
Rapid Prediction of Two-Dimensional Airflow in an
Operating Room using Scientific Machine Learning

Gary L. Collins∗, Alexander New∗, Ryan A. Darragh, Brian E. Damit, Christopher D. Stiles
Research and Exploratory Development Department

Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland 21044

{gary.collins, alex.new, ryan.darragh, brian.damit, christopher.stiles}@jhuapl.edu
∗ equal contribution

Abstract

We consider the problem of using scientific machine learning (SciML) to rapidly
predict solutions to systems of nonlinear partial differential equations (PDEs) de-
fined over complex geometries. In particular, we focus on modeling how airflow
in operating rooms (ORs) is affected as the position of an object within the OR
varies. We develop data-driven and physics-informed operator-learning models
based on the deep operator network (DeepONet) architecture. The DeepONet
models are able to accurately and rapidly predict airflow solutions to novel pa-
rameter configurations, and they surpass the accuracy of a random forest (RF)
baseline. Interestingly, we find that physics-informed regularization (PIR) does not
enhance model accuracy, partially because of misspecification of the physical prior
compared to the data’s governing equations. Existing SciML models struggle in
predicting flow when complex geometries determine localized behavior.

1 Introduction

Many problems of engineering interest can be solved by modeling a system of partial differential
equations (PDEs) across a non-uniform spatiotemporal domain, such as weather forecasting [1],
blood cell modeling [2], materials science [3], cellular signaling [4], and hypersonics [5]. Two
key challenges typically encountered are that (i) solving the relevant PDE systems requires large
amounts of time and computation, and (ii) the mathematical model specified by the PDE may not be
fully representative of the underlying physical phenomena. Increasingly, these problems have been
resolved with the use of scientific machine learning (SciML) [6, 7, 8].

Here, we focus on the use of SciML for the task of rapidly predicting airflow in operating rooms
(ORs), in particular, modeling how airflow changes as the placement of objects within the OR changes.
This is a relevant and interesting challenge for SciML for a number of reasons. Unidirectional flow
(UDF) is often used in ORs to attempt to reduce the occurrence of surgical site infections (SSIs) by
continuously supplying the surgical zone with clean air and washing away potentially pathogen-laden
particles [9, 10]. However, the interaction of healthcare workers and objects, such as surgical lights
and surgical tables, with the airflow may be difficult to predict and sensitive to the specific geometry
and flow conditions in the room which may create recirculation regions that potentially allow aerosols
to enter the surgical zone [11, 12, 13, 14, 15, 16, 17].

By developing a method to quickly predict the resulting airflow in an OR given a configuration of
medical equipment, the effectiveness of UDF and other ventilation strategies can more easily be
determined. Understanding the effects of object configuration inside an OR is important for reducing
negative health outcomes; however, traditional computational fluid dynamics (CFD) methods for
evaluating a flow field are computationally costly and impractical to perform in large numbers.
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Figure 1: We solve airflows over this 2D-OR geometry and surgical light placement. The position of
the light varies based on the OR configuration parameters ψ.

In this paper, we use SciML to develop three models (Sections 2.1 and 2.2) based on the deep operator
network (DeepONet) [18] operator-learning architecture, that predict the velocity and pressure fields
in a two-dimensional representation of an operating room (2D-OR) with respect to the placement and
orientation of a single surgical light (Appendix B). The three models include a purely data-driven
model and two physics-informed models. Once trained, the SciML surrogates are significantly more
computationally efficient at developing solutions than traditional CFD while generalizing accurately
across the parameter space (Section 3.1). In addition, the DeepONet models outperform a random
forest baseline model by an order of magnitude. For some cases, the SciML models struggle to
capture the flow behavior in the wake of the surgical light, and physics-informed approaches have
marginal losses in accuracy compared to the purely data-driven model, which highlights the difficulty
in capturing complex physical phenomena (Section 3.2). Although fidelity is lost when using a two-
dimensional (2D) OR geometry as opposed to a three-dimensional (3D) one, the selection of a 2D-OR
geometry for this work was made in order to increase the number of ground truth simulations available
for training [19]. Extensions to this work include evaluation on three-dimensional geometries, as well
as optimization of geometry configurations to satisfy target criteria.

2 Methods

2.1 Problem setup

We consider a 2D representation of an OR-like geometry (Figure 1) with a surgical table, air supplies
and returns, and a light parameterized by ψ = (xlight, ylight, θlight), where (xlight, ylight) is the position
of the center of the light and θlight the angle the bottom face of the light makes with the floor. For a
given ψ, Ω(ψ) denotes the set of points x = (x, y) in this OR. Further details are in Appendix B.
Airflow in this domain is treated as incompressible and is described by the field U = (u, v, p),
where u and v are x- and y- component velocities, and p is pressure. These variables obey the
incompressible steady-state Navier-Stokes equations (NSE):

Nc(U) = ∂xu+ ∂yv = 0 (continuity) (1)

Nx(U) = u ∂xu+ v ∂yu+
1

ρ
∂xp− ν∆u = 0 (x-momentum conservation) (2)

Ny(U) = u ∂xv + v ∂yv +
1

ρ
∂yp− ν∆v = 0 (y-momentum conservation), (3)

where ρ is the density of air (here 1.2043 kg/m3), and ν is the kinematic viscosity of air (here
1.5062×10−5 m2/s). In addition, by taking the divergence of the momentum equations and applying
the continuity equation to simplify, we derive an additional Poisson equation constraint for pressure:

Np(U) =
1

ρ
∆p+ (∂xu)

2 + 2 ∂yu ∂xv + (∂yv)
2 = 0 (Poisson pressure constraint). (4)

The CFD-based ground-truth data is generated using Reynolds-averaged Navier-Stokes (RANS)
simulations (specifically, the realizable k−ε model [20]), which introduce additional turbulence
variables and equations. Although here we consider only fluid flow models, additional quantities,
such as airborne particle distributions, can be coupled to the fluid flow equations [21].
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2.2 Operator models

We use a DeepONet [18]-type architecture Ûnorm : R2 × R3 → R3 to predict the normalized state
Unorm = (unorm, vnorm, pnorm) at a position x ∈ Ω(ψ) in the 2D-OR domain:

Ûnorm(x,ψ) = (ûnorm, v̂norm, p̂norm)(x,ψ) =


f(combine,u)(ftrunk(x)⊙ fbranch(ψ))

f(combine,v)(ftrunk(x)⊙ fbranch(ψ))

f(combine,p)(ftrunk(x)⊙ fbranch(ψ))

, (5)

where f(combine,·), ftrunk, and fbranch are neural networks (NNs), and ⊙ is element-wise multiplication.
We combine spatial and parameter decoders ftrunk and fbranch with joint encoders f(combine,·) to increase
expressivity of the network, similar to other recent operator-learning research [22].

We seek a model Ûnorm that can generalize over the space of configuration parameters ψ.
Thus, we sample N parameter values ψn, n = 1, . . . , N to obtain N simulations D(ψn) =

{(xn,m,Un,m)}Mn
m=1 consisting of field values Un,m ∈ R3 observed at mesh points xn,m ∈ Ω(ψn),

where Mn is the number of mesh points for simulation n.

NNs are trained on normalized data, but the NSE are defined in physically-meaningful units. Thus,
ftrunk and fψ are multi-layer perceptrons (MLPs) with normalization layers:

ftrunk(x) = MLP

(
x− µx

σx

)
, (6)

where µX and σX are the mean and standard deviation of x across the training set, the division is
carried out element-wise, and fbranch is defined similarly. Further, the normalized output of the model
Ûnorm is subsequently normalized to produce physical quantities:

Û = σU ⊙ Ûnorm + µU, (7)

where µU and σU are the mean and standard deviation of U across the training set.

The DeepONet Û is trained by minimizing a loss function defined from both data-based error and
physics-informed regularization (PIR) (Eqs. 1, 2,3,4). This yields the loss function L, minimized
with stochastic gradient descent (SGD) and Adam [23]:

L =
1

N

N∑
n=1

1

Mn

Mn∑
m=1

1

3

∣∣∣∣∣∣Unorm
n,m − Ûnorm(xn,m,ψn)

∣∣∣∣∣∣
1
+

1

N

N∑
n=1

1

Mn

Mn∑
m=1

(
λx|Nx(Û)(xn,m,ψn)|+ λy|Ny(Û)(xn,m,ψn)|

)
+

1

N

N∑
n=1

1

Mn

Mn∑
m=1

(
λc|Nc(Û)(xn,m,ψn)|+ λp|Np(Û)(xn,m,ψn)|

)
, (8)

where |Nx(Û)|, |Ny(Û)|, |Nc(Û)|, and |Np(Û)| are physics-informed residuals, and
λx, λy, λc, λp > 0 are regularization strengths.

Here, each λx, λy, λc, and λp is based on a shared λ0 = 1. Specifically, λ0 is scaled based on
characteristic length L and velocity U . This scaling makes each PIR loss component dimensionless:

λc = λ0
L

V
, (9)

λx = λy = λ0
L

V 2
, (10)

λp = λ0
L2

V 2
, (11)

where the length L (0.75 ft) and velocity V (35 ft/min) scales are the length of the major semi-axis
of the surgical light and inlet velocity magnitude, respectively.
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2.3 Implementation

We implement and train NNs with jax [24], flax [25], and optax [26]. Derivatives in PIR terms
are calculated with forward-mode automatic differentiation (AD) [27], with nested forward-over-
forward AD for second-order derivatives. Gradients with respect to NN weights are calculated with
reverse-mode AD. The computational cost of nested AD scales exponentially with the order of the
derivative. For example, see [28], which reports, in jax, roughly an order of magnitude more time
needed to evaluate the second derivatives of an MLP’s prediction with respect to its inputs, than just
the prediction directly. This could be mitigated by the use of techniques like Taylor-mode AD [29].
In practice, we use a “warm-start” strategy and turn off regularization (λ = 0) for the first 5000
epochs of training to obtain a partially converged model.

PIR constitutes an over-determined set of equations, in that the Poisson pressure constraint (Eq. 4) is
derived from the NSE (Eqs. 1, 2, 3). Thus, if the Poisson pressure constraint is satisfied (Np(U) = 0),
the continuity requirement is also satisfied (Nc(U) = 0). Because the continuity residual Nc is
simpler to calculate than the Poisson pressure constraint Np, we include both components in L.
Furthermore, the derivatives in the continuity equation also occur in other equations, so there is
negligible additional incurred computational cost for calculating continuity.

In addition, we do not expect to be able to exactly satisfy every term in the loss function (Eq. 8),
because the bias introduced by our regularization is misspecified compared to the data-generating
process. That is, the ground truth data was generated using a turbulence model, and this is not
included in our PIR. We use this form of PIR as an approximate proxy for the turbulence models CFD
simulations use in order to evaluate the effectiveness of physical priors with reduced complexity.

3 Results

The set of steady-state solutions are partitioned with 1000 light orientations for training, 200 light
orientations for validation, and the remaining 107 light orientations for testing. We evaluate trained
models on a simulation n with the relative error (Eq. 12):

Erel(ψn) =

√∑Mn

m=1 ||Unorm
n,m − Ûnorm(xn,m,ψn)||2√∑Mn

m=1 ||Unorm
n,m ||2

(12)

See Table 4 in Appendix C for details on the hyperparameters used to train networks.

3.1 Model evaluation

We first assessed baseline performance on this dataset with a random forest (RF) [30], using SCIKIT-
LEARN’s [31] RANDOMFORESTREGRESSOR function. After hyperparameter selection on the
validation set, when evaluated on the same test set of 107 light orientations, the RF achieved a mean
relative error of 0.21. The distribution of test set relative errors is given in Figure 7 in Appendix D,
and the hyperparameter selection procedure is in Table 3 in Appendix C. Due to the complexity of the
2D-OR geometry, some popular SciML-based methods for solving PDEs, such as the Fourier neural
operator (FNO) [32], are not immediately applicable. However, MLP-based DeepONet architecture
could be strengthened by adapting ideas from other approaches, such as graph networks [33].

In Figure 2, we plot the data-based error and PIR terms, for both the training and validation splits.
The models with PIR are initialized from the unregularized model after 5000 epochs and run for 2000
epochs, while the unregularized model also trained for an additional 2000 epochs. The unregularized
DeepONet initially improves in both training and validation errors but reaches a minimum validation
data error by 700 epochs. The parameters of the unregularized model at 5000 epochs of training
are used to initialize two PIR models: one regularized by the continuity equation (PIR-continuity)
and one regularized by the NSE and Poisson pressure equation (PIR-all). After 2000 additional
epochs, enforcing PIR in the loss causes each model’s physical residuals to decrease by a factor of
two; enforcing PIR does not substantively affect the validation set’s data loss. At the final epoch
for all three models, the majority of the relative data errors are below 10% as shown in Figure 6
in Appendix D. Further, the mean relative errors are also low for each partition, as shown by Table 1.
This is significantly better than the random forest baseline’s mean relative error of 0.21. In the 2D-OR
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Figure 2: The loss function components, for training and validation splits, from training the Deep-
ONets on the 2D-OR data. PIR models were initialized from the unregularized model’s state after
5000 epochs and then trained for 2000 epochs. Enforcing PIR decreases the physics-based residuals
but does not significantly affect data error for the validation set.

Table 1: Mean relative errors of all models for each data partition after 7000 epochs of training.
Dataset Unregularized PIR-continuity PIR-all RF
Training 0.0247 0.0338 0.0490 0.0206

Validation 0.0625 0.0670 0.0757 0.2031
Testing 0.0669 0.0707 0.0786 0.2001

geometry, mesh points are more highly concentrated near the bed and light, because a higher spatial
resolution is needed to accurately resolve the fluid behavior. This means that the relative error is more
affected by prediction errors in highly-sampled geometry regions, compared to less-sampled regions.
If we interpolate our CFD ground truth onto a regular mesh and evaluate the trained models on that
mesh, the effect of higher mesh concentration is removed. As seen in Figure 10 in Appendix D, this
results in all models having relatively similar distributions of error. Thus, PIR mostly affects the
regions near geometries (i.e., the surgical table and light).

We can also characterize this in terms of how much the regularized models’ predictions change
compared to the unregularized model. For this, we compute an average change:

|∆U(x)| = 1

N

N∑
n=1

∣∣∣∣∣∣Ûnorm
Unregularized(x,ψn)− Ûnorm

PIR (x,ψn)
∣∣∣∣∣∣ , (13)

where Ûnorm
Unregularized is the unregularized DeepONet model at the 5000th epoch and Ûnorm

PIR is a PIR
model after 2000 additional epochs. In Figure 11 in Appendix D, we show that most of the changes
are concentrated in the region between the light and the surgical table and near the room boundary.

5



However, given that the loss functions lack boundary conditions, the effects of the interaction of the
fluid and geometries are absent in PIR and must arise from the data-loss alone. In regions nearer to
geometries, where flow field tends to have larger gradients and where the influence of physics is not
captured by the PIR losses (e.g. boundary conditions and turbulence), the PIR models are detrimental.

Compared to relative error, PIR has the weakness that its minimizing solutions are not unique.
A zero-field satisfies the NSE; thus, PIR alone is not sufficient to yield accurate flow solutions.
However, relative error lacks the physics-based grounding of PIR, and so tracking both data-based
and physics-informed errors for SciML models provides additional metrics for interrogation and
understanding. Due to having lower physics-based error, models trained with PIR may be superior in
some application settings. Furthermore, future work could consider loss functions that adaptively
trade between physics- and data-based error depending on the location in the domain, such as
prioritizing physics-based error in domain interiors and data-based error near boundaries.

3.2 Analysis of results

Fluid flowing around an object may separate into a wake that is of high interest to researchers, but
is difficult to accurately model. Within the healthcare domain, the wake of a piece of equipment
in the UDF region may have a direct effect on the potential exposure of patients to potentially
pathogen-laden particles as it will disrupt the UDF in regions directly above or on top of a patient.

Each model has its maximum relative error on the same configuration, shown in Figure 3; this
configuration was in the validation split. A majority of the error appears in the wake of the light (i.e.,
the trapezoidal area under the light that extends to the surgical table), where alternating eddies appear
in the horizontal velocity and pressure (vortex shedding), and the vertical velocity appears to turn
upward (reverse flow). Vortex shedding and reverse flow are caused by viscous interaction between
the fluid and the surface of an object (i.e., a boundary condition). Since boundary conditions are
not explicitly represented in Eq. 8, PIR cannot improve a model’s ability to predict them. Instead,
whether or not a model predicts them will depend on its training data. In particular, the two nearest
training configurations (with respect to Euclidean distance in the normalized parameter space) do not
have vortex shedding or reverse flow, shown in Figure 8 (in Appendix D).

In contrast, for the validation case shown in Figure 4, the DeepONets accurately predict vortex
shedding and reverse flow. For this configuration, the closest training cases have significant wake
behaviors (Figure 9 in Appendix D). This supports the hypothesis of model reliance on training
data. Examining the error across all cases reveals that the majority of the error for the DeepONets
occur in the wake region. For each dataset partition, roughly 20 percent of the cases have a mean
positive v-component of velocity in the wake of the light, indicating reverse flow. Table 2 shows
that the DeepONets have more error in the wake of the light than outside of it; further, all models
have significantly higher error in validation and testing cases with reverse flow than validation and
testing cases without reverse flow. However, this discrepancy does not exist for the training cases,
showing the dependency of data-driven losses for reverse flow prediction. Overall, this is indicative
of the difficulty the DeepONets have in predicting complex fluid dynamics behaviors, such as vortex
shedding and reverse flow, without sufficient data or codified physics.

Table 2: The DeepONets achieve the most error in predicting airflow in the domain’s subregion
corresponding to the wake of the OR’s light, especially when reverse flow occurs. Specifically, we
partition the 2D-OR into “within the wake of the light” and “outside the wake of the light” regions
and calculate mean relative error (Eq. 12) within those regions for each model, for the test set.

Region Unregularized PIR-continuity PIR-all
Within the wake of the light, reverse flow 0.1530 0.1515 0.1461

Within the wake of the light, no reverse flow 0.0974 0.0965 0.0978
Outside the wake of the light 0.0460 0.0498 0.0554

3.3 Computational cost

Using a trained DeepONet to predict a solution is substantially faster than traditional CFD. The
average cost for a SciML model to generate a whole solution to a given light orientation is O(0.1)
CPU-seconds. In contrast, the traditional CFD approach required an average of 52 CPU-minutes.
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(a) u-component of velocity

(b) v-component of velocity

(c) Pressure

Figure 3: State predictions of each model on their highest error validation case, where the models fail
to predict vortex shedding. For each model, the majority of the error occurs in the wake of the light.
This configuration’s light is 0.6 ft to the right of the center, 8 ft above the floor, and rotated −54◦.

However, training cost is significant, especially using PIR. Using a NVIDIA A100 GPU, the unregu-
larized DeepONet required 17.6 GPU-hours to complete 7000 training epochs. For the addditional
2000 epochs, the PIR-continuity model required an additional 19 GPU-hours, and the PIR-all model
required an additional 117.4 GPU-hours. For predicting solutions, the time cost of unregularized and
PIR models are equivalent, because their network architectures are the same.

In settings where only a small number of CFD simulations are required, the computational cost of
training an DeepONet outweighs the cost of performing individual simulations. However, solving a
design problem can require many simulations as parameter space is explored. Thus, having access to
a trained SciML model can be efficient in this setting. Furthermore, DeepONet training time would
be reduced if the amount of required training data could be reduced while still maintaining predictive
performance. Such reduction has been shown to be possible in settings like materials science [34],
and PIR could prove helpful in maximizing data efficiency.

4 Conclusion

DeepONets learned the influence of the placement and orientation of a surgical light inside an OR
with UDF ventilation over a surgical table. Training, validation, and testing solutions were obtained
using RANS. Three DeepONet models were produced: one arising from velocity and pressure losses
and two that were warm-started from the previous model and then trained with PIR. The two PIR
models used a continuity loss term and a weighted sum of continuity, momentum-conservation, and
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(a) u-component of velocity

(b) v-component of velocity

Figure 4: The velocity profiles of a validation case where the DeepONets accurately predict vortex
shedding and reserve flow. The light orientation is 0.6 ft to the right of center, 7.36 ft above the
ground, and facing directly downward (0◦).

Poisson pressure loss terms. Although this particular problem is healthcare-focused, it reveals many
insights on the application of operator learning for the placement of a rigid object in a fluid field.

However, despite the high training costs, the DeepONets proved to be accurate for healthcare related
problems. The performance of the DeepONets in training, validation, and testing are an order of
magnitude more accurate than a random forest baseline. A majority of the validation and testing
configurations are sufficiently accurate, with a relative error under 10%. The few validation/test cases
that represent the bulk of the error have their errors concentrated in the wake of the surgical light,
either by not identifying the wake behavior or mischaracterizing it.

Another consideration is the connection between complex wake behavior and surgical light angle. A
more streamlined surgical light may result in less flow separation and thereby avoid the formation of
a complex, nonlinear wake. A similar situation occurs when the angle of the surgical light is aligned
with the upstream flow such that flow moves over the side of the surgical light. If the angle is changed
enough so that air flows over the top of the light, flow separation is more likely to occur. This effect
is similar to that of an airflow at low and high angles of attack around objects [35, 36]. Despite this,
uniform sampling was used, treating the separated and unseparated flows equally.

This suggests three potential approaches for future work. The first approach is to include boundary
conditions inside of PIR and to use turbulence modeling to modify the viscosity near a boundary. In
doing so, the loss function will better represent the physics of the problem and may capture the wake
behavior more accurately. The second approach is to use mesh refinement to improve the accuracy of
the dataset and wake behaviors. The third approach is to use non-uniform or adaptive sampling to
obtain a dataset that is more representative of the complexity of the flow behavior [37].
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A Related work

SciML has recently shown success when applied to scientific domains [6]. In particular, physics-
informed neural networks (PINNs) [38] can solve forward and inverse problems. PINNs have been
applied in a wide variety of settings, including fluid flow problems governed by the NSE [39, 40].
PINNs are flexible and can be applied to both uniform and complex geometries, especially when
combined with geometric extensions [41]. However, training networks based on PIR has been shown
to often be difficult and susceptible to various pathologies [42, 43, 44]. In addition, PINNs solve
only a single instance of a PDE, whereas here we focus on the challenge of predicting general PDE
solutions.

This latter problem has been solved with a variety of operator-learning models [18, 32, 45, 46, 47, 33,
22, 48], such as the DeepONet [18] and FNO [32], have shown recent success in rapidly predicting
solutions to systems governed by nonlinear PDEs, such as the Navier-Stokes equations. However,
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these efforts have primarily focused on systems with uniform domain geometries (even though
both the DeepONet and an extension of the FNO [49] can be applied to complex geometries); in
contrast, many domains of interest in engineering are irregular in some way. Furthermore, many
operator-learning approaches focus on predicting solutions to time-dependent systems; here, we
consider systems with quasi steady-state dynamics of interest. SciML has been successfully to predict
solutions to these systems [50].

Because the interaction of objects with the airflow may create recirculation regions and may potentially
allow aerosols to enter the surgical zone, some recent research has questioned the effectiveness of
UDF at reducing SSIs [51, 52, 53, 54, 55].

B Data generation

Simulations were performed using the commercial software COMSOL Multiphysics® version
6.1 [56] to solve for the airflow in a 2D-OR using the incompressible Navier-Stokes equations with
the realizable k-ε turbulence model [20]. The velocity at the air supply is set to 35 ft/min and
a pressure outlet is used on both air returns. The 2D-OR measures 27 ft wide and 10 ft tall. A
76 in×30 in rectangular surgical table is centered on the floor of the room with a 70 in×7 in block
placed centered on top of the table to represent the patient. The surgical light is represented as a
half-ellipse with semi-axis lengths of 9 in and 4 in cut in half along the longer axis. The corners of
the resulting shape are then filleted with a radius of 0.05 ft. The air supply is centered on the ceiling
and measures 100 in wide and the air returns were positioned 8 in off the floor on the left and right
wells. Each air return measures 3 ft tall. See Figure 1 for the OR geometry and an example velocity
field.

Steady-state solutions were generated across a uniform discretization of the light position and angle
parameter space. The center of the light is positioned within a rectangular region that is 6 ft wide and
3.2 ft high, whose center is located 6.4 ft above the floor and aligned with the middle of the surgical
table. The angle of the light ranged from −90◦ to 90◦ relative to the light pointing directly downwards.
The discretization divided the 3-dimensional parameter space into 11×11×11 uniformly-spaced
points. Given that COMSOL generates an unstructured mesh based on the specifics of a light’s
geometry, the number Mn of mesh points for each solution varies. The average and standard deviation
number of mesh points per solution was 14106 and 330, respectively. The solutions for 24 (1.8%)
of the sampled light orientations did not converge; the orientation of those cases are in Figure 5
in Appendix D. Solutions were generated using a 24-core Intel Broadwell Processor. The average and
standard deviation of the compute time per solution was 53.4 CPU-minutes and 25.6 CPU-minutes,
respectively.

C Model hyperparameters

Table 3: Hyperparameters searched across for the RF baseline. The optimal configuration was chosen
by evaluation on the validation split, via an exhaustive grid search.

Hyperparameter Range of values Chosen value
n_estimators 100, 500 100

min_samples_leaf 2, 10, 20 2
min_samples_split 2, 10, 40 2

D Supplemental figures
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Table 4: Hyperparameters used for the DeepONet models. The spatial encoder ftrunk, parameter
encoder fbranch, and decoders f(combine,·) (see Eq. 5) were all MLPs with the same architecture. The
parameters were chosen by experimentation on the training and validation sets.

Hyperparameter Chosen value
optimizer Adam

learning rate 10−4

# hidden units 128
# hidden layers 2

λ0 1
minibatch size 4000

Figure 5: We visualize for what light configurations COMSOL failed to converge, where the point
color is the surgical light angle. These light configurations do not represent un-physical simulutions,
and they are distributed throughout configuration-space. Further variation of solver options could
enable COMSOL to converge.
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(a) Training (b) Validation

(c) Testing

Figure 6: On the validation and test split, the unregularized and PIR-continuity models perform
comparably, while the PIR-all model experiences some accuracy degradation. We show this using
the empirical cumulative distribution function (ECDF) of the relative error (Eq. 12) across each
data partition, for the unregularized DeepONet model after 5000 epochs and the PIR-continuity and
PIR-all models after an 2000 additional epochs.

Figure 7: For our RF baseline, we plot the ECDF of the relative errors (Eq. 12) for the test set. The
mean relative error is 0.21, which is noticeably higher than the mean relative error for the DeepONet
models (6).
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Figure 8: As shown in these vertical velocity profiles, these two configurations from the training set
lack strong vortex shedding and reverse flow. These two configurations were the most similar to the
validation configuration that had the worst error (Figure 3). Unlike these configurations, the validation
configuration did have vortex shedding and reverse flow. Their titles indicate the orientation of the
light relative to that of the worst validation case in Figure 3.

Figure 9: As shown in these vertical velocity profiles, these two configurations from the training set
have strong vortex shedding and reverse flow. These two configurations were the most similar to the
validation configuration shown in Figure 4, where the models accurately predicted vortex shedding
and reverse flow. Their titles indicate the orientation of the light relative to the light orientation in
Figure 4.
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(a) Training (b) Validation

(c) Testing

Figure 10: When the models are evaluated on a uniform mesh, the differences between each Deep-
ONet’s accuracy become minimal. This is due to PIR having the strongest impact on predictions in
the room geometry that are highly-sampled in the CFD mesh. Evaluation is performed with the ECDF
of the relative error (Eq. 12) across each data partition, for each model, evaluated on a regular mesh.
The CFD “ground truth” data is obtained from a nearest neighbor approximation of the solution
onto a 128× 64 structured mesh and removal of the light, walls, and surgical table geometries. The
nearest neighbors approximation was performed with SCIKIT-LEARN’s [31] function and with default
settings. Errors are computed with Equation (12).

Figure 11: The difference in predicted state variables between PIR and unregularized models is
concentrated in the region between the light and the surgical table and near the geometries of the
room. This uses the average absolute change (Eq. 13), across all validation and test configurations for
the PIR models after 2000 epochs of training, and for the unregularized DeepONet model after 5000
epochs.
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