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Abstract

We study a sequential decision-making problem on a n-node graph G where each
node has an unknown label from a finite set Ω, drawn from a joint distribution
P that is Markov with respect to G. At each step, selecting a node reveals its
label and yields a label-dependent reward. The goal is to adaptively choose nodes
to maximize expected accumulated discounted rewards. We impose a frontier
exploration constraint, where actions are limited to neighbors of previously selected
nodes, reflecting practical constraints in settings such as contact tracing and robotic
exploration. We design a Gittins index-based policy that applies to general graphs
and is provably optimal when G is a forest. Our implementation runs in O(n2 ·|Ω|2)
time while using O(n · |Ω|2) oracle calls to P and O(n2 · |Ω|) space. Experiments
on synthetic and real-world graphs show that our method consistently outperforms
natural baselines, including in non-tree, budget-limited, and undiscounted settings.
For example, in HIV testing simulations on real-world sexual interaction networks,
our policy detects nearly all positive cases with only half the population tested,
substantially outperforming other baselines.

1 Introduction

We study a sequential decision-making problem on a graph G, where each node has an unknown
discrete label from Ω. The labels follow a joint distribution P , which we assume is specified by a
Markov random field (MRF) defined over G [KF09]. When we act on a node, its label is revealed
and we receive a label-dependent reward. Crucially, the entire process is history-sensitive: label
realizations are stochastic and depend on previously observed labels, a setting that naturally arises in
Bayesian adaptive planning [GK11]. In this paper, we study a setting where actions are subject to a
frontier exploration constraint: the first node in each connected component is selected based on a
pre-defined priority rule, and subsequent actions are restricted to neighbors of previously selected
nodes. This constraint reflects realistic settings where local neighborhood information becomes
accessible only through exploration, as in active search on graphs [GKX+12], robotic exploration
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[KK14], and cybersecurity applications [LCH+25]. The objective is then to maximize the expected
accumulated discounted reward over time by sequentially selecting nodes to act upon.
Definition 1 (The Adaptive Frontier Exploration on Graphs (AFEG) problem). An AFEG instance
is defined by a triple (G,P, β), where G = (X,E) is a graph, P is a joint distribution over node
labels that is Markov with respect to G, and β ∈ (0, 1) is a discount factor. The process unfolds over
n = |X| time steps, with the state St at time t consisting of the current frontier and the revealed
labels. Acting on a frontier node reveals its label, grants a label-dependent reward, and updates beliefs
about other nodes via Bayesian inference under P . The goal is to compute a policy π that maps each
state to a frontier node, maximizing the expected total discounted reward:

π∗ = argmax
π

n∑
t=1

βt−1
∑
v∈Ω

P(Xπ(St−1) = v | St−1) · r(Xπ(St−1), v),

where Xπ(St−1) is the node selected by policy π at time t, and r(·, ·) is the label-dependent reward.

While the optimal policy can be computed via dynamic programming, it is intractable for general
graphs due to the exponential state space. A natural strategy is to leverage adaptive submodularity,
which guarantees that greedy policies achieve a (1 − 1/e)-approximation [GK11]. Unfortunately,
the objective in AFEG is not adaptively submodular in general: for instance, in disease detection,
observing an infected neighbor can increase the marginal benefit of testing a node, violating the
diminishing returns property of adaptive submodularity.

Our problem is closely related to the setting of active search on graphs [GKX+12, WGS13, JMC+17,
JMA+18], where the goal is to identify as many target-labeled nodes as possible under a fixed
budget, without exploration constraints. Since exact optimization is intractable, these works focused
on practical heuristics such as search space pruning. AFEG differs in two key respects: (i) we
impose a frontier constraint, and (ii) we consider an infinite-horizon objective with discounting,
rather than a fixed budget. These differences are not merely technical but they enable provable
optimality in meaningful special cases, particularly when the input graph G is a forest. Forest
structures naturally arise in several relevant domains, including transmission trees in contact tracing
[KFH06] and recruitment trees in respondent-driven sampling [Hec97, GS09]. Moreover, algorithms
with guarantees on forests can be efficiently applied to sparse real-world interaction graphs, such as
sexual contact graphs, which tend to be tree-like in practice; see Section 4.3.

1.1 Motivating application: network-based disease testing

A key motivating example of AFEG is network-based infectious disease testing where the goal
is to identify infected individuals as early as possible. In particular, we focus on diseases that are
transmitted through person-to-person contact2, e.g., sex, exposure of blood through injecting drug
use, or birth, where interaction information can be collected through interviews. In this context,
frontier testing is both natural and operationally motivated: test outcomes substantially alter beliefs
about neighboring individuals, making sequential expansion along the frontier an efficient strategy.

Public health motivation. The 95-95-95 HIV3 targets proposed by UNAIDS [UNA22] aim for
95% of people with HIV to know their status, 95% of those to receive treatment, and 95% of treated
individuals to achieve viral suppression — aligned with UN Sustainable Development Goal 3.3
[Nat]. Yet, the 2024 UNAIDS report [UNA24] reveals that the “first 95” remains the most elusive,
with roughly one in seven people living with HIV still undiagnosed, and there continues to be 1.3
million new infections every year. Studies have shown that virally suppressed individuals will not
infect others [CCM+11, RCB+16, BPP+18], leading to the U=U (undetectable = untransmittable)
campaign [oAD19, OG20]. Thus, the faster we can detect infected individuals, the faster they
can be enrolled onto treatment and limit the spread of the disease. To address this gap, the WHO
recommends network-based testing strategies to reach underserved populations [Org24a]. These
include partners and biological children of people with HIV, as well as those with high ongoing
HIV risk. Network-based interventions have shown effectiveness in South Africa [JPC+19] and
have also been explored for other infectious diseases beyond HIV [JSK+17, MWBDM+25]; see also
[CLJ+24] for a WHO-commissioned systemic review on social network-based HIV testing.

2This is in contrast to illnesses like flu where transmission can occur to a room full of strangers.
3The human immunodeficiency virus (HIV) attacks the immune system and can lead to AIDS. It remains a

major global health issue, having claimed over 42 million lives to date [Org24b].
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Figure 1: Illustration of how a real-world transmission graph (left) can be framed as an AFEG
instance (right). Here, the joint distribution P over the labels XA, XB , XC , XD ∈ {+,−} may
depend on the covariates cA, cB , cC , cD ∈ Rd and underlying interaction graph structure.

Fig. 1 illustrates how we can model the network-based disease testing problem into a AFEG instance.
Firstly, we use the network G as is, where nodes represent individuals and edges represent sexual
interactions. Each node has a binary infection status (infected or not) that is drawn from some
underlying joint distribution P on X over the labels Ω = {+,−}, where P may depend on the
individual covariates and graph structure. The reward for testing individual X and revealing status
b ∈ {0, 1} is then r(X, b) = b. See Fig. 1 for an illustration. The goal is of trying to identify
infected individuals as early as possible is implicitly enforced by the presence of any discount
factor β < 1. Importantly, discounting reflects both practical constraints – such as sudden funding
cuts [UNA25] – and clinical importance of early diagnosis, which improves patient outcomes and
limits transmission [CCM+11]. See also [RN21] for other natural justifications for using discount
factors β in modeling long-term policy rewards. While transmission graphs of sexually transmitted
diseases are not truly forests and may have high-degree nodes (e.g., sex workers), empirical studies
have also shown that such transmission graphs are often sparse and exhibit tree-like structure
[BMS04, YJM+13, WKPF+17]. Finally, to apply the infinite horizon framework of AFEG in our
finite testing setting, we give zero subsequent rewards after every individual has been already tested.

1.2 Our contributions

Contribution 1: Gittins index-based policy for AFEG and new results for branching bandits. In
Section 3, we show that when G is a forest, AFEG can be modeled as a branching bandit problem, for
which Gittins index policies are known to be optimal [KO03]. We provide a novel characterization
of Gittins indices for discrete branching bandits using piecewise linear functions, and develop a
practical implementation that runs in O(n2 · |Ω|2) time while using O(n · |Ω|2) oracle calls to P
and O(n2 · |Ω|) space. Our policy also works for general non-tree AFEG instances, but without
optimality guarantees. Despite this, it demonstrates strong performance in experimental evaluations.

Contribution 2: Formalizing network-based disease testing as an AFEG instance. As shown in
Section 1.1, network-based infectious disease testing can be cast as an instance of AFEG. To our
knowledge, this is the first formal framework to model frontier-based testing as sequential decision-
making on a probabilistic graph model for principled exploitation of network effects in diseases such
as HIV. In Appendix C, we propose a method to learn parameters from past disease data to define a
joint distribution P on new interaction networks so as to define new AFEG instances.

Contribution 3: Empirical evaluation. We evaluate our Gittins index-based policy on synthetic
datasets and show that it performs strongly even in settings where it is not provably optimal, including
non-trees and finite-horizon scenarios. Our approach outperforms other baselines on public-use
real-world sex interaction graphs on 5 sexually transmitted diseases (Gonorrhea, Chlamydia, Syphilis,
HIV, and Hepatitis) from ICPSR [MR11]. For instance, in one of our experiments on HIV testing (see
Fig. 5), our method identifies almost all infected individuals while other baselines would only detect
about 80%, in expectation, if we only have the testing budget to only test half of the population.

2 Preliminaries

Notation. We use lowercase letters for scalars, uppercase letters for random variables, bold letters for
vectors or collections, and calligraphic letters for structured objects such as graphs and probability
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distributions. Unordered sets are denoted with braces (e.g., {·}), and ordered tuples with parentheses
(e.g., (·)). For any set A, let |A| denote its cardinality. We use R≥0 for non-negative reals, N for the
natural numbers, and N>0 = N \ {0}. For any n ∈ N>0, we define [n] := {1, . . . , n}. For a vector
x = (x1, . . . , xn), we use xi = xi and x−i = (x1, . . . , xi−1, xi+1, . . . , xn) to denote the vector
without the i-th coordinate. We also employ standard asymptotic notations such as O(·) and Ω(·).
In this work, we consider joint distributions over n discrete variables X = {X1, . . . , Xn}, structured
by an undirected graph G = (X,E). Each variable Xi takes values from a finite set of labels
Ω = {v1, . . . , v|Ω|}; in the binary case, Ω = {0, 1}. For any node X ∈ X, let N(X) ⊆ X denote its
neighbors in G, and let V(G) denote the vertex set. As standard in the literature of graphical models,
we will use X ∈ X to refer to both the node and its associated random variable, so expressions like
X = v denote the event that variable X takes on label value v ∈ Ω. A tree is a connected acyclic
graph, and a forest is a collection of disjoint trees. A rooted tree designates one node as the root and
orients all edges away from it. In a directed rooted tree, we denote the parent and children of X by
Pa(X) and Ch(X) respectively, with pa(X) as the realization of its parent(s). Note that in rooted
trees, Pa(X) = ∅ if and only if X is the root. The most standard and general way to model a joint
distribution P that is Markov with respect to a graph G is via a Markov Random Field (MRF) [KF09].
An MRF is an undirected graphical model in which nodes represent random variables and edges
encode conditional dependencies. It satisfies the local Markov property: each variable is conditionally
independent of all others given its neighbors. See Appendix A for additional background.

AFEG bears some resemblance to Bayesian multi-armed bandits (MABs), where Gittins index
policies are optimal under assumptions like arm independence and infinite-horizon discounted rewards
[Git79, GGW11]. However, key differences prevent a reduction of AFEG to a standard MAB: (i)
each arm (node) can be selected at most once; (ii) the set of available actions changes dynamically due
to the frontier constraint; and (iii) action outcomes are correlated through the graph structure and joint
distribution P . As such, a closer abstraction is the branching bandit model [Wei88, Tsi94, KO03],
where actions dynamically activate new options, closely mirroring frontier expansion in AFEG. While
Gittins index policies are known to be optimal for branching bandits [KO03], no efficient method
has been proposed to compute them in general. Indeed, Gittins indices are underused in practice due
to perceived computational intractability in all but simple settings [Sco10, MKLL12, Edw19]. Our
work addresses this gap by presenting the first efficient implementation of Gittins-based policies in
discrete branching bandits with history-dependent rewards, enabling their use in structured settings
like network-based disease testing. Related index-based techniques for classic MABs are reviewed in
[CM14], but do not extend to branching structures. [MK23] studied a disease-spread model in which
infections propagate sequentially along parent-child links from a known root, and showed that it
reduces to the branching-bandit model of [Wei88]. In contrast, our setting assumes no known source:
infection statuses are jointly distributed over the network, and testing can start at any node under
a frontier constraint. This makes their model ill-suited for our AFEG setting, where correlations
cannot be captured by a single infection tree.

Our work is also related to well-studied areas such as reinforcement learning, active search on graphs,
and influence maximization. In addition, there is a substantial body of prior work on network-based
HIV testing and transmission modeling. We provide a detailed review of these topics in Appendix A.

3 A Gittins index-based policy for the AFEG problem

We propose a policy, GITTINS, for the AFEG problem that is based on Gittins indices. In Section 3.1,
we show that when the input graph G is a forest, AFEG reduces exactly to the branching bandit
framework [Wei88, Tsi94, KO03], under which GITTINS is provably optimal. While [KO03] estab-
lished the existence of an optimal Gittins index policy, they did not characterize the index explicitly
nor provide an efficient method for computing it. In Section 3.2, we prove that the key recursive
functions involved in computing the index are piecewise linear, which enables practical and efficient
computation. The implementation of GITTINS and its runtime analysis is given in Section 3.3.

3.1 Reduction to branching bandits for tree-structured instances

In the branching bandit model [Wei88, Tsi94, KO03], a project is represented as a rooted tree, where
each node corresponds to an action. Selecting a node yields a stochastic immediate reward and
activates its children to be available for future selection. A node is available if it is the root or a
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descendant of a previously selected node. Under the frontier exploration constraint of AFEG, a forest
G naturally induces a collection of rooted trees; see Fig. 2. The problem then reduces to a branching
bandit instance by treating each leaf as if it can be selected infinitely many times with zero reward,
or equivalently, by appending an infinite chain of zero-reward nodes to each leaf. At each timestep,
the available actions correspond to the current frontier: nodes adjacent to those already selected.
Crucially, due to the Markov property of P , selecting a node X only affects posterior beliefs over
its descendants, preserving the conditional independence structure required by the branching bandit
formulation. When G is a forest, the problem decomposes across connected components, allowing
Gittins indices to be computed independently for each rooted tree.

X1X2

X3

X4

X5

X6

X7

X8

Frontier

X1

X2 X3 X4

X5 X6 X7 X8

Figure 2: Reduction to a branching bandit on 8 nodes with root X1. After acting on {X1, X3}, the
frontier is {X2, X4, X6}. Note that we have P(x2 | x1, x3) = P(x2 | x1) by the Markov property.

To define the Gittins index, we assume the reward r(X, v) for revealing label v ∈ Ω at node X is
bounded by some finite r̄, i.e., −∞ < −r̄ ≤ r(X, v) ≤ r̄ < ∞, and introduce a retirement option
with one-off reward m.4 This enables a recursive characterization of the index: at any step, the policy
can choose to continue exploring, or stop acting and receive an one-off fixed reward of m. Since
rewards are upper bounded by r̄, the maximum attainable reward is at most r̄+βr̄+β2r̄+ . . . = r̄

1−β .
So, when m > r̄

1−β , any optimal policy should choose the retirement action and quit.

To define the Gittins index, let us first define two recursive functions ϕ and Φ, as per [KO03]. For
any non-root node X ∈ X, label b ∈ Ω, and value 0 ≤ m ≤ r̄

1−β ,

ϕX,b(m) = max

{
m,
∑
v∈Ω

P(X = v | Pa(X) = b) ·
[
r(X, v) + β · ΦCh(X),v(m)

]}
(1)

If X is the root, we define ϕX,∅(m) = max

{
m,
∑

v∈Ω P(X = v) ·
[
r(X, v)+β ·ΦCh(X),v(m)

]}
.

For any subset of nodes S ∈ X, label v ∈ Ω, and value 0 ≤ m ≤ r̄
1−β ,

ΦS,v(m) =

{
r̄

1−β −
∫ r̄

1−β

m

∏
Y ∈S

∂ϕY,v(k)
∂k dk if S ̸= ∅

m if S = ∅
(2)

We will only invoke Eq. (2) with S = Ch(X) for some node X . The interpretation here is that
ϕX,b represents the total expected value of this subtree rooted at X when its parent Pa(X) has label
b ∈ Ω, while accounting for option of taking the retirement option m at each step, and ΦCh(X),v

represents the value of the collection of subtrees rooted at the children of X , excluding X itself, i.e.,
the contributions from the children of X , conditioned on X having label b ∈ Ω. For example, for X1

in Fig. 2, this refers to the subtrees rooted at X2, X3, and X4. Using these notation, the Gittins index
g(X, b) for node X given Pa(X) = b is then defined as

g(X, b) = min

{
m ∈

[
0,

r̄

1− β

]
: ϕX,b(m) ≥ m

}
(3)

That is, g(X, b) represents the “fair value” of the subtree rooted at X , given that its parent has
label b ∈ Ω. The parent’s label matters because the posterior distribution over X’s label is updated
conditionally based on the value of b. Theorem 3, which follows from Theorem 1 of [KO03] with
appropriate changes in notation, establishes that the GITTINS policy is optimal when G is a forest.

4There are several equivalent ways of proving the optimality of Gittins indices in the classic non-branching
setting, e.g., the original stopping problem formulation [Git74], retirement option process formulation [Whi80],
restart-in-state formulation [KVJ87], prevailing charge formulation [Web92], state space reduction [Tsi94], etc.
The branching bandit optimality proof of [KO03] builds on [Whi80]’s retirement option formulation.
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Definition 2 (The GITTINS policy; Algorithm 1). The GITTINS policy pre-computes all g(X, b)
values given G and P , then repeatedly acts on the node in the frontier with the largest index value.
Theorem 3. GITTINS is optimal for the AFEG problem when G is a forest.

3.2 Properties of discrete branching bandits

We prove that the recursive functions ϕX,b(m) and ΦCh(X),v(m) are piecewise linear in m. This
facilitates an efficient implementation of GITTINS, which we give in Algorithm 1.
Lemma 4. For any node X ∈ X and label b ∈ Ω, ϕX,b(m) is a non-decreasing piecewise linear
function over m ∈ [0, r̄/(1− β)].

The proof intuition behind Lemma 4 is to perform induction from the leaves to the root while
recalling that piecewise functions on a fixed domain range are closed under addition, multiplication,
differentiation, and integration. This later allows us to bound the running time for computing our
GITTINS policy in Theorem 6 as the number of pieces in the function changes additively as we
combine piecewise functions, e.g. #pieces(f1 + f2) ≤ #pieces(f1) + #pieces(f2).

We also prove additional properties of the Φ function which are crucial in our algorithm for efficiently
manipulating the piecewise linear functions to compute the recursive functions ϕ and Φ, and may be
of independent interest to resaerchers of Gittins index.
Proposition 5. For any non-leaf node X and label b:

• ΦCh(X),v(m) = ΦCh(X),v(0) + hCh(X),v(m) for some piecewise linear hCh(X),v(m).

• ΦCh(X),v(m) = m if and only if m ≥ maxY ∈Ch(X) g(Y, b).

The first term in the expression ΦCh(X),v(m) = ΦCh(X),v(0) + hCh(X),v(m) can be interpreted as
the original maximized reward for the descendants of X while the second term is the additional
reward afforded by the retirement option m. Meanwhile, we observe that the minimum m such that
ΦCh(X),v(m) = m is the essentially the largest Gittins index among nodes in Ch(X).

Full proofs of Lemma 4 and Proposition 5 are deferred to Appendix F.1.

3.3 Extension to general graphs

On general graphs where G is not a forest, dependencies across frontier nodes may violate the
branching bandit assumptions. Nevertheless, we heuristically apply GITTINS by treating each
connected component as a tree (e.g., a minimum spanning tree) and ignoring edges that violate the
acyclicity requirement. This restricts the frontier to a subtree at each step.

Algorithm 1 provides a pseudocode describing this, where Line 5 is the heuristic which drops edges
when G is not a forest graph. As any tree restriction works here, one natural option is to compute the
breadth-first search (BFS) tree as it minimizes the height to the root, reducing any artificial frontier
constraint due to tree projection. The runtime complexity of Algorithm 1 is given in Theorem 6.

At first glance, one may think that the running time of Algorithm 1 would dependent exponentially
on the maximum depth d of the induced rooted trees, even if all operations involving piecewise linear
functions can be done in O(1) time. This is because the definitions of Eq. (1) and Eq. (2) tell us
that the function ϕX,b depends on all ϕZ,v functions, for all descendants Z of X and labels v ∈ Ω.
However, our next result show that we can in fact obtain a polynomial run time that is independent of
the maximum depth d of the induced rooted trees; this is why any tree restriction works on Line 5.
Theorem 6. Given graph G = (X,E) and oracle access5 to joint distribution P , the Gittins indices
can be computed in O(n2 · |Ω|2) time while using O(n · |Ω|2) oracle calls to P via Algorithm 1. The
space complexity is O(n2 · |Ω|) space for storing O(n · |Ω|) intermediate piecewise linear functions.

The proof outline of Theorem 6 is as follows: we first use induction (from the leaves towards the
root) to argue that, for any node X , the set of functions {ϕX,b}b∈Ω can be computed using O(|Ω|2)

5The focus is on the recursive cost of computing Gittins indices and the oracle access assumption is meant to
abstract away the computational cost of computing quantities like P(· | ·). As our setting assumes that P is a
pairwise MRF defined over a tree-structured graph, such inference is tractable via the junction tree algorithm.
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Algorithm 1 Setting up the GITTINS policy.

1: Input: Graph G = (X,E), Joint distribution P over X that is Markov to G
2: Output: Gittins index value g(X, b) for all X ∈ X and b ∈ Ω
3: for each connected component H of G do
4: Compute root node Xroot from priority rule ▷ e.g., Xroot = argmaxXi∈V(H) P(Xi = 1)
5: Compute any tree of H rooted at Xroot ▷ Heuristic for non-trees
6: for node Xi ∈ V(H) from leaf towards root, and label b ∈ Ω do ▷ For Xroot, set b = ∅
7: if Xi is a leaf then
8: Compute ϕ(Xi, b)(m) = max

{
m,βm+

∑
v∈Ω P(X = v | Pa(X) = b) · r(X, v)

}
9: else

10: Compute ΦCh(Xi),v(m) via Eq. (2) and Proposition 5
11: Compute ϕXi,b(m) via Eq. (1)
12: Store ϕ(Xi, b) for future computation
13: Compute {g(X, b)}X∈X,b∈Ω according to Eq. (3), using previously stored ϕ values
14: return {g(X, b)}X∈X,b∈Ω ▷ Reminder: For root nodes, we set b = ∅

oracle calls to P and O(|Ω| ·max{1, |Ch(X)|}) operations on piecewise linear functions, as long
as we store intermediate functions {ϕY,v}Y ∈Ch(X),v∈Ω along the way. Then, we argue that the
maximum time to perform any piecewise linear function operation in Algorithm 1 is upper bounded
by O(n · |Ω|). Our claim follows by summing over all nodes X and using the upper bound cost of
operating on piecewise linear function. See Appendix F.1 for the full proof.

We also provide a worked example of how to compute Gittins index by manipulating ϕ and Φ in
Appendix B. This computation is implemented Python and the source code is available on our Github.

4 Experiments

We benchmark our proposed GITTINS policy against several natural baselines — RANDOM, GREEDY,
DQN, and OPTIMAL — on both synthetic and real-world graphs to evaluate performance on AFEG.
To reflect the network-based disease testing application discussed in Section 1.1, we consider binary
node labels, and define the immediate reward to be 1 if and only if the revealed label is positive. As
such, it is natural to define the first node in every connected component as the node with the highest
marginal probability of being positive amongst all nodes in that connected component.

Benchmarked policies. Given a problem instance (G,P, β), a state in AFEG consists of the current
set of frontier nodes and the revealed labels of previously tested nodes.
• RANDOM: Selects a random node from the frontier without using any state information.
• GREEDY: Selects the frontier node with the highest posterior probability of being positive,

conditioned on the currently observed labels.
• DQN: Implements a deep Q-network baseline [MKS+15], using the NNConv architecture

from PyTorch Geometric [FL19]. This model applies a message-passing GNN with edge-
conditioned weights [GSR+17] to capture graph structure and node covariates.

• OPTIMAL: Computes the action that maximizes the expected total discounted reward for each
possible state via brute-force dynamic programming. This method is tractable only on small
graphs due to the combinatorial explosion of the state space.

• GITTINS: Our proposed method, described in Algorithm 1, which is provably optimal when
the underlying graph G is a forest. We use breadth-first search (BFS) trees in Line 5.

Since AFEG and these policies are agnostic to how the joint distribution P is defined, we defer the
details of how P is defined to Appendix E. That is, one may read the experimental section assuming
access to some P oracle. For reproducibility, all code is provided on our Github repository6.

4.1 Experiment 1: On tree inputs, GITTINS works well even in finite horizon settings

We evaluated the policies against a family of randomly generated synthetic trees on n ∈ {10, 50, 100}
nodes across various discount factors β ∈ {0.5, 0.7, 0.9}. We only run OPTIMAL for small n = 10

6https://github.com/cxjdavin/adaptive-frontier-exploration-on-graphs

7

https://github.com/cxjdavin/adaptive-frontier-exploration-on-graphs


instances, where the plots for OPTIMAL and GITTINS exactly overlap as expected. For n = 10, we
exactly compute the expectation by weighting accumulated discounted rewards of each of the 210

realizations by its probability. For n ∈ {50, 100}, we compute Monte Carlo estimates by sampling
200 random realizations from P . For each setting of (n, β), we generated 10 random trees and plot
the mean (± std. err.) of the expected accumulated discounted rewards over time for each policy.
Fig. 3 shows a subset of our results for β = 0.9; see Appendix E for the full experimental results.

Figure 3: Subset of synthetic tree input results. GITTINS consistently beats other baselines at every
fixed budget, e.g., vertical line indicates performance when only half the nodes can be acted upon.

Interestingly, while GITTINS is only proven to be optimal with respect to the expected accumulated
discounted rewards, i.e., the rightmost slice of each plot, we see that it consistently outperforms all
other baselines at every fixed timestep. For example, if we only have a fixed budget of being only to
act on half the nodes (visualized by drawing a vertical line at the midpoint of the experiment), the
GITTINS plot lies above the others.

4.2 Experiment 2: Gittins performance degrades gracefully for non-trees

Here, we investigate the degradation of GITTINS as a heuristic as the input graph deviates from a
tree in a controlled manner. Using the same setup as Section 4.1, we see that the attained expected
accumulated discounted reward of GITTINS degrades relative to GREEDY as we add more edges to a
tree, as expected. Note that in the rightmost graph of Fig. 4, 10 additional edges is more than 20%
additional edges compared to the original n− 1 = 49 tree edges.

Figure 4: Synthetic experiment: the initial performance gains of GITTINS over GREEDY and DQN
diminishes as we progressively add edges to 10 random 50-node trees with discount factor β = 0.9.

4.3 Experiment 3: Real-world sexual interaction graphs

Beyond experiments on synthetic graphs, we also evaluated the policies on real-world sexual inter-
action networks derived from a de-identified, public-use dataset released by ICPSR [MR11]7. This
dataset was originally collected to examine how partnership networks influence the transmission of
sexually transmitted and blood-borne infections. It includes reported sexual edges, covariates of each
individuals (e.g., whether the individual is unemployed or homeless, etc), and reported statuses for 5
sexually transmitted diseases: Gonorrhea, Chlamydia, Syphilis, HIV, and Hepatitis.

7This de-identified, public-use dataset is publicly available for download at https://www.icpsr.umich.
edu/web/ICPSR/studies/22140 upon agreeing to ICPSR’s terms of use. IRB is not required; see Appendix E.
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For each disease, we fit parameters as described in Appendix C and use these parameters to define P
for each AFEG instance on these real-world sexual interaction graphs. To be precise, we define P to
be a pairwise MRF over the transmission network G, and P is parameterized by vectors θ1 ∈ R2+2d

and θ2 ∈ R4+5d, where d ∈ N is the the dimension of the covariates. Since the role of the discount
factor β ∈ (0, 1) in AFEG is to encourage early identification of infected individuals, any value in
that range is technically valid. To better reflect practical scenarios where timely detection is important
across the entire population, we use β = 0.99 in our experiments and report results in terms of
fraction of positive cases detected. In Appendix E, we explain in further detail how we pre-process
the dataset, produce joint distributions P for each graph for the experiments.

Our experimental results on real-world graphs is given in Fig. 5.8 As these graphs are large, we do
not run OPTIMAL and use 200 Monte Carlo simulations to estimate the expected performance of
each policy. To enable evaluation on larger graphs while preserving network structure, we applied a
principled subsampling strategy based on connected components to preserve topological properties of
the original network more faithfully than node-level subsampling. For each disease-specific dataset,
we randomly shuffled the connected components and then greedily aggregated them into a new graph
until the total number of nodes exceeded a specified threshold τ . Due to the sparsity of the graphs,
the resulting subsampled graphs contain approximately τ nodes as desired. To balance computational
feasibility with dataset representativeness, we set τ = 300. For the graph statistics of the full and
subsampled real-world interaction graphs, see Table 1 and Table 2 in Appendix E.

Throughout all experiments, we consistently see that GITTINS outperforms or is competitive with the
other baselines both in terms of expected fraction of positive cases detected and for any fixed timestep,
even when the input is not a forest. For example, when limited to testing only half the population in
the HIV experiment, GITTINS identifies nearly all infected individuals whereas other baselines detect
only about 80%, in expectation. In terms of running time, observe that GREEDY and DQN become
computationally intractable on large real-world graphs.9 DQN incurs significant training overhead
due to fitting a graph neural network for each (G,P, β) instance while GREEDY is computationally
expensive during rollout, requiring

∑n
i=1(n− i+ 1) ∈ O(n2) calls to the P oracle per Monte Carlo

sample.10 In contrast, GITTINS is efficient in both policy training (index computation) and rollout
(selecting the frontier node with highest index), making it highly practical for real-world instances.

4.3.1 Noisy access to the underlying distribution P

In practice, we do not have access to the true underlying distribution P . Instead, we would likely only
obtain an noisy version Q of P and have to make adaptive testing decisions based on Q. Recalling P
is parameterized by vectors θ1 and θ2, we define a noisy distribution Qε defined by noisy versions θ̃1
and θ̃2 of θ1 and θ2, where we add random noise that scales proportionally with the magnitude of
each coordinate In the following experiments for ε ∈ {0, 0.25, 0.5, 0.75, 1}. That is, for a parameter
value of x, we add a random noise of [−εx, εx] to it. Fig. 6 illustrates the empirical performance
of various policies on the HIV dataset when they only have access to Qε while the Monte Carlo
evaluation and evolution of the statuses are based on P ; see Appendix E for the plots for all the other
diseases. Unsurprisingly, all policies degrade towards the performance of the RANDOM baseline as ε
increases since Qε becomes less informative with respect to the true underlying distribution P .

5 Conclusion and discussion

We introduced and studied the adaptive frontier exploration on graphs problem (Definition 1), a
framework for sequential decision-making with label-dependent rewards under a frontier exploration
constraint. Our Gittins index-based policy (Algorithm 1) is provably optimal on trees, runs in
polynomial time, and demonstrates strong empirical performance on general graphs.

8All experiments were performed on a personal laptop (Apple MacBook 2024, M4 chip, 16GB memory).
9This is why we had to subsample up to τ = 300 nodes when performing our empirical evaluation. RANDOM

and GITTINS are able to run fast on larger graphs but comparing only these two policies is not interesting.
10Even if we optimize the implementation of GREEDY to only recompute marginal positive probabilities

for nodes in the same connected component as the previously tested node, it still incurs a huge rollout time on
graphs with large connected components. The timings in Fig. 5 are for this optimized GREEDY implementation.
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Time, rounded to nearest second
Gonorrhea Chlamydia Syphilis HIV Hepatitis

RANDOM 0 0 0 0 0
GREEDY 0 0 0 0 0

DQN 2640 2497 5626 7817 6659
GITTINS 8 7 32 24 20

RANDOM 0± 0 0± 0 0± 0 0± 0 0± 0
GREEDY 12± 0 10± 0 1164± 13 840± 3 15± 0

DQN 3± 0 2± 0 7± 0 4± 0 5± 0
GITTINS 0± 0 0± 0 0± 0 0± 0 0± 0

Top: Policy training time, trained once for all 200 rollouts
Bottom: Single Monte Carlo rollout time, reported in mean ± std. err.

Figure 5: Experimental results for Gonorrhea, Chlamydia, Syphilis, HIV, and Hepatitis from sub-
sampling connected components till we have at least 300 nodes. The vertical dashed line indicates
performance when only half the individuals can be tested.

Figure 6: Experiments on the HIV dataset where policies only have access noisy version Qε of the
underlying distribution P on the HIV dataset. Error bars illustrate the standard error due to 10 random
instantiations of Qε for each corresponding value of ε.

Broader impact and fairness. This work is motivated by public health challenges, where limited
resources and reduced funding [UNA25] highlight the need for more efficient testing strategies.
The AFEG framework supports targeted, adaptive exploration of interaction networks, guided by a
joint distribution P can incorporate domain knowledge. It also enables fairness-aware interventions
through reward shaping, allowing practitioners to prioritize specific subpopulations within the same
decision-making framework. Our proposed Gittins index-based policy operates within this flexible
setup, making it suitable for responsible and context-aware deployment. Additional discussion of
limitations and fairness considerations is provided in Appendix D.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide our code on Github. However, we do not release the ICPSR
dataset used in Section 4, as accordance to the terms of use. Interested researchers can
individually obtain the de-identified public-use dataset at https://www.icpsr.umich.
edu/web/ICPSR/studies/22140 after agreeing with their terms of use.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give experimental details in Appendix E and also provide our code on
Github.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We draw standard error bars in our plots where suitable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were performed on a personal laptop (Apple Macbook 2024,
M4 chip, 16GB memory).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and follow it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in Section 5 and in Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We do not release the ICPSR dataset used in Section 4, as accordance to the
terms of use. Interested researchers can individually obtain the de-identified public-use
dataset at https://www.icpsr.umich.edu/web/ICPSR/studies/22140 after agreeing
with their terms of use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the ICPSR dataset used in Section 4, as accordance to the terms of
use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. It
relies solely on secondary analysis of a de-identified public-use dataset.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The de-identified, public-use dataset used in Section 4 is publicly available
for download at https://www.icpsr.umich.edu/web/ICPSR/studies/22140 upon
agreeing to ICPSR’s terms of use. IRB approval was not required.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM to improve the writing of some sentences.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Further related work

Markov Random Fields (MRF). By the Hammersley-Clifford theorem [HC71, Cli90], an MRF
has the form: P(x) = 1

Z

∏
C∈C ψC(xC), where C is the set of cliques in G, ψC is a non-negative

potential function over clique C, xC is the realization of nodes in C, and Z is the normalizing
constant. Alternatively, MRFs can be represented using factor graphs, which are bipartite graphs
connecting variable nodes to factor nodes. Each factor fj maps a subset Xj of variables to a non-
negative value. The joint distribution is then P(x) = 1

Z

∏m
j=1 fj(xj). While both representations

are equivalent, factor graphs make inference structure explicit and are often used in algorithmic
implementations. Exact inference in MRFs is known to be intractable in general, with complexity
scaling exponentially in the treewidth of G [WJ08, KF09]. While the definition of AFEG is does
not necessitate the use of MRFs in general, any joint distribution P that is Markov with respect to G
works, we find that it is a reasonable model in our disease testing application (Section 1.1) where
real-world sex interaction graphs are often of low treewidth (see Section 4).

Reinforcement learning (RL). Sequential decision-making is classically modeled using Markov
decision processes (MDPs) [Put14], and solved using reinforcement learning (RL) techniques. Promi-
nent algorithms include Q-learning [WD92], policy gradient methods [SMSM99], and deep RL
approaches like deep Q-networks (DQN) [MKS+15]. In principle, AFEG can be cast as an MDP,
but doing so leads to an exponentially large state space: the agent must track both which nodes have
been selected and their revealed labels. This complexity makes direct application of off-the-shelf RL
methods impractical in our setting with customization and heavy finetuning.

Active search on graphs. As discussed in Section 1, AFEG is related to active search on graphs
[GKX+12, WGS13, JMC+17, JMA+18], which aims to identify as many target nodes as possible
under a budget. However, these works do not impose a frontier constraint while searching over binary
labels, and typically assume a relaxed Gaussian random field model [ZLG03] for tractable inference.
In contrast, our formulation models the joint distribution explicitly as an MRF. While exact inference
is generally intractable, many real-world graphs — especially sexual contact networks — have low
treewidth, making structured modeling with MRFs feasible in practice (see Section 4).

Influence maximization. Another well-studied sequential decision problem on graphs is influence
maximization, where the goal is to select seed nodes to maximize influence spread under stochastic
propagation models such as the independent cascade or linear threshold [KKT03]. This framework
has been applied to health interventions, such as selecting peer leaders to disseminate information
in HIV prevention efforts among homeless youth [YWR+17, WOVH+18]. While both influence
maximization and AFEG involve decisions on graphs, their objectives differ: the former focuses
on maximizing long-term diffusion, whereas AFEG emphasizes label-driven, reward-maximizing
sequential actions under uncertainty and exploration constraints.

Network-based HIV testing and transmission modeling. HIV transmission dynamics have been
extensively studied through network-based models, where individuals are represented as nodes
and edges denote reported sexual or social contacts [Rot09, MGDGO25]. Such networks can
constructed from contact tracing, respondent-driven sampling (RDS), or molecular surveillance
data [Hec97, GS09, ADGR+19]. While existing research have used methods such as generalized
estimating equations, mixed effects regression, graph attention networks have been used to fit
transmission probabilities using parameters [BMAK+21, WLK+23, XFL+21], they do not model
and consider the sequentiality of assigning tests to individuals.

B Worked example of Gittins computation for branching bandits

Recall the recursive formulas of ϕ and Φ for the Gittins index computation, from Eq. (1) and Eq. (2)
respectively. For convenience, we reproduce them below. For 0 ≤ m ≤ r̄

1−β ,

ϕX,b(m) = max

{
m,
∑
v∈Ω

P (X = v | Pa(X) = b) ·
[
r(X, v) + βΦCh(X),v(m)

]}

ΦS,v(m) =

{
r̄

1−β −
∫ r̄

1−β

m

∏
Y ∈S

∂ϕY,v(k)
∂k dk if S ̸= ∅

m if S = ∅
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These ϕX,b(m) values, for all labels b ∈ Ω, can be pre-computed before we execute our Gittins
method via recursion from the leaves. Then, the corresponding Gittins value for node X given a
realized parent value of b ∈ Ω is simply min{m ∈ [0, r̄

1−β ] : ϕX,b(m) ≥ m}.

In the rest of this section, we will work through the Gittins index computation on the rooted tree
G = (X,E) shown in Fig. 7 with β = 0.9 and the following joint distribution

P(X = x) =
1

Z

∏
(Xi,Xj)∈E

exp
(
1xi=xj

)
(4)

where Z is the normalizing constant and 1xi=xj
is the indicator function of whether the realized

values of Xi and Xj agree. In terms of our pairwise MRF representation, P can be represented with
θunary = (0, 0) and θpairwise = (0, 1, 0, 1). For a non-root node X ∈ X, we have

P(X = 1 | Pa(X) = 0) =
1

1 + e
(5)

P(X = 1 | Pa(X) = 1) =
e

1 + e
(6)

With β = 0.9 and r̄ = 1, we have 0 ≤ m ≤ r̄
1−β = 10.

X0

X1 X2

X3

Figure 7: Example rooted tree G = (X,E) over 4 nodes X = {X0, X1, X2, X3}.

B.1 Computing ϕ for leaf nodes

Consider leaf node X3. For 0 ≤ m ≤ r̄
1−β ,

ϕX3,0(m) = max

{
m,P (X3 = 0 | X2 = 0) ·

[
r(X3, 0) + βΦ∅,0(m)

]
+ P (X3 = 1 | X2 = 0) ·

[
r(X3, 1) + βΦ∅,1(m)

]}
= max

{
m,

(
1− 1

1 + e

)
·
[
r(X3, 0) + βΦ∅,0(m)

]
+

(
1

1 + e

)
·
[
r(X3, 1) + βΦ∅,1(m)

]}
(By Eq. (5) and Eq. (6))

= max

{
m,

(
1− 1

1 + e

)
· [0 + βm] +

(
1

1 + e

)
· [1 + βm]

}
(By definition of r and since Φ∅,0(m) = Φ∅,1(m) = m)

= max

{
m,βm+

1

1 + e

}
In other words, we have

ϕX3,0(m) =

{
βm+ 1

1+e if m ≤ 10
1+e

m if m ≥ 10
1+e

By similar computations, we obtain

ϕX3,1(m) =

{
βm+ e

1+e if m ≤ 10e
1+e

m if m ≥ 10e
1+e
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Fig. 8 illustrates the piecewise functions ϕX3,0 and ϕX3,1. To represent these functions efficiently,
we can track the changepoints and the linear pieces. For instance, the changepoint 10

1+e in ϕX3,0,
the changepoint 10e

1+e in ϕX3,1, and the slope coefficient a and intercept b in the y = am+ b linear
equation formula.

Figure 8: Illustration of the piecewise linear functions ϕX3,0 and ϕX3,1

By symmetry of P in our example, one can check that ϕX1,0 = ϕX3,0 and ϕX1,1 = ϕX3,1.

B.2 Computing ϕ for non-leaf nodes

Now, let us consider the non-leaf node X2. For 0 ≤ m ≤ r̄
1−β ,

ϕX2,0(m) = max

{
m,P (X2 = 0 | X0 = 0) ·

[
r(X2, 0) + βΦ{X3},0(m)

]
+ P (X2 = 1 | X0 = 0) ·

[
r(X2, 1) + βΦ{X3},1(m)

]}
= max

{
m,

(
1− 1

1 + e

)
·
[
0 + βΦ{X3},0(m)

]
+

(
1

1 + e

)
·
[
1 + βΦ{X3},1(m)

]}
(By Eq. (5), Eq. (6), and definition of r)

Let us compute the function Φ{X3},0(m). Observe that

Φ{X3},0(m) =
r̄

1− β
−
∫ r̄

1−β

m

∏
Y ∈{X3}

∂ϕY,0(k)

∂k
dk = 10−

∫ 10

m

∂ϕX3,0(k)

∂k
dk

Fig. 9 illustrates the piecewise linear function ϕX3,0 and corresponding piecewise constant function
∂ϕX3,0(k)

∂k . Meanwhile, Fig. 10 shows a visualization of Φ{X3},0(m) = 10−
∫ 10

m

∂ϕX3,0(k)

∂k dk.

Figure 9: Illustration of the piecewise linear functions ϕX3,0 and ∂ϕX3,0(k)

∂k
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Figure 10: Visualization of Φ{X3},0(m) = 10−
∫ 10

m

∂ϕX3,0(k)

∂k dk

In order to efficiently compute and represent Φ{X3},0(m), we turn to Proposition 5: Φ{X3},0(m) =
Φ{X3},0(0) + h(m), for some piecewise linear function h. Observe that Φ{X3},0(0) is just a constant

while we showed in our proof that h(m) =
∫ 10

m

∂ϕX3,0(k)

∂k dk. Intuitively, the idea is to first

compute h(m) by integrating ∂ϕX3,0(k)

∂k over the entire domain range of 0 ≤ m ≤ r̄
1−β , then

“push the curves upwards” until the maximum value hits r̄
1−β . For our example, one can compute

Φ{X3},0(0) = (1− β) · 10
1+e and derive that

Φ{X3},0(m) =

{
Φ{X3},0(0) + βm if m ≤ 10

1+e

Φ{X3},0(0) +m if m ≥ 10
1+e

See Fig. 11 for an illustration.

Figure 11: Illustration of how to apply Proposition 5 to compute Φ{X3},0(m)

Using Proposition 5 in a similar manner for Φ{X3},1(m), we get Φ{X3},1(0) = (1− β) · 10e
1+e and

Φ{X3},1(m) =

{
Φ{X3},1(0) + βm if m ≤ 10e

1+e

Φ{X3},1(0) +m if m ≥ 10e
1+e

Continuing our calculations from above, we see that ϕX2,0(m) = max{m, fX2,0(m)}, where

fX2,0(m) =

(
1− 1

1 + e

)
·
[
0 + βΦ{X3},0(m)

]
+

(
1

1 + e

)
·
[
1 + βΦ{X3},1(m)

]
=


β2m+ β(1− β) 20e

(1+e)2 + 1
1+e if m ≤ 10

1+e
eβ+β2

1+e m+ β(1− β) 10e
(1+e)2 + 1

1+e if 10
1+e ≤ m ≤ 10e

1+e

βm+ 1
1+e if m ≥ 10e

1+e

So,

ϕX2,0(m) = max{m, fX2,0(m)}

=


β2m+ β(1− β) 20e

(1+e)2 + 1
1+e if m ≤ 10

1+e

eβ+β2

1+e m+ β(1− β) 10e
(1+e)2 + 1

1+e if 10
1+e ≤ m ≤

β(1−β) 10e
(1+e)2

+ 1
1+e

1− eβ+β2

1+e

m if m ≥
β(1−β) 10e

(1+e)2
+ 1

1+e

1− eβ+β2

1+e
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The piecewise function ϕX2,1(m) can be computed in the same way.

ϕX2,1(m) =


β2m+ β(1− β) 10(1+e2)

(1+e)2 + e
1+e if m ≤ 10

1+e

β+eβ2

1+e m+ β(1− β) 10e2

(1+e)2 + e
1+e if 10

1+e ≤ m ≤
β(1−β) 10e2

(1+e)2
+ e

1+e

1−β 1+eβ
1+e

m if m ≥
β(1−β) 10e2

(1+e)2
+ e

1+e

1−β 1+eβ
1+e

Finally, for labels b ∈ Ω, we compute ϕX0,b in a similar fashion, with the only non-trivial computation
being

∏
Y ∈Ch(X0)

∂ϕY,v(k)
∂k dk, where Ch(X0) = {X1, X2} and v ∈ Ω. Here, we take the product

of the corresponding piecewise constant functions before integrating it to obtain the corresponding
piecewise linear function h(m).

B.3 Bounding the number of pieces

Throughout our computation, we relied heavily on the fact that the recursive functions ϕ and Φ can
be computed by manipulating piecewise linear functions. Here, we show that the number of pieces
we need to manipulate scales reasonably with the size of the input rooted forest G = (X,E). A key
part of the proof relies on the following observation:

Observation 7. Multiplying by constants, adding constants, differentiation, and integration do not
affect the number of changepoints in piecewise linear functions.

Towards a formal proof, let us define some additional notation. For any node X ∈ X, let TX

denote the subtree rooted at X and |TX | denote the number of nodes in this subtree, excluding X
itself. Meanwhile, for any piecewise linear function f , we write c(f) and #(f) to denote the set and
number of changepoints required to represent f respectively, i.e., #(f) = |c(f)|. That is, # counts
the number of cases in the function representation, minus 1. For instance, #(ϕX,b) ≤ 1 for any leaf
node X ∈ X due to the maximization against the linear function y = m.

Lemma 8. For any arbitrary node X ∈ X and label b ∈ Ω, we have #(ϕX,b) ≤ 1 + |Ω| · |TX |.

Observe that the upper bound of Lemma 8 is independent of the actual label b ∈ Ω. The intuition
behind this independence can been seen in Eq. (1) where b only affects a multiplicative scaling via
the conditional distribution value, which by itself does not affect the number of changepoints; see
Observation 7. An important implication of Lemma 8 is that the maximum number of changepoints
we ever need to manipulate for a rooted tree rooted at Xroot in G is at most |Ω| · |TXroot

|.

Proof of Lemma 8. We prove the claim by induction over the tree structure, starting from the leaves.

Base case (X is a leaf node): Then, Ch(X) = ∅ and #(ϕX,b) ≤ 1.

Inductive case (X is a non-leaf node): Recall Eq. (1) and Eq. (2) for Ch(X) ̸= ∅:

ϕX,b(m) = max

{
m,
∑
v∈Ω

P (X = v | Pa(X) = b) ·
[
r(X, v) + βΦCh(X),v(m)

]}

ΦCh(X),v(m) =
r̄

1− β
−
∫ r̄

1−β

m

∏
Y ∈Ch(X)

∂ϕY,v(k)

∂k
dk

Defining gX,b,v(m) = P (X = v | Pa(X) = b) ·
[
r(X, v) + βΦCh(X),v(m)

]
, we can rewrite

ϕX,b(m) as ϕX,b(m) = max{m,
∑

v∈Ω gX,b,v(m)}. For any two distinct labels b, b′ ∈ Ω, Ob-
servation 7 tells us that the set of changepoints in ϕX,b and ϕX,b′ differ by at most one, depending on
depending on where the intersection y = m occurs for each label. That is,

|s(ϕX,b) \ s(ϕX,b′)| ≤ 1 (7)
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So,

#(ϕX,b) = #

(
max

{
m,
∑
v∈Ω

gX,b,v

})
(By Eq. (1))

≤ 1 + #

(∑
v∈Ω

gX,b,v

)
(Due to maximization with y = m)

= 1 +
⋃
v∈Ω

#(gX,b,v)

= 1 +
⋃
v∈Ω

#
(
ΦCh(X),v

)
(By Observation 7)

= 1 +
⋃
v∈Ω

⋃
Y ∈Ch(X)

#(ϕY,v) (By Eq. (2))

= 1 +
⋃

Y ∈Ch(X)

⋃
v∈Ω

#(ϕY,v) (Switching the ordering of the unions)

≤ 1 +
⋃

Y ∈Ch(X)

(
|Ω| − 1 + max

v∈Ω
#(ϕY,v)

)
(Applying Eq. (7) over all |Ω| labels)

≤ 1 +
∑

Y ∈Ch(X)

(|Ω| − 1 + (1 + |Ω| · |TY |))

(By induction hypothesis and replacing
⋃

with
∑

)

= 1 + |Ω| ·
∑

Y ∈Ch(X)

(1 + |TY |) (Rearranging)

= 1 + |Ω| · |TX | (By definition of |TX | and |TY |)

C Application to network-based disease testing

In this section, we explore the application of network-based disease testing motivated in Section 1
where the goal is to identify infected individuals given knowledge of their interaction network; see
Fig. 1 for an illustration. Here, each node represents an individual with a binary infection status
(infected or not), and edges represent sexual interactions. Frontier testing is a natural operational
constraint: test outcomes significantly influence beliefs about neighboring individuals, making it
efficient to expand testing along the observed frontier.

Building upon our notations in Section 2, a joint distribution Pθ parameterized by θ is written as
Pθ(x) = Pθ(X1 = x1, . . . , Xn = xn) for x ∈ Ωn.

C.1 A MRF-based joint model of infection status

We model the joint distribution over n individuals’ infection statuses using a pairwise MRF defined
over the interaction graph G = (X,E), where each node Xi represents an individual with a binary
latent variable Xi ∈ {0, 1} indicating its HIV status, and each edge {Xi, Xj} ∈ E indicates
a reported sexual interaction. Each individual also has associated covariates c(i) ∈ Rd and the
joint distribution over all statuses X = (X1, . . . , Xn) is defined in terms of unary and pairwise
potential functions ϕi(xi) for each individual i, and ϕi,j(xi, xj) for each edge {i, j} ∈ E, with
1 ≤ i < j ≤ n11:

ϕi(xi) = exp
(
θ⊤1 f1(xi, c

(i))
)

and ϕi,j(xi, xj) = exp
(
θ⊤2 f2(xi, xj , c

(i), c(j))
)

for some feature mapping functions f1 : {0, 1} × Rd → R2+2d and f2 : {0, 1}2 × R2d → R4+5d,
and parameters θ1 ∈ R2+2d and θ2 ∈ R4+5d. We adopt the maximum entropy principle [Jay57,

11For notational simplicity, we write f2(xj , xi, c
(j), c(i)) to mean f2(xi, xj , c

(i), c(j)) for any i < j.
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WJ08, Wu12] to parameterize these factors, with feature maps f1 and f2 defined as monomials up to
quadratic terms of the covariate variables while respecting symmetry:

f1(xi, c
(i)) =

(
1, xi, c

(i)
1 , xic

(i)
1 , . . . , c

(i)
d , xic

(i)
d

)⊤

∈ R2+2d (8)

f2(xi, xj , c
(i), c(j)) =

(
1, xixj , (1− xi)xj + xi(1− xj), (1− xi)(1− xj),

v(xi, xj , c
(i)
1 , c

(j)
1 ), . . . ,v(xi, xj , c

(i)
d , c

(j)
d )

)⊤

∈ R4+5d (9)

where v : {0, 1}2 × R2 → R5 is defined as

v(a, b, c, d) =

(
c+d, ab(c+d), a(1−b)c+(1−a)bd, (1−a)bc+a(1−b)d, (1−a)(1−b)(c+d)

)
The joint probability is then:

Pθ1,θ2(X = x) =
1

z(θ1, θ2)
exp

 n∑
i=1

θ⊤1 f1(xi, ci) +
∑

{i,j}∈E

θ⊤2 f2(xi, xj , ci, cj)

 (10)

where z(θ1, θ2) is the partition function. This formulation encodes both individual risk via covariates
and dependency via pairwise interactions, capturing correlation in infection status across the network.
To reduce model complexity and reflect data limitations, we use parameter sharing, i.e. all unary
(resp. pairwise) factors share the same parameters θ1 (resp. θ2). Although exact inference in general
MRFs is intractable, the sexual contact networks we consider are typically sparse, bipartite, or even
tree-structured — as in contact tracing studies — where efficient inference algorithms apply [KF09].
Therefore, we assume access to an inference oracle, and focus on the primary challenge: adaptive
sequential testing under frontier constraints.

At each time step t = {1, 2, . . . , n}, we select an untested individual to test on the frontier and observe
their HIV status. Recalling the definition of AFEG (Definition 1), we can model the interaction
network as G, and each test as acting on a node in G. The reward function for testing individual
X and revealing status b ∈ {0, 1} is simply r(X, b) = b, and any discount factor β ∈ (0, 1) would
encourage identifying HIV+ individuals as early as possible. Importantly, discounting reflects both
practical constraints – such as sudden funding cuts [UNA25] – and clinical importance of early
diagnosis, which improves patient outcomes and limits transmission [CCM+11]. See also [RN21]
for other natural justifications for using discount factors β in modeling long-term policy rewards.
Finally, to apply the infinite horizon framework of AFEG in our finite testing setting, we simply zero
subsequent rewards after every individual has been already tested.

C.2 Learning the distributional parameters from data

To apply our model to a new population with unknown HIV statuses, we must first estimate the
parameters of the joint distribution described in Appendix C.1. We assume access to a historical
dataset in which both the covariates and true HIV statuses are known. Classical approaches to MRF
parameter learning such as [AKN06] typically assume access to multiple independent samples drawn
from a fixed graphical model. Unfortunately, in our case, we only have access to only a single
observed realization of infection statuses in our past data. This means that the maximum likelihood
estimation (MLE) distribution P that describes the dataset is simply the degenerate point distribution
that places full probability mass on the single realization.

To learn a meaningful but non-degenerate transmission probabilities, we consider an intuitive way
to model the joint probabilities based on a factor graph induced by the input graph structure. More
specifically, we define unary factor potentials for each individual node and pairwise factor potentials
for each edge present in the graph, governed by global parameters θ1 and θ2 respectively. The hope is
that this simple formulation serves as a regularization allows us to recover meaningful disease-specific
parameters so that we can define joint distributions P on new interaction graphs for the same disease.

We adopt a maximum likelihood estimation (MLE) approach to learn these θ1 and θ2 parameters with
respect to this single realization under the MRF model: θ∗ = argmaxθ1,θ2 logP(x; θ1, θ2). However,
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exact MLE is intractable in general due to the partition function z(θ1, θ2), whose computation requires
summing over all 2n configurations of node labels. To sidestep this difficulty, we instead optimize
the pseudo-likelihood [Bes75], which approximates the joint likelihood by the product of conditional
distributions for each node given its neighbors:

P̃θ1,θ2(x) =

n∏
i=1

Pθ1,θ2(Xi = xi | x−i) =

n∏
i=1

Pθ1,θ2(x)

Pθ1,θ2(Xi = 0,x−i) + Pθ1,θ2(Xi = 1,x−i)
(11)

This objective is tractable and differentiable with respect to θ1 and θ2, and can be efficiently optimized
using gradient-based methods. Once learned, these parameters can be used to define a new factor
graph for any unseen population with known covariates and network structure, thereby guiding the
adaptive testing policy.

In general, a closed-form solution for the maximum pseudolikelihood estimator is unlikely to exist
due to the nonlinear dependence of the local conditional distributions on the parameters. However,
as the following lemma shows, we can derive closed-form gradients and rely on gradient-based
optimization methods to compute parameter estimates for θ1 and θ2.
Lemma 9. Let G = (X,E) be a graph over n nodes, where each node Xi ∈ X has binary
label xi ∈ {0, 1}, covariates ci ∈ Rd, and neighborhood N(Xi). Define feature maps f1(xi, ci)
and f2(xi, xj , ci, cj) as per Eq. (8) and Eq. (9) respectively, shared parameters θ1 ∈ R2+2d and
θ2 ∈ R4+5d, and the joint probability as per Eq. (10). Then, the log-pseudolikelihood gradients are:

∂ log P̃θ1,θ2(x)

∂θ1
=

n∑
i=1

αi ·
(
f1(1, c

(i))− f1(0, c
(i))
)

∂ log P̃θ1,θ2(x)

∂θ2
=

n∑
i=1

αi ·
∑

Xj∈N(Xi)

(
f2(1, xj , c

(i), c(j))− f2(0, xj , c
(i), c(j))

)
where the common coefficient αi = xi − Pθ1,θ2(Xi = 1 | x−i) can be computed efficiently without
computing z(θ1, θ2) for all i ∈ [n].

The full proof of Lemma 9 is given in Appendix F.2. Note that parameter fitting may not necessary
recover the exact dynamics of the underlying real-world problem in general. That is, Pθ̂1,θ̂2

̸= P in

general, where θ̂1 and θ̂2 are produced parameter estimates assuming the the MRF model defined in
Appendix C.1 and P is the true unknown underlying joint probabilities (which may even lie outside
the model class defined by Appendix C.1). As such, we also provide an error analysis in Appendix F.3
to bound the loss of the attainable discounted accumulated reward of an optimal policy computed on
Pθ̂1,θ̂2

while being executing on P .

D Further discussions

D.1 Broader impact

A central motivation of this work is the urgent need for resource-efficient strategies in global public
health. In the face of constrained resources and diminishing funding for disease control programs
[UNA25], optimizing the allocation of testing efforts is increasingly critical. Our framework enables
targeted, adaptive exploration of interaction networks, and is particularly well-suited to settings where
prior data can inform transmission structure through a learned distribution P , possibly handcrafted
by domain experts. This balance between data-driven structure and real-time adaptivity makes the
AFEG framework a compelling tool for improving public health decision-making.

D.2 Limitations

While our framework makes several modeling assumptions to enable tractable inference and principled
decision making, these also define the scope within which our results apply. Each of these extensions
below presents a well-motivated and technically rich research challenge building on the foundation
we establish.

First, we assume that the interaction graph G is known and fixed. This is a reasonable assumption in
many structured public health applications, such as contact tracing or intervention planning, where
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the network is elicited or constructed from prior data. However, generalizing our methods to handle
uncertain or dynamically evolving graphs is a promising direction for future work.

Second, our paper is focused on P oracles. One way to model this is via MRFs: in Appendix C.1,
we discuss how to model network-based disease testing using pairwise Markov Random Fields
with shared parameters, which provide a flexible yet interpretable model class for encoding local
dependencies in infection status. A more complicated model could be designed and used based on
further inputs from domain experts. It is also worth noting that while exact inference of MRFs is
tractable on sparse graphs (as motivated by real-world sexual networks), scaling to larger or denser
networks may require approximate inference or amortized learning approaches. One can also consider
relaxing to Gaussian random fields [ZLG03], as per the literature of active searching on graphs; see
Appendix A.

Third, our theoretical guarantees for the GITTINS policy are currently limited to tree-structured
graphs; nonetheless, our empirical results demonstrate that it performs competitively even on graphs
with low to moderate treewidth.

Finally, while exact inference is tractable on sparse graphs (as motivated by real-world sexual
networks), scaling to larger or denser networks may require approximate inference or amortized
learning approaches.

D.3 Fairness considerations

A notable advantage of our AFEG framework is its flexibility to accommodate fairness constraints
or objectives in sequential decision making. Since our model maintains posterior beliefs over
individual infection risks via a probabilistic graphical model, fairness-aware modifications can be
naturally incorporated at the policy level. For example, one can enforce demographic parity by
requiring individuals from different subpopulations to have equal testing probabilities over time,
or impose group-specific constraints on exposure or false negative rates. More generally, fairness
can be encoded through soft constraints or regularization terms in the policy objective, or via hard
constraints within the action-selection mechanism. Notably, fairness interventions can also be
incorporated directly through the reward function. To prioritize historically underserved groups,
one could upweight successful identifications among protected populations — for instance, by
defining r(X, b) = b ·α · Iprotected for some α > 1. Since GITTINS policies depend only on the reward
structure and not on group identity per se, such node-dependent reward shaping modifications preserve
optimality guarantees on trees and maintain empirical performance on general graphs. Furthermore,
our Bayesian formulation allows dynamic reweighting or calibration as more data is revealed, enabling
adaptive policies that balance efficiency and equity. Exploring how to systematically integrate such
fairness interventions into frontier-constrained graph exploration is a promising direction for future
work, particularly in public health settings where equitable resource allocation is essential.

E Experimental details and more experimental results

While we do not release the ICPSR dataset, in accordance with its terms of use, interested researchers
may independently access it via https://www.icpsr.umich.edu/web/ICPSR/studies/22140.
To facilitate reproducibility, our experimental scripts and the code used for data preprocessing and
parameter estimation are available on our Github repository12.

E.1 Defining joint probability distribution P in our experiments

As described in Section 4, all of our experiments are modeled after the network-based disease testing
application discussed in Section 1.1, where node labels are binary and a reward of 1 is received if and
only if the revealed label indicates a positive diagnosis. Accordingly, the joint distribution P over
node labels follows the pairwise MRF formulation described in Appendix C.1. Since the covariates
in our real-world dataset [MR11]13 are categorical, we apply one-hot encoding to transform them
into binary vectors. For consistency, our synthetic experiments also use binary covariates.

12https://github.com/cxjdavin/adaptive-frontier-exploration-on-graphs
13This de-identified, public-use dataset is available at https://www.icpsr.umich.edu/web/ICPSR/

studies/22140 under ICPSR’s terms of use. No IRB approval was required for our use of this data.
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Synthetic experiments in Section 4.1 and Section 4.2. For each instance, we sample random
parameters θ1 ∈ R2+2d and θ2 ∈ R4+5d, and assign each node a random binary covariate vector of
dimension d. The joint distribution P is then defined according to Eq. (10). Since all policies are
agnostic to the choice of d, we fix d = 5 to keep computation time manageable.

Constructing P from the real-world dataset in Section 4.3. The real-world dataset comprises a
collection of network-based surveys across eight studies, each recording disease statuses for five
sexually transmitted infections (Gonorrhea, Chlamydia, Syphilis, HIV, and Hepatitis). We first
filtered the data to retain only edges denoting reported sexual interactions and excluded individuals
with missing or ambiguous disease status labels. Because the covariates are shared across diseases
but transmission dynamics differ, we aggregated data across studies and split it by disease. See
Table 1 for dataset summary statistics. For covariates, we used categorical survey responses capturing
demographic and behavioral factors relevant to disease transmission such as gender14, homelessness,
sex work involvement, etc. A total of 17 categorical variables were one-hot encoded into binary
vectors of dimension d = 72. We then applied the parameter fitting procedure from Appendix F.2
to estimate θ1 ∈ R2+2d and θ2 ∈ R4+5d for each disease-specific dataset, and constructed the
corresponding pairwise MRF P using Eq. (10).

Table 1: Summary statistics of real-world sexual interaction graphs [MR11]. Approximate treewidth
is obtained by computing a tree decomposition using networkx’s treewidth_min_fill_in. The
graphs for Gonorrhea and Chlamydia are identical but the infection rates are different, i.e., not
everyone is infected with both diseases.

Sexually transmitted disease Gonorrhea Chlamydia Syphilis HIV Hepatitis

Number of infected 66 963 44 88 117
Number of individuals 2079 2079 542 778 1732

Number of edges 1326 1326 519 793 1260
Diameter of graph 8 8 12 13 24

Approximate tree width 1 1 16 16 6

E.2 Full results for Section 4.1

As described in Section 4.1, we evaluated the policies against a familly of randomly generated
synthetic trees on n ∈ {10, 50, 100} nodes across various discount facotrs β ∈ {0.5, 0.7, 0.9}. Fig. 3
in Section 4.1 shows only the figures with discount factor β = 0.9. See Fig. 12 for the full 3× 3 plot.

E.3 Full results for Section 4.2

As described in Section 4.2, we progressively add random non-tree edges to the synthetic trees to
observe the change in relative performance of our policies. Across all experiments, we consider a
discount factor of β = 0.9 and add {0, 2, 4, 6, 8, 10} extra edges to each graph. Fig. 4 in Section 4.2
shows only the figures for n = 50; see Fig. 13 for results on n ∈ {10, 100}. While 10 edges may
seem like a small number, recall that trees have n − 1 edges. So, adding 10 edges correspond to
adding roughly 100%, 20%, and 10% adding additional edges to each graph for n ∈ {10, 50, 100}
respectively.

E.4 Full results for Section 4.3

Table 2 provides the summary statistics of the subsampled real-world graphs which our experiments
in Fig. 5 are based on.

In the main paper, we showed empirical results for when policies only have access to a noisy version
Qε of the true underlying distribution P for the HIV dataset. Fig. 14 shows the results for all 5
diseases.

14See [FHA+98, Scu18] for evidence on gender differences in HIV susceptibility.
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Figure 12: Full experimental results for synthetic tree experiments.

Table 2: Summary statistics of subsampled real-world sexual interaction graphs from [MR11]. CC
stands for connected component, Max. depth refers to the maximum BFS tree depth for GITTINS,
and approximate treewidth is obtained by using networkx’s treewidth_min_fill_in.

Disease # Nodes # Edges Forest? Diameter # CC Max. depth Apx. treewidth

Gonorrhea 300 195 ✓ 5 105 3 1
Chlamydia 300 195 ✓ 5 105 4 1

Syphilis 433 456 ✗ 12 97 9 16
HIV 305 390 ✗ 12 39 8 16

Hepatitis 300 184 ✗ 5 125 5 2
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Figure 13: Full experimental results for synthetic non-tree experiments. Observe that the relative
performance gains of GITTINS over other baselines decreases as we deviate from a tree. Furthermore,
in the small n = 10 (top row) instances where we can run OPTIMAL, we see that GITTINS is no
longer optimal as more non-tree edges are added, as expected.
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Figure 14: Experiments on the datasets of all 5 diseases where policies only have access noisy version
Qε of the underlying distribution P on the HIV dataset. Error bars illustrate the standard error due to
10 random instantiations of Qε for each corresponding value of ε.
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F Deferred proof details

F.1 Gittins proofs

Lemma 4. For any node X ∈ X and label b ∈ Ω, ϕX,b(m) is a non-decreasing piecewise linear
function over m ∈ [0, r̄/(1− β)].

Proof. Let us induct on the nodes from the leaf towards the root while recalling definitions of ϕ and
Φ from Eq. (1) and Eq. (2) respectively.

Base case (X is a leaf): For any m ∈ [0, r̄
1−β ], we have ΦCh(X),b(m) = Φ∅,b(m) = m, and so

ϕX,b(m) = max

{
m,
∑
v∈Ω

P(X = v | Pa(X) = b) ·
[
r(v) + β · ΦCh(X),v(m)

]}
= max

{
m,
∑
v∈Ω

P(X = v | Pa(X) = b) ·
[
r(v) + βm

]}
= max

{
m,βm+

∑
v∈Ω

P(X = v | Pa(X) = b) · r(v)
}

Since
∑

v∈Ω P(X = v | Pa(X) = b) · r(v) is a constant with respect to m, we see that ϕX,b(m) is
non-decreasing with respect to m. Furthermore, since m and βm +

∑
v∈Ω P(X = v | Pa(X) =

b) · r(v) are both linear functions in m, combining them via the max operator into ϕX,b(m) yields a
piecewise linear function of m with at most 2 pieces.

Inductive case (X is a not a leaf): Set S = Ch(X) in Eq. (2). Consider ∂ϕY,b(k)
∂k for an arbitrary

Y ∈ Ch(X) and label b ∈ Ω. By induction hypothesis, we know that ϕY,b(k) is a piecewise
linear function in k, and so ∂ϕY,b(k)

∂k is a piecewise constant function in k. Thus, the product of∏
Y ∈Ch(X)

∂ϕY,b(k)
∂k is a piecewise constant function, and the integral

∫ r̄
1−β

m

∏
Y ∈Ch(X)

∂ϕY,b(k)
∂k dk

is a piecewise linear function of m. Therefore, since r̄
1−β is a constant with respect to m, we have

that ΦCh(X),b(m) is a piecewise linear function of m. Finally, similar to the base case argument
above, we see that ϕX,b(m) is non-decreasing with respect to m and ϕX,b(m) is a piecewise linear
function of m because the P(X = v | Pa(X) = b) and r(v) terms are constants with respect to m.
As a remark, if X is the root, we simply replace P(X = v | Pa(X) = b) with P(X = v) in the
above argument.

Proposition 5. For any non-leaf node X and label b:

• ΦCh(X),v(m) = ΦCh(X),v(0) + hCh(X),v(m) for some piecewise linear hCh(X),v(m).

• ΦCh(X),v(m) = m if and only if m ≥ maxY ∈Ch(X) g(Y, b).

Proof. For the first item, recall that we showed that
∫ r̄

1−β

m

∏
Y ∈Ch(X)

∂ϕY,b(k)
∂k dk is a piecewise

linear function of m in the proof in Lemma 4. Defining this function as hCh(X),b(m), Eq. (2) yields
ΦS,b(m) = r̄

1−β + hCh(X),b(m). So, ΦS,b(0) = r̄
1−β + hCh(X),b(0), which is a constant since

hCh(X),b(0) with respect to m.

For the second item, we recall the following fact from [Whi80] that ∂ϕX,b(k)
∂k = E[βT ], where the

expectation is taken under the optimal policy when given a fallback option m and T is the optimal
stopping time for node X . Since β ∈ (0, 1), we see that E[βT ] ≤ 1 with equality if and only if when
T = 0, which happens only when m ≥ g(X, b). So, the product in Eq. (2)

∏
Y ∈Ch(X)

∂ϕY,b(k)
∂k dk ≤

1 with equality if and only if k ≥ maxY ∈Ch(X) g(Y, b). Meanwhile, when the product equals to

1, we get ΦCh(X),b(m) = r̄
1−β −

∫ r̄
1−β

m
1 dk = m. Therefore, ΦCh(X),b(m) = m if and only if

m ≥ maxY ∈Ch(X) g(Y, b).

For convenience of proving Theorem 6, let us recall Eq. (1) and Eq. (2) from the main text:
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To define the Gittins index, let us first define two recursive functions ϕ and Φ, as
per [KO03]. For any non-root node X ∈ X, label b ∈ Ω, and value 0 ≤ m ≤ r̄

1−β ,

ϕX,b(m) = max

{
m,
∑
v∈Ω

P(X = v | Pa(X) = b)·
[
r(X, v)+β·ΦCh(X),v(m)

]}
(1)

If X is the root, we define ϕX,∅(m) = max

{
m,
∑

v∈Ω P(X = v) ·
[
r(X, v) +

β · ΦCh(X),v(m)
]}

. For any subset of nodes S ∈ X, label b ∈ Ω, and value

0 ≤ m ≤ r̄
1−β ,

ΦS,b(m) =

{
r̄

1−β −
∫ r̄

1−β

m

∏
Y ∈S

∂ϕY,b(k)
∂k dk if S ̸= ∅

m if S = ∅
(2)

We will only invoke Eq. (2) with S = Ch(X) for some node X .
Theorem 6. Given graph G = (X,E) and oracle access15 to joint distribution P , the Gittins indices
can be computed in O(n2 · |Ω|2) time while using O(n · |Ω|2) oracle calls to P via Algorithm 1. The
space complexity is O(n2 · |Ω|) space for storing O(n · |Ω|) intermediate piecewise linear functions.

Proof. Without loss of generality, we may assume that there is only one rooted tree since the
computation for each connected component is independent For instance, if there are k components and
the i-th component has ni nodes, then the overall complexity is O(

∑k
i=1 n

2
i · |Ω|2) ⊆ O(n2 · |Ω|2).

Throughout this proof, we assume that any conditional probability value can be obtained in constant
time via oracle access to P . Now, recalling the definitions of Eq. (1) and Eq. (2), and Lemma 4,
we know that the computation of ϕ and Φ involve manipulating piecewise linear functions. The
proof outline is as follows: we first use induction to argue that for any node X , the set of functions
{ϕX,b}b∈Ω can be computed using O(|Ω|2) oracle calls to P and O(|Ω| ·max{1, |Ch(X)|}) opera-
tions on piecewise linear functions. Then, we argue that the maximum time to perform any piecewise
linear function operation in Algorithm 1 is upper bounded by O(n · |Ω|). Our claim follows by
summing over all nodes X and using the upper bound cost of operating on piecewise linear function.

By inducting on the nodes from the leaf towards the root, we first show that the set of functions
{ϕX,b}b∈Ω can be computed using O(|Ω|2) oracle calls to P and O(|Ω| ·max{1, |Ch(X)|}) opera-
tions on piecewise linear functions, as long as we store intermediate functions {ϕY,b}Y ∈Ch(X),b∈Ω

along the way. As a reminder, in this part of the proof, we are abstracting away the computation cost
for manipulating pieces of piecewise functions and focus on counting the number of operations on
piecewise functions; we will later upper bound the computational cost for each of these operations.

Base case (X is a leaf): Recall from the proof of Lemma 4 that the function ϕX,b is defined as

ϕX,b(m) = max

{
m,βm+

∑
v∈Ω

P(X = v | Pa(X) = b) · r(X, v)
}

for any label value b ∈ Ω. Since
∑

v∈Ω P(X = v | Pa(X) = b)·r(X, v) can be computed inO(|Ω|)
oracle calls to P , the function ϕX,b can be computed with O(1) further operations on piecewise linear
functions. So, the set of functions {ϕX,b}b∈Ω can be computed in O(|Ω|2) oracle calls to P and
O(|Ω|) operations on piecewise linear functions.

Inductive case (X is not a leaf, i.e. Ch(X) ̸= ∅): Suppose all children nodes Y ∈ Ch(X) of X
have computed and stored their piecewise linear functions ϕY,v for all possible values v ∈ Ω.

Fix an arbitrary label b ∈ Ω. To compute ΦX,b we need O(|Ch(X)|) operations on piecewise
linear functions to differentiate each ϕY,b function, and then multiply them together. Integrating

15The focus is on the recursive cost of computing Gittins indices and the oracle access assumption is meant to
abstract away the computational cost of computing quantities like P(· | ·). As our setting assumes that P is a
pairwise MRF defined over a tree-structured graph, such inference is tractable via the junction tree algorithm.
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this resultant function and subtracting it from the constant r̄
1−β function requires only an additional

O(1) operations on piecewise linear functions. Thus, computing all functions {ΦCh(X),b}b∈Ω costs
O(|Ch(X)| · |Ω|) operations on piecewise linear functions.

Fix an arbitrary label b ∈ Ω. To compute ϕX,b, we need to manipulate the set of functions
{ΦCh(X),v}v∈Ω. More precisely, we use O(1) operations to scale each ΦCh(X),v function by a
constant β, add the constant r(X, v) function to each of them, and multiply again by the constant
value P(X = v | Pa(X) = b). Note that each P(X = v | Pa(X) = b) can be obtain in a single
call to the P oracle, i.e. a total of O(|Ω|) calls. A further O(|Ω|) operations on piecewise linear
functions suffice to sum these manipulated functions up and take the maximum against the linear m
function. So, the entire set of functions {ϕX,b}b∈Ω can be computed in O(|Ω|2) oracle calls to P
and O(|Ω| · |Ch(X)|) operations on piecewise linear functions.

Intermediate conclusion: By the inductive argument above, we showed the set of functions
{ϕX,b}b∈Ω can be computed using O(|Ω|2) oracle calls to P and O(max{1, |Ch(X)|} · |Ω|) opera-
tions on piecewise linear functions for any node X . Summing across all nodes, this incurs O(n · |Ω|2)
oracle calls to P and O(|Ω| ·

∑
X∈X max{1, |Ch(X)|}) operations on piecewise linear functions.

It remains to argue that any operation on piecewise linear function in Algorithm 1 requires O(n · |Ω|)
time. First, observe that the computation time for any piecewise function operation depends on
the number of pieces. Let us denote the number of pieces in a piecewise function f by #pieces(f).
Any addition or multiplication operation of two piecewise linear functions f and g creates a new
piecewise linear function h such that #pieces(h) ≤ #pieces(f) + #pieces(g). Differentiating and
integrating a piecewise linear function do not change the number of pieces. Finally, taking the max of
a piecewise linear against a linear function can at most increase the number of pieces by 1. From
Lemma 8, we know that the maximum number of pieces in any piecewise linear operation involving
in the computation of Algorithm 1 is at most O(n · |Ω|).
Putting together everything, we see that Algorithm 1 incurs O(n · |Ω|2) oracle calls to P and
O(|Ω| ·

∑
X∈X max{1, |Ch(X)|}) operations on piecewise linear functions. Since each operation

on piecewise linear functions costs at most O(n · |Ω|), Algorithm 1 runs in O(n2 · |Ω|2) time while
using O(n · |Ω|2) oracle calls to P .

F.2 Parameter fitting

For convenience of proving Lemma 9, let us recall Eq. (11) from Appendix C.2:

P̃θ1,θ2(x) =

n∏
i=1

Pθ1,θ2(Xi = xi | x−i) =

n∏
i=1

Pθ1,θ2(x)

Pθ1,θ2(Xi = 0,x−i) + Pθ1,θ2(Xi = 1,x−i)

where

Pθ1,θ2(X = x) =
1

z(θ1, θ2)
exp

 n∑
i=1

θ⊤1 f1(xi, ci) +
∑

{i,j}∈E

θ⊤2 f2(xi, xj , ci, cj)


and

ϕi(xi) = exp
(
θ⊤1 f1(xi, c

(i))
)

and ϕi,j(xi, xj) = exp
(
θ⊤2 f2(xi, xj , c

(i), c(j))
)

Lemma 9. Let G = (X,E) be a graph over n nodes, where each node Xi ∈ X has binary
label xi ∈ {0, 1}, covariates ci ∈ Rd, and neighborhood N(Xi). Define feature maps f1(xi, ci)
and f2(xi, xj , ci, cj) as per Eq. (8) and Eq. (9) respectively, shared parameters θ1 ∈ R2+2d and
θ2 ∈ R4+5d, and the joint probability as per Eq. (10). Then, the log-pseudolikelihood gradients are:

∂ log P̃θ1,θ2(x)

∂θ1
=

n∑
i=1

αi ·
(
f1(1, c

(i))− f1(0, c
(i))
)

∂ log P̃θ1,θ2(x)

∂θ2
=

n∑
i=1

αi ·
∑

Xj∈N(Xi)

(
f2(1, xj , c

(i), c(j))− f2(0, xj , c
(i), c(j))

)
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where the common coefficient αi = xi − Pθ1,θ2(Xi = 1 | x−i) can be computed efficiently without
computing z(θ1, θ2) for all i ∈ [n].

Proof. Let us define the terms A and By,b for y ∈ [n] and b ∈ {0, 1}:

A = log

(
z(θ1, θ2) · Pθ1,θ2(x)

)
=

n∑
i=1

θ⊤1 f1(xi, ci) +
∑

{i,j}∈E

θ⊤2 f2(xi, xj , c
(i), c(j))

By,b = log

(
z(θ1, θ2) · Pθ1,θ2(Xy = b,x−y)

)
= θ⊤1 f1(b, c

(y)) +
∑

{i,j}∈E
y=i

θ⊤2 f2(b, xj , c
(y), c(j))

+

n∑
i=1
i ̸=y

θ⊤1 f1(xi, c
(i)) +

∑
{i,j}∈E
y ̸∈{i,j}

θ⊤2 f2(xi, xj , c
(i), c(j))

Observe that
exp(B1

y)

exp(B0
y) + exp(B1

y)
= Pθ1,θ2(Xy = 1 | x−y) (12)

Let us consider their partial differentation with respect to θ1 and θ2. We will use these later.

∂A

∂θ1
=

n∑
i=1

θ⊤1 f1(xi, c
(i))

∂θ1
(13)

=

n∑
i=1

f1(xi, c
(i))

∂A

∂θ2
=

∑
{i,j}∈E

∂θ⊤2 f2(xi, xj , c
(i), c(j))

∂θ2
(14)

=
∑

{i,j}∈E

f2(xi, xj , c
(i), c(j))

∂Bb
y

∂θ1
=
∂θ⊤1 f1(b, cy)

∂θ1
+

n∑
i=1
i ̸=y

∂θ⊤1 f1(xi, c
(i))

∂θ1
(15)

= f1(b, cy) +

n∑
i=1
i ̸=y

f1(xi, c
(i))

∂Bb
y

∂θ2
=

∑
{i,j}∈E

y=i

∂θ⊤2 f2(b, xj , c(
(y), c(j))

∂θ2
+

∑
{i,j}∈E
y ̸∈{i,j}

∂θ⊤2 f2(xi, xj , c
(i), c(j))

∂θ2
(16)

=
∑

{i,j}∈E
y=i

f2(b, xj , c
(y), c(j)) +

∑
{i,j}∈E
y ̸∈{i,j}

f2(xi, xj , c
(i), c(j))

Now, re-expressing P̃θ1,θ2(x) in terms of A and Bb
y , we have

P̃θ1,θ2(x) =

n∏
i=1

Pθ1,θ2(x)

Pθ1,θ2(Xi = 0,x−i) + Pθ1,θ2(Xi = 1,x−i)
=

n∏
y=1

exp(A)

exp(B0
y) + exp(B1

y)

Fix an index y ∈ [n] and define Wy = exp(A)
exp(B0

y)+exp(B1
y)

so that P̃θ1,θ2(x) =
∏n

y=1Wy, i.e.

log P̃θ1,θ2(x) =
∑n

y=1 logWy .
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Let us differentiate with respect to θ1. For any y ∈ [n], we see that
∂ logWy

∂θ1

=
∂A

∂θ1
−
∂ log(exp(B0

y) + exp(B1
y))

∂θ1

=
∂A

∂θ1
− 1

exp(B0
y) + exp(B1

y)

(
∂ exp(B0

y)

∂θ1
+
∂ exp(B1

y)

∂θ1

)

=
∂A

∂θ1
−

exp(B0
y)

exp(B0
y) + exp(B1

y)

∂B0
y

∂θ1
−

exp(B1
y)

exp(B0
y) + exp(B1

y)

∂B1
y

∂θ1

=
∂A

∂θ1
− (1− Pθ1,θ2(Xy = 1 | x−y))

∂B0
y

∂θ1
− Pθ1,θ2(Xy = 1 | x−y))

∂B1
y

∂θ1
(By Eq. (12))

=

n∑
i=1

f1(xi, ci)− (1− Pθ1,θ2(Xy = 1 | x−y))

f1(0, cy) + n∑
i=1
i ̸=y

f1(xi, ci)


− Pθ1,θ2(Xy = 1 | x−y)

f1(1, cy) + n∑
i=1
i ̸=y

f1(xi, ci)


(By Eq. (13) and Eq. (15))

= f1(xy, cy)− (1− Pθ1,θ2(Xy = 1 | x−y)) · f1(0, cy)− Pθ1,θ2(Xy = 1 | x−y) · f1(1, cy)
= (xy − Pθ1,θ2(Xy = 1 | x−y)) · (f1(1, cy)− f1(0, cy)) (Since xy ∈ {0, 1})

Summing over all y ∈ [n], we get

∂ log P̃θ1,θ2(x)

∂θ1
=

n∑
y=1

∂ logWy

∂θ1
=

n∑
y=1

(xy − Pθ1,θ2(Xy = 1 | x−y)) · (f1(1, cy)− f1(0, cy))

yielding the first statement as desired, where αy = (xy − Pθ1,θ2(Xy = 1 | x−y)).

For the second statement, we do the same analysis but use Eq. (14) and Eq. (16) instead of Eq. (13)
and Eq. (15). Note that the second summation

∑
{i,j}∈E
y ̸∈{i,j}

gets cancelled out as in the above analysis

while the first summation
∑

{i,j}∈E
y=i

is exactly corresponds to
∑

Xj∈N(Xy)
.

F.3 Robustness to model misspecification

We analyze how errors in the learned graphical model impact the quality of the resulting policy
in an AFEG instance. Specifically, we derive a bound on the discrepancy between the optimal
state–action value functions of the learned and the true Markov decision processes (MDPs), capturing
how inaccuracies in the estimated joint distribution P̂ affect decision quality.

Recall that an AFEG instance is defined by a triple (G,P, β), where G = (X,E) is a graph, P is
a joint distribution over binary node labels Markov with respect to G, and β ∈ (0, 1) is a discount
factor. At each time step t, the state St records the current frontier and the set of revealed labels. A
policy π selects a node from the frontier and receives a label-dependent reward.

We consider two MDPs defined over the same state space S, action mapping A : S → 2X that
restricts valid actions to untesed frontier nodes, and discount factor β, but differing in the distribution
used to infer infection status:

• The learned MDP M = (S,A, P̂ , R̂, β) is defined using an estimated model P̂ obtained
via pseudo-likelihood. The expected reward for testing node a ∈ A(s) is

R̂(s, a) = P̂(Xa = 1 | s),

and the transition kernel P̂ uses this posterior to sample a binary outcome.
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• The true MDP M ′ = (S,A, P,R, β) is induced by the ground-truth distribution P , with

R(s, a) = P(Xa = 1 | s),

and transitions P differing from P̂ only in the Bernoulli parameter used for Xa.

We define the maximum reward and transition discrepancies:

εR = max
s∈S, a∈A(s)

∣∣∣R̂(s, a)−R(s, a)
∣∣∣ , εP = max

s∈S, a∈A(s), s′∈S

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ .

Since rewards are probabilities, we set Rmax = 1.

We are interested in bounding the worst-case deviation in optimal Q-values:

∥Q∗
M −Q∗

M ′∥∞ = max
s∈S, a∈A(s)

|Q∗
M (s, a)−Q∗

M ′(s, a)| .

This is because theQ∗-function encodes the expected total discounted reward starting from state s and
taking action a, and thus directly characterizes the long-term value of testing each node. Therefore, a
small bound on ∥Q∗

M −Q∗
M ′∥∞ ensures that the policy derived from the learned model will perform

nearly as well as the optimal policy under the true model, in terms of accumulated reward. The
following bound shows that the suboptimality of the learned policy is controlled by the maximum
error in posterior infection probabilities and transition dynamics, with greater sensitivity as β → 1.
Lemma 10. Let M and M ′ be defined as above, and let εR, εP denote the maximal reward and
transition discrepancies. Then:

∥Q∗
M −Q∗

M ′∥∞ ≤ εR
1− β

+
βRmax

(1− β)2
εP .

In particular, since Rmax = 1,

∥Q∗
M −Q∗

M ′∥∞ ≤ 1

1− β

(
εR +

β

1− β
εP

)
.

Proof. Let TM and TM ′ denote the Bellman optimality operators for MDPs M and M ′ respectively.
For any function Q : S ×A → R, define:

(TMQ)(s, a) = R(s, a) + β
∑
s′∈S

P (s′ | s, a)max
a′

Q(s′, a′)

The same holds for the operator TM ′ . We also know that the operators TM and TM ′ are both
β-contractions under the supremum norm:

∥TMQ− TMQ
′∥∞ ≤ β∥Q−Q′∥∞ and ∥TM ′Q− TM ′Q′∥∞ ≤ β∥Q−Q′∥∞

Now, let Q∗
M and Q∗

M ′ be the fixed points of TM and TM ′ respectively. Then,

∥Q∗
M −Q∗

M ′∥∞ = ∥TMQ∗
M − TM ′Q∗

M ′∥∞ (Q∗
M and Q∗

M ′ are fixed points)
≤ ∥TMQ∗

M − TM ′Q∗
M∥∞ + ∥TM ′Q∗

M − TM ′Q∗
M ′∥∞ (Triangle inequality)

≤ ∥TMQ∗
M − TM ′Q∗

M∥∞ + β∥Q∗
M −Q∗

M ′∥∞ (Contraction property of TM ′ )

Rearranging, we get

(1− β)∥Q∗
M −Q∗

M ′∥∞ ≤ ∥TMQ∗
M − TM ′Q∗

M∥∞ (17)

As the difference ∥TMQ∗
M −TM ′Q∗

M∥∞ captures how much the two MDPs’ rewards and transitions
differ, we will analyze and bound for (TMQ)(s, a)− (TM ′Q)(s, a) for some fixed Q:

(TMQ)(s, a)− (TM ′Q)(s, a)

=
(
R(s, a)− R̂(s, a)

)
+ β

∑
s′

(
P (s′ | s, a)− P̂ (s′ | s, a)

)
max
a′

Q(s′, a′).

Taking absolute values and using the definition of εR and εP , we get

|(TMQ)(s, a)− (TM ′Q)(s, a)| ≤ εR + βεP ∥Q∥∞.
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Therefore,
∥TMQ− TM ′Q∥∞ ≤ εR + βεP ∥Q∥∞.

In particular, setting Q = Q∗
M ′ and using the bound ∥Q∗

M ′∥∞ ≤ Rmax/(1− β), we see that

∥TMQ∗
M ′ − TM ′Q∗

M ′∥∞ ≤ εR +
βRmax

1− β
εP

Plugging into Eq. (17), we get

(1− β)∥Q∗
M −Q∗

M ′∥∞ ≤ εR +
βRmax

1− β
εP

Thus,

∥Q∗
M −Q∗

M ′∥∞ ≤ εR
1− β

+
βRmax

(1− β)2
εP

as desired.
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