
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CIPHERPRUNE: EFFICIENT AND SCALABLE PRIVATE
TRANSFORMER INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Private Transformer inference using cryptographic protocols offers promising so-
lutions for privacy-preserving machine learning; however, it still faces significant
runtime overhead (efficiency issues) and challenges in handling long-token inputs
(scalability issues). We observe that the Transformer’s operational complexity
scales quadratically with the number of input tokens, making it essential to re-
duce the input token length. Notably, each token varies in importance, and many
inputs contain redundant tokens. Additionally, prior private inference methods
that rely on high-degree polynomial approximations for non-linear activations are
computationally expensive. Therefore, reducing the polynomial degree for less
important tokens can significantly accelerate private inference. Building on these
observations, we propose CipherPrune, an efficient and scalable private inference
framework that includes a secure encrypted token pruning protocol, a polynomial
reduction protocol, and corresponding Transformer network optimizations. At the
protocol level, encrypted token pruning adaptively removes unimportant tokens
from encrypted inputs in a progressive, layer-wise manner. Additionally, encrypted
polynomial reduction assigns lower-degree polynomials to less important tokens
after pruning, enhancing efficiency without decryption. At the network level, we
introduce protocol-aware network optimization via a gradient-based search to max-
imize pruning thresholds and polynomial reduction conditions while maintaining
the desired accuracy. Our experiments demonstrate that CipherPrune reduces the
execution overhead of private Transformer inference by approximately 6.1× for
128-token inputs and 10.6× for 512-token inputs, compared to previous meth-
ods, with only a marginal drop in accuracy. The code is publicly available at
https://anonymous.4open.science/r/CipherPrune-8AEC.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the predominant approach for tackling a wide range
of machine learning tasks, spanning Natural Language Processing (NLP) and Computer Vision (CV)
domains. Notably, Transformer-as-a-Service (TaaS) (Radford et al., 2018) has emerged as an effective
means for average users to harness the capabilities of sophisticated and accurate Transformers
deployed on cloud servers. Privacy has become a major concern, driving a growing demand for
privacy-preserving TaaS solutions (Zheng et al., 2023; Hao et al., 2022; Zeng et al., 2023).

Homomorphic Encryption (HE)(Gentry, 2009) is a promising secure computing technology that
protects data privacy by enabling computations on encrypted data without decryption. However,
applying HE continuously for deep computation tasks often results in prohibitively high latency. To
address this, hybrid HE/Multi-party Computation (MPC)-based techniques(Chen et al., 2022; Zheng
et al., 2023; Hao et al., 2022; Zeng et al., 2023; Zhang et al., 2023; Lu et al., 2025; Pang et al., 2024;
Xu et al., 2024) have been widely adopted for private Transformer inference, as illustrated in Figure 1
(a). This hybrid approach achieves state-of-the-art performance by using HE for linear operations
and MPC for non-linear operations.

Unfortunately, prior private Transformer inferences (Lu et al., 2025; Pang et al., 2024) still suffer
from significant latency and poor scalability over long-token inputs. Specifically, as Figure 1 (b)
shows, the prior private inference process for a GPT2 Transformer (Pang et al., 2024) with 128 input
tokens extends to ∼ 10 minutes. It necessitates the exchange of over 60 gigabytes of data between
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Figure 1: (a) An illustration of HE/MPC-based private inference. (b) The high-latency and scalable
challenge of private Transformer models over lengthy inputs. (c) An example of redundant input in
sentiment analysis tasks. (d) Demonstration of varying levels of redundancy across different inputs.
(e) An example showcasing progressive redundancy pruning.

the server and the client. Furthermore, as the token length increases, the runtime overhead grows
super-linearly, indicating poor scalability. This is primarily because the operational complexity of
Transformers (Vaswani et al., 2017; Kim et al., 2022) scales quadratically with the number of input
tokens. Reducing the number of input tokens without compromising accuracy is essential.

We observe that most inputs contain redundant words/tokens, with varying levels of redundancy
across different inputs. As illustrated in Figure 1(c), in a sentiment analysis task, an input that retains
only the tokens movie and great while removing almost all others still maintains inference confidence
and accuracy. We refer to such tokens that can be removed without significantly impacting accuracy
as redundancy. Meanwhile, the different inputs have various levels of redundancy (Wang et al.,
2021; Kim et al., 2022). Figure 1 (d) illustrates that some inputs exhibit greater redundancy, while
others have less, with this variation being particularly evident across different tasks. Classification
tasks typically have more redundancy compared to sequence-to-sequence tasks (Fu et al., 2024). To
effectively prune more tokens from longer inputs and potentially reduce the Transformer’s quadratic
complexity to linear, pruning should be done progressively—that is, tokens should be pruned layer by
layer over multiple stages, as illustrated in Figure 1 (e), rather than performing a one-time pruning at
the first layer (Wang et al., 2021; Kim et al., 2022). Another key observation is that previous private
Transformer inference methods, whether relying on precise non-linear activations (Hao et al., 2022) or
using large-degree polynomial approximations (Lu et al., 2025; Pang et al., 2024) for these activations,
continue to suffer from significant execution overhead for non-linear operations. Therefore, replacing
non-linear activations or high-degree polynomials with lower-degree polynomials can be beneficial.
As shown in Figure 2 , a degree-d polynomial activation for tokens (Figure 2(a)) can be reduced to a
degree-di polynomial (Figure 2(b)), where di ≤ d.

Adopting existing plaintext-level pruning techniques (PlainPrune) (Wang et al., 2021; Kim et al.,
2022) to accelerate private Transformer inferences presents a formidable challenge. The primary
reason is that the tokens are encrypted, and we need to calculate token importance scores layer by
layer for specific encrypted inputs. This requires redesigning a new encrypted token pruning protocol.
Meanwhile, the polynomial reduction in the encrypted domain poses a similar challenge, and we need
to design an encrypted polynomial reduction protocol for efficient private activation. Also, at the
network level, we need to learn the pruning and polynomial reduction thresholds while maximizing
efficiency, ensuring privacy, and maintaining the desired level of accuracy.
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Figure 2: Polynomial Reduction.

To address these challenges, we introduce CipherPrune, a
scalable and efficient framework for private inference that
incorporates a secure encrypted token pruning protocol, a
polynomial reduction protocol, and tailored Transformer
network optimizations. At the protocol level, CipherPrune
adaptively prunes unimportant tokens from encrypted in-
puts in a progressive, layer-by-layer manner. It also applies
encrypted polynomial reduction by assigning lower-degree
polynomials to less important tokens post-pruning, thereby improving efficiency without requiring
decryption. At the network level, we implement protocol-aware optimization using a gradient-based
search, aiming to maximize pruning thresholds and polynomial reduction conditions while preserving
the required accuracy. Our experiments show that CipherPrune reduces the execution overhead of
private Transformer inference by about 6.1× for 128-token inputs and 10.6 × for 512-token inputs
compared to prior method (Pang et al., 2024), with only a marginal drop in accuracy.
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2 PRELIMINARIES

Attention-based Transformers. Attention mechanisms underpin the superior performance of Trans-
formers, which can effectively capture long-range dependencies in the input token sequence and
model contextual information. The Transformer (Devlin et al., 2018) consists of multiple encoder and
decoder layers, both of which share the similar structure. A basic transformer encoder layer consists of
two major computation blocks: a Multi-head Self-attention (MHA) module and a Feed Forward (FFN)
module, each with residual connections around and followed by a Layer Normalization (LN) module.
Given an input token sequence x ∈ Rn×D, where n is the number of tokens and D is the token em-
bedding dimension, the attention is computed as: Attention(Q,K, V ) = SoftMax(QKT /

√
dh)V .

The matrices Q,K, V ∈ Rn×dh are computed by multiplying input x with three weight matrices
Wq,Wk,Wv ∈ RD×dh , where dh is the head dimension.

Token Pruning in Transformers. To reduce the computational overhead of plaintext Transformers,
a range of strategies including efficient architecture design, knowledge distillation, quantization,
and both model and token pruning have been developed. Among these, token pruning (Goyal et al.,
2020; Kim & Cho, 2020; Wang et al., 2021) stands out for its ability to dynamically reduce token
complexity, enhancing efficiency for scalable input lengths. Online token pruning progressively
eliminates nonessential input tokens during inference, with recent techniques like learning-based
token pruning assigning tunable thresholds to each Transformer layer. These thresholds are fine-tuned
during training to maximize the removal of tokens from the sequence.

Given the attention map Att = SoftMax(QKT /
√
d) ∈ Rn×n, the importance score S ∈ Rn of n

tokens xi ∈ RD in the input sequence can be computed as: S[i] = 1
H

1
n

∑H−1
h=0

∑n−1
j=0 Atth[j, i] (1)

where H is the number of attention heads and Atth is the attention map in the h-th head. Importance
score S is essentially computed by accumulating attention scores vertically, which indicates the
importance of a token across all heads in one Transformer layer.

Cryptographic Primitives. Our protocol uses multiple cryptographic primitives including Additive
Secret Sharing (ASS), Homomorphic Encryption (HE), and Oblivious Transfer (OT).

• ASS. We employ a 2-out-of-2 ASS scheme (Cramer et al., 2015) operating over the ring Zℓ, where
ℓ is the bitwidth of the input x. ASS partitions x into two distinct random shares ⟨x⟩0 , ⟨x⟩1, where
x = ⟨x⟩0 + ⟨x⟩1 mod Zℓ. The parties, P0 and P1, respectively hold ⟨x⟩0 , ⟨x⟩1. Importantly, it is
guaranteed that neither P0 nor P1 can discern the actual value of x (Cramer et al., 2015). ASS
lends itself to linear operations, i.e., addition and constant multiplication, without communications.

• HE. We leverage the BFV scheme (Brakerski, 2012; Fan & Vercauteren, 2012), a leveled HE
scheme, to facilitate linear operations on ciphertexts. The HE scheme has 4 functions: KeyGen,
Enc, Dec, and Eval. KeyGen generates a public key pk and a secret key sk. Enc encrypts
a message m with the public key pk to yield a ciphertext c. Dec, with the secret key sk and
ciphertext c as inputs, decrypts the ciphertext to recover the message m. Finally, Eval, when
given the public key pk, two ciphertexts c1 and c2 encrypting messages m1 and m2, along with a
linear function F , produces a new ciphertext c′ encrypting the result of F(m1,m2).

• OT. We use OT for non-linear operations (Rathee et al., 2020; 2021) in a network model.
Specifically, we employ 1-out-of-2 correlated OT (Asharov et al., 2013) (2-COTℓ) and 1-out-
of-k (Kolesnikov & Kumaresan, 2013) (k-OTℓ). In 2-COTℓ, the protocol takes as inputs the
sender’s correlation x ∈ Zℓ and receiver’s bit choice i ∈ {0, 1}. It then produces a random element
r ∈ Zℓ for the sender and r + i · x for the receiver. In k-OTℓ, the sender possesses k messages
m0, ...mk−1 and the receiver holds an index i ∈ [k]. The protocol ensures the receiver learns xi as
the output without learning any information about xj , where j ∈ [k] and j ̸= i, while the sender
learns nothing about the receiver’s choice i.

CipherPrune reuses partial existing protocols detailed in Appendix B.

Prior Private Transformer Inference. In response to the success of Transformers and the need to
safeguard data privacy, various private Transformer Inferences (Chen et al., 2022; Zheng et al., 2023;
Hao et al., 2022; Li et al., 2022; Lu et al., 2025; Hou et al., 2023; Luo et al., 2024; Pang et al., 2024)
are proposed. To efficiently run private Transformer inferences, multiple cryptographic primitives are
used in a popular hybrid HE/MPC method IRON (Hao et al., 2022), i.e., in a Transformer, HE and SS
are used for linear layers, and SS and OT are adopted for nonlinear layers. IRON and BumbleBee (Lu
et al., 2025) focus on optimizing linear general matrix multiplications; SecFormer (Luo et al., 2024)
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improves non-linear operations, such as the exponential function, through polynomial approximation.
BOLT (Pang et al., 2024) introduces the baby-step giant-step (BSGS) algorithm to reduce the number
of HE rotations, proposes a word elimination (W.E.) technique, and uses polynomial approximation
for non-linear operations, ultimately achieving state-of-the-art (SOTA) performance. It’s worth
noting that the W.E. technique in BOLT is not input-specific, as it uniformly prunes half the tokens
regardless of the input or task. This approach may fail to remove all redundancy when it exceeds
half of the tokens and can harm accuracy when redundancy is less than half. Additionally, since W.E.
performs one-time pruning at the first layer rather than progressive, layer-by-layer pruning, it is less
effective at reducing tokens for longer inputs. Moreover, BOLT’s W.E. protocol is computationally
expensive due to its reliance on sorting, whereas our method achieves lower asymptotic complexity
and faster concrete runtime. Specifically, the state-of-the-art BOLT still faces efficiency and scalability
challenges with long-token inputs. For example, one private inference with a GPT2-Base model can
take ∼ 10 minutes for 128-token inputs and ∼ 1 hour for 512-token inputs, requiring data exchanges
of more than 60GB and 200GB, respectively. Besides the hybrid HE/MPC methods, a line of works
has explored performing private Transformer inference with only HE (Zimerman et al., 2023; Zhang
et al., 2024). We leave a more detailed review of related works in Appendix G.

Threat Model and Security Guarantee. CipherPrune operates in a common private inference
scenario where server P0 owns a proprietary Transformer-based model M with private weights
w, and client P1 possesses private input data x. We assume the server and client are semi-honest,
i.e., the server and client follow the designed protocols but are curious and attempt to learn extra
information (e.g., x or w). This setting is practical, as the server is incentivized to follow protocols
and provide high-quality services for monetary gain, while the client is motivated to adhere to the
protocol to receive those services. Consequently, this semi-honest setting is commonly adopted in
existing works (Rathee et al., 2020; Huang et al., 2022; Hao et al., 2022; Lu et al., 2025; Pang et al.,
2024). In this semi-honest setting, our protocols prevent the server from learning the client’s data
and the inference result; meanwhile, these protocols also block the client from accessing the model’s
parameters. In our protocols, we assume that both the server and client are aware of the number of
pruned tokens. We argue that this information does not compromise the client’s data or inference
results, nor does it enable the client to access the model’s weight parameters. Attacks that deviate
from the semi-honest setting are beyond the scope of this work.

3 CIPHERPRUNE FRAMEWORK

3.1 MOTIVATION

Although plaintext pruning methods (Goyal et al., 2020; Kim & Cho, 2020; Wang et al., 2021)
enable efficient and scalable inference for standard plaintext-domain Transformers, integrating these
techniques into private Transformers remains challenging. Additionally, encrypted polynomial
reduction and its joint optimization with token pruning remain largely unexplored.

Challenge 1: Lacking protocols for input-specific, progressive encrypted token pruning and
encrypted polynomial reduction. The efficiency and scalability of plaintext pruning methods (Goyal
et al., 2020; Kim & Cho, 2020; Wang et al., 2021) rely on two important features: (1) Input-specific
pruning: This involves assigning an adaptive pruning ratio based on the dynamic importance of
each input, as different inputs exhibit varying levels of redundancy. A fixed pruning ratio applied
universally can result in suboptimal pruning or excessive pruning, leading to catastrophic accuracy
loss. (2) Progressive pruning: This approach prunes tokens layer by layer, rather than performing a
one-time early-layer pruning. Early pruning may fail to correctly identify redundant tokens, resulting
in suboptimal or incorrect pruning. As mentioned earlier, prior W.E. in BOLT (Pang et al., 2024)
is not input-specific or progressive. Furthermore, there is an absence of an encrypted protocol for
polynomial production aimed at reducing the overhead of non-linear approximations.

Challenge 2: Lacking network optimization to support joint token pruning and polynomial
reduction. In plaintext-domain token pruning (Goyal et al., 2020; Kim & Cho, 2020; Wang et al.,
2021), there is no strong motivation to use polynomials to approximate non-linear activations, as
these operations are straightforward and inexpensive to compute. However, in the ciphertext domain,
large-degree polynomials are employed to approximate non-linear functions for both efficiency and
accuracy. We observed that polynomials of varying degrees can be assigned to different tokens in the
encrypted domain based on their importance scores, which can also be optimized alongside token
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pruning. For instance, joint optimization of polynomial reduction and token pruning is essential, and
network optimization involves searching for the optimal pruning and reduction thresholds.

𝒕𝟏 𝒕𝟐

𝑬𝒏𝒄𝒓𝒚𝒑𝒕𝒆𝒅 𝑻𝒐𝒌𝒆𝒏𝑷𝒓𝒖𝒏𝒊𝒏𝒈

𝒕𝟑 𝒕𝟒

𝒕𝟏 𝒕𝟑

𝒍𝒊𝒏𝒆𝒂𝒓 (𝑯𝑬)

𝑬𝒏𝒄𝒚𝒑𝒕𝒆𝒅𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏

activation for 𝒕𝟏
and 𝒕𝟑(𝑴𝑷𝑪)𝒅𝒆𝒈𝒓𝒆𝒆 𝟐 𝒅𝒆𝒈𝒓𝒆𝒆 𝟔

embedded 
Tokens

pruned 
Tokens

𝑺𝒆𝒄. 𝟑. 𝟑

𝑺𝒆𝒄. 𝟑. 𝟐

𝑵𝒆𝒕𝒘𝒐𝒓𝒌
𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏

𝒇𝒐𝒓
𝑬𝒏𝒄𝒓𝒚𝒑𝒕𝒆𝒅
𝑷𝒓𝒖𝒏𝒊𝒏𝒈
𝑺𝒆𝒄. 𝟑. 𝟒

pruning 
support

Figure 3: Overview of CipherPrune.

CipherPrune Overview. In this paper, we introduce Ci-
pherPrune for an efficient and scalable private Transformer
inference. Figure 3 shows the overview of CipherPrune.
We first propose encrypted token pruning for both lin-
ear and non-linear activations in Section 3.2. Then, we
develop an encrypted polynomial reduction for efficient
non-linear operations in Section 3.3. We also introduce a
network optimization for the joint optimization of token
pruning and polynomial reduction in Section 3.4.

Figure 4 shows the workflow of a private Transformer
inference implementation with our CipherPrune. During
the private inference, ❶ the client’s input is encrypted and multiplied with the embedding matrix in
the server by the ΠMatMul protocol. Then the result will be added to the positional encoding. ❷
The server performs the private attention computations, including linear projection via ΠMatMul

and non-linear attention map via ΠSoftMax, respectively. After obtaining the tokens and attention
maps, ❸ our proposed encrypted token pruning method is performed to calculate token importance
scores and compare these scores with the pruning threshold θ and reduction threshold β to decide
which tokens will be pruned or reduced in a privacy-preserving manner. The pruned tokens are
discarded such that the following layers will have fewer operations. Low-degree polynomials are used
to compute the GELU and SoftMax functions on reduced tokens. ❹ Layernorm and Feedforward
operations will be executed via the prior protocols, ΠLayerNorm, ΠMatMul and ΠGeLU . We detail
our proposed encrypted token pruning method in the subsequent subsections.
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Figure 4: The workflow of a private Transformer inference with CipherPrune.

3.2 ENCRYPTED TOKEN PRUNING

Pruning protocol Πprune. In private inference, confidentially pruning tokens presents a challenge,
as the server and client must share attention maps and inputs without accessing their actual values.
As depicted in Figure 5, during inference, attention maps are protected using ASS, with each party
only able to view their respective shares.
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map
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Column mean
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data Communication

Boolean
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Arithmetic
valueData protected 
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Figure 5: Illustration of mask generation and token pruning in Πprune with a non-sharing mask.

Specifically, the proposed secure token pruning protocol takes the secret-shared attention maps ⟨Att⟩h
and tokens ⟨x⟩ as inputs, and outputs the pruned tokens ⟨y⟩ in a secret-sharing format. The secret
shares are held by server P0 and client P1, respectively. First, P0 and P1 compute the importance
score on their local secret shares, respectively. As depicted in Equation 1, the computation of
the importance score involves only addition and constant multiplication, which can be performed
efficiently via ASS. After P0 and P1 acquire their respective shares of the importance score ⟨S⟩,
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they initiate a comparison protocol ΠCMP . This protocol contrasts the importance score against the
threshold θ learned offline, enabling them to determine the shares of the resultant mask ⟨M⟩, where
M is 1 if S > θ, otherwise 0.

Possessing the shares ⟨M⟩ without access to their real values prevents the direct pruning of tokens
⟨x⟩. A feasible solution involves reconstructing the non-shared mask, allowing both parties to
independently prune their shares of the input sequence of n tokens ⟨x⟩. This process then enables
them to obtain the shares of the pruned output sequence of m tokens ⟨y⟩. Appendix A, Figure 13
includes a more detailed and formal definition of Πprune.

The overhead for our secure token pruning protocol is minimal. The importance score can be
computed directly on shares, taking only 0.1 ms per attention module. This is efficient even for large
models like BERT-Large, which has 24 heads per layer. Additionally, our protocol only requires n
invocations of the comparison protocol ΠCMP , each consistently completed within 5 ms, independent
of the number of heads or embedding dimension. Thus, the total time complexity of our pruning
protocol Πprune is linear, O(n), based on the input token sequence length n.

Truncate Tokens 
and MSB

Secure Swap
⟨𝑴⟩𝟑 mask shares

𝟑 token shares

Swapped token shares ⟨%𝒙⟩ ⟨𝒚⟩𝟐 token sharesMasked token shares

Bind Mask and Tokens
𝟒-bit Arithmetic share

𝟏-bit Boolean share

𝑴 𝒊 = 𝟏

𝒙 𝒊 = 𝟎𝟏𝟏𝟏

1

7

Shift 𝟒 bits𝑴 [𝒊] ≪ 𝟒

Add

𝟓-bit
Arithmetic share

𝒙 𝒊 = 𝟏𝟎𝟏𝟏𝟏

23

Truncate tokens and  MSB

Keep first 𝒏! = 𝟐 token shares

2𝒙 𝒊 = 𝟏𝟎𝟏𝟏𝟏23
𝟓-bit Arithmetic share Sub

𝒚 𝒊 = 𝟎𝟏𝟏𝟏

7

𝟒-bit
Arithmetic share

𝟏
Constant 𝟏

𝟏 ≪ 𝟒

⟨𝒙⟩
Boolean
value

Arithmetic
value

Data protected 
by ASS

Data protected 
by OT

MSB 𝑥 𝑖 == 0?

OT-based
Secure Swap

𝑥 𝑖 𝑥 𝑖 + 1

sum 𝒏! 𝟎

𝟐𝚷𝐁𝟐𝐀

Add 𝒏! = 𝟐
𝒏! 𝟏

Boolean Mask Share

Token number share

Real token 
number

Derive Pruning Token Number 𝒏′

Bind Mask 
and Tokens

1 Derive 𝒏′2 3 4

Figure 6: Example of token pruning with a protected mask.

Pruning Mask Protocol Πmask. To further safeguard the privacy of the binary pruning mask M ,
specifically to protect the locations of pruned tokens, we design an additional Pruning Mask Protocol,
Πmask. The goal is to ensure that both parties, P0 and P1, can obtain the pruned token sequence
without knowing which specific tokens were pruned. One key observation is that the number of
tokens after pruning, n′, can be safely disclosed, as it is essential for subsequent processing and is not
typically associated with significant security risks like adversarial attacks (Cui et al., 2021). Knowing
n′ is crucial because token pruning involves relocating the less-important m = n − n′ tokens to
the end of the token sequence while maintaining the order of the remaining n′ tokens. After this
rearrangement, one can simply discard the m ASS tokens at the end of the token list.

Figure 6 shows the secure mask protocol Πmask that is used to ensure the mask privacy in Πprune.
The protocol takes secret-shared token sequence ⟨x⟩ and mask ⟨M⟩ as inputs, and generates the
pruned tokens ⟨y⟩. ❶ Bind Mask and Tokens. To swap tokens, their corresponding links with the
mask will be disrupted. To preserve these links, there are two methods: one is to swap the masks
and tokens respectively and simultaneously; the other is to bind the mask and tokens together so that
they can be swapped as a unit. We adopt the second method, as binding the mask and tokens together
proves more efficient than managing separate swaps for the mask and tokens. The bounded tokens
⟨x̄⟩ can be obtained via left-shifting ⟨M⟩ by f bits and adding to ⟨x⟩, where f is the bit width of a
token in x. Figure 6 illustrates using f = 4 as an example; however, in practice, f can be flexibly
adjusted. ❷ Derive Pruning Token Number n′. We found that n′ can be obtained by securely
counting the number of 1s in M , which does not reveal the locations of 1s in M . Specifically, to
determine n′, both P0 and P1 first convert their boolean mask shares ⟨M⟩ into a fixed-point format
using ΠB2A. Each party then locally computes the sum of the arithmetic mask using ASS, yielding
⟨n′⟩. Finally, P0 and P1 obtain n′ by summing their respective shares, ⟨n′⟩0 and ⟨n′⟩1.

Swap(x̄[i], x̄[i+ 1]) =

{
b · x̄[i] + (1− b) · x̄[i+ 1],

b · x̄[i+ 1] + (1− b) · x̄[i].
(2)

❸ Secure Swap. This step aims to enable P0 and P1 to iteratively move m tokens to the end of
the token sequence via OT-based oblivious swap defined in Equation 2.In each iteration, P0 and P1

perform an oblivious swap through the token sequence. To privately swap two tokens x̄[i] and x̄[i+1],
they first extract the MSB b from the bounded token x̄[i] and perform four OT-based multiplications.
❹ Truncate Tokens and MSB. P0 and P1 can truncate the swapped token sequence ⟨x̃⟩ and remove
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the MSB respectively to obtain the pruned token sequence. Figure 14 in the Appendix A details more
about the mask protection protocol.

Analysis. The complexity of the proposed Πmask mainly depends on the number of oblivious swaps.
To prune m tokens out of n input tokens, O(mn) swaps are needed. Since token pruning is performed
progressively, only a small number of tokens are pruned at each layer, which makes Πmask efficient
during runtime. Specifically, for a BERT-Base model with 128 input tokens, the pruning protocol
only takes ∼ 0.9s on average in each layer.

Figure 7: Comparison of token pruning-only method and pruning with polynomial reduction.

3.3 ENCRYPTED POLYNOMIAL REDUCTION

After pruning, retained tokens still require expensive operations, particularly for costly non-linear
functions. These non-linear functions are computed via expensive high-degree polynomials (Lu
et al., 2025; Pang et al., 2024). We notice that we can reduce the high-degree polynomials to
their low-degree counterparts for the less important tokens. As demonstrated in Figure 7 (a),
the cost of reduced polynomial can be 0.1× that of the high-degree polynomial. This moti-
vates us to accelerate the non-linear operations with low-degree polynomials while maintaining
the desired accuracy. Similar to employing a threshold θ to prune tokens with importance scores
below θ, we use another reduction threshold β (β > θ) to identify tokens for reduction. As
shown in Figure 7 (b)(c), combining token pruning with polynomial reduction further reduces
execution time compared to the pruning-only method. Importantly, we can optimize both θ
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Data protected 
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Data protected 
by OT

Disclosed
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Figure 8: Secure polynomial reduction.

and β together during offline fine-tuning to enhance ef-
ficiency. During the online inference phase, polynomial
reduction occurs after token pruning (the pruning ratio
greater than zero). This simplifies the reduction process:
the tokens have already been pruned, and the locations
of these tokens are rotated and concealed. Consequently,
there’s no need to safeguard the token mask for reduc-
tion. Instead, we can simply modify the pruning protocol
ΠPrune to establish the reduction protocol. As illustrated
in Figure 8, the pruned tokens are determined by executing
protocols Πprune and Πmask in tandem. A secure com-
parison with the reduction threshold β then produces the reduction mask ⟨Mβ⟩. The location of this
mask corresponds to pruned tokens, not the original tokens, so revealing it does not compromise the
location privacy of reduced tokens, provided that the privacy of pruned locations is maintained. Once
the reduction mask Mβ is known to each party, it can be used to guide the decision on whether to
apply the high-degree polynomials or low-degree ones for the non-linear functions, where 1 indicates
using the high-degree ones and 0 signifies low-degree ones. The choice of these approximation
polynomials can be flexible. We utilize prior non-linear function approximation methods as detailed
in references such as (Kim et al., 2021; Lu et al., 2025; Pang et al., 2024). The specific configurations
used are outlined in the Appendix C.

3.4 NETWORK OPTIMIZATION FOR ENCRYPTED PRUNING AND POLYNOMIAL REDUCTION

To support online token pruning and non-linear approximation, an offline fine-tuning method is needed
to optimize pruning and approximation thresholds, θ and β, to minimize inference overhead and
achieve user-defined accuracy above a. This process is challenging because (1) previous studies have
not incorporated the efficiency and accuracy of encrypted token pruning and non-linear approximation
into the fine-tuning phase, and (2) the thresholds for different Transformer layers vary and are
challenging to pinpoint. To address these challenges, we introduce a crypto-aware fine-tuning method,
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Algorithm 1 Crypto-aware Thresholds Learning
Input: pre-trained Transformer M, training data D, initial thresholds θ, β
1. Set model M with L layers, weights w, input tokens x, accuracy requirement a, and hyperparameters T, λ, α.
2. Search for optimal thresholds θ, β and weights w on data D.

(a) For l ∈ [L], set soft masks for token xi, M
(l)
θ (xi) = σ(S

(l)(xi)−θ(l)

T
) and M

(l)
β (xi) = σ(S

(l)(xi)−β(l)

T
).

(b) For l ∈ [L], integrate the crypto-friendly polynomial activation functions. In the l-th layer, compute
GELU function as: GELU(xi) = M

(l)
β (xi) · GELU(xi) + (1 − M

(l)
β (xi)) · ApproxGELU(xi). Except

for the first layer, compute SoftMax function as: SoftMax(xi) = M
(l−1)
β (xi) · SoftMax(xi) + (1 −

M
(l−1)
β (xi)) · ApproxSoftMax(xi). For the input feature xin, compute the output feature xout in the l-th

layer as: xout = M
(l)
θ (xin) · xout

(c) Update w, θ and β jointly to minimize the loss L, where L = Ltask + λ(Lprune + αLapprox.).
3. Finetune w on data D with learned thresholds θ and β.

(a) Fix the threshold θ, β. Binarize the mask M
(l)
θ in every layer as:

M
(l)
θ (xi) =

{
1 if S(l)(xi) > θ(l),

0 otherwise.
, and M

(l)
β is binarized in the same way.

(b) Update w to minimize the loss Ltask. Derive the optimal fine-tuned transformer M∗.
4. Output θ, βand w if accuracy ≥ a; otherwise back to step 2.

outlined in Algorithm 1. This method uses a gradient search approach and proposes to incorporate
crypto-aware pruning and approximation into the training phase. Additionally, the loss functions are
designed to optimize both efficiency and accuracy.

After initialization, we make the masks differentiable during fine-tuning to allow for trainable
thresholds, as shown in step 2.(a) of Algorithm 1. Here, T represents the temperature, and σ is
the Sigmoid function. This soft mask, a differentiable approximation of the binary mask, enables
gradient-based updates to θ and β. In step 2.(b) of the same algorithm, we introduce polynomial
activation functions during the fine-tuning phase. ApproxSoftMax and ApproxGELU are low-degree
polynomial approximations of the SoftMax and GELU functions. The ApproxSoftMax replaces the
exponential function ex in original SoftMax with a Taylor series (1 + x

2n )
2n . And the ApproxGELU

leverages simple polynomials such as p3(x) = −0.51− 0.42x2 +−0.12x2 − 0.01x3 to approximate
GELU. We defer the detailed polynomial in Equations 5 and 8 in the Appendix C. If a token xi’s
importance score exceeds the threshold β, it activates mainly through the original SoftMax or GELU
functions; otherwise, through their polynomial approximations.

Lprune =
1

L

L−1∑
l=0

∥∥∥M (l)
θ (x)

∥∥∥
1
,Lapprox. =

1

L

L−1∑
l=0

∥∥∥M (l)
β (x)

∥∥∥
1

(3)

The overall objective function is designed to minimize the loss function L = Ltask + λ(Lprune +
αLapprox.) where L denotes the number of layers. Ltask optimizes accuracy for downstream tasks,
while Lprune and Lapprox., defined by Mθ’s and Mβ’s l1-norms respectively, target efficiency as detailed
in Equation 3. The hyperparameters λ and α dictate the extent of pruning and approximation, with
higher values leading to increased pruning or approximation. This structure introduces additional
gradients, pushing θ and β towards minimizing Lprune and Lapprox.. Once the optimized θ and β are
determined, we fix them and proceed to fine-tune the model weights to meet the accuracy requirement
a as specified in Step 3. For each Transformer layer, we binarize the masks Mθ and Mβ to select
tokens for pruning or approximation. Subsequently, we update the model weights to minimize the
downstream task loss Ltask.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluated CipherPrune on the GPT2-Base and three BERT variants (Devlin
et al., 2018): BERT-Medium, BERT-Base, and BERT-Large. These models are commonly used in
private Transformer frameworks. Similar to prior work (Pang et al., 2024), we fine-tune the BERT
models on four downstream NLP tasks in GLUE benchmarks (Wang et al., 2018): the Multi-Genre
Natural Language Inference Corpus (MNLI), the Stanford Question Answering Dataset (QNLI), the
Stanford Sentiment Treebank (SST-2), and the Microsoft Research Paraphrase Corpus (MRPC).
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System Setup and Implementation. We encode floating-point parameters in Transformers into
fixed-point numbers and set the scale according to prior work (Hao et al., 2022; Lu et al., 2025; Pang
et al., 2024). CipherPrune uses the EzPC (EzP, 2023) framework and the SEAL (SEA, 2023) library.
EzPC compiles TensorFlow-based deep neural networks into secure computation protocols running
on cryptographic backends. We simulate LAN with 3Gbps bandwidth and 0.8ms ping, and WAN with
200Mbps bandwidth and 40ms ping, following (Pang et al., 2024). All experiments are conducted on
an AMD Ryzen Threadripper PRO 3955WX (2.2GHz, 125GB RAM) and fine-tuning of the BERT
model with threshold learning is done on NVIDIA GeForce RTX 3090 GPUs with CUDA 11.0.3.

4.2 RESULTS

Table 1: End-to-end comparison of CipherPrune with prior works on BERT models. Time is in
seconds. Comm. stands for communication in GB and Acc. for accuracy in percentage.

Method
BERT Medium BERT Base BERT Large

Time Comm. Acc. Time Comm. Acc. Time Comm. Acc.
IRON (Hao et al., 2022) 442.4 124.5 87.7±0.2 1087.8 281.0 90.4±0.1 2873.5 744.8 92.7±0.1

BOLT w/o W.E. (Pang et al., 2024) 197.1 27.9 87.4±0.3 484.5 59.6 90.3±0.1 1279.8 142.6 92.6±0.2

BOLT (Pang et al., 2024) 99.5 14.3 87.2±0.3 245.4 25.7 89.9±0.3 624.3 67.9 92.4±0.2

CipherPrune 43.6 6.7 87.4±0.2 79.1 9.7 90.1±0.2 157.6 18.4 92.5±0.1

End-to-end performance. In Table 1, we evaluate CipherPrune on three BERT models, comparing it
with previous private Trasnformer frameworks: IRON (Hao et al., 2022) and BOLT (Pang et al., 2024).
CipherPrune achieves up to ∼ 18.2× speedup over IRON on the BERT-Large model and ∼ 8.1×
speedup over vanilla BOLT without W.E.. When compared with BOLT with the word elimination
technique, CipherPrune is still ∼ 3.9× faster without compromising accuracy. Communication costs
are also reduced by 2.3 ∼ 40.4× compared to prior works. Compared with BOLT, CipherPrune can
remove more redundant tokens during inference thorough the adaptive and progressive pruning strat-
egy. Moreover, CipherPrune also leverages low-degree polynomials to further reduce the computation
and communication overhead. CipherPrune can easily extend to other frameworks. Comparison with
more related works like BumbleBee (Lu et al., 2025), MPCFormer (Li et al., 2022) and PUMA (Dong
et al., 2023) can be found in Appendix D.

Table 2: Accuracy and time comparisons of different methods.
CipherPrune† stands for CipherPrune with token pruning only.

Method
Accuracy Metric on Tasks (%)

Time(Sec)
MNLI QNLI SST2 MPRC

BOLT w/o W.E. 84.75 90.32 91.74 90.53 484.5
BOLT 84.71 89.94 92.74 89.95 245.4

CipherPrune† 84.74 90.17 92.75 90.45 115.3
CipherPrune 84.68 90.11 92.66 90.18 79.1
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Figure 9: Runtime on GPT2.

Token pruning and polynomial reduction. Table 2 demonstrates the the effects of the main design
blocks in CipherPrune: adaptive token pruning and polynomial reduction. Our baseline is the vanilla
BOLT framework without W.E.. BOLT’s W.E. removes 50% of the input tokens and effectively cuts
the overhead of cryptographic protocols by half. With fine-tuning, the W.E. incurs only marginal
accuracy loss. Yet, the adaptive and progressive token pruning in CipherPrune† can further improve
the utility-accuracy trade-off. Instead of setting the pruning ratio as 50% manually, CipherPrune†
adaptively decides the pruning ratio based on both the input length and content. This contributes to
up to 0.5% better accuracy. On the other hand, the progressive pruning in CipherPrune† allows to
remove more redundant information, contributing to 2.1× runtime speed up over BOLT with W.E..
By incorporating polynomial reduction, CipherPrune can achieve up to 6.1× speed up over BOLT.
While the accuracy drops slightly from CipherPrune†, it is still comparable or even higher than BOLT.

Scalability with the input length. In Figure 9, we compare the runtime of CipherPrune and BOLT
with varying input token numbers on GPT2. The baseline is BOLT without W.E.. The quadratic
complexity of Transformer inference makes it challenging for BOLT to scale to long inputs. Although
W.E. can reduce the overhead of private inference by half, BOLT with W.E. still scales quadratically
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with the number of input tokens. In contrast, CipherPrune demonstrates increasingly significant
runtime savings as the input length grows. With 32 input tokens, CipherPrune achieves a ∼ 1.9×
speedup. When the input length reaches 512 tokens, CipherPrune is ∼ 10.6× faster than the baseline.
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Figure 10: Runtime breakdown on BERT-Base model.

1 4 8
Layer Number

10 2

10 1

100

101

Ti
m

e(
Se

c)

x1
1.

2 x2
.8

x1
.4

x2
0.

3 x6
.2

x2
.2

BOLT Sort
CipherPrune

Swap

Figure 11: Runtime com-
parison of different prun-
ing protocols.

Runtime breakdown. In Figure 10, we break down the runtime for each protocol in the BERT-Base
model with 128 input tokens. In the LAN setting, the communication is efficient and the main
bottleneck is the HE-based linear operation. In contrast, the massive communication of the non-linear
operations becomes the bottleneck in the WAN setting. Since pruned tokens are excluded from the
computation in all subsequent layers, CipherPrune can effectively reduce the overhead of both linear
and non-linear operations. This contributes to CipherPrune’s efficiency in both LAN setting and
WAN setting. As shown in Figure 10, the proposed pruning protocols in CipherPrune are lightweight,
accounting for only 1.6% of the total runtime. This is because Πprune leverages ASS to offload
substantial computation to the local side, such as accumulating the importance score. Additionally,
Πmask utilizes the number of tokens in each layer to avoid sorting the whole token sequence.

Analysis on different pruning protocols. As shown in Figure 11, we compare the efficiency of
different pruning protocols. BOLT’s W.E. uses Bitonic sort to sort the whole token sequence, which
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Figure 12: Ablation study on hyper-
parameters λ and α.

needs O(n log2 n) oblivious swaps. In CipherPrune, the client
and server only need O(mn) oblivious swaps to relocate and
prune the less important tokens. Since only a small number
of tokens are removed in each layer, CipherPrune has a linear
complexity to n in general. By binding the mask with tokens
on the MSB, CipherPrune can handle the token sequence and
pruning mask in one go and achieves 2.2 ∼ 20.3× speed up.

Study on the pruning parameters. In Figure 12, we show the
accuracy-latency trade-off for the BERT-Base model under dif-
ferent parameter settings. Larger λ and α result in more tokens
being pruned or reduced. With λ less than 0.05, an appropri-
ate ratio of tokens is pruned, maintaining a stable accuracy of
around 90%. Smaller α leads to more tokens being computed
with high-degree polynomials, which increases accuracy but
also latency. Notably, accuracy with a large α is higher than
with a large λ. This is because many tokens are reduced but not discarded, preserving necessary
information for accurate inference.

5 CONCLUSION

The proposed CipherPrune addresses the critical efficiency and scalability challenges of private
Transformer inference by introducing a novel approach that combines encrypted token pruning
and polynomial reduction protocols. By progressively pruning redundant tokens and reducing the
polynomial degree for less important tokens, CipherPrune significantly reduces runtime overhead
while maintaining accuracy. Our experiments confirm its effectiveness, achieving a substantial
reduction in execution time compared to previous methods.
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APPENDIX

A SECURE TOKEN PRUNING PROTOCOLS

We detail the encrypted token pruning protocols Πprune in Figure 13 and Πmask in Figure 14 in this
section.

Parties: Server P0, Client P1.
Input: P0 and P1 holds {⟨Att⟩h0 , ⟨Att⟩h1}

H−1
h=0 ∈ Zn×n

2ℓ
and ⟨x⟩0 , ⟨x⟩1 ∈ Zn×D

2ℓ
respectively,

where H is the number of heads, n is the number of input tokens and D is the embedding
dimension of tokens. Additionally, P1 holds a threshold θ ∈ Z2ℓ .
Output: P0 and P1 get ⟨y⟩0 , ⟨y⟩1 ∈ Zn′×D

2ℓ
, respectively, where y = Prune(x) and n′ is the

number of remaining tokens.

Protocol:
1: For h ∈ [H], P0 and P1 compute locally with input ⟨Att⟩h, and learn the importance score

in each head ⟨s⟩h ∈ Zn
2ℓ , where ⟨s⟩h [j] = 1

n

∑n−1
i=0 ⟨Att⟩h [i, j].

2: P0 and P1 compute locally with input {⟨s⟩i ∈ Zn
2ℓ}

H−1
i=0 , and learn the final importance score

⟨S⟩ ∈ Zn
2ℓ for each token, where ⟨S⟩ [i] = 1

H

∑H−1
h=0 ⟨s⟩h [i].

3: For i ∈ [n], P0 and P1 invoke ΠCMP with inputs ⟨S⟩ and θ, and learn ⟨M⟩ ∈ Zn
2ℓ , such

that⟨M⟩ [i] = ΠCMP (⟨S⟩ [i]− θ), where:

M [i] =

{
1 if S[i] > θ,

0 otherwise.

4: P0 and P1 invoke Πmask with inputs ⟨x⟩ and pruning mask ⟨M⟩, and set outputs as ⟨y⟩.

Figure 13: Secure Token Pruning Protocol Πprune.

Complexity of Πmask. The complexity of the proposed Πmask mainly depends on the number of
oblivious swaps. To prune m tokens out of n input tokens, O(mn) swaps are needed. Since token
pruning is performed progressively, only a small number of tokens are pruned at each layer, which
makes Πmask efficient during runtime. Specifically, for a BERT base model with 128 input tokens,
the pruning protocol only takes ∼ 0.9s on average in each layer. An alternative approach is to invoke
an oblivious sort algorithm (Bogdanov et al., 2014; Pang et al., 2024) on ⟨x̄⟩. However, this approach
is less efficient because it blindly sort the whole token sequence without considering m. That is, even
if only 1 token needs to be pruned, O(nlog2n) ∼ O(n2) oblivious swaps are needed, where as the
proposed Πmask only need O(n) swaps. More generally, for an ℓ-layer Transformer with a total of m
tokens pruned, the overall time complexity using the sort strategy would be O(ℓn2) while using the
swap strategy remains an overall complexity of O(mn). Specifically, using the sort strategy to prune
tokens in one BERT Base model layer can take up to 3.8 ∼ 4.5 s depending on the sorting algorithm
used. In contrast, using the swap strategy only needs 0.5 s. Moreover, alternative to our MSB strategy,
one can also swap the encrypted mask along with the encrypted token sequence. However, we find
that this doubles the number of swaps needed, and thus is less efficient the our MSB strategy, as is
shown in Figure 11.
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Parties: Server P0, Client P1.
Input: P0 and P1 hold ⟨x⟩0 , ⟨x⟩1 ∈ Zn×D

2ℓ
and ⟨M⟩0 , ⟨M⟩1 ∈ Zn

2ℓ , respectively, where n is
the number of input tokens and D is the embedding dimension of tokens.
Output: P0 and P1 get ⟨y⟩0 , ⟨y⟩1 ∈ Zn′×D

2ℓ
, respectively, where y = Prune(x) and n′ is the

number of remaining tokens.

Protocol:
1: For i ∈ [n], P0 and P1 set ⟨M⟩ to the MSB of ⟨x⟩ and learn the masked tokens ⟨x̄⟩ ∈ Zn×D

2ℓ
,

where ⟨x̄[i]⟩ = ⟨x[i]⟩+ (⟨M [i]⟩ << f) and f is the fixed-point precision.

2: P0 and P1 compute the sum of {ΠB2A(⟨M⟩ [i])}n−1
i=0 , and learn the number of remaining

tokens n′ and the number of tokens to be pruned m, where m = n− n′.
3: For k ∈ [m], for i ∈ [n− k − 1], P0 and P1 invoke Πmsb to learn the highest bit of ⟨x̄[i]⟩,

where b = MSB(x̄[i]). With the highest bit of x̄[i], P0 and P1 perform a oblivious swap

between x̄[i] and x̄[i+ 1]:
{
x̃[i] = b · x̄[i] + (1− b) · x̄[i+ 1]

x̃[i+ 1] = b · x̄[i+ 1] + (1− b) · x̄[i]
P0 and P1 learn the swapped token sequence ⟨x̃⟩.

4: P0 and P1 truncate ⟨x̃⟩ locally by keeping the first n′ tokens, clear current MSB (all remaining
token has 1 on the MSB), and set outputs as ⟨y⟩.

Figure 14: Secure Mask Protocol Πmask.

B EXISTING PROTOCOLS

Existing Protocols Used in Our Private Inference. In our private inference framework, we reuse
several existing cryptographic protocols for basic computations. ΠMatMul (Pang et al., 2024)
processes two ASS matrices and outputs their product in SS form. For non-linear computations,
protocols ΠSoftMax,ΠGELU , and ΠLayerNorm(Lu et al., 2025; Pang et al., 2024) take a secret
shared tensor and return the result of non-linear functions in ASS. Basic protocols from (Rathee et al.,
2020; 2021) are also utilized. ΠCMP (EzP, 2023), for example, inputs ASS values and outputs a
secret shared comparison result, while ΠB2A(EzP, 2023) converts secret shared Boolean values into
their corresponding arithmetic values.

C POLYNOMIAL REDUCTION FOR NON-LINEAR FUNCTIONS

The SoftMax and GELU functions can be approximated with polynomials. High-degree polynomi-
als (Lu et al., 2025; Pang et al., 2024) can achieve the same accuracy as the LUT-based methods Hao
et al. (2022). While these polynomial approximations are more efficient than look-up tables, they can
still incur considerable overheads. Reducing the high-degree polynomials to the low-degree ones
for the less important tokens can imporve efficiency without compromising accuracy. The SoftMax
function is applied to each row of an attention map. If a token is to be reduced, the corresponding row
will be computed using the low-degree polynomial approximations. Otherwise, the corresponding
row will be computed accurately via a high-degree one. That is if M ′

β [i] = 1, P0 and P1 uses
high-degree polynomials to compute the SoftMax function on token x[i]:

SoftMaxi(x) =
exi∑

j∈[d] e
xj

(4)

where x is a input vector of length d and the exponential function is computed via a polynomial
approximation. For the SoftMax protocol, we adopt a similar strategy as (Kim et al., 2021; Hao et al.,
2022), where we evaluate on the normalized inputs SoftMax(x−maxi∈[d]xi). Different from (Hao
et al., 2022), we did not used the binary tree to find max value in the given vector. Instead, we
traverse through the vector to find the max value. This is because each attention map is computed
independently and the binary tree cannot be re-used. If Mβ [i] = 0, P0 and P1 will approximate
the SoftMax function with low-degree polynomial approximations. We detail how SoftMax can be
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approximated as follows:

ApproxSoftMaxi(x) =
ApproxExp(xi)∑

j∈[d] ApproxExp(xj)
(5)

ApproxExp(x) =

{
0 if x ≤ T

(1 + x
2n )

2n if x ∈ [T, 0]
(6)

where the 2n-degree Taylor series is used to approximate the exponential function and T is the
clipping boundary. The value n and T determines the accuracy of above approximation. With n = 6
and T = −13, the approximation can achieve an average error within 2−10 (Lu et al., 2025). For
low-degree polynomial approximation, n = 3 is used in the Taylor series.

Similarly, P0 or P1 can decide whether or not to approximate the GELU function for each token. If
Mβ [i] = 1, P0 and P1 use high-degree polynomials (Lu et al., 2025) to compute the GELU function
on token x[i] with high-degree polynomial:

ApproxGELU(x) =


0 if x ≤ −5

P 3(x), if − 5 < x ≤ −1.97

P 6(x), if − 1.97 < x ≤ 3

x, if x > 3

(7)

where P 3(x) and P 6(x) are degree-3 and degree-6 polynomials respectively. The detailed coefficient
for the polynomial is:

P 3(x) = −0.50540312− 0.42226581x− 0.11807613x2 − 0.01103413x3

, and

P 6(x) = 0.00852632 + 0.5x+ 0.36032927x2 − 0.03768820x4 + 0.00180675x6

For BOLT baseline, we use another high-degree polynomial to compute the GELU function.

ApproxGELU(x) =


0 if x < −2.7

P 4(x), if |x| ≤ 2.7

x, if x > 2.7

(8)

We use the same coefficients for P 4(x) as BOLT (Pang et al., 2024).
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Figure 15: Comparison with prior works on the BERT model. The input has 128 tokens.

If M ′
β [i] = 0, P0 and P1 will use low-degree polynomial approximation to compute the GELU

function instead. Encrypted polynomial reduction leverages low-degree polynomials to compute
non-linear functions for less important tokens. For the GELU function, the following degree-2
polynomial Kim et al. (2021) is used:

ApproxGELU(x) =


0 if x < −1.7626

0.5x+ 0.28367x2, if x ≤ |1.7626|
x, if x > 1.7626
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Figure 16: Comparison with MPCFormer and PUMA on the BERT models. The input has 128
tokens.

D COMPARISON WITH MORE RELATED WORKS.

Other 2PC frameworks. The primary focus of CipherPrune is to accelerate the private Transformer
inference in the 2PC setting. As shown in Figure 15, CipherPrune can be easily extended to other
2PC private inference frameworks like BumbleBee (Lu et al., 2025). We compare CipherPrune
with BumbleBee and IRON on BERT models. We test the performance in the same LAN setting
as BumbleBee with 1 Gbps bandwidth and 0.5 ms of ping time. CipherPrune achieves more than
∼ 60× speed up over BOLT and 4.3× speed up over BumbleBee.
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Figure 17: Comparison with MPCFormer and PUMA on the GPT2 models. The input has 128 tokens.
The polynomial reduction is not used.

Extension to 3PC frameworks. Additionally, we highlight that CipherPrune can be also extended
to the 3PC frameworks like MPCFormer (Li et al., 2022) and PUMA (Dong et al., 2023). This
is because CipherPrune is built upon basic primitives like comparison and Boolean-to-Arithmetic
conversion. We compare CipherPrune with MPCFormer and PUMA on both the BERT and GPT2
models. CipherPrune has a 6.6 ∼ 9.4× speed up over MPCFormer and 2.8 ∼ 4.6× speed up over
PUMA on the BERT-Large and GPT2-Large models.

E COMMUNICATION REDUCTION IN SOFTMAX AND GELU.

In Figure 18, we illustrate why CipherPrune can reduce the communication overhead of both SoftMax
and GELU. Suppose there are n tokens in layeri. Then, the SoftMax protocol in the attention module
has a complexity of O(n2). CipherPrune’s token pruning protocol is invoked to select n′ tokens
out of all n tokens, where m = n − n′ is the number of tokens that are removed. The overhead
of the GELU function in layeri, i.e., the current layer, has only O(n′) complexity (which should
be O(n) without token pruning). The complexity of the SoftMax function in layeri+1, i.e., the
following layer, is reduced to O(n′2) (which should be O(n2) without token pruning). The SoftMax
protocol has quadratic complexity with respect to the token number and the GELU protocol has linear
complexity. Therefore, CipherPrune can reduce the overhead of both the GELU protocols and the
SoftMax protocol by reducing the number of tokens.
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Figure 18: Toy example of two successive Transformer layers. In layeri, the SoftMax and Prune
protocol have n input tokens. The number of input tokens is reduced to n′ for the Linear layers,
LayerNorm and GELU in layeri and SoftMax in layeri+1.

F ANALYSIS ON LAYER-WISE REDUNDANCY.
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Figure 19: The number of pruned tokens and pruning protocol runtime in different layers in the BERT
Base model. The results are averaged across 128 QNLI samples.

In Figure 19, we present the number of pruned tokens and the runtime of the pruning protocol for
each layer in the BERT Base model. The number of pruned tokens per layer was averaged across 128
QNLI samples, while the pruning protocol runtime was measured over 10 independent runs. The
mean token count for the QNLI samples is 48.5. During inference with BERT Base, input sequences
with fewer tokens are padded to 128 tokens using padding tokens. Consistent with prior token pruning
methods in plaintext (Goyal et al., 2020), a significant number of padding tokens are removed at layer
0. At layer 0, the number of pruned tokens is primarily influenced by the number of padding tokens
rather than token-level redundancy.

In CipherPrune, tokens are removed progressively, and once removed, they are excluded from
computations in subsequent layers. Consequently, token pruning in earlier layers affects computations
in later layers, whereas token pruning in later layers does not impact earlier layers. As a result,
even if layers 4 and 7 remove the same number of tokens, layer 7 processes fewer tokens overall,
as illustrated in Figure 19. Specifically, 8 tokens are removed in both layer 4 and layer 7, but the
runtime of the pruning protocol in layer 4 is ∼ 2.4× longer than that in layer 7.

G RELATED WORKS

In response to the success of Transformers and the need to safeguard data privacy, various private
Transformer Inferences (Chen et al., 2022; Zheng et al., 2023; Hao et al., 2022; Li et al., 2022;
Lu et al., 2025; Luo et al., 2024; Pang et al., 2024) are proposed. To efficiently run private Trans-
former inferences, multiple cryptographic primitives are used in a popular hybrid HE/MPC method
IRON (Hao et al., 2022), i.e., in a Transformer, HE and SS are used for linear layers, and SS and OT
are adopted for nonlinear layers. IRON and BumbleBee (Lu et al., 2025) focus on optimizing linear
general matrix multiplications; SecFormer Luo et al. (2024) improves the non-linear operations like
the exponential function with polynomial approximation; BOLT (Pang et al., 2024) introduces the
baby-step giant-step (BSGS) algorithm to reduce the number of HE rotations, proposes a word elimi-
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nation (W.E.) technique, and uses polynomial approximation for non-linear operations, ultimately
achieving state-of-the-art (SOTA) performance.

Other than above hybrid HE/MPC methods, there are also works exploring privacy-preserving
Transformer inference using only HE (Zimerman et al., 2023; Zhang et al., 2024). The first HE-
based private Transformer inference work (Zimerman et al., 2023) replaces SoftMax function with
a scaled-ReLU function. Since the scaled-ReLU function can be approximated with low-degree
polynomials more easily, it can be computed more efficiently using only HE operations. A range-loss
term is needed during training to reduce the polynomial degree while maintaining high accuracy.
A training-free HE-based private Transformer inference was proposed (Zhang et al., 2024), where
non-linear operations are approximated by high-degree polynomials. The HE-based methods need
frequent bootstrapping, especially when using high-degree polynomials, thus often incurring higher
overhead than the hybrid HE/MPC methods in practice.
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