
Published as a Tiny Paper at ICLR 2024

BEYOND UNIFORM SCALING: EXPLORING DEPTH
HETEROGENEITY IN NEURAL ARCHITECTURES

Akash Guna R.T. ∗1, Arnav Chavan∗1,2, Deepak Gupta2
1Nyun AI 2Transmute AI Lab (Texmin Hub), IIT (ISM) Dhanbad, India
arnav.chavan@nyunai.com, guptadeepak2806@gmail.com

ABSTRACT

Conventional scaling of neural networks typically involves designing a base net-
work and growing different dimensions like width, depth, etc. of the same by
some predefined scaling factors. We introduce an automated scaling approach
leveraging second-order loss landscape information. Our method is flexible to-
wards skip connections a mainstay in modern vision transformers. Our training-
aware method jointly scales and trains transformers without additional training
iterations. Motivated by the hypothesis that not all neurons need uniform depth
complexity, our approach embraces depth heterogeneity. Extensive evaluations on
DeiT-S with ImageNet100 show a 2.5% accuracy gain and 10% parameter effi-
ciency improvement over conventional scaling. Scaled networks demonstrate su-
perior performance upon training small scale datasets from scratch. We introduce
the first intact scaling mechanism for vision transformers, a step towards efficient
model scaling.

1 INTRODUCTION
Efforts to improve the performance of deep learning models are crucially dependent on scaling
network architectures. Scaling typically involves repeating the same core structure as the base model
in different dimensions. Prominent model families such as ResNet, BERT, GPT-3, and ViT (He et al.,
2016; Devlin et al., 2019; Brown et al., 2020; Kolesnikov et al., 2021) have consistently expanded
networks by adjusting depth, width, and layer dimensions, informed by empirical observations rather
than a rigorous scientific foundation. A recent study by Wu et al. (2019) introduced an innovative
width expansion approach, leveraging a computationally efficient Hessian approximation to identify
neurons linked with saddle points for growth. However, this method, limited to width expansion that
disrupts skip connections in linear layers, restricting its applicability to state-of-the-art transformers.

Existing attempts at scaling depth, as in Net2Net(Chen et al., 2015), uniformly increase depth
throughout the network. We contend that such uniform scaling may be sub-optimal, as different
network regions may require distinct scaling proportions. Notably, current approaches lack provi-
sions for non-uniform depth scaling of neural networks.

This paper breaks away from uniform network scaling and explores depth heterogeneity for non-
uniform scaling of neural architectures. Our approach embraces varied depth allocations across
neurons within the same layer, allowing for adaptive and efficient utilization of network resources.
Through experimental comparisons, we demonstrate that our method outperforms conventional scal-
ing methods, achieving an accuracy gain exceeding 2.5% while utilizing 10% fewer parameters.

2 METHOD

The central idea underlying our scaling approach is to design a training-aware scaling strategy at the
individual neuron level; hence, it is crucial to carefully select neurons and employ a viable scaling
technique. The core of our method lies in escaping saddle points of the loss landscape through
localized scaling of individual neurons rather than the whole layer. Plateaus with small curvature
surround saddle points leading to slow convergence (Dauphin et al., 2014), hence eliminating saddle
points via localized scaling enables faster convergence. Our approach selects neurons based on a
pre-defined criterion for localized scaling. During the localized scaling, new neurons are added

∗Equal contribution.

1



Published as a Tiny Paper at ICLR 2024

to a pseudo-layer and the output is then projected back to the selected neurons via individual skip
connections. More details on the generic idea are presented in Appendix A.

Choosing the right neurons is crucial for the efficient scaling of the network architectures. We
achieve this through the identification of neurons with the smallest negative eigenvalues derived from
a Hessian approximation introduced by Wu et al. (2019). Existence of both positive and negative
eigenvalues have been proved to contribute to the saddle points of the loss landscape (Alain et al.,
2019). This selection criterion tends to accelerates the shifting of negative eigenvalues towards zero
to escape saddle points, a phenomenon that naturally occurs during neural network training (Sagun
et al., 2017).

Finally, ensuring function preservation during scaling is critical (Chen et al., 2015). Adding neurons
without modifying existing neuron weights and biases ensures that even intermediate functions are
preserved. To achieve such function preservation, we incorporate a strategy of adding two neurons
with the same magnitude but opposite polarities for each selected neuron. This preserves the overall
function without altering the weights of the scaled neurons while handling complex network topolo-
gies, like skip connections successfully. The mathematical formulation is detailed in Appendix B.
In summary, our neuron scaling method involves the selection of neurons with minimal neg-
ative eigenvalues, accommodating skip connections, and ensuring function preservation by
introducing paired neurons with opposite polarities. This innovative approach contributes to the
scalability of transformers at a neuron level, paving the way for more effective and robust training
procedures.

3 EXPERIMENTS

For the experiments presented in this paper, we use ImageNet100 dataset, obtained through random
sampling of 100 classes from the Imagenet1K (Deng et al., 2009). Next, we build a base model
which will eventually be used for scaling using our approach. For the base model, we shrink DeiT-S
(Touvron et al., 2021) by reducing the intermediate hidden dimension of MLP and MHSA modules
by 50%. We train the base model for warmup period of 50 epochs.We scale neurons that fit our
selection criteria every 30 epochs. Table 1 shows that our method was able to perform better than
DeiT-S with 28 % less parameters and was able to gain over a 2.5 % accuracy gain with 10 %
less parameters than DeiT-S. Our scaled networks were resilient towards overfitting. In Table 2,
we show that the our network scaled on ImageNet100 works significantly better at training CIFAR-
100(Krizhevsky et al., 2009) from scratch than DeiT-S. Our intuition is that DeiT-S has overfitted
CIFAR100. This behaviour of Deit-S would likely translate to training small scale datasets from
scratch.

Scaling Base Param. (M) Final Param. (M) Base FLOPs (G) Final FLOPs (G) Top-1 Top-5

Homogeneous 21.7 21.7 4.6 4.6 77.80 93.16
Heterogeneous 11.0 15.6 2.3 3.1 79.16 94.00
Heterogeneous 11.0 19.4 2.3 3.9 80.36 94.58

Table 1: Performance of the proposed scaling method to scale DeiT-S on ImageNet100 dataset.

Model Param. (M) FLOPs (G) Top-1 Top-5
Deit-S (Homogeneous) 21.7M 4.6 58.9 78.9
Deit-S (Heterogeneous) 19.4M 3.9 78.1 95.0

Table 2: Performance on our scaled DeiT-S on CIFAR100 upon training from scratch.

4 CONCLUSION

In this paper, we presented a novel neural architecture scaling approach to scale modern neural
architectures efficiently through localized and non-uniform scaling of neurons. Through multiple
experiments, we have demonstrated the efficacy of our approach, and we believe this work will pave
way for future research towards building large-scale efficient neural architectures through proposed
scaling of smaller networks.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that the first author of this work meets the URM criteria of ICLR 2024
Tiny Papers Track.

REFERENCES

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. arXiv preprint arXiv:1902.02366, 2019.

Tom Brown et al. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. Advances in neural information processing systems, 27, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Un-
terthiner, and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image recognition
at scale. 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond, 2017.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention. In Ma-
rina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR,
18–24 Jul 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
Advances in neural information processing systems, 32, 2019.

3



Published as a Tiny Paper at ICLR 2024

A WORKFLOW DESCRIPTION: EXPLORING DEPTH HETEROGENEITY

Our aim is to scale neural networks through depth heterogeneity. To achieve the scaling, we start
from transformers with reduced width at intermediate layers. We reduce width of only intermediate
layers to leave skip connections unaffected. We scale neurons by adding new neurons as skip con-
nections to neurons selected to scale. Figure 1 displays the basic workflow of our scaling technique.

Figure 1: The Basic Workflow of the Proposed Scaling Technique. (a) shows the regular DeiT
architecture. (b) shows a reduced DeiT architecture where parameters are reduced from intermediate
layers to form bottlenecks. (c) shows an example scaled DeiT architecture grown from a reduced
DeiT architecture.We scale only selected neurons (S) for scaling through skip connections and do
not scale other neurons (NS) present in the layer. Our scaling technique is applicable to QKV,
Projection and Fully Connected layers of DeiT.

B MATHEMATICAL DESCRIPTION

B.1 USING HESSIAN TO IDENTIFY THE RIGHT NEURONS

Neural networks aim to escape saddle points to reach local minima (Dauphin et al., 2014; Sagun
et al., 2017). Based on this motivation, we use the identification of saddle points as a criterion for
scaling the network. We select neurons using Hessian to identify the right neurons to scale. The
second-order derivative of the activation value represented by a neuron with respect to the loss is a
Hessian matrix. It monitors the direction of the gradients, the first-order derivative. Therefore, we
could identify saddle points upon analyzing the magnitude of the Hessian’s eigenvalues. A saddle
point exists when a Hessian possesses a mix of positive and negative eigenvalues. The magnitude of
the negative eigenvalues provides information on the steepness of the saddle point.

Despite the Hessian’s ability to effectively identify saddle points, they are costly to compute. Wu
et al. (2019) utilized a compute-efficient Hessian approximation called the splitting matrix to scale
neurons by splitting existing neurons. Let the loss computed over the activation value σ of a neuron,
L(σ), be ϕ(σ(X)) where ϕ is the loss with respect to the σ for the given input X . The Hessian for a

4



Published as a Tiny Paper at ICLR 2024

σ is given by

Hessian(σ) = ϕ
′′
(σ(X))σ

′
(X)Tσ

′
(X) + ϕ

′
(σ(X))σ

′′
(X) (1)

where (.)
′

represents first order derivative and (.)
′′

represents second order derivative. Computing
ϕ

′′
for a σi requires computing all the preceding gradients {σ′

n, σ
′

n−1, ..., σ
′

i−1} which constitutes
the bulk of computation required for Hessian calculation. Omitting ϕ

′′
(σ(X))σ

′
(X)Tσ

′
(X) from

computation was still able to produce a good enough approximation (Wu et al., 2019) and is known
as splitting matrix. The splitting matrix is formally defined as

SplittingMatrix(σ) = ϕ
′
(σ(X))σ

′′
(X) (2)

We use the eigenvalues from the splitting matrix to identify neurons with saddle points that are
suitable to scale.

B.2 SELECTING NEURONS TO SCALE

Our base network is a DeiT-S with reduced parameters, which we scale to 20 million parameters
during training. We train that network for an Intial Warmup period of 50 epochs. Starting from the
50th epoch, we scale the network every 30 epochs. We denote this interval as the Scaling Interval.
Neurons with the smallest negative eigenvalues are selected for scaling during each splitting interval.

We select the neurons until the added neurons exhausts a Parameter Budget. Parameter Budget
is defined as the expected count of newly added neurons at each scaling interval. Since, we are
reducing the parameters from both MHSA and MLP blocks we scale neurons present in both these
blocks. The resulting scaled network add parameters to both MLP and MHSA blocks . We use a
Layer Threshold to set a minimum bar for the number of eligible neurons a layer must posses to be
scaled. This ensures that sparse neuron scaling is prevented. We set the layer threshold to be 60
neurons for scaling a Deit-S transformer.

B.3 SCALING NEURONS

We scale transformers at the neuron level. Due to extensive usage of skip connections between trans-
former blocks, existing neuron level scalers like Chen et al. (2015); Wu et al. (2019) are not directly
applicable. We overcome this issue by adding neurons in a manner that mimics skip connections.
We add outputs of added neurons with their existing counterparts without altering the existing output
dimensional space of the transformer blocks. Our architecture initializes added neurons such that
existing neuron outputs and weights remain unchanged, ensuring function preservation (Chen et al.,
2015).

Since the widely adopted transformer architecture (Vaswani et al., 2017) is constructed using linear
layers, we design our scaling technique around linear layers. Let the output of a layer that consists
neurons selected to be scaled be OL(I) = WLI + BL for a given input I where WL and BL are
the weights and bias of the layer respectively. Our goal is to expand a subset of neurons NS from
a layer consisting NL neurons without disturbing the weightsWS and bias BS . To achieve this, we
perform scaling by adding two neurons for each selected neuron with equal weights WA and biases
BA but opposite polarities. WA and BA are WS and BS scaled by a scaling factor of 0.2. This
initialization helps in preserving WS and BS while ensuring the flow of gradients. The equation
illustrating how our scaling mechanism by adding a skip connection between new neuron outputs
and existing outputs of selected neurons is given by:

O
′

S = OS +GeLU(OA+ +OA−) +OA+ +OA−︸ ︷︷ ︸
NeuronScaling

(3)

where OS and O
′

S are outputs of a neuron from NS before and after scaling. Further, GeLU(.) adds
non-linearity to the outputs of newly added neurons (OA+, OA−). When initialized, the addition
between OA+ and OA− becomes 0 leaving WS and BS unmodified. We have skip connections
from OA+ and OA− to ensure proper gradient flow during backpropagation when newly intialized.

5



Published as a Tiny Paper at ICLR 2024

B.4 PROOF OF FUNCTION PRESERVATION UPON INITIALIZATION

Here, we present the proof that our scaling mechanism preserves functions during initialization from
a layer perspective. Let us denote newly added positive and negative neurons collectively as linear
layers (LA+ and LA−). LA+ and LA− differ by polarity of their weights and biases. The outputs of
LA+ and LA− is denoted as OA+ and OA− respectively and are defined as

OA± = (±WS)I + (±BS) (4)

Let S denote the sum of OA+ and OA−

S = OA+ +OA− (5)
S = WSI +BS −WSI −BS (6)
S = WS(I − I) +BS(Id− Id) (7)

S = WS(Z
I) +BS(Z

Id) (8)

S = ZS (9)

where Zα is a null matrix of α dimensions and Id is the identity matrix. Therefore, S becomes
equal to a null matrix of the same dimensionality. When we substitute S in Equation 3 we get

O
′

S = OS +GeLU(S) + S (10)

O
′

S = OS +GeLU(ZS) + ZS (11)

Since GeLU(ZS) = ZS , O
′

S = OS . Therefore, we have shown that functions are preserved upon
initialization.

C EXPERIMENTS: CONFIGURATION DETAILS

C.1 HYPERPARAMETERS

For all experiments using ImageNet-100 we utilize a batch size of 1024 equally distributed among
4 NVIDIA L4 GPUs. We train all networks for 300 epochs and adopt the same training hyper-
parameters as in Touvron et al. (2021) unless specified explicitly. For the CIFAR-100 experiments
we set batch size to be 512 (/4 GPUs), gradient clipping to 1.0, and weight decay to 0.0001. .

C.2 IDENTIFYING THE IDEAL BASE MODEL

Since we scale DeiT transformers with reduced parameters, it is important to ideally reduce pa-
rameters to maximize effectiveness of scaling. We reduce parameters from the base network by
reducing the width of intermediate layers, forming bottlenecks. We reduce parameters from QKV
layers (ATTN) and the first fully-connected layer of the MLP block (FC). Other layers have skip
connections therefore, width cannot be modified. We performed a grid search to identify the best
ratio at which parameters could be reduced from ATTN and FC layers. We tried reducing the width
of ATTN and FC layers at equal proportions and reducing the width of only ATTN or FC Layers.
Table 3 shows the result of the grid search. Reducing the width by half at both ATTN and FC layers
produced the best results.

Model Base Param. (M) Grown Param. (M) Base FLOPs (G) Grown FLOPs (G) FC ↓ ATTN ↓ Top-1 Top-5

Deit-S 11.0 19.4 2.3 3.9 /2 /2 80.36 94.58
Deit-S 11.4 19.7 2.4 4.1 /4 /1 78.64 93.88
Deit-S 17.0 19.4 3.4 3.8 /1 /4 79.44 93.36
Deit-S 21.7 21.7 4.6 4.6 /1 /1 77.80 93.16

Table 3: Effect of base network reduction on final performance on the ImageNet100 dataset.

C.3 IDENTIFYING THE APPROPRIATE SCALING INTERVAL

To explore the ideal splitting interval, we searched across a range of candidate intervals
{10,20,30,50} to scale a reduced Deit-S transformer. We scale the DeiT-S transformer by reducing

6



Published as a Tiny Paper at ICLR 2024

intermediate layers in MLP and MLHA blocks by 50 % in a 1:1 ratio, resulting in a base network
with 11 million parameters. We then grew all the models to 20 million parameters with an ±.5 mil-
lion allowed fluctuation in the final parameter count. Our experimental investigation revealed that
scaling DeiT-S at a regular interval of 30 epochs yielded optimal performance while possessing the
least amount of parameters. 4 shows the results of the experimentation.

Grown Param. (M) Grown FLOPs (G) Splitting Interval Top-1 Top-5
20.4 4.2 10 79.78 94.36
20.0 4.1 20 79.44 94.04
19.4 3.9 30 80.36 94.58
19.9 4.1 50 79.94 93.92

Table 4: Results on ablating scaling interval for a DeiT-S transformer trained on ImageNet100
dataset. Scaling Interval is the interval between two scalings.

D ANALYSIS OF EIGENVALUES TO STUDY SADDLE POINTS

Examining the presence of saddle points at the start and end of training helps assess the effectiveness
of our scaling method. We plot negative eigenvalues to assess the presence of saddle points and
their steepness. Negative eigenvalue plots for a QKV layer from the MHSA block and the first FC
layer(FC1) from the MLP block are shown in Figure 2. The plots show the presence of saddle points
at both the start and end of the training, but the magnitude of negative eigenvalues is very close to 0
towards the end of the training, denoting that the remaining saddle points are shallow. These plots
show that the scaled transformer successfully escaped steep saddle points.

Figure 2: Plots showing negative eigenvalues of neurons in QKV and FC1 layers of the first trans-
former block. Each neuron in the X-axis has its magnitude shown in the Y-axis. (Zoom to view X
and Y axes).

7


	Introduction
	Method
	Experiments
	Conclusion
	Workflow Description: Exploring Depth Heterogeneity
	Mathematical Description
	Using Hessian to Identify the Right Neurons
	Selecting Neurons to Scale
	Scaling neurons
	Proof of function preservation upon Initialization

	Experiments: Configuration Details
	Hyperparameters
	Identifying the ideal base model
	Identifying the appropriate scaling interval

	Analysis of Eigenvalues to study Saddle Points

