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ABSTRACT
When people use agent characters to travel through different spaces
(such as virtual scenes and real scenes, or different game spaces), it
is important to reasonably position the characters in the new scene
according to their personal characteristics. In this paper, we pro-
pose a novel pipeline for relocating virtual agents in new scenarios
based on their personal characteristics. We extract the character-
istics of the characters (including figure, posture, social distance).
Then a cost function is designed to evaluate the agent’s position
in the scene, which consists of a spatial term and an personalized
term. Finally, a a Markov Chain Monte Carlo optimization method
is applied to search for the optimized solution. The results gener-
ated by our approach are evaluated through extensive user study
experiments, verifying the effectiveness of our approach compared
with other alternative approaches.

CCS CONCEPTS
• Human-centered computing → Interaction design; Human
computer interaction (HCI).
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1 INTRODUCTION
As an emerging trend in the digital age, virtual characters can flexi-
bly travel through different spaces. People can perform activities
from locations mapped from the real world to virtual reality. The
same game character can also travel freely between different game
spaces. The emergence of virtual agents has changed the traditional
social model and provides more possibilities for people to meet
in different spaces. However, it brings up a new question: when
the character travels to a new space, where should he/she be po-
sitioned? Especially when there are multiple agents in the scene
that need to be positioned, the positioning of the characters will be
affected by each other. Properly positioning the agent in the scene
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Figure 1: Our approach learns the character’s comfort zone
in the scene through the user’s position and posture in the
original scene (left), thereby placing the virtual agent in an
appropriate position in the new space to make the user com-
fortable and natural (right).

greatly improves the user experience and allows the agent to better
integrate into the new environment.

When people orient themselves in a scene based on a given pose,
they first sift through recalling similar positions from previous
experiences. Then they use their own experience to find reasonable
objects in the new scene that can interact with the given pose to
help determine the appropriate location, such as key interactive
objects, special terrain. They finally obtain information from social
interactions, observing other’s positions and behaviors to find the
appropriate position for their own interactive behavior. However,
these individual-related experiences are difficult to generalize so
that can quickly predict the optimal position of an agent represent-
ing an individual in a scene.

In recent years, some scholars have proposed approaches to
reasonably locate agents in a scene[19, 38]. They locate agents in
the scene based on the relevance of interaction behaviors, but do not
consider the personalized characteristics of the agents themselves.
The external characteristics, such as body shape and posture, will
have an impact on their positioning in the scene. Agents cannot
collide with other elements in the scene. Large one may sometimes
have trouble standing in tight spaces. Intrinsic characteristics, such
as personality and safe social distance, can also help determine the
positioning of agents in a scene. For example, people tend to stand
around people they are more familiar with and distance themselves
from people they are unfamiliar with.

Based on the personalized characteristics of the agent, different
agents have different probabilities of appearing in the same position
of a scene. With the development of 3D technology, information in
the scene can be easily extracted, such as scene scanning and recon-
struction, virtual equipment, etc. The personality characteristics of
an agent can be divided into personal attributes and relationships
between individuals. Personal attributes include the character’s
body shape, posture, and the positioning relationship between mul-
tiple people can also reflect the social relationship between them.
To better model the agent’s personalized characteristics, we define
a cost function to measure these feature relationships. Then we
regard the positioning problem as an optimization problem and use

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

the Markov chain Monte Carlo optimization technology to perform
personalized positioning of virtual agent.

In this paper, we propose a new pipeline for positioning agents
in new scenes based on personal characteristics in historical scenes,
which can help agents migrate in different scenes automatically.
Through the application of this framework, we can position the
characters in the virtual game in VR games based on the positions of
multiple people in the same real scene, giving them a more realistic
immersive experience. In addition, multiple users in different spaces
can also be transferred to a new virtual scene together according
to each character’s position in the historical space.

The major contributions of our work are as follows:
• Introducing a new problem of personalized positioning of virtual
agents based on character characteristics to freely travel through
different spaces.

• Designing a computational framework to evaluate an agent’s
positioning in a scene, which combined agent characteristics and
spatial constraints and then is applied to optimize the position
of virtual agent.

• Conducting an extensive user study to evaluate and validate the
effectiveness of the proposed virtual agent positioning approach.

2 RELATEDWORK
In this section, we provide a succinct overview of the virtual agent
positioning, and review the previous works in personalized charac-
teristic modelling and social distance assessment.

2.1 Virtual Agent Positioning
The core of virtual agent positioning is to confirm the position and
direction of the virtual agent, which is particularly important in
the field of robotics, such as path planning [2, 11] and navigation
systems[25]. These systems rely on algorithms, such as A* [10, 18]
and Dijkstra[27, 40], to find optimal paths that enable virtual agents
to move freely within the virtual environment. Ye et al.[41] present
a position-aware virtual agent locomotion method, called PAVAL,
that can perform virtual agent positioning in real time for room-
scale VR navigation assistance.

To position the agent accurately, some studies control the be-
havior of virtual agent through predefined rules [32, 36], including
avoiding obstacles[8, 14], finding cover, following scene rules, etc.
While these methods have some feasibility, they are often not flexi-
ble enough to cope with diverse scenarios. With the development
of reinforcement learning, some works attempt to train the best
behavior strategy of virtual agents based on reward information in
the environment[9, 23], which is more robust but also requires a
large amount of training data and computing resources. Liang et
al[19] also proposed a method to understand the scene with the help
of scene semantics, allowing virtual agents to position themselves
appropriately in the real world. Itsuki Noda[4] proposed an agent
localization mechanism for dynamic environments using Delaunay
triangulation to approximate the map. It can handle the positioning
problem of multiple agents in the scene. However, these methods
do not consider the personalized characteristics of virtual agents.

Compared with previous works, our approach mainly focuses
on the problem of positioning multiple agents in the scene, taking
into account the personal characteristics of each agent.

2.2 Personalized Characteristic Modelling
The comfort of the user experience is directly related to the fit of
personal characteristics. With the upgrade of user experience, vari-
ous fields have begun to work on personalized feature modeling,
including interior design, education, human-computer interaction
and so on. The most original method is to extract information di-
rectly from the communication of characters, such as face-to-face
interviews, questionnaires, focus groups[1], and so on. These meth-
ods are time-consuming and their effectiveness depends entirely
on the experience of the professional.

Some recent works extract personal habits through human daily
life and activities in order to extract personality characteristics
more realistically. Wang et al[34] constructed action graphs by
observing videos of daily activities, which were used to train a
generative model based on recurrent neural networks (RNN). This
method models personal characteristics accurately, but requires
significant storage costs. Some researchers propose that personal
characteristics can be learned from virtual environments by simu-
lating real activities. Wei et al.[21] proposed to a pipeline to learn
personal preferences from virtual experiences, which was used in
indoor furniture layout. Other studies look for clues of personal
characteristics from historical scenes. For example, Wang proposed
to use the previous home layout to layout furniture in a new scene.

Inspired by these studies, we propose to extract the personal-
ity characteristics of the characters in the previous scene, which
are then used in the personalized positioning optimization of the
characters in the new scene.

2.3 Social Distance Assessment
A safe social distance is a certain distance that people should main-
tain between themselves and others in different social and environ-
mental situations to ensure physical health and social comfort[6, 22].
It plays an important role in social interactions in daily life. If two
people stand too close together in a scene, each other will feel op-
pressed and tense. If the two people stand too far apart in the scene,
it will affect communication and interaction with each other[30].

Traditional methods typically use mathematical distance mea-
sures, such as Euclidean distance[3] or Manhattan distance[29],
to measure the distance between people. For example, with the
outbreak of the Corona virus in the past few years, more and more
public areas have begun to pay attention to the safe distance be-
tween people, and have embedded cameras to detect whether the
social distance between people reaches 1.2m[15]. These methods
provide a basic way to assess social distance, but ignore the factors
of individual differences and social comfort. Some studies have
attempted to assess social distance through behavioral modeling.
These methods take into account interactions and behaviors be-
tween individuals, such as posture[20], facial expressions[5], and
how they move. Gao[20] conducted an experiment to investigate
the effect of posture and embodiment on the social distance of par-
ticipants and agents during interactive experiences in mixed reality.
Leon[17] established personalized models of social safety distance
by collecting users’subjective feelings and feedback in different
scenarios, which may require large amounts of user participation
and feedback data and are difficult to apply in real time.
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Figure 2: Overview. Given the postures and positions of multiple people in the original scene (a), we model the personal
characteristics and social comfort zone of each agent(b). Through a Markov chain Monte Carlo optimization technique (c) We
reposition the virtual agent in the scene (d).

Different from the previous works, we model an individual’s
comfortable social zone through the agent’s position in the vir-
tual environment, which makes social distance assessments more
personalized.

3 OVERVIEW
Given a historical scene containing agents as input, our approach
aims to optimize the agent’s positioning in the new scene so that the
agent can stand in amore reasonable position to perform taskswhen
transferred across scenes. It should be noted that the historical scene
and the posture and information of agents can be obtained based
on three-dimensional reconstruction[37, 42], or can be directly
captured based on the RGB camera of the VR device[39], such as
HoloLens.

Inspired by the method of finding appropriate positioning in a
scene, we designed a framework to automatically position multiple
agents in new scenes based on personal characteristics in historical
scenes. When a person tries to find a suitable position in a new
scene, he must first call upon his previous memories to perceive
the environment (what objects he is interacting with and how
others around him relate to himself), and then find a position and
direction in the scene that is suitable for the current action and task.
Therefore, the first step of our approach is tomodel the environment
(character actions, interactive objects, and relationships between
characters in the scene) based on historical scenes. In this paper, we
propose a method for encoding environments from historical scenes
and then optimizing the position of each agent in new scenario
through heuristic search.

Assume that there are𝑁 virtual agents in the scene, and their lay-
out positioning in the scene is defined as𝐿 = {𝑙𝑖 |𝑙𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜃𝑖 ), 𝑖 ∈
{1, 2, ...𝑁 }. Specifically, for the 𝑖th individual, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) is the posi-
tion of the agent, and 𝜃𝑖 is the orientation of the agent. Based on
the layout 𝐿0 of characters in historical scenes, our goal is to auto-
matically generate reasonable character layouts in new scenes. The
framework is shown in Fig. 2. Our approach includes two stages:
preprocessing and optimization.

Preprocessing. Using image processing algorithms, we prepro-
cessed the information of individuals in historical environments,
including their positions, postures, relationships with objects, and
relationships with other individuals. Firstly, we employed the Mask
R-CNN method [13] to detect agents and key objects in the scenes.
Then we further utilized OpenPose[28, 33] to extract the poses of

individuals, and employed Euclidean distance calculation to de-
termine the distances between individuals as well as the angles
between their directions. After these two steps of preprocessing,
we modeled the effective information of the whole environment in
the historical environment. We will discuss the details in Sec. 4.

Optimization. The optimization stage considers the characteris-
tics of the characters in the environment and optimizes the position
and orientation of the virtual agent iteratively. The cost function
with personalized constraints and spatial constraints is designed
to evaluate how well the position and orientation of each virtual
agent is. The personalized constraints ensure that the character’s
position and orientation maintain a reasonable social distance and
relative relationship with others. The spatial constraints control
the reasonable position of the virtual agent’s posture in the scene,
which is to achieve smooth interaction of characters in the scene.
A Markov chain Monte Carlo optimization algorithm is applied to
search for solutions, which is discussed in Sec. 5.

4 PREPROCESSING
Following previous work, 3D scenes can be reconstructed through
nerf[24], 3D gaussion splatting[16], differentiable rendering[26]
and other method. To model the distribution of agents in a scene, it
is necessary to extract the properties of the agents and the semantics
of their interaction with the scene.

4.1 Agent-centric Extraction
In a given scene, the individual attributes of agents encompass their
position, posture, as well as personal information such as height
and body type.

Position. The agent’s position is where the user is standing.
Therefore, we use the midpoint of the user’s two foot coordinate
points as the user’s position. Duringmotion capture, the positions of
each agent are written sequentially as 𝐿𝑜𝑐 = {𝑙𝑜𝑐1, 𝑙𝑜𝑐2, · · · , 𝑙𝑜𝑐𝑁 },
where 𝑙𝑜𝑐𝑖 is the set of 3D coordinate of the agent 𝑖 in the original
scene.

Posture. The user’s posture reflects the points at which the user
needs support. We divide the postures according to the main sup-
porting surface into standing, sitting, lying and leaning. To recog-
nize the user’s posture offline, we collected 1000 pictures containing
various postures, about 250 pictures of each category, and trained



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Figure 3: An example of key object. The red dots and arrows
indicate the agent’s position and orientation. The blue box
represents the key objects. The red solid line is the key edge
closest to the agent from the key object. The green line is
the vertical distance from the agent to the key object. The
black dotted line is parallel to the key edge. The yellow angle
indicates the relative direction of the agent and the key object,
which is between the black line and the direction of the agent.

an posture classification network based on VGG-16[35], with an
accuracy of 98%. Each posture is coded as 1, 2, 3, 4 respectively. The
posture of each agent is recorded as 𝑃𝑜𝑠 = {𝑝𝑜𝑠1, 𝑝𝑜𝑠2, · · · , 𝑝𝑜𝑠𝑁 }
where 𝑝𝑜𝑠𝑖 ∈ {1, 2, 3, 4}, and 𝑝𝑜𝑠𝑖 is the posture type of the agent 𝑖 .

Body size. The body size reflects the space the agent needs in the
scene. We use the IK algorithm to calculate and record the sequence
of 16 key points(shoulders, elbows, torso, etc.) on the agent’s body,
with the foot posture as the origin of the coordinates. The Inverse
Kinematics algorithm infers the positions of the other joints of
the user by the Jacobian inverse technique in real time[7]. The
body size of agent 𝑖 is defined as 𝐽𝑖 = { 𝑗1, 𝑗2 ... 𝑗16}, 𝑖 ∈ {1, 2, ...𝑁 }.
𝑗𝑖 = (𝜃𝑝 , 𝜃𝑦, 𝜃𝑟 , 𝑑𝑖𝑠), where 𝜃𝑝 , 𝜃𝑦, 𝜃𝑟 is the vector direction from
the joint point to the origin, representing pitch, yaw, and roll of the
joint and 𝑑𝑖𝑠 is the distance from the joint point to the origin.

It is worth noting that through the recording of the body size, we
can calculate the 3D coordinates of each key point for each agent in
the scene according to the position of them. The coordinates of the
𝑗 − 𝑡ℎ key point of agent 𝑖 are recorded as 𝐽𝑖 𝑗 , where 𝑖 ∈ {1, 2, ...𝑁 }
and 𝑗 ∈ {1, 2, ...16} .

4.2 Scene-centric Extraction
It is crucial for the agent’s positioning to complete the interaction
between the character and the key objects in a reasonable position
in the scene using corresponding postures.

Key Object. Consider the closest object to each agent as the key
object related to the agent. To make the environment in which
the agent acts consistent in the new scene, the relative positional
relationship between the agent and key objects should remain
unchanged. As shown in Figure 3, taking the nearest neighbor edge
of the key object as the target, we calculate the vertical distance
from the agent to the target and the relative angle between the
agent and it of each agent. We denote the vertical distance of agent
𝑖 as 𝑑𝑖 and the angle as 𝛼𝑖 .

Figure 4: An example of a plane in a scene that represents
a supportable posture. Different colors represent supported
movements, among which green represents the area where
you can stand, red represents the area where you can sit, or-
ange represents the area where you can lie down, and yellow
represents the area where you can lean. It should be noted
that some components have multiple colors, indicating that
they can support multiple postures. e.g. sofa.

Plane. Different planes in the scene can support different pos-
tures. We use the Mask RCNN algorithm [13] to detect the plane of
each object in the scene. Figure 4 shows an example of a plane that
can support various postures in a logo scene, where green is the
place where you can stand, red is where you can sit, blue is where
you can lie down, and yellow is where you can lean.

5 OPTIMIZATION
We randomly generate a set of localizations 𝐿0 for each virtual agent
in the new space. The problem of agent localization in new scenarios
is then considered as an optimization problem, under personal and
spatial constraints. In this section, we discuss the definition of the
cost function and the optimization process in detail.

5.1 Cost
During the optimization, we tried to enable the agent to be placed
comfortably in the new scene by analyzing the relative relationship
between the virtual agent and the objects in the new space, the
social relationship between multiple agents, and the personal char-
acteristics of the agent. We define the cost function considering
personality constraints and spatial constraints as follows:

𝐶total (𝐿𝑖𝑛, 𝐿) = 𝜔a𝐶a (𝐿𝑖𝑛, 𝐿) + 𝜔s𝐶s (𝐿) . (1)

𝐶a (𝐿𝑖𝑛, 𝐿) is to assess the cost associated with personal charac-
teristics extracted from the original scene. It penalize solutions that
deviate from the expected interaction dynamics between the agent
and scene elements, as well as the spatial distribution among all
agents. 𝐶s (𝐿) is to consider whether the agent is on a reasonable
position in the scene, which is evaluated from the agent’s admis-
sibility and the distance between each agent. The 𝜔 coefficients
determine the relative weighting of each item; in practice, we set
𝜔a = 0.5 and 𝜔s = 0.5.
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5.1.1 Agent Cost. In personalized cost, we consider the relative
relationships between human and scene, and the distributed rela-
tionships within agents. It is defined as follows:

𝐶a (𝐿𝑖𝑛, 𝐿) = 𝜔r𝐶r (𝐿𝑖𝑛, 𝐿) + 𝜔d𝐶d (𝐿𝑖𝑛, 𝐿), (2)

where 𝐶r (𝐿𝑖𝑛, 𝐿) is the interaction cost, and 𝐶d (𝐿𝑖𝑛, 𝐿) is the distri-
bution cost within agents. 𝜔r is set 0.6 and 𝜔d is set 0.4.

Interaction. When interacting in a new space, the relative rela-
tionship between the agent and the components of the scene with
which it is interacting should remain as unchanged as possible.
Once changed, it may affect the intent of the agent’s posture. For
example, it would make sense to raise a hand to try to grab some-
thing when the user is near a cupboard on the wall. Therefore, we
consider the relative position of the user and key objects in the
interaction cost. The cost is defined as follows:

𝐶r (𝐿𝑖𝑛, 𝐿) =
1
𝑁

∑︁
𝑖

(
��𝑑𝑖 − 𝑑′𝑖 ��
2 · 𝑑𝑚𝑎𝑥

+
��𝛼𝑖 − 𝛼 ′𝑖 ��
2 · 90 ), (3)

where 𝑑𝑖 is the distance of the agent 𝑖 from the edge of the nearest
interactive object. 𝑑′

𝑖
is the distance from agent 𝑖 in the new space

to the edge of the nearest object in the space. 𝑑𝑚𝑎𝑥 is the maximum
distance from all agents in the initial scene to key objects. 𝛼𝑖 is
the angle of the agent’s orientation relative to the key edge. 𝛼 ′

𝑖
is

the angle of the agent’s orientation in the new space relative to its
key edge. It should be noted that 𝛼𝑖 and 𝛼 ′𝑖 are constrained to 0-90
degrees. 𝑁 is the number of agents in the scene.

Distribution. The new space is different in area from the original
scene. The density distribution of agents in the scene is proportional
to the scene area. In order to distribute the agents reasonably in the
new space, we first use the mean of K nearest neighbor distances
to calculate the density distribution of the agents in the original
scene, where K is 3. For each agent, we find the three closest agents
in the scene and calculate the Euclidean distance between it and
these agents. Then we calculate the average of the three distances
as the density of agent. We reposition the agent in the new space
based on the area of the space. The cost is defined as:

𝐶d (𝐿𝑖𝑛, 𝐿) =
1
𝑁

∑︁
𝑖

����𝐾𝑖 − 𝐾 ′
𝑖

𝑙

���� , (4)

where 𝐾𝑖 is the social density of the 𝑖-th agent with other agents
in the scene. 𝐾 ′

𝑖
is the social density of the 𝑖-th agent with other

agents in the new scene. 𝑙 is the value of the diagonal length in the
scene. 𝑁 is the number of agents in the scene.

5.1.2 Spacial Cost. In the spacial cost, we consider the admissibil-
ity of people in the scene and the reasonable social distance around
agents. It is defined as follows:

𝐶s (𝐿) = 𝜔ad𝐶ad (𝐿) + 𝜔sd𝐶sd (𝐿), (5)

where 𝐶ad (𝐿) is the admissibility cost. 𝐶sd (𝐿) is the social dis-
tance cost. The 𝜔 coefficients determine the relative weight of each
item; in practice, we set 𝜔ad = 0.5 and 𝜔sd = 0.5.

Admissibility. The positioning range of characters in the scene
will vary depending on the character’s posture and body size. For
example, overweight people cannot complete some movements in
some small places. The admissibility of an agent is mainly judged
in two aspects: We detect the position of each key point of each
agent in the scene to determine whether the positioning is feasible.
In addition, it is also necessary to determine whether the user’s
posture is on a plane that matches the positioning. The cost is
defined as:

𝐶ad (𝐿) =
1
𝑁
max(0,

∑︁
𝑖

𝑉 (𝑝𝑜𝑠𝑖 , 𝑙𝑜𝑐𝑖 ),
∑︁
𝑖

𝑉 (𝐽𝑖 )), (6)

where 𝑙𝑜𝑐𝑖 is the position of agent 𝑖 . 𝑝𝑜𝑠𝑖 is the posture type of
agent 𝑖 . 𝑉 (𝑝𝑜𝑠𝑖 , 𝑙𝑜𝑐𝑖 ) is to determine whether the user’s posture
𝑝𝑜𝑠𝑖 satisfies the scene plane label value at the location 𝑙𝑜𝑐𝑖 . If it is
satisfied, 𝑉 (𝑝𝑜𝑠𝑖 , 𝑙𝑜𝑐𝑖 ) is 0, if it is not satisfied, it is 1, which can be
calculated based on the label map of the scene. 𝐽𝑖 is the position
of each joint point of agent 𝑖 in the scene. 𝑉 (𝐽𝑖 ) is to determine
whether the agent collides with an object in the scene. The value
is 1 if the node in question is in an inappropriate position in the
scene, 0 if not.

Social distance. Social safe distance refers to the distance main-
tained between people in social situations to ensure that each other
feels comfortable and safe. Positioning too close can cause agents to
feel uncomfortable or even cause collisions between agents. In real-
ity, the safe social distance should not be less than 1.2 meters[31].
The same as the virtual environment, where there should be rea-
sonable social distance between agents in a multi-agent layout. The
cost is defined as:

𝐶sd (𝐿) =
1
2𝑁

∑︁
𝑖

∑︁
𝑗

max(0, 1.2
𝐷 (𝑙𝑜𝑐𝑖 , 𝑙𝑜𝑐 𝑗 )

− 1), (7)

where 𝑙𝑜𝑐𝑖 is the position of agent 𝑖 in the scene, and 𝑙𝑜𝑐 𝑗 is the po-
sition of agent 𝑗 in the scene. 𝐷 (𝑙𝑜𝑐𝑖 , 𝑙𝑜𝑐 𝑗 ) is the Euclidean distance
between agent 𝑖 and 𝑗 . 𝑁 is the number of agents in the scene.

5.2 Simulated Annealing
To steer clear of getting trapped in local minima within the solution
space, we employ a simulated annealing algorithm to systemati-
cally probe the arrangement of the virtual agent. This algorithm is
adept at embracing suboptimal choices according to the Metropolis
criterion. To elaborate, starting with the initial placement of the
agent denoted as 𝐿0 within a fresh spatial context, we proceed by
selecting a potential relocation and then assess its viability using
the Metropolis-Hastings acceptance rule. This acceptance rule is
delineated as follows:

𝐴(𝐿𝑖 , 𝐿∗) = min
{
1,
𝑝 (𝐿∗)
𝑝 (𝐿𝑖 )

}
, (8)

𝑝 (·) is computed using by the defined cost:

𝑝 (·) = 1
𝑍
exp

−𝐶total( ·)
𝑇

, (9)

where 𝐶total( ·) is defined in Section 5.1. 𝑇 represents the temper-
ature of the annealing process. Initially, 𝑇 assumes a large value,
enabling the sampler to traverse the solution space with heightened.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Figure 5: An example of the optimization. The curve represents the cost change during the optimization. We also visualize
three intermediate configurations on the bottom.

Subsequently, as optimization progresses, 𝑇 undergoes gradual re-
duction. As it nears the conclusion, 𝑇 converges a small value near
zero, facilitating finer adjustments to the solution. 𝑍 denotes a nor-
malization constant. By default, we empirically set 𝑇 to 1.0 and
decrease it by 0.05 every 10 iterations until it reaches zero. Termina-
tion of the optimization is warranted if the absolute change in the
total cost value registers below 5% over the past 20 iterations. In
our experiments, a complete optimization spans around 140 ∼ 300
iterations.

To speed up the optimization, three strategies is proposed to do
an action with a respective probability, which modifies the position
and orientation of each agent:

Translation. Translation is the basic operation for changing the
agent location in the scenario. Agent 𝑖 is selected and updated
with the move. In the (𝑥,𝑦)-space position move, a translation
move generates a new position (𝑥𝑘 + Δ𝑥,𝑦𝑘 + Δ𝑦) based on the
current location (𝑥𝑘 , 𝑦𝑘 ). We sample the variation (Δ𝑥,Δ𝑦) using
a Gaussian distribution.

In the 𝑧-dimension, we set it in the new scene based on the height
of the terrain of the (𝑥,𝑦) plane. When there is no object at its loca-
tion, that is, the agent is standing on the ground, 𝑧 is 0. Otherwise,
the 𝑧 value is the height of the object in the corresponding position.
For example, when the agent is placed on a bed, the 𝑧 value is the
height of the bed.

Rotation. Rotation changes the orientation of the agent. In the
rotation move, the sampler generates a new orientation (𝜃𝑖 + Δ𝜃 )
based on the current orientation 𝜃𝑖 . The rotation change Δ𝜃 is
generated from the Gaussian distribution.

Swapping. Swapping refers to exchange the positions of any two
agents in the scene, which can accelerate the exploration of the
solution space. We choose two agents 𝑖and 𝑗 at random and swap
their positions directly.

It should be noted that we have enabled collision detection in
the scene. If the agent and the scene collide through the model, the
action is rolled back and the next action is selected.

6 EXPERIMENTS
In this section, we discuss several objective and subjective experi-
ments conducted to evaluate the effectiveness of our pose synthesis
approach. We implemented our approach using using C# and Unity
2021 and ran the optimization approach on a PC equipped with
32GB of RAM, a Nvidia Titan X graphics card with 12GB of memory,
and a 2.60GHz Intel i7-5820K processor.

6.1 Compared approaches
To verify the proposed approach, we compared three approaches
for virtual agent positioning:

• Multiple agents are put into new scenes in turn through the
POSA[12].

• Professionals put several virtual agents into new scenar-
ios in sequence based on their professional experience. We
recruited three professionals who have been engaged in ani-
mation production for 5 years.

• Our approach automatically positioned the virtual agents in
the new scene based on the character’s characteristics of the
virtual agents in the original scene.

We compared results of these approaches in quantitative and quali-
tative experiments.

Validation Dataset. The validation dataset consists of 25 scenes,
both indoors and outdoors. We use the above three methods to place
several agents for each scene. The number of agents in each scene
is set to 5-10 depending on the size of the scene. First, we invite
5-10 people in each scene to simultaneously perform simulated
actions in a scene similar to the operation of a simple social mobile
game. The virtual agent of the new scene is then populated based
on the scene positioning of the character in the original scene in
our approach as well as that of the professionals. Compared with
the method where professionals observe the scene, our method
automatically analyzes the characteristics of the agent.

6.2 Qualitative Experiment
we carried out user studies to evaluate the effectiveness of our
approach and the aesthetic experience subjectively.

Participants. We recruited 30 participants, with a diversity of
backgrounds in terms of many aspects. The participants included
14 males and 16 females whose ages ranged from 12 to 55. Occupa-
tionally they range from unemployed or retired people to students,
educators and business people. In addition, all the subjects reported
normal or corrected-to-normal vision with no color-blindness.

Procedure. The 25 scenes were randomly divided into 5 groups,
with 5 scenes in each group. 30 participants were also randomly
divided into 5 groups, with 6 people in each group. Each group of
participants was randomly assigned to a set of scenarios to rate
multiple agent positions generated by the three methods. Specifi-
cally, the score mainly consists of two parts: i) the rationality of a
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Figure 6: Average user ratings on rationality of single-person
postures and overall distribution of multi-person positions
of different approaches (i.e. our approach, Professional ap-
proach, and POSA) in subjective evaluation.

single character’s position (to verify the rationality of each char-
acter’s interaction with the scene) ii) the rationality of the overall
character’s position (to verify the rationality of the social distri-
bution of all characters ). Ratings range from 1 to 5 on a 1-5 Liker
scale, with 1 meaning inappropriate positioning and 5 meaning the
opposite. Results generated by the three methods were presented
to participants in random order to avoid bias. Not only that, we
also conducted semi-structured interviews about user experience
to further explore the factors that influence ratings. It should be
noted that each set of scenarios is guaranteed to correspond to a
set of participants.

Results and Analysis. The average score statistics of the 25 scenes
on the rationality of single-person postures and overall distribution
of multi-person positions are shown in Figure 7. From the statistical
point of view, the positioning of professionals received the highest
score in the two evaluations (single:𝑀 = 4.10, 𝑆𝐷 = 0.76; overall:
𝑀 = 4.17, 𝑆𝐷 = 0.65), followed by Our approach (single: 𝑀 =

3.83, 𝑆𝐷 = 0.75; overall: 𝑀 = 3.89, 𝑆𝐷 = 0.71) and POSA (single:
𝑀 = 2.66, 𝑆𝐷 = 0.84 ; Overall: 𝑀 = 2.58, 𝑆𝐷 = 0.81). In all cases,
our positioning approach are preferable to POSA and comparable
to the Professional approach.

To verify the validity of our results, we also performed a OneWay
ANOVA test on the mean ratings of each scenario using a 𝛼 = 0.05
significance level. The results show that there is no significant
difference between our method and the manual method of pro-
fessionals pose (single: (𝐹 [1,49] = 3.21, 𝑝 = 0.07 > .05), overall:
(𝐹 [1,49] = 2.25, 𝑝 = 0.134 > .05). However, compared with the POSA
approach, both approaches achieved significantly higher scores
than POSA: the Professional approach and POSA (single:(𝐹 [1,49] =
24.01, 𝑝 < .05),overall:(𝐹 [1,49] = 23.15, 𝑝 < .05)), Our and POSA
(single:(𝐹 [1,49] = 25.01, 𝑝 < .05),overall:(𝐹 [1,49] = 21.16, 𝑝 < .05)) It
is proven that our approach can quickly learn character character-
istics based on existing scenes and fill in new scenes, and the effect
is comparable to that of professionals. This enhances the agent’s

scene switching experience and allows empty scenes to be quickly
and appropriately filled.

In our approach, the number of components in the original scene
is 6. It is interesting that our method works better at positioning the
agent in the new scene when it has the same number of components
as the original scene.

User Feedback. By asking users for their opinions, we learned
that the suitability of the user’s clothing and the environment will
also affect the user’s overall perception of the scene to a certain ex-
tent. For example, a user wearing a chef’s uniform may feel strange
if he or she is standing in a non-kitchen area. Some users said that
virtual agents look a bit monotonous because their expressions
are uniform. Because in daily interactions, characters may have
a variety of expressions. These feedbacks have provided us with
some interesting improvements, helping us to consider users’ per-
sonalized information, such as clothing, expressions, etc., in the
scene auto-fill problem.

6.3 Quantitative Experiment
We verified the effectiveness of our approach quantitatively by
comparing the number of collision points between the character’s
posture and the surrounding environment in each scene and the
synthesis time of each approach.

Collision Points. The reasonable posture and position of each
virtual agent in the scene should not cause any unreasonable cross-
modeling with any model in the scene. In each scene, we calculated
the number of points where cross-mode collisions occurred between
the virtual agent and the scene in each method generation scheme
by turning on collision detection in the scene. Among a total of 202
characters in all scenes, our method did not cause improper cross-
modeling between the characters and the scene. The professional
method had 3 collision points with the scene, while POSA had 89
collision points with the scene. The results show that our approach
has obvious advantages due to the collision loss in our approach.
Compared with manual work by professionals, there are always
small mold-piercing errors caused by carelessness.

Synthesis time. For each scene, we recorded the synthesis time
for each method of automatically populating the new scene. Specif-
ically, the time records for each method are as follows:

• POSA: Place characters with fixed poses into the scene in
sequence, starting from the time when the first character is
placed until all characters are placed.

• Professional: Professionals put characters with fixed poses
into appropriate positions in the scene, but professionals
can make fine adjustments to the characters’ poses to fit the
scene. The timing starts from when he sees all the characters
until all characters are adjusted.

• Ours: Our approach starts timing by extracting character
relationships from the original scene until the repositioning
and pose adjustment of all characters are completed in the
new scene.

The results show that POSA’s method uses the least time to fill
the scene (𝑀 = 0.3𝑠, 𝑆𝐷 = 0.02𝑠). Our method fills the scene much
faster (𝑀 = 0.28𝑠, 𝑆𝐷 = 0.03𝑠) compared to the professional ap-
proach (𝑀 = 12.62𝑚𝑖𝑛, 𝑆𝐷 = 1.71𝑚𝑖𝑛). By asking professionals, we
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found that they would first spend 3 minutes viewing and analyzing
the scene structure and each user’s posture, then spend 1 minute
initializing their position in the scene, and finally fine-tuning the
character’s posture according to the size of the scene. , to ensure the
rationality of each pose in the scene. This process usually takes a
long time, usually 8 minutes. The results shows that the positioning
time of our method can realize real-time applications, such as rapid
switching of multiple scenes during real live broadcasts or virtual
games.

7 CONCLUSION
In this paper, we propose a new problem of how to personalize
characters based on their characteristics. We attempt to optimize
the problem of agent positioning in new scenes based on character
characteristics learned from historical scenes. To achieve this goal,
we attempt to model human characteristics from information in
historical scenes, which are then used in the optimization of agent
positioning in new scenes. Specifically, the external characteris-
tics (such as figure, posture) and internal characteristics (social
distance) of the characters are first extracted from the historical
environment.Then a cost function is designed to evaluate the rea-
sonableness of the agent’s position in the scene. Finally, a heuristic
algorithm based on Monte Carlo criteria is applied to optimize the
location of the agent in the scene, which make it more consistent
with individual characteristics.

Our approach leads to a variety of potential applications in both
virtual and real worlds. For example, players often encounter sce-
narios where multiple characters need to seamlessly transition from
one level or scene to another in virtual game development. By lever-
aging our approach, game developers can ensure that characters’
positioning and interactions are consistent, enhancing the overall
gaming experience and immersion for players. Another potential
application area is in urban planning and architecture. For example,
urban planners and architects can use virtual simulations of the
distribution of crowds in a scene to visualize and analyze urban
environments and building designs. This can help simulate human
interaction and behavior in these environments, thereby informing
more realistic and effective urban planning and building design.

Limitation and Future Work. The analysis of specific inputs may
be inaccurate due to the focus on human subjects in scene anno-
tation data. For example, inaccuracies can occur when the proxy
object is an animal such as a kitten. Various cartoon characters and
avatars are becomingmore andmore popular in virtual applications,
especially in games. Future work should involve collecting and in-
tegrating behavioral data from multiple organisms to improve the
accuracy of agent localization.

As characters transition from one scene to another, their at-
tire should seamlessly complement the setting. For instance, when
moving from a modern to an ancient-themed scene, it would be
interesting if the character’s wardrobe dynamically adjusts to align
with the scene’s style. Implementing such clothing adaptation not
only ensures the logical positioning of characters during automatic
scene transitions but also enhances their visual coherence with the
new environment.

While our current approach focuses on modeling the static pos-
ture of characters, a promising future direction involves seamlessly

integrating dynamic user interactions into virtual scenes. This ad-
vancement could be achieved by swiftly mapping the real-time ac-
tions of users, captured through wearable MR devices like Microsoft
HoloLens, into a dimensional space within the virtual environment.
By accurately translating the user’s dynamic action sequences into
corresponding positions within the virtual scene, we can propel the
evolution of AR animation, enhancing immersion and interactivity
for users.
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