formalize this result and establish the optimality of YG, we first propose the
following lemma.

Lemma A.3. Given S → X → Y , we have h(S|Y ) ≥ h(S|YG).

Proof of Lemma A.3. Let ρXS = Cov(X,S)
σXσS

= θ1
σXσS

denote the correlation coefficient between X
and S. SinceX and S are jointly Gaussian, S can be expressed as S = aX+N , where a = ρXS

σS

σX

and N is a zero-mean Gaussian random variable with variance (1− ρ2XS)σ
2
S , independent of X .

Applying the conditional entropy-power inequality (Berger & Zamir, 1999), we obtain:

h(S|Y ) = h(aX +N |Y ) ≥ 1

2
log
(
22h(aX|Y ) + 22h(N)

)
.

with equality if and only if (X,Y ) are jointly Gaussian. It follows that h(S|Y ) ≥ h(S|YG) =
1
2 log

(
22h(aX|YG) + 22h(N)

)
, which completes the proof.

The covariance of (S, Y ) is fixed by (σ2
S , σ

2
Y ,Cov(S, Y ) = aθ2). Among all (S, Y ) with a given

covariance matrix, the Gaussian joint maximizes I(S;Y ); equivalently, it minimizes h(S|Y ). Thus,
if h(S|Y ) ≤ C then also h(S|YG) ≤ C.
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Overall, it suffices to solve the following optimization problem:

D(∞)(R,P,C, qX , qY ) = inf
pX,YG

∈Γ(pX ,pYG
)
E[(X − YG)

2]

s.t. I(X;YG) ≤ R, h(S|YG) ≤ C,

ϕ(qYG
, qX) ≤ P.

Therefore, the DRPC function, D(∞)(R,P,C, qX , qY ), is achieved by YG with the cases of
ϕ(qX , qY ) =W 2

2 (qX , qY ) or ϕ(qX , qY ) = ϕKL(qY , qX).

A.1.5 PROOF OF THEOREM 7
Theorem 7. Let X ∼ N (µX , σ

2
X) and Y ∼ N (µY , σ

2
Y ) be two Gaussian random vari-

ables. Let S ∼ N (µS , σ
2
S) be an associated classification variable with a covariance

of Cov(X,S) = θ1 and be jointly Gaussian. For the case d(X,Y ) = (X − Y )2 and
ϕ(pX , pY ) = ϕKL(pY ∥pX), we have

D
(G)
KL(R,P,C)

=



σ2
X − σ2

X(1− 2−2R), σ(P ) ≤ σX
√
1− 2−2R and C >

1

2
log

(
1− θ21(1− 2−2R)

σ2
Sσ

2
X

)
+ h(S)

σ2
X + σ2(P )− 2σXσ(P )

√
1− 2−2R,

σ(P ) > σX
√
1− 2−2R and C > 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S)

σ2
X − σ2

Sσ
4
X

θ21
(1− 2−2h(S)+2C), σ(P ) ≤ σSσ

2
X

θ1

√
1− 2−2h(S)+2C

and
1

2
log

(
1− θ21

σ2
Sσ

2
X

)
+ h(S) ≤ C ≤ 1

2
log

(
1− θ21(σ

2
X − σ2

X2−2R)

σ2
Sσ

4
X

)
+ h(S)

σ2
X + σ2(P )− 2σSσ

2
Xσ(P )

θ1

√
1− 2−2h(S)+2C , σ(P ) >

σSσ
2
X

θ1

√
1− 2−2h(S)+2C

and
1

2
log

(
1− θ21

σ2
Sσ

2
X

)
+ h(S) ≤ C ≤ 1

2
log

(
1− θ21(σ

2
X − σ2

X2−2R)

σ2
Sσ

4
X

)
+ h(S)

0, C > h(S) and R > h(X).

where σ(P ) being the unique number σ ∈ [0, σX ] satisfying ψ(σ) = P and ψ(σY ) = log σX

σY
+

σ2
Y −σ2

X

2σ2
X

.

Proof. Extending from the result of Xie et al. (2025), we establish the following lemma.

Lemma A.4. ConsiderX ∼ N (µX , σ
2
X) with MSE distortion d(X,Y ) = (X−Y )2 and perception

measure ϕ(pX , pY ) = ϕKL(pY ∥pX). Then

D
(G)
KL(R,P,C) = inf

pY

D(R,C, qX , qY )

s.t. µY = µX , σY ≤ σX ,

h(S|Y ) ≤ C, ϕKL(qY ∥qX) ≤ P.

Proof of Lemma A.4. We argue that restricting to pY with σY ≤ σX incurs no loss of optimality.
Suppose σY > σX and define Y ′ := σX

σY
(Y − µY ) + µX .

Distortion objective. A direct calculation gives

E[(X − Y ′)2] = 2σ2
X − 2σX

σY
E[(X − µX)(Y − µY )]

≤ σ2
X + σ2

Y − 2E[(X − µX)(Y − µY )] = E[(X − Y )2],

where the inequality holds since k2σ2
Y − 2k E[(X − µX)(Y − µY )] is increasing in k ∈ [σX

σY
, 1].

Rate constraint. Since X ↔ Z ↔ Y is a Markov chain, then so is X ↔ Z ↔ Y ′, and we have
I(Y ′;Z) = I(Y ;Z).
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Classification constraint. Let θ′2 = Cov(X,Y ′) and θ2 = Cov(X,Y ). Then

h(S|Y ′) = h(S) + 1
2 log

(
1− θ21

σ2
Sσ

4
X

θ′2
2

σ2
Y ′

)
,

h(S|Y ) = h(S) + 1
2 log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
.

Since Y ′ := σX

σY
(Y −µY )+µX , then µY ′ = E

[
σX

σY
(Y − µY ) + µX

]
= σX

σY
(µY −µY )+µX = µX .

We also have σY ′ =
(

σX

σY

)2
σY =

σ2
X

σY
and θ′2 = σX

σY
θ2. Therefore,

h(S|Y ′) = h(S)− I(S;Y ′)

= h(S) +
1

2
log

(
1− θ21

σ2
Sσ

4
X

θ′2
2

σ2
Y ′

)
(a)

≤ h(S) +
1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
= h(S)− I(S;Y ) = h(S|Y ).

where (a) is due to σY > σX , infer that θ′
2
2

σ2
Y ′

≥ θ2
2

σ2
Y

.

Perception constraint. Finally,

ϕKL(qY ′∥qX) = −h(Y ′) +
1

2
log(2πσ2

X) +
(µX − µY ′)2 + σ2

Y ′

2σ2
X

≤ −h(Y ) +
1

2
log(2πσ2

X) +
(µX − µY )

2 + σ2
Y

2σ2
X

= ϕKL(qY ∥qX) = ϕKL(qY ∥qX),

where the inequality follows from the convexity of ψ(σY ) := log σX

σY
+

σ2
Y −σ2

X

2σ2
X

, which is nonnega-
tive for σY ≥ σX .

Together, these arguments establish that replacing Y by Y ′ cannot increase distortion, rate, and
perception divergence, nor violate the classification constraint. This proves the lemma.

From Proposition 1, together with the constraints µY = µX , σY ≤ σX , and ϕKL(pY ∥pX) ≤ P , it
follows that σY ∈ [σ(P ), σX ], where σ(P ) is uniquely defined as the value σ ∈ [0, σX ] satisfying
ψ(σ) = P .

In view of Lemma A.4, it suffices to restrict to distributions pY with µY = µX and σY ≤ σX
when evaluating D(G)(R,P,C, qX , qS). Moreover, Theorem 6 allows us to further assume that Y
is Gaussian, yielding

D
(G)
KL(R,P,C) = min

σY ∈[σ(P ),σX ]
D(G)(R,C, qX , qY ). (16)

Case 1. If C > 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S), then

D(G)(R,C, qX , qY ) = (µX − µY )
2 + σ2

X + σ2
Y − 2σXσY

√
1− 2−2R.

The term σ2
Y − 2σXσY

√
1− 2−2R decreases monotonically over σY ∈ [0, σX

√
1− 2−2R] and

increases thereafter. Thus, the minimizing σY in (16) is

σY =

{
σX

√
1− 2−2R, σ(P ) ≤ σX

√
1− 2−2R,

σ(P ), σ(P ) > σX
√
1− 2−2R.

Hence,

D
(G)
KL(R,P,C) =

{
σ2
X − σ2

X(1− 2−2R), σ(P ) ≤ σX
√
1− 2−2R,

σ2
X + σ(P )2 − 2σXσ(P )

√
1− 2−2R, σ(P ) > σX

√
1− 2−2R.
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Case 2. If 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) ≤ C ≤ 1

2 log
(
1− θ2

1(σ
2
X−σ2

X2−2R)

σ2
Sσ4

X

)
+ h(S), then

D(G)(R,C, qX , qY ) = (µX − µY )
2 + σ2

X + σ2
Y − 2σSσ2

XσY

θ1

√
1− 2−2h(S)+2C .

Here, σ2
Y − 2σSσ2

XσY

θ1

√
1− 2−2h(S)+2C decreases over σY ∈

[
0,

σSσ2
X

θ1

√
1− 2−2h(S)+2C

]
and

increases thereafter. Thus,

σY =

{
σSσ2

X

θ1

√
1− 2−2h(S)+2C , σ(P ) ≤ σSσ2

X

θ1

√
1− 2−2h(S)+2C ,

σ(P ), σ(P ) >
σSσ2

X

θ1

√
1− 2−2h(S)+2C .

Therefore,

D
(G)
KL(R,P,C) =

{
σ2
X − σ2

Sσ4
X

θ2
1

(
1− 2−2h(S)+2C

)
, σ(P ) ≤ σSσ2

X

θ1

√
1− 2−2h(S)+2C ,

σ2
X + σ(P )2 − 2σSσ2

Xσ(P )
θ1

√
1− 2−2h(S)+2C , σ(P ) >

σSσ2
X

θ1

√
1− 2−2h(S)+2C .

Case 3. If C > h(S) and R > h(X), then D(G)
KL(R,P,C) = 0.

In summary, by combining the above cases, we obtain the closed-form expression for
D

(G)
KL(R,P,C), as stated in Theorem 7.

A.2 RDC EXPRESSION FOR BERNOULLI CASE IN ONE-SHOT SETTING

In addition to Theorem 1, we propose the following definition of the rate-distortion-classification
function based on the constrained optimal transport in the one-shot setting.
Definition 5. Let X ∼ pX be the degraded source, Y ∼ pY the reconstruction, and S ∼ pS the
associated classification variable with covariance Cov(X,S). Define Q(pX , pY ) as the set of joint
distributions pU,X,Y with marginals pX , pY that factorize as pU,X,Y = pU pX pY |X,U . The rate-
distortion-classification function is based on the constrained optimal transport with distortion loss
D, classification loss C, and shared randomness as follows

R(D,C, pX , pY ) = inf
pU,X,Y ∈Q(pX ,pY )

H(Y |U) (17)

s.t. H(Y |X,U) = 0, I(X;U) = 0,

E[d(X,Y )] ≤ D, H(S|Y ) ≤ C.

The closed-form solution of R(B)(D,C, qX , qY ) for the Bernoulli case is derived by Theorem A.2.

Theorem A.2. Consider a Bernoulli source X ∼ Bern(qX), Y ∼ Bern(qY ), and a classifi-
cation variable S with the binary symmetric joint distribution given by S = X ⊕ S1 where
S ∼ Bern(qS) and S1 ∼ Bern(qS1

) (0 ≤ qX , qS , qS1
≤ 1

2 ). The problem 17 is feasible if
C ≥ Hb(qS1

). Assume the Hamming distortion measure. Under common randomness, we
have

R(B)(D,C, qX , qY ) =


Hb(qX)(D

(B)
ind −D)

2(1− qX)qX
, D

(B)
min ≤ D < 2(1−qX)qX [C−Hb(m)]

Hb(m)−Hb(qS1
) +D

(B)
ind

Hb(qX) [Hb(m)− C]

Hb(m)−Hb(qS1
)
, 2(1−qX)qX [C−Hb(m)]

Hb(m)−Hb(qS1
) +D

(B)
ind ≤ D ≤ D

(B)
max

0, C ≥ Hb(m) and D(B)
ind ≤ D ≤ D

(B)
max.

Proof. Following the proof of Theorem 2, we can formulate the problem (17) as

R(B)(D,C, qX , qY ) = min
pU (1), pU (2), pU (3), pU (4)

Hb(qX)(pU (1) + pU (2)) (18)

s.t. pU (2) + qXpU (3) + (1− qX)pU (4) ≤ D, (19)
qXpU (1) + (1− qX)pU (2) + pU (4) = qY , (20)
(pU (1) + pU (2))Hb(qS1) + (pU (3) + pU (4))Hb(m) ≤ C, (21)
pU (1) + pU (2) + pU (3) + pU (4) = 1, (22)
pU (1), pU (2), pU (3), pU (4) ≥ 0. (23)
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The activity of the nonnegative constraints. We now analyze the activity of the non-negativity
constraints in (23). Since the objective function in (18) depends only on pU (1) and pU (2), mini-
mization requires reducing their values whenever possible. Hence, we examine the following cases:

• For pU (1) = pU (2) = 0. Substituting into (20) and (22) yields pU (3) = 1− qY and pU (4) = qY .
In this situation, the feasibility conditions pU (3) ≥ 0 and pU (4) ≥ 0 are automatically satisfied and
hence inactive.

• For pU (1) = 0, pU (2) ̸= 0. Constraint (22) becomes pU (2) + pU (3) + pU (4) = 1. Minimizing
the objective requires allocating as much probability mass as possible to pU (3) and pU (4), rendering
the non-negativity constraints pU (3) ≥ 0 and pU (4) ≥ 0 inactive.

• For pU (2) = 0, pU (1) ̸= 0. This case is symmetric to Case 2 and leads to the same conclusion.

In all of the cases, the optimal solution enforces inactivity of the non-negative constraints on pU (3)
and pU (4). On the other hand, eliminating pU (3), pU (4) via (20)–(22) gives

E[dH(X,Y )] = D
(B)
ind − 2(1− qX)qXpU (1) + 2(1− qX)qX pU (2).

For 0 ≤ qX ≤ 1
2 , the distortion E[dH(X,Y )] is strictly increasing in pU (2) and decreasing in pU (1);

hence it is optimal to take pU (2) = 0 and pU (1) > 0.

Similar to the proof of Theorem 2, our approach explores all possible combinations of active and
inactive rate and classification constraints to characterize the optimal solution.

Case 1. Constraint (19) is active, while constraint (21) is inactive.

Since pU (2) ≥ 0 and the rate constraint holds with equality, we have

D = −2(1− qX)qX(pU (1) + pU (2)) + 4(1− qX)qXpU (2) +D
(B)
ind

≥ −2(1− qX)qX(pU (1) + pU (2)) +D
(B)
ind .

Combining with (19) gives pU (1) + pU (2) ≥ D
(B)
ind −D

2(1−qX)qX
. Hence,

R(B)(D,C, qX , qY ) ≥
Hb(qX) (D

(B)
ind −D)

2(1− qX)qX
.

This lower bound is tight, achieved by

p⋆U (1) =
D

(B)
ind −D

2(1−qX)qX
, p⋆U (2) = 0,

p⋆U (3) = −D
(B)
ind −D

2qX
+ 1− qY , p⋆U (4) = −D

(B)
ind −D

2(1−qX) + qY .

Constraint (21) is inactive if

(pU (1) + pU (2))Hb(qS1
) + (pU (3) + pU (4))Hb(m) < C,

D <
2(1− qX)qX [C −Hb(m)]

Hb(m)−Hb(qS1
)

+D
(B)
ind .

Case 2. Constraint (21) is active, while constraint (19) is inactive.

If (21) holds with equality, then

(pU (1) + pU (2))Hb(qS1
) + (pU (3) + pU (4))Hb(m) = C.

Using (22), this yields

(pU (1) + pU (2))Hb(qS1) + (1− pU (1)− pU (2))Hb(m) = C,

pU (1) + pU (2) =
Hb(m)− C

Hb(m)−Hb(qS1
)
.

Consequently, R(B)(D,C, qX , qY ) =
Hb(qX) [Hb(m)−C]
Hb(m)−Hb(qS1

) .
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This bound is tight, attained by

p⋆U (1) =
Hb(m)−C

Hb(m)−Hb(qS1
) , p⋆U (2) = 0,

p⋆U (3) =
−(1−qX)(Hb(m)−C)

Hb(m)−Hb(qS1
) + 1− qY , p⋆U (4) =

−qX(Hb(m)−C)
Hb(m)−Hb(qS1

) + qY .

The rate constraint (19) is inactive provided

pU (2) + qXpU (3) + (1− qX)pU (4) < D ⇒ D >
2(1− qX)qX [C −Hb(m)]

Hb(m)−Hb(qS1
)

+D
(B)
ind .

Case 3. Both constraints (19) and (21) are active.

From Case 2, if the classification constraint is tight,

pU (1) + pU (2) =
Hb(m)− C

Hb(m)−Hb(qS1
)

and R(B)(D,C, qX , qY ) =
Hb(qX) [Hb(m)− C]

Hb(m)−Hb(qS1
)
.

The rate constraint is simultaneously active if D = 2(1−qX)qX [C−Hb(m)]
Hb(m)−Hb(qS1

) +D
(B)
ind .

Case 4. Neither constraint (19) nor (21) is active.

We observe that the rate achieves its theoretical minimum when R(B)(D,C, qX , qY ) =
Hb(qX) (pU (1) + pU (2)) = 0, which implies pU (1) = pU (2) = 0. Substituting into the con-
straints (20) and (22), we obtain pU (3) = 1− qY , pU (4) = qY . Then, using constraints (19) and
(21), we find that the feasibility of this configuration requires D ≥ D

(B)
ind and C ≥ Hb (m). There-

fore, the minimum achievable rate is zero, i.e., R(B)(D,C, qX , qY ) = 0, if and only if the distortion
and classification loss exceed the respective thresholds: D(B)

ind ≤ D ≤ D
(B)
max and C ≥ Hb (m).

In summary, combining all of the cases, the closed-form expression for R(B)(D,C, qX , qY ) under
Hamming distortion is given by Theorem A.2.

A.3 RDC EXPRESSION FOR GAUSSIAN CASE IN ASYMTOPIC SETTING

In addition to Theorem 3, we propose the following definition of the rate-distortion-classification
function based on the constrained optimal transport in the asymptotic setting.
Definition 6. We have

R(∞)(D,C, pX , pY ) = inf
pX,Y ∈Γ(pX ,pY )

I(X;Y ) (24)

s.t. E[d(X,Y )] ≤ D,

H(S|Y ) ≤ C.

The pair of functions (D(∞)(R,C, pX , pY ), R
(∞)(D,C, pX , pY )) are natural asymptotic analogues

of their one-shot counterparts. They provide a Shannon-style single-letter characterization of cross-
domain lossy compression with classification constraints. In the next section, we apply these results
for Gaussian sources, deriving closed-form expressions that reveal the explicit tradeoffs between
rate, distortion, and classification accuracy.

Theorem A.3. Consider X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be two Gaussian random

variables, and let d(·, ·) be the MSE distortion measure. Let S ∼ N (µS , σ
2
S) be an associated

classification variable, with a covariance of Cov(X,S) = θ1. The problem (24) is feasible if
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C ≥ 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S). Under the common randomness, we have

R(G)(D,C, qX , qY ) =



−1

2
log

(
1− [(µX − µY )

2 + σ2
X + σ2

Y −D]2

4σ2
Xσ

2
Y

)
,

D <
[(µX−µY )2+σ2

X+σ2
Y ]θ1−2

√
1−22(C−h(S))σSσ2

XσY

θ1

−1

2
log

(
1− σ2

Sσ
2
X(1− 2−2h(S)+2C)

θ21

)
,

D ≥ [(µX−µY )2+σ2
X+σ2

Y ]θ1−2
√

1−22(C−h(S))σSσ2
XσY

θ1

0, C > h(S) and D > (µX − µY )
2 + σ2

X + σ2
Y .

Proof. Following the proof of Theorem 4, the problem (24) can be formulated as

R(G)(D,C, qX , qY ) = min
θ2

− 1

2
log

(
1− θ22

σ2
Xσ

2
Y

)
(25a)

s.t. (µX − µY )
2 + σ2

X + σ2
Y − 2θ2 ≤ D, (25b)

− 1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
≥ h(S)− C. (25c)

The optimization problem (25) can be analyzed using the KKT conditions. By systematically exam-
ining all possible combinations of active and inactive rate and classification constraints, we obtain
the following cases.

Case 1. Constraint (25b) is active while constraint (25c) is inactive.

From the distortion constraint, we have

(µX − µY )
2 + σ2

X + σ2
Y − 2θ2 = D ⇒ θ2 =

(µX − µY )
2 + σ2

X + σ2
Y −D

2
.

Substituting this into the rate expression gives

R(G)(D,C, qX , qY ) = −1

2
log

(
1− [(µX − µY )

2 + σ2
X + σ2

Y −D]2

4σ2
Xσ

2
Y

)
.

The classification constraint is inactive provided

− 1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
> h(S)− C

⇒ D <
[(µX − µY )

2 + σ2
X + σ2

Y ]θ1 − 2
√
1− 22(C−h(S))σSσ

2
XσY

θ1
.

Case 2. Constraint (25b) is inactive while constraint (25c) is active.

From the classification constraint, we obtain

− 1

2
log

(
1− θ21

σ2
Sσ

4
X

θ22
σ2
Y

)
= h(S)− C ⇒ θ2 =

σSσ
2
XσY
θ1

√
1− 2−2h(S)+2C .

Substituting into the rate expression yields

R(G)(D,C, qX , qY ) = −1

2
log

(
1− σ2

Sσ
2
X(1− 2−2h(S)+2C)

θ21

)
.

The distortion constraint is inactive if

(µX − µY )
2 + σ2

X + σ2
Y − 2θ2 < D,

⇒ D >
[(µX − µY )

2 + σ2
X + σ2

Y ]θ1 − 2
√
1− 22(C−h(S))σSσ

2
XσY

θ1
.
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Case 3. Both constraints (25b) and (25c) are active.

From Case 2, if (25c) is active then θ2 =
σSσ2

XσY

θ1

√
1− 2−2h(S)+2C . Meanwhile, the distortion

constraint requires (µX − µY )
2 + σ2

X + σ2
Y − 2θ2 = D, which implies

D =
[(µX − µY )

2 + σ2
X + σ2

Y ]θ1 − 2
√
1− 22(C−h(S))σSσ

2
XσY

θ1
.

In this case, the rate is

R(G)(D,C, qX , qY ) = −1

2
log

(
1− [(µX − µY )

2 + σ2
X + σ2

Y −D]2

4σ2
Xσ

2
Y

)
.

Case 4. Both constraints (25b) and (25c) are inactive.

When C > h(S), the classification constraint (25c) becomes inactive, and if the distortion threshold
satisfies D > (µX − µY )

2 + σ2
X + σ2

Y , the distortion constraint (25b) is also inactive. In this
regime, the minimum rate reduces to its theoretical bound, i.e., R(G)(D,C, qX , qY ) = 0. This
occurs when X and Y are independent, yielding I(X;Y ) = 0. All constraints are satisfied since
E[(X − Y )2] = (µX − µY )

2 + σ2
X + σ2

Y < D and h(S|Y ) = h(S|X) ≤ h(S) < C.

In summary, combining all of the cases, the closed-form expression for R(G)(D,C, qX , qY ) under
MSE distortion is given by Theorem A.3.

A.4 DRPC EXPRESSION FOR GAUSSIAN CASE WITH WASSERSTEIN DIVERGENCE

Theorem A.4. LetX ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be two Gaussian random variables.

Let S ∼ N (µS , σ
2
S) be an associated classification variable with a covariance of Cov(X,S) =

θ1 and be jointly Gaussian. For the case d(X,Y ) = (X−Y )2 and ϕ(pX , pY ) =W 2
2 (pX , pX̂),

we have

D
(G)
W (R,P,C)

=



σ2
X − σ2

X (1− 2−2R),

σX −
√
P ≤ σX

√
1− 2−2R and C > 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S)

σ2
X + (σX −

√
P )2 − 2σX(σX −

√
P )
√

1− 2−2R,

σX −
√
P > σX

√
1− 2−2R and C > 1

2 log
(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S)

σ2
X − σ2

Sσ
4
X

θ21
(1− 2−2h(S)+2C), σX −

√
P ≤ σSσ

2
X

θ1

√
1− 2−2h(S)+2C

and
1

2
log

(
1− θ21

σ2
Sσ

2
X

)
+ h(S) ≤ C ≤ 1

2
log

(
1− θ21(σ

2
X − σ2

X2−2R)

σ2
Sσ

4
X

)
+ h(S)

σ2
X + (σX −

√
P )2 − 2σSσ

2
X(σX −

√
P )

θ1

√
1− 2−2h(S)+2C ,

σX −
√
P >

σSσ2
X

θ1

√
1− 2−2h(S)+2C and

1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) ≤ C ≤ 1

2 log
(
1− θ2

1(σ
2
X−σ2

X2−2R)

σ2
Sσ4

X

)
+ h(S)

0, C > h(S) and R > h(X).

Proof. Based on the proof of Theorem 7, we can show the following Lemma.

Lemma A.5. For the case X ∼ N (µX , σ
2
X) with distortion d(X,Y ) = (X − Y )2 and perception

divergence ϕ(pX , pY ) =W 2
2 (pX , pY ), we have

D
(G)
W (R,P,C) = inf

pY

D(R,C, qX , qY )

s.t. µY = µX , σY ≤ σX ,

h(S|Y ) ≤ C, W 2
2 (pX , pY ) ≤ P.
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Proof of Lemma A.5. The argument parallels that of Lemma A.4. It suffices to show

W 2
2 (pX , pY ′) ≤W 2

2 (pX , pY ),

which follows directly from E[(X − Y ′)2] ≤ E[(X − Y )2].

By Lemma A.5, it suffices to restrict to pY with µY = µX and σY ≤ σX when computing
D

(G)
W (R,P,C). Further restricting pY to Gaussian distributions (Theorem 6) gives

D
(G)
W (R,P,C) = min

σY ∈[(σX−
√
P )+,σX ]

D(G)(R,C, qX , qY ). (26)

Case 1. If C > 1
2 log

(
1− θ2

1(1−2−2R)

σ2
Sσ2

X

)
+ h(S), then

D(G)(R,C, qX , qY ) = (µX − µY )
2 + σ2

X + σ2
Y − 2σXσY

√
1− 2−2R.

The term σ2
Y − 2σXσY

√
1− 2−2R is decreasing for σY ∈ [0, σX

√
1− 2−2R] and increasing for

σY ∈ [σX
√
1− 2−2R,∞). Thus, the minimizing σY in (26) is

σY =

{
σX

√
1− 2−2R, σX −

√
P ≤ σX

√
1− 2−2R,

σX −
√
P , σX −

√
P > σX

√
1− 2−2R.

Therefore,

D
(G)
W (R,P,C) =


σ2
X − σ2

X (1− 2−2R),

σX −
√
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√
1− 2−2R

σ2
X + (σX −

√
P )2 − 2σX(σX −

√
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√
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√
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Case 2. If 1
2 log

(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) ≤ C ≤ 1

2 log
(
1− θ2

1(σ
2
X−σ2

X2−2R)

σ2
Sσ4

X

)
+ h(S), then

D(G)(R,C, qX , qY ) = (µX − µY )
2 + σ2

X + σ2
Y − 2σSσ2

XσY

θ1

√
1− 2−2h(S)+2C .

Here, σ2
Y − 2σSσ2

XσY

θ1

√
1− 2−2h(S)+2C decreases for σY ∈

[
0,

σSσ2
X

θ1

√
1− 2−2h(S)+2C

]
and in-

creases thereafter. Thus, the minimizing σY in (26) is

σY =

{
σSσ2

X

θ1

√
1− 2−2h(S)+2C , σX −

√
P ≤ σSσ2

X

θ1

√
1− 2−2h(S)+2C ,

σX −
√
P , σX −

√
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σSσ2
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√
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Therefore,

D
(G)
W (R,P,C) =


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X − σ2

Sσ
4
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θ21
(1− 2−2h(S)+2C),

σX −
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P ≤ σSσ2

X

θ1

√
1− 2−2h(S)+2C

σ2
X + (σX −

√
P )2 − 2σSσ
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X(σX −

√
P )
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√
1− 2−2h(S)+2C ,

σX −
√
P >

σSσ2
X

θ1

√
1− 2−2h(S)+2C .

Case 3. If C > h(S) and R > h(X), then D(G)
W (R,P,C) = 0.

In summary, by combining the three cases, the closed-form expression for D(G)
W (R,P,C) is estab-

lished in Theorem A.4.
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B EXPERIMENTAL RESULTS

B.1 ENTROPY MODEL-BASED RATE ESTIMATION

This experiment directly estimates the compression rate R by computing the entropy of the latent
representation rather than relying on an upper bound. The rate is defined as the expected code length
under efficient entropy coding: R = EX∼pX

[− logP(Q(f(X,U)))], where P(Q(f(X,U))) is the
learned entropy model of the encoder outputs. Following Ballé et al. (2018), we parameterize P as
a factorized, non-parametric distribution. Since the achieved rates of entropy coding are typically
close to the true entropy (Rissanen & Langdon, 1981; Ballé et al., 2017), we define the training loss
directly in terms of entropy:

Lrate = E
[
∥X − Ỹ ∥2

]
− λ logP(Q(f(X,U))) + λpW1(pY , pỸ ) + λc CE(S, Ŝ),

which jointly balances fidelity, rate regularization, distribution alignment, and classification accu-
racy.

The rate-accuracy and rate-distortion tradeoff curves for super-resolution (MNIST) and denoising
(SVHN) are shown in Figure 7. As expected, increasing the rate yields reconstructions with sharper
visual quality and higher classification accuracy. Qualitative samples in Figures 7(c) and 7(f) illus-
trate this trend: at low rates, MNIST digits appear blurry or ambiguous and SVHN digits remain
heavily corrupted by noise, whereas at higher rates, reconstructions become clearer and more faithful
to the target distribution.

Additional experiments on CIFAR-10, ImageNet, and KODAK further confirm that the empirical
tradeoffs align closely with our theoretical predictions (Figures 8, 9, 10, and 11).
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(a) Accuracy vs. rate (MNIST). (b) MSE vs. rate (MNIST).

HR LR R = 0.03

R = 0.08 R = 0.24 R = 1.36

(c) Reconstructions (MNIST).

(d) Accuracy vs. rate (SVHN). (e) MSE vs. rate (SVHN).

Clean R = 0.22Noisy

R = 0.91 R = 1.16 R = 2.72

(f) Reconstructions (SVHN).

Figure 7: The experimental results of 4× image super-resolution on the MNIST dataset and image
denoising on the SVHN dataset corrupted by Gaussian noise, N (0, σ2) with σ = 25.
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(a) Accuracy vs. rate (CIFAR). (b) MSE vs. rate (CIFAR).

Clean Noisy R = 0.50

R = 1.22 R = 2.07 R = 3.41

(c) Reconstructions (CIFAR).

(d) Accuracy vs. rate (ImageNet). (e) MSE vs. rate (ImageNet).

Clean Noisy R = 0.28

R = 0.50 R = 2.43 R = 5.45

(f) Reconstructions (ImageNet).

Figure 8: The experimental results of image denoising on the CIFAR-10 and ImageNet datasets
corrupted by Gaussian noise, N (0, σ2) with σ = 25.
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(a) Accuracy vs. rate (CIFAR). (b) MSE vs. rate (CIFAR)

(c) Accuracy vs. rate (ImageNet). (d) MSE vs. rate (ImageNet)

Figure 9: The experimental results of image denoising on the CIFAR and ImageNet datasets cor-
rupted by Gaussian noise, N (0, σ2).

Figure 9 reports denoising results on CIFAR-10 and ImageNet under varying Gaussian noise lev-
els σ ∈ {15, 25, 50}. Across both datasets, we observe a clear rate-accuracy and rate-distortion
tradeoffs.

For CIFAR-10, classification accuracy (Figure 9(a)) improves monotonically with rate, saturating
near 0.7 for σ = 15 and at lower levels for heavier noise. The corresponding MSE curves (Fig-
ure 9(b)) exhibit steep distortion reduction at low rates, followed by a plateau, with higher σ consis-
tently yielding larger residual errors.

ImageNet shows a similar pattern (Figures 9(c)–9(d)), though the impact of noise is more pro-
nounced. For σ = 15, accuracy rises sharply with rate and approaches ∼ 0.8, while for σ = 50 it
remains below 0.4 even at the highest rates. MSE again drops quickly at low rates before stabilizing
at dataset- and noise-dependent levels.

Overall, stronger noise corruption reduces both achievable accuracy and rate-distortion efficiency.
These results align with theoretical predictions: increasing rate enhances reconstruction fidelity and
downstream performance, but noise severity imposes fundamental limits.
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(a) MSE vs. rate. (b) PSNR vs. rate.

Clean Noisy R = 0.13

R = 0.29 R = 0.76 R = 5.59

(c) Reconstructions.

Figure 10: The experimental results of image denoising on the KODAK dataset corrupted by Gaus-
sian noise, N (0, σ2) with σ = 25.

Figure 10 reports denoising results on the KODAK dataset with Gaussian noise at σ = 25. The
rate-distortion and rate-PSNR curves (Figures 10(a)–10(b)) show sharp distortion reduction as the
rate increases from very low values, with PSNR rising rapidly and stabilizing near 20 dB.

Qualitative reconstructions (Figure 10(c)) follow the same progression. At very low rates (R =
0.13), outputs remain dominated by residual noise and lose fine details. Moderate rates (R = 0.29-
0.76) yield substantially cleaner images, with sharper edges and restored textures. At high rates
(R = 5.59), reconstructions closely approximate the ground truth, effectively suppressing noise
while preserving perceptual details such as wall textures and color consistency. Additional close-up
comparisons in Figure 11 further highlight these improvements.
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Clean Noisy R = 0.74

R = 1.35 R = 1.72 R = 3.23

Figure 11: Examples for reconstructions with different rates of image denoising of Kodim01 on the
KODAK dataset corrupted by Gaussian noise, N (0, σ2) with σ = 25.

B.2 INPAINTING PROBLEM

We study the inpainting setting, where the goal is to recover missing or occluded regions of an image
from partially observed inputs. LetX ∈ [0, 1]3×H×W denote a clean image andM ∈ {0, 1}1×H×W

a binary mask indicating missing pixels (M = 1 for missing, M = 0 for observed). The observed
input is then given by

Xobs = (1−M)⊙X +Mc,

where c ∈ [0, 1] is a fixed fill value (e.g., zero) and ⊙ denotes element-wise multiplication. The
model reconstructs Y such that missing regions are restored while consistency is preserved in ob-
served areas.

B.2.1 SUPERVISED INPAINTING (WITH CLEAN SOURCES)

When paired clean images are available, training is based on two complementary mean-squared
error losses. The primary loss focuses on fidelity in the masked region, while the context loss
ensures coherence in the visible region:

MSEmiss =
∥M ⊙ (Y −X)∥22
max(1,

∑
M)

,

MSEctx =
∥(1−M)⊙ (Y −X)∥22
max(1,

∑
(1−M))

,

where
∑
M =

∑H
i=1

∑W
j=1Mij counts the masked pixels, while

∑
(1 − M) = HW −

∑
M

counts unmasked ones. This normalization ensures averaging over the respective region sizes:

MSEmiss =
1

max(1,
∑
M)

H∑
i=1

W∑
j=1

Mij(Yij −Xij)
2,

MSEctx =
1

max(1,
∑

(1−M))

H∑
i=1

W∑
j=1

(1−Mij)(Yij −Xij)
2.
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The full supervised objective function augments these terms with additional constraints:

Lsuper = MSEmiss + αMSEctx − λ logP(Q(f(X,U))) + λpW1(pY , pỸ ) + λc CE(S, Ŝ), (27)

where the entropy term controls rate, the Wasserstein penalty enforces distributional alignment with
pY , and the classification term encourages task-aware reconstructions. This parallels classical in-
painting formulations (Pathak et al., 2016; Iizuka et al., 2017; Yu et al., 2018; 2019), but extends
them by integrating compression and classification constraints.

B.2.2 UNSUPERVISED INPAINTING (WITHOUT CLEAN SOURCES)

In the absence of paired clean images, we adopt a self-supervised masking strategy inspired by
Noise2Self (Batson & Royer, 2019) and related approaches (Krull et al., 2019; Laine et al., 2019).
Specifically, we randomly drop a subset of observed pixels Mdrop ⊆ (1−M) and form the input

Xin = (1−Mdrop)⊙Xobs +Mdropc,

requiring the model to predict the dropped entries. Losses are defined on both the dropped and
retained pixels:

MSEdrop =
∥Mdrop ⊙ (Y −Xobs)∥22

max(1,
∑
Mdrop)

,

MSEid =
∥[(1−M)⊙ (1−Mdrop)]⊙ (Y −Xobs)∥22

max(1,
∑

(1−M)⊙ (1−Mdrop))
,

where
∑
Mdrop counts dropped pixels, while

∑
(1 − M) ⊙ (1 − Mdrop) counts visible ones not

dropped. Explicitly,

MSEdrop =
1

max(1,
∑
Mdrop)

H∑
i=1

W∑
j=1

Mdrop,ij(Yij −Xobs,ij)
2,

MSEid =
1

max(1,
∑

(1−M)⊙ (1−Mdrop))

H∑
i=1

W∑
j=1

(1−Mij)(1−Mdrop,ij)(Yij −Xobs,ij)
2.

The resulting unsupervised objective function is

Lunsuper = MSEdrop + αidMSEid − λ logP(Q(f(X,U))) + λpW1(pY , pỸ ) + λc CE(S, Ŝ), (28)

where MSEid discourages trivial copying of visible pixels and promotes robust self-prediction.

Supervised inpainting leverages paired clean targets, while unsupervised inpainting relies on redun-
dancy within noisy observations. Both variants naturally integrate into our compression-restoration
framework, ensuring rate efficiency, perceptual alignment, and classification fidelity.

B.2.3 INPAINTING IMAGE RESULTS

Figures 12 and 13 report quantitative and qualitative results on the SVHN dataset for supervised and
unsupervised inpainting, respectively.

37



Under review as a conference paper at ICLR 2026

(a) Accuracy vs. rate. (b) MSE vs. rate.

(c) PSNR vs. rate. (d) SSIM vs. rate.

R = 30

R = 60 R = 100 R = 120

Clear Masked R = 0.21

R = 0.37 R = 0.89 R = 1.08

(e) Reconstructions.

Figure 12: Supervised inpainting results on SVHN using loss (27). Higher rates consistently im-
prove accuracy, reduce distortion, and yield reconstructions with sharper details and higher percep-
tual quality.
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(a) Accuracy vs. rate. (b) MSE vs. rate.

(c) PSNR vs. rate. (d) SSIM vs. rate.

R = 30

R = 60 R = 100 R = 120

Clear Masked R = 0.24

R = 0.3 R = 1.02 R = 1.91

(e) Reconstructions.

Figure 13: Unsupervised inpainting results on SVHN using loss (28). Despite lacking clean targets,
the self-supervised model exhibits similar trends to the supervised case: accuracy and perceptual
quality improve with higher rates, while qualitative examples show more coherent digit structures.
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Supervised inpainting. With access to paired clean targets, the model is trained using region-
specific reconstruction losses (MSEmiss and MSEctx) alongside rate, adversarial, and classification
constraints. As shown in Figure 12, this setup produces reconstructions that are sharper and more
faithful to ground-truth digits, with missing regions plausibly filled and contextual consistency well
preserved.

Unsupervised inpainting. Without clean targets, the model adopts a self-supervised masking strat-
egy, minimizing prediction error on randomly dropped subsets (MSEdrop) and regularizing against
trivial copying through MSEid. As illustrated in Figure 13, the reconstructions remain semantically
coherent but are generally noisier, with softer digit boundaries than in the supervised setting. This
underscores the robustness of self-supervision, albeit with a tradeoff in fine-detail fidelity.

Both supervised and unsupervised settings exhibit the expected RDC tradeoff: at low rates, recon-
structions are blurry and task accuracy degrades, while higher rates yield substantial gains in both
pixel-level metrics (MSE, PSNR, SSIM) and classification accuracy. Remarkably, the unsupervised
variant achieves competitive performance without paired clean data, validating the effectiveness
of self-masked training within our compression-restoration framework. Taken together, supervised
models capitalize on explicit ground truth to achieve sharper reconstructions, while unsupervised
models demonstrate resilience by leveraging internal redundancy, highlighting the flexibility of our
framework across supervision regimes.

B.3 EXPERIMENTAL RESULTS OF SECTION B.1

B.3.1 DATASET DETAILS

MNIST. For 4× super-resolution, we use MNIST (LeCun et al., 1998). Each 28×28 digit is down-
sampled to 7×7 via bilinear interpolation and then upsampled back to 28×28 to form the low-
resolution (LR) input. Reconstructions are evaluated against the original high-resolution (HR) tar-
gets.

SVHN. We train on SVHN (Netzer et al., 2011) and evaluate on the full 32×32 RGB test split. Inputs
are corrupted with additive Gaussian noise at σ ∈ {15, 25, 50}, and reconstructions are compared to
the clean targets.

CIFAR-10. To study small-scale natural images, we use CIFAR-10 (Krizhevsky et al., 2009),
consisting of 32×32 images from 10 classes. Inputs are corrupted with Gaussian noise with
σ ∈ {15, 25, 50}, yielding a non-trivial denoising task while remaining computationally efficient.

ImageNet. For large-scale evaluation, we adopt ImageNet (Deng et al., 2009), comprising high-
resolution images across 1000 categories. Inputs are degraded with Gaussian noise at σ ∈
{15, 25, 50}.

KODAK. Finally, we test on the KODAK dataset (Company, 1991), a benchmark of 24 uncom-
pressed high-resolution images widely used for perceptual quality evaluation due to its fine textures
and details.

B.3.2 TRAINING DETAILS

We adopt a WGAN framework for distributional alignment, jointly training encoder f , decoder g,
and discriminator d. By Kantorovich-Rubinstein duality (Villani, 2009), the Wasserstein-1 distance
is

W1(pY , pỸ ) = sup
∥∇d∥≤1

E[d(Y )]− E[d(Ỹ )],

where Ỹ = g(Q(f(X))), and the Lipschitz constraint enforced via a gradient penalty (Gulrajani
et al., 2017). Unless otherwise specified, WGAN-GP uses λp = 0.02, λGP = 10, ndiscriminator = 5,
and classification weight λc = 0.01. Optimization employs Adam (Kingma & Ba, 2014) with
learning rates 5×10−3 (autoencoder), 10−4 (entropy bottleneck), and 10−4 (discriminator), with
(β1, β2) = (0.5, 0.999). We apply gradient clipping (norm 2.0), mixed precision, and compute
exact rate bpp during evaluation.
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Super-resolution (MNIST). Models are trained for 3000 steps with a batch size 512. The classifier
is ResNet18-small (grayscale), trained with SGD (learning rate 0.05, cosine schedule with 2-epoch
warm-up, momentum 0.9, weight decay 5×10−4), batch size 512.

Denoising (SVHN). Models are trained for 3000 steps with a batch size 1024. The classifier is
ResNet18-small (RGB), trained with SGD (learning rate 0.2, cosine schedule with 5-epoch warm-
up, momentum 0.9, weight decay 5×10−4), batch size 512.

Denoising (CIFAR-10). Models are trained for 3000 steps with a batch size 1024. The classifier is
WRN-28-10, trained with SGD (learning rate 0.1, cosine warm-up 5 epochs, momentum 0.9, weight
decay 5×10−4), batch size 256.

Denoising (ImageNet). Models are trained for 10,000 steps with batch size 128, codec learning
rate 5×10−4, and otherwise identical optimization settings. The classifier is ResNet-18, trained
with SGD (learning rate 0.05, cosine warm-up 5 epochs, momentum 0.9, weight decay 10−4), batch
size 256.

Denoising (BSDS500 → KODAK). Training is performed on BSDS500 with additive Gaussian
noise and evaluation on the 24 KODAK images. We sweep λwith batch size 32, using a Conv+GDN
autoencoder with an entropy bottleneck (EB). Adam is used for codec and EB parameters (learning
rate 10−3), and the discriminator is trained with Adam (learning rate 10−4, (β1, β2) = (0.5, 0.999)).
Here WGAN-GP uses λp = 10−3, λGP = 10, and ndiscriminator = 5.

B.3.3 DETAILED RESULTS

Tables 1–5 summarize the effect of the rate-weight parameter λ across datasets. For MNIST super-
resolution (Table 1), larger λ values reduce the rate but incur higher distortion and lower accuracy.
SVHN (Table 2) exhibits the same trend, with accuracy dropping sharply under strong rate penalties.
CIFAR-10 and ImageNet (Tables 3 and 4) show consistent trade-offs: accuracy remains stable for
small λ but collapses once rate is heavily constrained. For KODAK (Table 5), PSNR decreases
steadily as λ increases.

Table 1: Performance across λ values for 4× super-resolution on MNIST (Fig. 7(a), Fig. 7(b)).

λ 0 10 50 100 200 1000
Rate (bpp) 1.3623 0.8483 0.7609 0.6394 0.5060 0.2262

MSE 0.0055 0.0053 0.0051 0.0058 0.0063 0.0064
Accuracy 0.9670 0.9664 0.9693 0.9587 0.9613 0.9532

λ 2000 5000 10000 20000 50000 -
Rate (bpp) 0.1755 0.1109 0.0791 0.0537 0.0246 -

MSE 0.0078 0.0129 0.0158 0.0220 0.0407 -
Accuracy 0.9399 0.9114 0.8389 0.7248 0.3477 -

Table 2: Performance across λ values for denoising on SVHN with Gaussian noise, N (0, σ2) with
σ = 25 (Fig. 7(d), Fig. 7(e)).

λ 0 50 100 200 500 1500
Rate (bpp) 2.7139 1.1143 0.7819 0.5237 0.3048 0.1748

MSE 0.0057 0.0053 0.0056 0.0048 0.0060 0.0096
Accuracy 0.7717 0.7676 0.7615 0.7702 0.7449 0.6144

λ 2000 2500 5000 10000 20000 -
Rate (bpp) 0.1426 0.1165 0.0792 0.0456 0.0356 -

MSE 0.0126 0.0176 0.0231 0.0332 0.0441 -
Accuracy 0.5502 0.4841 0.3058 0.2362 0.2044 -
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Table 3: Performance across λ values for denoising on CIFAR-10 with Gaussian noise, N (0, σ2)
with σ = 25 (Fig. 8(a), Fig. 8(b)).

λ 10 20 50 100 500
Rate (bpp) 2.0058 1.8343 1.5225 1.2778 0.5238

MSE 0.0095 0.0088 0.0090 0.0098 0.0141
Accuracy 0.6507 0.6456 0.6336 0.6038 0.4617

λ 1000 2000 5000 50000 -
Rate (bpp) 0.3248 0.1953 0.0997 0.0168 -

MSE 0.0187 0.0275 0.0419 0.1043 -
Accuracy 0.3146 0.2155 0.1769 0.1276 -

Table 4: Performance across λ values for denoising on ImageNet with Gaussian noise, N (0, σ2)
with σ = 25 (Fig. 8(d), Fig. 8(e)).

λ 0 5 20 50 100 200 500
Rate (bpp) 5.4522 3.6295 3.0546 2.4334 1.7890 1.1477 0.4967

MSE 0.0147 0.0139 0.0143 0.0141 0.0145 0.0179 0.0249
Accuracy 0.6737 0.6806 0.6717 0.6705 0.6630 0.6466 0.4959

λ 1500 2500 5000 10000 20000 50000 -
Rate (bpp) 0.2103 0.1405 0.0842 0.0503 0.0317 0.0153 -

MSE 0.0357 0.0423 0.0524 0.0675 0.0829 0.1233 -
Accuracy 0.1876 0.1154 0.0528 0.0438 0.0336 0.0333 -

Table 5: Performance across λ values for denoising on KODAK with Gaussian noise, N (0, σ2) with
σ = 25 (Fig. 10).

λ 0 5 10 20 50 100 500
Rate (bpp) 5.5969 3.7743 3.3253 2.8155 2.0936 1.5241 0.2865

MSE 0.0097 0.0097 0.0096 0.0094 0.0093 0.0083 0.0090
PSNR (dB) 20.1417 20.1227 20.1665 20.2633 20.3248 20.8120 20.4752

λ 1000 2500 5000 10000 20000 50000 -
Rate (bpp) 0.1723 0.0929 0.0549 0.0367 0.0232 0.0088 -

MSE 0.0127 0.0216 0.0291 0.0395 0.0525 0.0858 -
PSNR (dB) 18.9560 16.6618 15.3659 14.0345 12.7972 10.6646 -

B.3.4 NEURAL NETWORK ARCHITECTURES

We employ the same set of architectures across all datasets, summarized in Table 6. The codec
consists of an encoder f with three convolutional layers followed by a learnable entropy bottle-
neck, and a decoder g with three deconvolutional layers and GDN activations. The adversarial
branch is a WGAN-GP discriminator d, implemented as three strided convolutional blocks with
LeakyReLU activations, global average pooling, and a linear output. For downstream evaluation,
we use ResNet18-small classifiers: a grayscale variant for MNIST and RGB variants for SVHN,
CIFAR-10, and ImageNet. Each classifier contains four residual stages (two BasicBlocks per stage)
without an initial max-pooling layer, followed by global average pooling and a linear prediction
head.

Computational complexity and scalability of the proposed framework. Our model uses standard
components from learned compression and restoration: a convolutional autoencoder with an entropy
model, a WGAN-GP discriminator, and a classifier. Training was performed on two RTX 3090
GPUs under Ubuntu using the PyTorch framework. Both training and inference are dominated by
a single forward/backward pass through the autoencoder. The discriminator and classifier reuse
the same feature maps and therefore introduce only modest computational overhead, while rate
estimation via the entropy model and universal quantization is computationally negligible.
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For very high-resolution images, we follow the standard patch/tile strategy used in modern learned
codecs, so the overall complexity scales approximately linearly with the number of pixels and re-
mains comparable to existing adversarial denoising and compression methods.

Table 6: Network architectures for autoencoder, discriminator, and classifier of Section B.1.

Encoder f
Conv2D, stride 2, GDN
Conv2D, stride 2, GDN
Conv2D, stride 2
Entropy Bottleneck (EB)

Decoder g
Deconv2D, stride 2, GDN
Deconv2D, stride 2, GDN
Deconv2D, stride 2

Discriminator d (WGAN-GP)
Conv2D, stride 2, LeakyReLU
Conv2D, stride 2, LeakyReLU
Conv2D, stride 2, LeakyReLU
Global AvgPool

Classifier (ResNet18-small, gray)
Stem: 3×3 Conv, BN, ReLU
Residual Stage 1: BasicBlock ×2 (stride 1)
Residual Stage 2: BasicBlock ×2 (stride 2)
Residual Stage 3: BasicBlock ×2 (stride 2)
Residual Stage 4: BasicBlock ×2 (stride 2)
Global Average Pooling

B.4 EXPERIMENTAL RESULTS OF SECTION B.2

B.4.1 DATASET DETAILS

SVHN (inpainting). We evaluate on the SVHN dataset (Netzer et al., 2011) with full 32×32 RGB
images. For each image, a binary mask M ∈ {0, 1}1×32×32 is synthesized (M=1 indicates missing
pixels). Unless otherwise specified, the mask is a random square box with side length sampled
uniformly from [4, 8] pixels, and the fill value is set to c = 0.0 (black). Reconstructions are evaluated
both on the masked region and on the entire image.

B.4.2 TRAINING DETAILS

Hyperparameters & schedule. Unless noted otherwise, training uses α=0.1, λp=0.02, λGP=10,
and ndiscriminator=5. The codec (encoder-decoder) is optimized with Adam (learning rate 5×10−3),
while the WGAN discriminator is trained with Adam (learning rate 10−4, (β1, β2) = (0.5, 0.999)).
Training runs for 3000 steps with batch size 1024, gradient clipping (norm 2.0), and mixed precision.
For downstream evaluation, a ResNet18-small classifier (RGB) is trained with SGD (learning rate
0.2, cosine schedule with 5-epoch warm-up, momentum 0.9, weight decay 5×10−4), batch size 512.

B.4.3 DETAILED RESULTS

Tables 7 and 8 report the performance of supervised and unsupervised inpainting on the SVHN
dataset across varying rate-penalty weights λ, corresponding to the curves shown in Figures 12
and 13.
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Table 7: Supervised inpainting on SVHN across λ values (Figure 12).

λ Rate (bpp) Accuracy MSE PSNR SSIM
1 1.0909 0.7700 0.008996 20.4594 0.8410
10 0.8038 0.7176 0.008990 20.4626 0.8296
20 1.0586 0.7871 0.008122 20.9033 0.8517
50 0.8885 0.7296 0.008372 20.7719 0.8455

100 0.7879 0.7750 0.008514 20.6986 0.8430
200 0.5836 0.7644 0.008375 20.7703 0.8326
500 0.3692 0.6924 0.010719 19.6986 0.8185

1000 0.2656 0.6866 0.011975 19.2171 0.7997
1500 0.2055 0.5860 0.013879 18.5765 0.7688
2000 0.2033 0.5895 0.014372 18.4248 0.7721
2500 0.1605 0.4519 0.017193 17.6466 0.7151
5000 0.0973 0.2639 0.027659 15.5816 0.5665
10000 0.0624 0.2223 0.040927 13.8799 0.4488

Table 8: Unsupervised inpainting on SVHN across λ values (Figure 13).

λ Rate (bpp) Accuracy MSE PSNR SSIM
0 2.796 0.852 0.002910 25.362 0.951
5 1.914 0.849 0.002742 25.619 0.948
20 1.412 0.849 0.003483 24.580 0.947
50 1.019 0.840 0.003849 24.147 0.936

100 0.760 0.836 0.002928 25.334 0.938
200 0.596 0.821 0.003712 24.303 0.922
500 0.407 0.771 0.006137 22.120 0.883

1000 0.295 0.733 0.006586 21.814 0.866
1500 0.237 0.654 0.009616 20.170 0.818
2000 0.207 0.632 0.008653 20.628 0.808
2500 0.183 0.580 0.011040 19.570 0.771
5000 0.125 0.433 0.017845 17.485 0.672
10000 0.085 0.319 0.024026 16.193 0.566
20000 0.050 0.245 0.032689 14.856 0.469

B.4.4 NEURAL NETWORK ARCHITECTURES

The codec is a lightweight convolutional autoencoder with an entropy bottleneck. The encoder
consumes the 4-channel tensor [Xobs;M ], and the decoder outputs an RGB reconstruction Ŷ . A
small WGAN-GP discriminator d is used for distribution alignment, and a ResNet18-small classifier
evaluates downstream task performance.

Table 9: Architectures for SVHN inpainting with nb denotes the number of latent bottleneck chan-
nels.

Encoder f (4→nb)
Conv3×3, stride 2, GDN
Conv3×3, stride 2, GDN
Conv3×3, stride 2
Entropy Bottleneck

Decoder g (nb→3)
Deconv3×3, stride 2, GDN
Deconv3×3, stride 2, GDN
Deconv3×3, stride 2

Discriminator d (WGAN-GP)
Conv, stride 2, LeakyReLU
Conv, stride 2, LeakyReLU
Conv, stride 2, LeakyReLU

Classifier (ResNet18-small)
3×3 stem (stride 1), BN, ReLU
4 residual stages (BasicBlock ×2)
Strides: (1, 2, 2, 2)
Global Average Pooling
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B.5 EXPERIMENTAL RESULTS OF SECTION 5

For these experiments, we follow the setup of Liu et al. (2022) with the following modifications. For
super-resolution, models are trained for 100 epochs with penalty weight λ = 0.05 across all rates.
The learning rate is initialized at 10−4, decayed by a factor of 5 after 30 epochs, and optimized using
Adam (Kingma & Ba, 2014). The denoising setup mirrors super-resolution, except with λ = 0.03
and learning rate decay applied after 40 epochs.

The classifier is a ResNet20 trained jointly with the GAN. It is updated alongside the discriminator
using reconstructed images and ground-truth labels, optimized with SGD (learning rate 10−2, mo-
mentum 0.9, weight decay 10−4). Training runs for 100 epochs with batch size 64 using standard
cross-entropy loss. The classifier architecture is summarized in Table 10.

Table 10: Classifier architecture.

Classifier
Input
Conv2D (10 filters, kernel=5), ReLU
MaxPool2D (kernel=2)
Conv2D (10 filters, kernel=5), ReLU
MaxPool2D (kernel=2)
Flatten
Linear, ReLU
Linear, Softmax

B.5.1 DETAILED RESULTS

Tables 11 and 12 summarize the empirical trade-offs between distortion and accuracy under differ-
ent rate budgets. For 4× super-resolution on MNIST (Table 11), higher rates consistently reduce
MSE while improving classification accuracy. For SVHN denoising with additive Gaussian noise
N (0, 20) (Table 12), accuracy rises steadily with rate and distortion decreases correspondingly, re-
flecting the transition from rate-limited to task-limited regimes. These observations closely match
the theoretical predictions shown in Figures 6(a), 6(b), 6(d), and 6(e).

Table 11: MSE distortion and accuracy at different rates for 4× image super-resolution on MNIST
(Fig. 6(a), Fig. 6(b)).

Rate Upper Bound 4 8 12 16 20 24 28 32
MSE 0.0718 0.0603 0.0535 0.0494 0.0477 0.0471 0.0444 0.0451

Accuracy 0.8756 0.9158 0.9234 0.9288 0.9309 0.9309 0.9291 0.9317

Table 12: MSE distortion and accuracy at different rates for denoising on SVHN with Gaussian
noise, N (0, σ2) with σ = 20 (Fig. 6(d), Fig. 6(e)).

Rate Upper Bound 4 10 20 30 40 50 60 -
MSE 0.0364 0.0300 0.0226 0.0196 0.0189 0.0164 0.0170 -

Accuracy 0.1959 0.2115 0.3585 0.4459 0.5001 0.5389 0.5043 -
Rate Upper Bound 70 80 90 100 110 120 - -

MSE 0.0147 0.0142 0.0133 0.0127 0.0133 0.0126 - -
Accuracy 0.6328 0.6442 0.6863 0.7056 0.6965 0.7070 - -
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C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide supplementary empirical results that further validate our theoretical anal-
ysis and support the claims made in the main paper.

C.1 HEATMAP VISUALIZATION OF THE EMPIRICAL RDC FUNCTION IN FIGURE 6.

The heatmap visualizations of the empirical RDC/CDR functions for the 4× super-resolution task
on MNIST and the denoising task on SVHN with Gaussian noise σ = 20 are presented in Figure 14
and Figure 15, respectively. These results clearly illustrate the qualitative tradeoffs among distortion,
rate, and classification accuracy: enforcing a tighter classification constraint (i.e., requiring higher
accuracy) at a fixed rate consistently increases the achievable distortion. This behavior aligns with
the theoretical structure of the RDC tradeoff.

(a) RDC function on MNIST dataset. (b) CDR function on MNIST dataset.

Figure 14: Experimental results: 4× super-resolution on MNIST. Higher rates yield better recon-
structions and improved classification performance.

(a) RDC function on SVHN dataset. (b) CDR function on SVHN dataset.

Figure 15: Experimental results: denoising on SVHN with Gaussian noise with σ = 20. Higher
rates yield better reconstructions and improved classification performance.
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C.2 CONTOUR VISUALIZATION OF THE EMPIRICAL RDC FUNCTION IN FIGURE 6.

The contour visualizations of the generated samples for the MNIST dataset on the super-resolution
task and for the SVHN dataset on the denoising task are shown in Figure 16. The equi-rate lines plot-
ted on R(D,C) highlight the inherent tradeoff between distortion and classification performance:
for any fixed rate constraint, improving classification accuracy (i.e., achieving lower cross-entropy)
requires accepting higher distortion, and conversely, reducing distortion necessitates a weaker clas-
sification constraint.

(a) RDC function on MNIST dataset. (b) RDC function on SVHN dataset.

Figure 16: The RDC functions on the MNIST and SVHN datasets, together with the equi-rate lines
plotted on R(D,C), highlight the tradeoff between distortion and classification performance at any
fixed rate constraint.

C.3 QUANTITATIVE COMPARISON BETWEEN THEORETICAL AND EMPIRICAL DRC CURVES
IN FIGURES 3 AND 4.

We conducted experiments to quantitatively compare the closed-form DRC curves with empirical
estimates on synthetic data. The results are summarized in Figure 17. In both the Bernoulli and
Gaussian settings, the theoretically predicted DRC curves closely match the empirical estimates,
confirming the correctness of the closed-form expressions.

(a) D(B)(R,C, qX , qY ) versus R with C = 0.8,
qX = 0.3, qY = 0.25, qS1 = 0.2.

(b) D(G)(R,C, qX , qY ) versus R with C = 2,
X,Y, S ∼ N (0, 1), θ1 = 0.6.

Figure 17: Closed-form DRC curves versus empirical estimates for Bernoulli and Gaussian distri-
butions.
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Bernoulli case. We consider the one-shot setting with X ∼ Bern(qX), Y ∼ Bern(qY ), S = X ⊕
S1, and S1 ∼ Bern(qS1

), under Hamming distortion and constraints (R,C). For each admissible
pair (R,C), Theorem 2 specifies the optimal joint distribution of (X,S, Y ). We sample from this
joint distribution, estimate the mutual information I(X;Y ) and conditional entropy H(S|Y ), and
compute the empirical distortion D̂emp(R,C). As seen in Figure 17(a), the empirical points align
closely with the theoretical DRC curve D(B)(R,C, qX , qY , qS1

).

Gaussian case. We similarly validate Theorem 4 for jointly Gaussian (X,Y, S) with quadratic
distortion. For each (R,C), we construct the optimal coupling prescribed by the theorem, draw
i.i.d. samples, and estimate I(X;Y ), H(S|Y ), and the empirical distortion. Figure 17(b) shows that
the empirical distortions again match the theoretical curve D(G)(R,C, qX , qY ) with high fidelity.

C.4 EXPERIMENTS USING THE EXACT CONDITIONAL ENTROPY H(S|Y ) IN PLACE OF
CROSS-ENTROPY

Training with H(S|Y ) directly. We note that H(S|Y ) measures the uncertainty of the true label
after observing the reconstruction y, i.e., H(S|Y ) = EY∼pϕ

[
−
∑

s pϕ(s|y) log pϕ(s|y)
]
, which

depends on the true posterior pϕ(s|y).
We now jointly train the classifier with the encoder/decoder. Rather than using a pretrained classifier,
we alternate between (i) training the encoder-decoder with a fixed classifier and (ii) training the
classifier using H(S|Y ) as loss function with a fixed encoder-decoder. Theoretically, the classifier
should converge toward the true posterior pϕ(s|y) for the current reconstructions y. In the limit of
an optimal classifier (infinite capacity and converged training), the cross-entropy becomes equal to
H(S|Y ) (Wang et al., 2025).

The resulting tradeoff curves using the exact H(S|Y ) in Figure 18 for the super-resolution task
on MNIST and Figure 19 for the denoising task on SVHN are consistent with those obtained using
cross-entropy and confirm that decreasingH(S|Y ) corresponds to improved classification accuracy.
These experiments further demonstrate the upper-bound relationship betweenH(S|Y ) and CE(s, ŝ)
(Wang et al., 2025).

(a) H(S|Y ) versus rate upper bound. (b) Classification accuracy versus rate upper bound.

Figure 18: Experimental results: 4× super-resolution on MNIST. Minimizing the conditional en-
tropy H(S|Y ) is equivalent to maximizing the classification accuracy.
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(a) H(S|Y ) versus rate upper bound. (b) Classification accuracy versus rate upper bound.

Figure 19: Experimental results: denoising on SVHN with Gaussian noise with σ = 20. Minimizing
the conditional entropy H(S|Y ) is equivalent to maximizing the classification accuracy.

C.5 EMPIRICAL VALIDATION ON REAL-WORLD IMAGING AND PHOTOGRAPHIC NOISE.

Fluorescence microscopy images. In addition to standard benchmarks, we include experiments
on real-world fluorescence microscopy images (Mouse Nuclei) (Buchholz et al., 2020), which ex-
hibit statistics and structures very different from natural photographic images, under Gaussian noise
N (0, σ2). As shown in Table 13, our method achieves decent denoising performance under Gaus-
sian noise across different noise levels, with consistently high peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) (Wang et al., 2004), as well as low perceptual distor-
tions such as learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018) and deep image
structure and texture similarity (DISTS) (Ding et al., 2020), averaged over 67 test images.

σ PSNR (dB) ↑ SSIM ↑ LPIPS ↓ DISTS ↓
10 33.0340 0.8052 0.0443 0.1401
20 30.5880 0.8028 0.0734 0.1675

Table 13: Performance values for denoising on Mouse Nuclei dataset.

Real-world smartphone images. To further probe robustness under real-world photographic noise,
we include experiments on the SIDD smartphone image dataset (Abdelhamed et al., 2018), which
contains complex, signal-dependent noise patterns arising from real camera pipelines, averaged over
10 test images. As shown in Table 14, these additional experiments demonstrate that the proposed
framework remains effective beyond controlled synthetic settings and applies to challenging real-
world compression/restoration scenarios.

PSNR (dB) ↑ SSIM ↑ LPIPS ↓ DISTS ↓
33.605 0.9038 0.3233 0.2366

Table 14: Performance values on the SIDD dataset.

C.6 COMPARISON WITH OTHER COMPRESSION AND DENOISING APPROACHES.

A quantitative comparison on the KODAK dataset corrupted by Gaussian noise with σ = 25 is
shown in Table 15. We compare our method against the non-learning baselines JPEG-2K (Taub-
man et al., 2002) and BM3D (Dabov et al., 2007), as well as the recent unsupervised denoising
approaches DeCompress (Zafari et al., 2025a) and OTDenoising (Wang et al., 2023b). While these
methods differ in objectives and constraints, the comparison is informative regarding tradeoffs in
distortion, perceptual quality, and rate. In particular, although BM3D achieves higher PSNR, which
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is unsurprising, as it does not explicitly penalize the rate. On the other hand, our model performs
favorably on perceptual metrics such as LPIPS, DISTS, and perceptual index (PI) (Ma et al., 2017),
thanks to the WGAN-GP discriminator. For example, our PI score is significantly better than BM3D
and DeCompress and is close to the best unsupervised method OTDenoising, using a smaller rep-
resentation rate. Overall, this comparison demonstrates that our framework preserves competitive
restoration quality and perception.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ DISTS ↓ PI ↓
JPEG-2K 26.4408 0.7357 0.4018 0.2419 7.4794
BM3D 31.8757 0.8687 0.2235 0.1640 2.6503
DeCompress 27.8315 0.7519 0.2627 0.1967 2.7979
OTDenoising 31.2893 0.8677 0.1150 0.1032 2.0095
Ours 27.8961 0.8035 0.1987 0.1638 2.1670

Table 15: Comparison of denoising performance on the KODAK dataset with Gaussian noise
N (0, σ2), σ = 25. Best values are in bold and second-best values are underlined.
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