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Abstract

Magnetic resonance imaging (MRI) is a common non-invasive imaging technique with high
soft tissue contrast. Different MRI modalities are used for the diagnosis of various con-
ditions including T1-weighted and T2-weighted MRI. In this paper, we introduce MTSR-
MRI, a novel method that can not only upscale low-resolution scans but also translates
between the T1-weighted and T2-weighted modalities. This will potentially reduce the
scan time or repeat scans by taking low-resolution inputs in one modality and returning
plausible high-resolution output in another modality. Due to the ambiguity that per-
sists in image-to-image translation tasks, we consider the distribution of possible outputs
in a conditional generative setting. The mapping is distilled in a low-dimensional latent
distribution which can be randomly sampled at test time, thus allowing us to generate
multiple plausible high-resolution outputs from a given low-resolution input. We vali-
date the proposed method on the BraTS-18 dataset qualitatively and quantitatively using
a variety of similarity measures. The implementation of this work will be available at
https://github.com/AvirupJU/MTSR-MRI.
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1. Introduction

High-Resolution MRI produces detailed structural information, helping in clinical diagnosis
and accurate quantitative image analysis. However, due to both physical and theoretical
limitations, high-resolution (HR) imaging comes at the cost of longer scan times, higher
computational costs, and a low signal-to-noise ratio (Plenge et al., 2012). Moreover, for
accurate diagnosis, experts may need to obtain HR scans in multiple modalities such as
T1, T2, and FLAIR. In this paper, we propose a method that can - (i) Perform Image
Super-Resolution (SR) i.e., restore an HR image from a single low-resolution (LR) input,
and (ii) Perform Modality Translation (MT) i.e., translate an MR image across multiple
modalities that have different contrast settings.

Image Super-Resolution (SR) is a challenging problem in the area of medical imaging
and computer vision since there can be multiple HR images corresponding to a single LR
image (Tanno et al., 2017). The ambiguity is particularly pronounced for high upscaling
factors, for which texture details in the reconstructed SR images are typically absent. While
filtering approaches, e.g. linear, bicubic or Lanczos (Duchon, 1979) filtering, can be fast
to obtain, they fail to reconstruct fine image details and yield overly smooth textures. In
recent years, several deep learning-based methods have been proposed (Ledig et al., 2017;
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Wang et al., 2018, 2021) that have shown promising results in upsampling natural images1.
However, these architectures often require large datasets and high computation power for
training. Thus, we need to optimize the architecture and training process to leverage the
inherent sparsity and redundancy in MR imaging data which would result in faster train-
ing and inference. Our second objective is image modality translation. Several promising

Figure 1: Overview of the Method: First, we reconstruct an HR image from a given LR
input in Modality A (T2 in this case), and then, we use this image to generate
plausible HR outputs in Modality B (T1 in this case). Instead of using a bijective
mapping between modalities, we model a distribution of potential outputs, that
yields an array of images corresponding to a range of acquisition parameters.

methods have been proposed with the emergence of generative adversarial networks (GANs)
(Goodfellow et al., 2014). The most notable of them2 are based on Pix-2-Pix (Isola et al.,
2017), for paired image translation, and CycleGAN (Zhu et al., 2017a) for unpaired images.
Nevertheless, image-to-image translation in many cases is a poorly defined task as an image
in one domain may be mapped to multiple images in another domain. Thus, to account
for all the possible variations, we need to learn a distribution of plausible outputs. In this
work, we propose MTSR-MRI, a novel framework, that jointly addresses the aforemen-
tioned problems, see Figure 1. First, we employ an optimized super-resolution model that
takes in an LR input in one modality and upsamples it to produce an HR image. Then,
this intermediate image is fed to an image-to-image translation model that maps it to a
set of plausible images in another modality, using variational inference. In summary, our
contributions are as follows.

• We formulate a novel method to jointly solve the problem of resolution enhancement
and modality translation of MRI. The method could potentially reduce scan times.

1. Previous research in MRI Super-Resolution has been cited in Appendix A.1.
2. Please refer to Appendix A.2. for previous works.
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• We optimize the super-resolution model by modifying its architecture and training
process that would allow us to leverage the sparsity in MR images.

• We perform extensive quantitative analysis of the proposed method on the BraTS-18
dataset (Menze et al., 2014; Bakas et al., 2017, 2018) using various similarity metrics
to demonstrate its efficacy.

2. Proposed Method

2.1. Overview and Notations

Our aim is to model a function F that maps an LR image in Modality A, i.e, (IALR), to an
HR image in Modality B, i.e., (IBHR). Mathematically, we represent this task as

IALR
F−−→ IBHR. (1)

Now, F can be represented as a composition of two functions, F1 and F2 such that

IALR
F1−−→ IAHR, (2)

IAHR
F2−−→ IBHR. (3)

Equation (2) is an SISR (Single Image Super-Resolution) problem. We know, the
LR image is just a downsampled version of the HR image. Hence,

IALR = D↓(I
A
HR) +N . (4)

Here, D↓ denotes a downsampling kernel of some known integer factor, and N denotes a
combination of sensor noises and imaging artefacts, modelled as an additive expression.
Thus, F1 is an inverse mapping from IALR to IAHR. We learn this function using a deep
learning-based super-resolution model described in Section 2.2.
Equation (3) is an image-to-image translation problem, where the aim is to obtain
a mapping between Modality A and Modality B. It is important to note that there may
be multiple plausible IBHR corresponding to an image IAHR, due to variations in scanning
parameters or design specifications of different scanners. Hence, we need to learn a distri-
bution of latent vectors that might correspond to potential images in Modality B, given an
image in Modality A. Thus F2 is a function that returns a plausible image in Modality B,
given an input of Modality A and a sample from the latent distribution of Modality B,

IBHR = F2( I
A
HR, zB ). (5)

We learn this function and the latent distribution using a VAE-GAN-based framework
(Larsen et al., 2016), described in Section 2.3.

2.2. MRI Super-Resolution Model

We build the proposed super-resolution (SR) model based on ESRGAN (Wang et al., 2018).
The generator uses RRDB (residual in residual dense blocks), which has been proven to
be effective for (Peak signal-to-noise ratio) PSNR-oriented tasks such as deblurring (Nah
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et al., 2017) and upsampling (Lim et al., 2017). The dense connections within the block
help in preserving the local structure and low-level details of the image. Nevertheless, the
generator architecture is bulky and adversarial training with a relativistic discriminator
(Jolicoeur-Martineau, 2018) increases the computational cost. To mitigate these perfor-
mance bottlenecks, we leverage the sparsity in MR images. We note that most of the areas
in these images are zero or constant (also referred to as ‘empty’) which implies most of the
layers in the generator ‘learn’ nothing. Hence, we empirically select a subset of the ESR-
GAN generator (Refer to Appendix B. for implementation details.) for our usage. To speed
up the training even further, we replace the relativistic discriminator with a PatchGAN
discriminator (Li and Wand, 2016).

2.2.1. Loss Functions

Besides the adversarial loss we use a VGG-based feature loss (Johnson et al., 2016) to
optimize the overall perceptual quality and L1 loss for the reconstruction of pixel-level
details. Thus, the overall objective becomes

LG = LGAN + λ1LV GG + λ2L1. (6)

Here, λ1 and λ2 are hyper-parameters set to 200 and 2, respectively.

2.2.2. Training Details

We train the model for 100 epochs with a batch-size of 12 and a learning rate of 2× 10−4.
We also pre-train the generator using L1 loss for 10 epochs to obtain suitable results. The
reasons are that (a) it can avoid undesired local optima for the generator; (b) after pre-
training, the discriminator receives super-resolved images instead of fake ones (black or
noisy images) at the very beginning, which helps it to focus more on texture discrimination.

2.2.3. Dataset Preparation

Following SRGAN (Ledig et al., 2017), all experiments are performed with a scaling factor
of x4 between LR and HR images of 2 dimensions. We employ a second-order degradation
method (Wang et al., 2021) to obtain realistic LR samples, as shown in Figure 2.

2.3. MRI Modality Translation Model

We intend to model the distribution of the target modality such that decoding sampled
vectors from it would produce realistic and diverse outputs. The VAE-GAN approach
(Larsen et al., 2016) is to first encode the target image into the latent space, giving the
generator a noisy “peek” into the desired output. Using this, along with the input image, the
generator should be able to reconstruct the specific output image. To ensure that random
sampling can be used during inference time, the latent distribution is regularized using
KL-divergence to be close to a standard normal distribution. Another approach (Donahue
et al., 2016; Dumoulin et al., 2016) is to first provide a randomly drawn latent vector to
the generator. In this case, the produced output may not necessarily look like the ground
truth image, but it should look realistic. An encoder then attempts to recover the latent
vector from the output image. We build our modality translation model (MT) based on the
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Figure 2: LR Image Generation: Each degradation block reduces the spatial dimensions
by ×2, convolves it with a blur filter (random choice among Gaussian, isotropic,
anisotropic, etc), and finally adds noise (random choice among Gaussian, Poisson,
etc ), giving us an LR image with dimension 64× 64.

work of Zhu et. al. (Zhu et al., 2017b), a hybrid of the aforementioned methods. Figure 3
outlines the training process of the proposed model.

Figure 3: Training the MT model: On the left, we have the cVAE-GAN that starts
from a target image B and encodes it into the latent space. The generator then
attempts to reconstruct B using the input image A along with a sampled z.
On the right, we have the cLR-GAN that samples a latent code from a normal
distribution, uses it to map input A to output B, and then tries to reconstruct the
latent code from the output. We optimize the proposed model using both cycles.
At inference, the generator G uses the input A and a sampled latent vector z to
construct the target image B.

At inference, the generator takes in an input of modality A (IA) and a latent vector, zB
from the learned distribution and returns a plausible image of modality B (IB).
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2.3.1. Loss Functions

We combine the objectives of VAE-GAN (Larsen et al., 2016) and cLR-GAN (Donahue
et al., 2016) to utilize both the cycles (B → z → B̂ and z → B̂ → ẑ). The overall
objective is

Ltotal = LV AE
GAN + λLV AE

1 + LGAN + λlatentLlatent
1 + λKLLKL, (7)

where the hyper-parameters λ, λlatent, and λKL are tunable hyper-parameters.

2.3.2. Training Details

We train the proposed model for 100 epochs using a batch size of 1 and an initial learning
rate of 0.0002. The hyper-parameters λ, λlatent, and λKL are set to 10, 0.5 and 0.01
respectively. Additionally, we choose a least-squares loss instead of a cross-entropy loss for
our GAN objective as suggested by Mao et. al. (Mao et al., 2017).

3. Experiments

3.1. Qualitative Results

In Figure 4 we have compared the reconstructions by the proposed model to traditional
upsampling methods of Bilinear and Bicubic interpolation as well as the state-of-the-art
deep learning model, ESRGAN. We note that ESRGAN preserves contrast and low-level
texture more accurately compared to the proposed model. This can be attributed to the
fact that the proposed model only uses a subset of the ESRGAN generator, and we have
omitted the relativistic discriminator for speeding up the training process, which led to
random smoothening artefacts at convoluted edges. Figure 5 shows sample results for the
T2-to-T1 translation task. We note that the proposed model produces results that are
diverse as well as perceptually realistic.

3.2. Quantitative Results

We sampled 150 images from the BraTS-2018 dataset (Menze et al., 2014; Bakas et al.,
2017, 2018) for all evaluation purposes. Table 1 shows a quantitative comparison between
various resolution enhancement methods using similarity measures like PSNR and SSIM,
as well as inference time on the test set. We note that the proposed model scores competi-
tively against state-of-the-art methods such as ESRGAN while being twice as fast. Table 2
compares various image-to-image translation models for T1-to-T2 and T2-to-T1 mapping
using the LPIPS distance, for realism and diversity3. Although Pix2Pix produces realistic
translations, injecting noise into the latent vector does not produce much variation in the
output, thus leading to low diversity score. This confirms the findings of Isola et. al. (Isola
et al., 2017) that noise addition produces very marginal deviations in the output. Similarly,
CycleGAN produces fixed point outputs that do not vary much with respect to the injected
noise. The proposed model, on the other hand, generates translations that are perceptually
realistic as well as diverse and hence, can account for variations in scanning parameters.

3. Please refer to Appendix C for details
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Figure 4: SR on T1 and T2 Images: [Left to Right] Bilinear interpolation, Bicubic in-
terpolation, Proposed, ESRGAN, Ground Truth. Although the proposed method
outperforms traditional upsampling methods, it falls behind ESRGAN in restor-
ing low-level details. (Zoom in for a closer view)

Table 1: Quantitative results on the BraTS-18 dataset.
The best performance is highlighted in bold, and the second best is underlined.

Method T1 Modality T2 Modality

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ Inference Time (s) ↓
Bilinear 0.69 31.64 0.65 32.71 1.384
Bicubic 0.75 32.01 0.77 32.93 1.396
SRGAN 0.87 37.33 0.83 35.74 22.998
ESRGAN 0.92 38.02 0.93 38.10 23.211
Proposed 0.90 37.65 0.89 36.64 11.287

Table 2: Quantitative results on the BraTS-18 dataset for Modality Translation.
The best performance is highlighted in bold, and the second best is underlined.

Method T1-to-T2 T2-to-T1

Realism ↓ Diversity ↑ Realism ↓ Diversity ↑
Pix2Pix (w/ noise injection) 0.063 0.009 0.071 0.011
CycleGAN (w/ noise injection) 0.162 0.022 0.149 0.023
Proposed 0.159 0.110 0.166 0.102

4. Conclusion

In this paper, we proposed a novel deep learning-based framework to jointly address image
super-resolution and image modality translation in MRI.
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Figure 5: MT from T2 to T1: Random samples (RS) of T1, generated by the proposed
modality translation (MT) model, are not only perceptually similar to the ground
truth but also diverse, hence, might correspond to a range of T1 scanning param-
eters. It should be noted that the sampling is random in nature. (Zoom in for a
closer view.)

In a clinical setting, the radiologists could inspect translated samples (T1-to-T2 to
T2-to-T1, as per requirements) to reach a preliminary decision. The proposed method can
potentially aid their decision-making process. Computational methods such as the proposed
scheme, primarily aim to avoid multiple scans per patient and reduce overall scan times.
We do not claim perfect precision, nor recommend making a final inference based on our
model’s output. All Computer-aided diagnosis (CAD) systems require expert handling and
in this work, we have proposed a method as a baseline to potentially reduce some workload.

For generating the LR images, we have used a series of degradations that includes
blurring, down-sampling, and adding noise. Although different from the actual mechanism
of obtaining LRMRI (e.g., using raw data and sampling in K-space), we believe the proposed
forward model provides measurements using an approximation of the true kernel that can be
generalized in the context of raw data, if needed. Designing/testing SISR models on actual
LR-HR pairs in the raw K-space format would yield more accurate results, consistent with
MR physics. Nevertheless, the employed degradation method approximates quite well -
tissue structures and intricate contrast details are indeed lost consistent with the physical
model, although not precisely using the same degradation kernel.
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Our intention in this work was to inspire research in addressing the two problems of
resolution enhancement and modality translation in a combined/joint fashion. One can
always modify the dataset and make architectural tweaks to improve the performance by
working directly with the raw data, if available. Our aim here was to generate results
inferred directly from the original inputs for which we could measure and assess standard
image quality measures. The proposed super-resolution model not only scored at par with
state-of-the-art SISR methods but also outperformed them in terms of training efficiency
and inference time. Furthermore, the proposed modality translation model accounted for
variations in scanning parameters for T1 and T2 modalities to produce diverse and realistic
images. To our knowledge, this is the first work that addresses SR and MT in a combined
way using deep learning. Nevertheless, we acknowledge the limitations of the proposed
method.

Random sampling must be interpreted with care, especially in the clinical setting. Future
works can explore this domain and find novel generative methods that allow more control
over the model outputs.
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Appendix A. Previous Works

A.1. Image Super-Resolution in MRI

The spatial resolution of MR images may be degraded due to the constraints such as scan
time, theoretical limitations of the process, and hardware configurations (Ebrahimi and
Bohun, 2021; Ebrahimi and Martel, 2009; Abedjooy and Ebrahimi, 2022; Rashid et al.,
2022; Ebrahimi et al., 2009; Ebrahimi and Vrscay, 2007; Nazeri et al., 2019; Ebrahimi and
Vrscay, 2008; Narang et al., 2022; Bouffard et al., 2023).Besides the traditional upsampling
methods, several deep learning-based methods have been proposed for MRI SR. Zeng et.
al. (Zeng et al., 2018) proposed a method estimating single-contrast and multi-contrast
MRI images simultaneously. Shi et. al. (Shi et al., 2018) introduced a local residual block
and global residual network to extend SRCNN to solve a 2D MRI SR problem. Zhao et.
al. (Zhao et al., 2019) proposed an extended a SRCNN architecture for 2D MRI brain
images. The network consists of three main sub-networks: feature extraction sub-network,
non-linear mapping sub-network, and reconstruction. The general idea is to split features
at one channel into two branches so that the features at the same channel can be processed
differently. Liu et. al. introduced a multi-scale fusion convolution network (MFCN) that
has several multi-scale fusion units (MFU) to estimate restoration filters at specified scales.
A set of MFU helps to reconstruct super-resolution images with different scale features.
Oktay et. al. (Oktay et al., 2017) proposed a multi-task network that could perform SR
and segmentation that used SRGAN (Ledig et al., 2017) for SR. GAN-CIRCLE (Lyu et al.,
2019) used cycle consistency to ensure structural similarity between LR-HR pairs.

A.2. Modality Translation in MRI

Obtaining MRI scans of multiple modalities is crucial for diagnosis as they provide comple-
mentary information. However, data acquisition might be limited due to time constraints,
scanning costs, and the patient’s comfort. Hence image modality translation is crucial for
this domain. Yang et. al. (Yang et al., 2018) proposed a cGAN-based method similar to
Pix-2-Pix (Isola et al., 2017) for translating between T1 and T2 modalities. Later, they also
appended an FCN-based module that performed segmentation of images from both modal-
ities (Yang et al., 2020). Dar et. al. (Dar et al., 2019) employed cycle consistency for image
translation thus enabling their model to work with unpaired MRI data. Based on the said
works, Yu et. al. (Yu et al., 2019) introduced Edge-Aware GANs that incorporated edge
maps while training, leading to better preservation of low-level details at the edges. Huang
et. al. (Huang et al., 2017) was the first to jointly address super-resolution and modality
translation in MRI. They proposed a weakly-supervised joint convolutional sparse coding
framework that requires only a few registered multimodal image pairs as the training set
and achieved impressive results on multiple brain MRI datasets.

Appendix B. Architectural Details of the proposed SR Model

The ESRGAN generator has 23 RRDB blocks. The dense connections as well as the overall
depth of the architecture enables it to learn complex natural images (Timofte et al., 2017,
2018) but the inherent “sparsity” of the MR images, allows us to compress the architecture
in order to reduce computation. Table 3. shows the results of the ablations we performed
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Table 3: Model Performance vs Speed for different variants of ESRGAN that were obtained
by pruning out specific RRDB blocks.

ESRGAN Variant Removed RRDB No. of RRDB in model PSNR SSIM Inference Time (s)

v0 None 23 38.10 0.93 23.211
v1 (1,2,22,23) 21 37.92 0.93 20.115
v2 [1-4], [20-23] 15 35.88 0.89 15.003
v3 1-11 12 34.03 0.84 11.268
v4 12-23 12 35.22 0.81 11.274

Proposed All Even Blocks 12 36.64 0.89 11.287

on the architecture to find a configuration that was optimized for quality and speed. We
initialize the architectures with weights of a model trained on the DIV2K dataset and fine-
tune them with the hyper-parameters mentioned in Section 2.2.2. We note that compressing
the model by pruning out every alternate layer does not degrade the reconstruction quality
significantly despite having almost half the number of parameters. The shallower layers help
in the restoration of low-level details and the deeper layers help in improving texture and
overall perceptual quality. Figure 6 shows the outline of the proposed generator architecture.

Figure 6: Generator Architecture: We select every alternate block from the ESRGAN,
pre-trained on natural outdoor images. This helps in reducing computation with-
out significantly degrading the quality of the reconstruction.

Appendix C. Measuring Realism and Diversity of GAN Outputs

Following Zhu et. al. (Zhu et al., 2017b), we use LPIPS distance to evaluate the proposed
modality translation model. This measure has been shown to match human perception
better than FID, CAS, etc (Borji, 2022). A low LPIPS score means that images are per-
ceptually similar. Conversely, a higher score would indicate greater dissimilarity between
images. Hence, LPIPS can be used as a measure for realism as well as diversity in synthetic
images. To measure diversity, we first produce 5 translations by randomly sampling 5 latent
vectors (z), for each image. We then compute LPIPS distance between consecutive pairs to
get 4 paired distances. Taking a mean of these distances across the entire test set gives us
the measure for diversity. A higher value indicates greater diversity.
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