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ABSTRACT

Large language models (LLMs) have demonstrated impressive capabilities across
a wide range of natural language processing tasks. However, their outputs often
exhibit social biases, raising fairness concerns. Existing debiasing methods, such
as fine-tuning on additional datasets or prompt engineering, face scalability is-
sues or compromise user experience in multi-turn interactions. To address these
challenges, we propose a framework for detecting stereotype-inducing words and
attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt
modification. Our framework first identifies stereotype-inducing adjectives and
nouns via comparative analysis across demographic groups. We then attribute
biased behavior to specific neurons using two attribution strategies based on in-
tegrated gradients. Finally, we mitigate bias by directly intervening on their acti-
vations at the projection layer. Experiments on three widely used LLMs demon-
strate that our method effectively reduces bias while preserving overall model
performance. Code is available at the github link: https://github.com/
XMUDeepLIT/Bi-directional-Bias—-Attribution.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al.l 2023} Dubey et al.| [2024) have achieved remark-
able performance across a wide range of natural language processing tasks. However, mounting
evidence shows that these models can perpetuate and even amplify societal biases, such as gender,
racial, religious, and occupational stereotypes (Nadeem et al.,|2020). Such biases become especially
problematic when LLMs are utilized in critical applications, including content generation, decision-
support systems, and interactive dialogues (Liang et al., 2021} [Parrish et al., [2021}; |Gallegos et al.,
2024a). As LLMs grow in scale and generalization capacity, understanding and mitigating their
internal sources of biased behavior becomes increasingly critical.

During the period of masked language models (Devlin et al) 2019; Liu et al., 2019), some
approaches attempted to mitigate bias by fine-tuning models using existing or synthesized
datasets (Liang et al.l 2020; |Guo et al., 2022). However, with the advent of large language mod-
els, such methods have become increasingly impractical due to their substantial demands on time
and computational resources. To address these limitations, recent efforts primarily focus on prompt-
based debiasing, such as explicitly instructing the model to avoid relying on certain biased attributes
in its response (Furniturewala et al. |2024), or analyzing the initial output to identify bias patterns
before prompting the model to answer again (Gallegos et al., [2024b; |Li et al.l |2024). Nonetheless,
modifying user prompts may negatively impact user experience, especially in multi-turn interactions
where repeated rewriting significantly increases context length and inference cost. These challenges
motivate us to develop a debiasing approach that requires neither model fine-tuning nor prompt
modification.

In this paper, we propose a framework for stereotype cue detection and bias attribution in LLMs,
with the goal of identifying biased neurons and applying interventions in an interpretable man-
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ner. In this work, we define stereotype cues as adjectives or nouns that obviously induce skewed
predictions toward specific demographic groups. For example, when no additional gender infor-
mation is provided in the context, LLMs may tend to associate a doctor with being male; in this
case, “doctor” serves as a stereotype cue. Our framework is built on two key stages: (i) Stereo-
type Cue Selection via Entropy Minimization. By constructing sentence templates and computing
entropy over the model’s predicted distribution across demographic groups, we identify the most
bias-inducing cues in a model-specific and attribute-specific way. (ii) Forward and Backward Bias
Attribution via Integrated Gradients. To trace biased outputs back to specific neurons in the LLM,
we design two attribution strategies. The Forward-IG strategy is to construct prompts in which the
subject contains an unknown demographic group, and let the LLM predict the demographic group.
Forward-1G quantifies neuron-level bias contributions when the LLM predicts skewed demographic
groups from stereotype-laden prompts. Conversely, the Backward-IG strategy is to construct a se-
ries of sentence subsets, where each subset contains sentences whose subjects belong to different
demographic groups, in order to examine the relationship between the model’s outputs and demo-
graphic information. Backward-IG identifies neurons that drive differences in generated outputs
across demographic groups. Overall, these two attribution strategies provide parallel perspectives:
Forward-IG captures neuron contributions when the model infers demographic groups from stereo-
type cues, while Backward-IG highlights neurons responsible for group-dependent disparities in
generated text. Together, they enable a comprehensive identification of bias-related neurons that
directly shape the model’s outputs. After identifying biased neurons, we intervene by fixing their
activation values at the projection layer, the final layer before token prediction. By combining attri-
bution and intervention, our framework offers a comprehensive pipeline for debiasing large language
models at the neuron level. This contributes to the broader goal of building more trustworthy LLMs.

To summarize, our main contributions are summarized as three-fold:

* We introduce an entropy-based method to identify stereotype cues that elicit biased model
behavior, covering both adjective and noun forms.

* We propose Forward-IG and Backward-IG, two gradient-based attribution strategies for
identifying neurons responsible for biased generation, respectively. Then we present an
effective intervention that directly modifies the projection layer activations, improving fair-
ness with minimal degradation to model performance. Moreover, we theoretically establish
the intrinsic connection between bias reduction and output variation.

* We conduct extensive experiments across four demographic attributes using three widely-
used LLMSs, providing insights into internal bias mechanisms.

2 BACKGROUND

In this section, we first decompose debiasing LLMs into two distinct subproblems, and then provide
a brief overview of the attribution method IG and its bias attribution variant IG>.

2.1 PROBLEM DEFINITION

Definition 1 (Demographic-Invariant Generation (DIG)). Let X’ be the prompt space, Y the output
space, D the demographic attribute space (e.g., gender, race), and 0 parameterizes a language
model inducing Py(y | ) over Y. Let gD — X be a prompt generator that injects demographic
information d € D into prompts (e.g., “Her mother was very ...” or “Ethiopian men are ...”). We
say the model satisfies demographic-invariant generation if:

Po(y | g(d)) ~ Pyly | g(d)) Vd.d €D. €9)
That means the model’s output distribution should remain approximately unchanged when only the
demographic information in the prompt varies.

Definition 2 (Stereotype-Free Inference (SFI)). Let x € X be a prompt containing stereotype cues
(e.g., words like “doctor”, “nurse”, “CEQ”) which may be related to demographic attributes. Given
the demographic label space D, the model’s conditional prediction of demographic identities from
such prompts should not be biased. We say the model can address stereotype-free inference if:

Py(d| x) ~ Py(d' | ©) Vd,d €D, ()

where Py(d | x) is the probability of the model associating x with the demographic group d (e.g.,
by predicting “man’/“woman” for “The doctor is likely a ..”).
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In other words, the model should not systematically favor one demographic over another when
interpreting stereotype-prone prompts.

2.2 INTEGRATED GRADIENT AND INTEGRATED GAP GRADIENT

This section details two feature attribution methods: Integrated Gradient and Integrated Gap Gra-
dient, with the latter specifically designed for bias analysis in language models.

Integrated Gradients (IG) Sundararajan et al.| (2017) attribute model predictions to input features
by integrating gradients along a straight path from a input baseline 2’ to the input z. For a model
F : R?% — R, the attribution score for the i-th feature is

IG(z;) = (z; — af) x J By OF (a' +80;Ex — ')

da. 3)

IG(z;) represents the contribution of the i-th input feature to the model’s prediction F'(x) relative
to a baseline x’. Here, the term x — 2’ captures the magnitude of change in the feature from the
baseline, while the integral computes the average gradient of the model’s output with respect to z;
along the straight-line path between z’ and x. This approach ensures that the attribution is sensitive
to both the scale of the feature variation and the model’s response to incremental changes in the
input.

Integrated Gap Gradients (IG?) [Liu et al| (2024) extend the idea of IG to analyze the internal
mechanisms responsible for biased behaviors in language models. While IG attributes the output of
a model to its input features, IG* instead attributes the prediction gap between binary demographic
pairs (e.g., female vs. male) to internal neurons, enabling the identification of social bias neurons.

Formally, given a pair of demographics d; and ds, and the j-th neuron hgl) in the /-th FFN layer of

. .. = o
a model and h;l) ’s initial activation h; ), 1G> computes the attribution score as

. a(P(d1 | o) = P(dy | aR\")

1G6* (") = 7Y J da, @)

O]
0 oh;
where P(d; | oﬁ;l)) denotes the model’s prediction probability for demographic d; when neuron

hy) takes the value aﬁél). This formulation directly attributes the difference in model confidence
between demographic groups to individual neuron activations, revealing their contribution to biased
behavior. These identified neurons, termed social bias neurons, can then be suppressed to miti-
gate bias without requiring model retraining. However, although IG? has demonstrated success on
masked language models such as BERT (Devlin et al., 2019), applying this neuron-suppression-
based debiasing approach to modern large language models still faces several challenges. First,
in the lower layers of deep language models, the contribution of individual neuron activations to
the final output tends to be marginal, as their influence is increasingly transformed and potentially
suppressed by the model’s subsequent non-linear operations. This constraint undermines the effec-
tiveness of interventions aimed at modifying the model’s token generation probabilities. Second, as
shown in Equation 4} IG? can only capture bias relationships between specific demographic pairs
(e.g., predefined biased pairs such as “driver—doctor” or “waiter—lawyer”). However, cross-pair bias
relationships (e.g., between “driver” and “waiter”) are not considered, which may lead to unreliable
attribution of model bias. Additionally, a key unresolved issue is how to systematically identify
input words that reliably trigger biased responses, as such triggers are crucial for enabling precise
bias attribution and improving the efficacy of debiasing strategies. To handle these challenges, our
goal is to design an effective solution that jointly tackles the DIG and SFI problems.

3 METHODOLOGY

In this section, we describe our debiasing method in detail. As shown in Figure |1} our method
mainly consists of the following steps: stereotype cue selection and two attribution strategies.

3.1 STEREOTYPE CUE SELECTION

In this work, we define “stereotype cues” as adjectives or nouns that are likely to trigger biased
model outputs. Unlike (Guo et al., [2022) where both demographic attributes and stereotype cue
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Stage 1: Stereotype Cue Detection
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group via LLMs
e.g., "aggressive”, "ambitious", [ C
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Stage 2: Bias Attribution and Modifying Biased Neurons

i®  Fillinthe templates Caculate Forward-1G 2 Modify the activations
1
»J )

with stereotype cues via LLM's outputs of biased neurons

fair outputs &

probabilities of demographic groups

e.g., the gender of this gentle
person is [Demographic Group/.

Figure 1: Overview of our method (illustrated with Forward-IG). We first identify the words that
trigger biased behavior in the model, then use these words to elicit such behaviors. Based on this, we
attribute the biased responses to the most influential neurons and subsequently modify their values.
In the bottom-right figure, the gray neurons denote the bias-related neurons after modification. The
bar chart presents the debiasing performance of Llama-3.1 on StereoSet. The x-axis corresponds
to four types of bias, while the y-axis represents the SS score, where values closer to 50% indicate
greater fairness. Our method (gray bars) achieves results demonstrates improved fairness.
Table 1: Examples of templates for two types of stereotype cues.

Category Template Examples

Adjective  The [Demographic_Attribute] of this [Stereotype_Adjective] person is [Demographic_Group].
Noun The [Demographic_Attribute] of this [Stereotype_Noun] is [Demographic_Group].

words are predefined before generating the connecting tokens, our work focuses on automatically
identifying the cues that most effectively elicit model biases. Different from (Liu et al.l |2024) that
defines a set of adjective-based templates, we modify some of these templates and extend them
to cover noun-based constructions as well. Table [I] provides examples of the templates, and the
complete list can be found in Appendix We first utilize GPT-4 (Achiam et al.| [2023) to help
us identify adjectives that are potentially associated with various stereotypes. These adjectives and
nouns are then used to construct the candidate list of stereotype cues.

Entropy-Based Bias Quantification. The core intuition is that a stereotype cue exhibits stronger
bias induction if it causes the model to generate highly skewed predictions in favor of specific
demographic groups. We access this via Shannon entropy over the model’s conditional probability
distribution over demographic groups. Formally, given a candidate stereotype cue w (adjective or
noun) and a set of demographic groups D = {d1,ds, ...} , we compute entropy H (paqq) Where paqq
denotes the average of p(d;| Replace(t, w)) computed over all templates. Here, p(d;| Replace(t, w))
represents the model’s predicted probability distribution of demographic group d; given prompts
containing w and Replace(t,w) denotes the sentence constructed by inserting the cue w into a
predefined template ¢. Lower entropy values indicate more concentrated probability distributions,
signaling stronger bias induction by the cue w.

Cue Selection. The stereotype cue selection process involves four key substages (Appendix [A.5),
as outlined below: (i) Candidate Pool Initialization. We first collect the candidate lists of adjectives
and nouns, ensuring these words are commonly used expressions that are likely to induce model bi-
ases. These adjective and noun lists are denoted as V,,4; (adjectives) and V;,4.,, (nouns), respectively.
(ii) Probability Collection. For each candidate cue w € V45 U Vj,0un, We generate prompts using
the templates specified in Table 1 (with [Stereotype_Adjective] or [Stereotype_Noun] placeholders
replaced by w). For each generated prompt, we query the language model to obtain predicted prob-
abilities over the demographic groups. This is done by constraining generation to the set D and
extracting softmax probabilities from the model’s final layer. (iii) Aggregate Entropy Calculation.
For each cue w, we compute the average probability distribution across all templates, and calculate
the entropy of this aggregated distribution. This averaging mitigates template-specific noise, ensur-
ing robust bias assessment. (iv) Ranking and Selection. Cues are sorted by their entropy values in
the ascending order. We conduct stereotype cue selection on the four demographic attributes in the
StereoSet dataset. Tablereports the top five cues with Llama-3.1 (Dubey et al., 2024).
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Table 2: Selected cue examples across four demographic attributes.

Demographics Types of Cues Top-5 Selected Cues

Gender Adjective gentle, nurturing, sensitivg, soft, sweet
Noun cheerleader, nurturer, barrier-breaker, confidante, delegate
; Nationality Adjective warmongering, imperialist, tribal, underdeveloped, primitive
s Noun commissar, chauvinist, shaman, propagandist, tribesperson
E Profession Adjective calculating, sensitive, empathic, anxious_, em_otional
= Noun robot, assistant, counselor, bureaucrat, sidekick
Religion Adjective extre_mist, asjce_tic, mona_stic, evangelioal, self-denying
Noun meditator, pietist, exorcist, extremist, apostle

3.2 FORWARD BIAS ATTRIBUTION

This paper refers to the causal direction consistent with the SFI problem (from prompts to demo-
graphics) as the forward direction, where the input prompt contains stereotype cues and the model
is asked to predict which specific demographic group the sample belongs to. The direction asso-
ciated with the DIG problem is referred to as the backward direction. We first replace the corre-
sponding slots in the templates with the demographic attribute terms and the selected stereotype
cues in Section [3.I] generating sentences such as “The gender of this sensitive person is [Demo-
graphic_Group]”. These sentences collectively form a synthetic dataset D.Sy. For each sample in
DS , we construct a corresponding prompt (see Appendix [A.10) and use it to prompt the model to
predict the sample’s demographic group. To effectively improve the fairness of the model’s output
probabilities, we attribute the model bias to the input neurons of the projection layer in the LLM
(i.e., the layer that maps high-dimensional representations to logits). This allows us to identify
bias-related neurons and intervene accordingly. Specifically, for the j-th input neuron h; of the pro-

jection layer and its initial activation value 5, we propose Forward-IG to quantify the variation in
the outputs across all demographic groups for the neuron A ;:
_ (Y 2[H(p(di|oR;))]
[ ooy, )
a=0 ah]
where H (-) denotes the entropy function, and « € [0, lj is a scaling variable that gradually changes
the value of neuron h,; from O to its original activation /. The smaller H (p(d; | cwh;)) is, the larger

Forward-1G(h;) = h;

[H(p(d; | ahy))] " becomes, indicating that the model is more certain about which specific demo-
graphic group the sample belongs to. Such strong certainty toward a particular demographic group
reflects the model’s bias. By integrating the gradients, Forward-IG accumulates this certainty along
the interpolation path, thereby quantifying the contribution of each neuron to biased predictions.
Since the integral in Equation (3) cannot be computed analytically, we follow the approach of IG
and IG? and approximate it using a Riemann sum:

tep 1
S p(d; |Oékh DI

Forward-IG(h;) ~ h; Z (6)

)
j Nstep

where o, = — ’f and 7 is the number of approximation steps. Note that Forward-1G is com-
step

puted only for the bias contribution of neurons with respect to a single sample in DS¢. Therefore,
we identify biased neurons based on the average Forward-IG scores across all samples in DS. To
access this, we first rank all neurons in the descending order according to their average Forward-IG
values. Then, we select the top N = SM neurons, where M is the total number of neurons in the
relevant layer of the model and 3 € [0,1] is a proportion parameter. Once the bias neurons are
selected, we proceed to disrupt their activation values. In this work, we fix the values of these bias

neurons to a constant C'. Mathematically, for each neuron h;, its updated value ilj is defined as

i {C, if h; is the top-N neurons
=

hj, otherwise.

This operation effectively breaks the contribution of these neurons to the model’s biased behavior.
This approach of disrupting bias neurons’ activation values based on the Forward-IG value selection
provides a practical way to address both DIG and SFI problems in large language models, which is
further validated in the subsequent experimental section.
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Table 3: Examples of generated sentence sets for each demographic group.

Demographics Demographic Group Sentence Subset

The gender of this [Stereotype_Noun] is male.

Gender Male, Female The gender of this [Stereotype_Noun] is female.

3.3 BACKWARD BIAS ATTRIBUTION

Backward bias attribution identifies biased neurons through induced differences in the model’s
generation outputs, which occur in response to prompts containing different demographic groups.
Specifically, for a given template ¢ and a fixed demographic attribute, we construct a subset of sen-
tences as shown in Table [3] where the placeholder token [Demographic_Group] in ¢ is replaced with
ng4 demographic groups associated with that attribute. All sentence subsets constitute the dataset
DSy, where each subset contains ng sentences. For each subset in DS}, we construct ng prompts
to predict the stereotypical adjectives or nouns within the sentences. The candidate options are the
stereotype cues selected in Section[3.1 We aim to identify the biased neurons responsible for the
model producing different probability distributions over stereotypical cues for different groups. For
each sentence subset, we compute Backward-IG in the following:

1 " . " .
Backward-IG(h;) = h; J 85D (w|ahja)}3’ - Pra(lofy)
a=0 J

where JSD(-) denotes the Jensen-Shannon Divergence and w denotes the stereotype cue. JSD(-)
quantifies the divergence among probability distributions over stereotype cues and is formulated
in Appendix [A.4] The Backward-IG score quantifies how much a neuron’s activation contributes
to disparities in model outputs across demographic groups, measured via JSD over the predicted
distributions of stereotype cues. As in the forward case, we interpolate neuron activations from
zero to their original values and accumulate the gradients of JSD along this path to estimate each
neuron’s contribution. After obtaining Backward-1G scores for all neurons, we calculate average
scores over subsets in DS}, and select the top N as biased neurons. Similar to forward attribution,
these neurons are then intervened on by fixing their activation values to a constant C, effectively
neutralizing their influence on group-dependent output variation. Backward-IG also uses Riemann
sum approximation.

da, 7)

3.4 THE RELATIONSHIP BETWEEN BIAS VARIATION AND OUTPUT VARIATION: A
THEORETICAL ANALYSIS

Theorem 1 (Bias Change under Attribution-Guided Modification). Let y denote the model output
of the projection layer Proj(-) and B : R¥ — R be a differentiable bias function, such as the
reciprocal of entropy or the Jensen—Shannon divergence introduced above. Suppose the hidden
representation h is modified along the path:

h(t)=h+tAh, te[0,1], ®)

with Ah defined by attribution-guided projection on a subset of neurons S. Then the change in bias
satisfies
|AB| < [VB(y(0) + 0Ay)[ - |Ay[, 6€[0,1]. ©)

where Ay = y(1) — y(0) and y(t) = Proj(h + tAh) : t € [0, 1] lies along the modification path.

Equation [9] aligns with our intuition: the larger the Ay, the greater the upper bound of AB. In
the extreme case where the model completely loses its modeling capability, it produces random
outputs for inputs from any demographic group, thereby exhibiting minimal bias. Specifically, the
bias change A B equals the directional projection of the output shift Ay onto the local bias gradient
VB(y(0) + Ay). A detailed proof of Theorenl|can be found in Appendix

4 EXPERIMENTS

In this section, we conduct experiments on two debiasing strategies. For brevity, we refer to the
strategies based on Forward-IG and Backward-IG as forward bias attribution (FBA) and backward
bias attribution (BBA), respectively.
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Table 4: Similarity between selected cues or all candidates and gender-associated vocabularies.

Llama-3.1 | Llama-3.2
Adjective Simp, (%)  Simg (%)  Diff (%) | Simm (%) Simg (%)  Diff (%)
Top-5 Selected Cues 8.92 4.60 4.32 6.04 7.21 6.44
All Candidates 6.37 4.68 2.79 7.76 11.07 6.11
Noun Simp, (%) Simg (%) Diff (%) | Simm (%) Sim¢ (%)  Diff (%)
Top-5 Selected Cues 7.60 6.97 3.36 8.23 15.07 9.41
All Candidates 7.37 5.60 2.89 8.55 12.14 7.20

4.1 EXPERIMENTAL SETTINGS

We conduct experiments on three widely used large language models, Llama3.1-8B (Llama-3.1),
Llama3.2-3B (Llama-3.2) (Dubey et al., 2024) and Mistral-7B-v0.3 (Mistral-v0.3) (Jiang et al.,
2023)). Biased neurons are identified and perturbed using Forward-IG and Backward-IG, respec-
tively. We evaluate the effectiveness of both attribution methods on the DIG and SFI tasks. Due to
space constraints, all results of Mistral-v0.3 are presented in Appendix

Baseline Methods.  We categorize the baselines into three types: (i) a training-based
method: Auto-Debias (Guo et al., 2022); (ii) prompt engineering-based methods, including
Prefix Prompting (Furniturewala et al.,2024)), Self-Debiasing (Gallegos et al., 2024b), and DDP (Li
et al., 2024)); and (iii) a neuron attribution-based method: 1G> (Liu et al., 2024). Detailed descrip-
tions of all baseline methods are provided in Appendix [A.3]

4.2 EVALUATION OF STEREOTYPE CUE SELECTION

We design the stereotype—cue selection procedure by grounding it in the target model’s own em-
bedding space rather than relying on preconceived human assumptions about stereotypical lan-
guage. Using gender bias as an illustrative case, we define the male-associated vocabulary as
Wy, = {“male”, “man”}, and the female-associated vocabulary as Wy = {“female”, “woman”}.
For the top five terms identified by the stereotype—cue selection method, we compute their average
cosine similarity with the male and female vocabularies, denoted by Sim,,, and Sim, respectively.
We additionally calculate the average absolute difference between these two similarities,

N.
Diff = Nip i;}cos(ei,Wm) — cos(e;, Wf)|,

where e; denotes the embedding of the i-th selected term and N, debotes the number of candidate
words. It can be observed in Table ] that the selected terms exhibit a larger Diff, indicating that each
term is more strongly associated with either male- or female-related vocabulary. This suggests that
our cue—selection method effectively identifies terms that elicit more biased model behavior.

4.3 DIG TASK (STEREOSET)

StereoSet (Nadeem et al. [2020) is a benchmark designed to evaluate stereotypical bias in pre-
trained language models. It covers four demographic domains: gender, nationality, profession, and
religion. The dataset consists of original sentence and option triplets, each composed of (i) a stereo-
type option that reflects a common social bias, (ii) an anti-stereotype option that counters the bias,
and (iii) an unrelated option that is semantically incoherent or irrelevant. The primary task is to as-
sess whether a language model favors stereotypical content over unbiased or unrelated alternatives,
thereby quantifying bias while controlling for contextual relevance. For example, a tuple from the
gender domain might include:

Original template: Girls tend to be more [BLANK] than boys.
Stereotype: soft Anti-Stereotype: determined Unrelated: fish

Evaluation Metrics. We employ three complementary metrics: SS, LMS, and ICAT. SS measures
the proportion of instances where the model prefers the stereotype option over the anti-stereotype
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Table 5: Evaluation results across four demographic attributes on the StereoSet dataset.

Ll Gender Nationality Profession Religion
ama-3.1
SS (%) —>50% | LMS(%)1 [/ ICAT (%)1
Base 77.34/100.0/45.31 | 68.43/98.13/61.95 | 76.96/97.53/44.94 | 56.94/91.14/ 78.48
Auto-Debias 79.69 /100.0/40.62 | 69.07 /98.13/60.71 | 77.33/98.02/44.44 | 70.08 / 91.14 / 54.81
Prefix Prompting 81.89/99.22/35.94 | 65.67/97.51/66.94 | 73.42/97.73/51.85 | 54.79/92.41/ 83.54
Self-Debiasing  77.97/92.19/40.63 | 65.24/92.10/64.03 | 69.17/92.10/56.79 | 63.38 / 89.87 / 65.82
DDP 77.17/99.22/45.31 | 65.45/96.88/66.94 | 73.91/96.54/50.37 | 64.18 /84.81/60.76
IG? 77.34/100.0/45.31 | 69.64/97.92/59.46 | 76.52/97.78 / 45.93 | 61.64 /92.41/70.89
FBA 68.75/100.0 / 62.50 | 64.88/97.09/68.19 | 67.87/96.05/61.73 | 51.35/93.67 / 91.14
BBA 69.84 /98.44/59.38 | 63.18/95.43/70.27 | 71.58/95.56/54.32 | 49.31/92.41/91.14
Llama-3.2 Gender Nationality Profession Religion
SS (%) —>50% [/ LMS (%)t [/ ICAT (%)1

Base 82.40/97.66/34.38 | 66.31/96.88/65.28 | 70.89/97.53/56.79 | 57.89/96.20/ 81.01
Auto-Debias 80.00/97.66/39.06 | 65.59/96.67/66.53 | 70.38/97.53/57.78 | 59.21/96.20/ 78.48
Prefix Prompting 79.20/97.66 / 40.62 | 65.08 / 95.84 / 66.94 | 67.69 / 96.30 / 62.22 | 56.58 / 96.20 / 83.54
Self-Debiasing  73.11/92.97/50.00 | 72.17 / 88.15/49.06 | 63.94 / 87.65/63.21 | 64.06/81.01/58.23
DDP 77.17/99.21/45.31 | 70.57/97.51/57.38 | 71.13/97.53 /56.30 | 63.51/93.67 / 68.35
1G? 44.71/66.41/59.38 | 64.29/96.05/68.61 | 68.45/97.04/61.23 | 55.26/96.20 / 86.08
FBA 69.60/97.66 /59.38 | 58.52/95.22/79.00 | 61.88/94.57/72.10 | 51.95/97.46 / 93.67
BBA 67.46/98.44 / 64.06 | 62.93/96.47/71.52 | 62.21/96.05/72.59 | 53.33/94.94 / 88.61

one. A higher SS indicates a stronger tendency to favor stereotypical associations. Ideally, a fair
model should have an SS close to 50%, suggesting no systematic preference for either stereotypes
or anti-stereotypes. LMS evaluates the model’s ability to prefer meaningful content over incoherent
or irrelevant options. A higher LMS reflects better language modeling capability. A desirable model
should have an LMS close to 100%, indicating that it consistently favors contextually relevant com-
pletions over unrelated ones. ICAT integrates both fairness and fluency by rewarding models that
maintain low stereotype bias while preserving high linguistic coherence. The optimal ICAT score is
100%, which would indicate perfect fairness and fluency.

Overall Performance. From Table [5] we observe that on Llama-3.1, baseline methods are largely
ineffective in mitigating model bias and even exacerbate it in certain domains. On Llama-3.2, some
prompt modification approaches begin to show partial effectiveness, but only Prefix Prompting con-
sistently reduces bias across all domains, and the reduction is marginal. Notably, the IG* method is
effective only on Llama-3.2, where it substantially lowers LMS in the gender domain to bring SS
closer to 50%. However, such behavior is unacceptable in practical applications. In contrast, FBA
and BBA achieve effective bias reduction while incurring little to no loss in modeling capability,
ultimately yielding the best overall performance as reflected by the highest ICAT scores.

4.4 DIG TASK (BBQ)

BBOQ (Parrish et al.| 2021) is a large-scale benchmarking resource designed to evaluate social bias and
robust reasoning in question-answering (QA) systems. Developed to probe how QA models handle
sensitive demographic attributes, BBQ focuses on whether models rely on stereotypical assumptions
or demonstrate contextually grounded reasoning.

Evaluation Metrics. BBQ includes two types of questions: those posed under ambiguous context
and those under disambiguated context. In the ambiguous setting, models are expected to select
the “unknown” option rather than rely on demographic stereotypes. In the disambiguated setting,
models should choose the correct answer based on the explicit contextual evidence. Evaluation is
conducted using accuracy on the ambiguous questions (Accyyp) and on the disambiguated questions
(Accgis)- Since BBQ does not include a dedicated profession domain, we conduct evaluations on the
gender, nationality, and religion domains. The results for each domain are provided in the appendix,
and here we report the averaged performance across these three domains. BBQ includes two types
of questions: those posed under ambiguous context and those under disambiguated context. In the
ambiguous setting, models are expected to select the “unknown” option rather than rely on demo-
graphic stereotypes. In the disambiguated setting, models should choose the correct answer based
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Table 6: Evaluation results on the BBQ dataset.

Llama-3.1 Llama-3.2
Accamb T Accais T Average? Accams T Accais T Average !
Base 54.50 91.18 72.84 58.95 84.61 71.78
Auto-Debias 54.61 91.06 72.84 58.53 84.62 71.58
Prefix Prompting 75.13 86.08 80.61 82.81 69.03 75.92
Self-Debiasing 87.73 73.02 80.38 66.06 74.17 70.11
DDP 56.87 89.93 73.40 60.38 83.40 71.89
1G? 59.00 89.46 74.23 52.61 75.84 64.22
FBA 66.45 88.87 77.66 68.78 81.59 75.19
BBA 74.46 88.95 81.70 68.08 79.95 74.02

Table 7: Evaluation results on the WinoBias dataset.

Llama-3.1 Llama-3.2
PStE’V‘EO Panti Pother l Gap l Pste'reo Panti Pothe'r l Gap l
Base 62.63 37.37 0.00 25.26 95.71 4.29 0.00 91.42
Auto-Debias 61.49 38.51 0.00 22.98 96.46 3.54 0.00 92.92

Prefix Prompting ~ 58.08  41.92 0.00 16.16 96.21 3.79 0.00 92.42
Self-Debiasing 85.61 14.39 0.00 71.22 88.64  11.11 0.25 77.53

IG* 5732 42.68 0.00 14.64 43.18 4343 13.39 0.25
FBA 52.53  47.47 0.00 5.06 59.34  40.66 0.00 18.68
BBA 50.51  49.49 0.00 1.02 51.52  48.48 0.00 3.04

on the explicit contextual evidence. Evaluation is conducted using accuracy on the ambiguous ques-
tions (Accymp) and on the disambiguated questions (Accg;s). Since BBQ does not include a dedicated
profession domain, we conduct evaluations on the gender, nationality, and religion domains. The
results for each domain are provided in Appendix and here we report the averaged performance
across these three domains.

Overall Performance. As shown in Table [ prompt-modification approaches (e.g., Prefix Prompt-
ing, Self-Debiasing) boost Accgm,p but significantly undermine model accuracy when the context is
unambiguous, resulting in a sharp drop in Accy;s. In comparison, FBA and BBA reduce bias effec-
tively in ambiguous scenarios with only minimal impact on Accg;s. This indicates that our method
is more moderate: when clear contextual guidance is available, it still tends to produce the correct
answer rather than forcibly selecting the debiased “unknown” option.

4.5 SFITASK (WINOBIAS)

WinoBias (Zhao et all 2018)) is a dataset designed to measure gender bias. We adopt a cloze-
style version of WinoBias to evaluate the SFI taskﬂ Specifically, WinoBias requires the model
to predict the demographic subject (e.g., he or she) or modifier in sentences like “The developer
argued with the designer because [MASK] did not like the design”. Specially, since DDP’s prompt
construction is not applicable to this dataset, it is not adopted in the SFT task.

Evaluation Metrics. Similar to StereoSet, WinoBias also provides a stereotype option and
an anti-stereotype option. We denote the probabilities of the model selecting these two options
as Pgiereo and Py,y;, respectively, while Pother = 1 — Pstereo — Panti represents the probability
of selecting any other token. A lower P, indicates better language modeling capability, and a
smaller gap between Pgcreo and P, ,,; reflects greater fairness in the model’s behavior.

Overall Performance. Table[/|shows that BBA, while keeping Pyper = O (i.e., without sacrificing
language modeling capability), achieves the best and second-best gap values on the two models, re-
spectively. We find that, compared with the DIG task, IG? demonstrates promising effectiveness on
the SFI task. However, a limitation is that, on Llama-3.2, although 1G2 reduces the gap nearly to 0, it
results in a substantially higher Py, value, indicating a severe degradation in the model’s language

'https://huggingface.co/datasets/sasha/wino_bias_clozel
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(a) Results when neurons are randomly selected and modified according to the FBA modification ratio. The
dashed line denotes the FBA’s results.

100 100
[0 FBA I BBA 7 < [ N -
20 FBA w/o selection =] BBA w/o selection 72 Z -
920 | ZHR N\

80 g
; N g 80/
¢ 70| - @ %
g ol N g 2

60 =70 | 7 7

% 7| 72 %
50 2. 7 — %
7 Z | 60 Z
20 7 1 \ 7| [\ 7 N /
Gender Nationality Profession Religion Gender Nationality Profession Religion

(b) FBA results without stereotype cue detection. The dashed line in the left panel indicates the ideal value.
Figure 2: Ablation results of Llama-3.1 on StereoSet: (a) w/o attribution, and (b) w/o selection.

modeling capability. We further find that BBA appears more suitable than FBA for addressing the
SFI problem, and it does not exhibit a clear advantage in the DIG task.

4.6 ABLATION STUDY

We conducted two types of ablation studies for FBA and BBA: (i) w/o attribution. Removing the
attribution strategy, where neurons in the projection layer are randomly selected for intervention
under the same hyperparameter settings as our method; and (ii) w/o selection. Removing the stereo-
type cue selection algorithm, where candidate words are grouped and the first word of each group
is chosen as stereotype cues. In the main text, we only report the results of the FBA method on
Llama-3.1. The results for the other two models as well as for the BBA method are provided in
Appendix

W/o attribution. To mitigate the unreliability caused by randomly selecting neurons, we conducted
50 tests for the samples in each domain, as shown in Figure[2a] The violin plots illustrate the results
of random neuron selection, while the dashed line on each violin corresponds to the FBA results.
Except for the profession domain, FBA achieves a win-win outcome compared to random selection,
namely SS values closer to 50% and higher LMS. In the profession domain, FBA exhibits only a
marginal decline in LMS, while still obtaining substantial debiasing gains.

W/o selection. As shown in Figure 2b] without selecting the stereotype cues, SS values overall de-
viate further from 50%, indicating that our selection algorithm successfully identifies words that are
more likely to trigger biased model outputs. Surprisingly, in the absence of the selection algorithm,
LMS also shows a slight decrease. This demonstrates that the stereotype cue selection algorithm
does not negatively impact the model’s language modeling capability.

5 CONCLUSION

We presented a neuron-level debiasing framework for large language models that integrates stereo-
type cue detection, gradient-based bias attribution, and targeted projection-layer intervention. Our
approach mitigates demographic bias without requiring fine-tuning or any modification to user
prompts, while preserving core language modeling capabilities. By showing that biased behav-
iors can be localized to specific, identifiable subsets of neurons, our work offers a practical and
interpretable pathway toward building fairer and more trustworthy LLMs.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGEMENT

The project was supported by Natural Science Foundation of Fujian Province of China
(N0.2024J011001) and the Public Technology Service Platform Project of Xiamen
(N0.35027220231043). We also thank the reviewers for their insightful comments.

ETHICS STATEMENT

This work examines social bias in large language models. The analysis may involve examples
containing stereotypes or sensitive content, which are used solely for research purposes. Our aim is
to understand and mitigate bias, not to reinforce it.

REPRODUCIBILITY STATEMENT

We provide an anonymous link to our code in the abstract, and the proof of Theorem [I]is included

in Appendix

REFERENCES

Alok Abhishek, Lisa Erickson, and Tushar Bandopadhyay. Beats: Bias evaluation and assessment
test suite for large language models. arXiv preprint arXiv:2503.24310, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Limitations
and opportunities. MIT press, 2023.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610-623, 2021.

Su Lin Blodgett, Solon Barocas, Hal Daumé lii, and Hanna Wallach. Language (technology) is
power: A critical survey of” bias” in nlp. arXiv preprint arXiv:2005.14050, 2020.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29, 2016.

Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexan-
dra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in
bios: A case study of semantic representation bias in a high-stakes setting. In proceedings of the
Conference on Fairness, Accountability, and Transparency, pp. 120-128, 2019.

Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Srikumar. On measuring and mitigating biased
inferences of word embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7659-7666, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference
of the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pp. 214-226, 2012.

11



Published as a conference paper at ICLR 2026

Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit Bhatia,
and Kokil Jaidka. Thinking fair and slow: On the efficacy of structured prompts for debiasing
language models. arXiv preprint arXiv:2405.10431, 2024.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. Bias and fairness in large language models:
A survey. Computational Linguistics, 50(3):1097-1179, 2024a.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Tong Yu, Hanieh Deilamsalehy,
Ruiyi Zhang, Sungchul Kim, and Franck Dernoncourt. Self-debiasing large language models:
Zero-shot recognition and reduction of stereotypes. arXiv preprint arXiv:2402.01981, 2024b.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex Beutel. Counterfac-
tual fairness in text classification through robustness. In Proceedings of the 2019 AAAI/ACM
Conference on Al, Ethics, and Society, pp. 219-226, 2019.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Yue Guo, Yi Yang, and Ahmed Abbasi. Auto-debias: Debiasing masked language models with
automated biased prompts. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1012-1023, 2022.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016.

Jacqueline He, Mengzhou Xia, Christiane Fellbaum, and Dangi Chen. Mabel: Attenuating gender
bias using textual entailment data. arXiv preprint arXiv:2210.14975, 2022.

Tiancheng Hu, Yara Kyrychenko, Steve Rathje, Nigel Collier, Sander van der Linden, and Jon
Roozenbeek. Generative language models exhibit social identity biases. Nature Computational
Science, 5(1):65-75, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. Advances in neural information processing systems, 29, 2016.

Falaah Arif Khan, Nivedha Sivakumar, Yinong Oliver Wang, Katherine Metcalf, Cezanne Camacho,
Barry-John Theobald, Luca Zappella, and Nicholas Apostoloff. Investigating intersectional bias
in large language models using confidence disparities in coreference resolution. arXiv preprint
arXiv:2508.07111, 2025.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, and Yang Liu. Prompting
fairness: Integrating causality to debias large language models. arXiv preprint arXiv:2403.08743,
2024.

Paul Pu Liang, Irene Mengze Li, Emily Zheng, Yao Chong Lim, Ruslan Salakhutdinov, and Louis-
Philippe Morency. Towards debiasing sentence representations. arXiv preprint arXiv:2007.08100,
2020.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards under-
standing and mitigating social biases in language models. In International conference on machine
learning, pp. 6565-6576. PMLR, 2021.

12


https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

Published as a conference paper at ICLR 2026

Yujie Lin, Chen Zhao, Minglai Shao, Baoluo Meng, Xujiang Zhao, and Haifeng Chen. Towards
counterfactual fairness-aware domain generalization in changing environments. arXiv preprint
arXiv:2309.13005, 2023.

Yujie Lin, Dong Li, Minglai Shao, Guihong Wan, and Chen Zhao. Fade: Towards fairness-aware
generation for domain generalization via classifier-guided score-based diffusion models. arXiv
preprint arXiv:2406.09495, 2024.

Yujie Lin, Jiayao Ma, Qingguo Hu, Derek F Wong, and Jinsong Su. Biopro: On difference-aware
gender fairness for vision-language models. arXiv preprint arXiv:2512.00807, 2025.

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
The devil is in the neurons: Interpreting and mitigating social biases in language models. In The
Twelfth International Conference on Learning Representations, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measuring stereotypical bias in pretrained
language models. arXiv preprint arXiv:2004.09456, 2020.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R Bowman. Crows-pairs: A challenge
dataset for measuring social biases in masked language models. arXiv preprint arXiv:2010.00133,
2020.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thomp-
son, Phu Mon Htut, and Samuel R Bowman. Bbq: A hand-built bias benchmark for question
answering. arXiv preprint arXiv:2110.08193, 2021.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. Advances in neural information processing systems, 30, 2017.

Chahat Raj, Anjishnu Mukherjee, Aylin Caliskan, Antonios Anastasopoulos, and Ziwei Zhu. Break-
ing bias, building bridges: Evaluation and mitigation of social biases in llms via contact hypoth-
esis. In Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society, volume 7, pp.
1180-1189, 2024.

Danielle Saunders and Bill Byrne. Reducing gender bias in neural machine translation as a domain
adaptation problem. arXiv preprint arXiv:2004.04498, 2020.

Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubramanian, and Janet Vertesi.
Fairness and abstraction in sociotechnical systems. In Proceedings of the conference on fairness,
accountability, and transparency, pp. 59-68, 2019.

Minglai Shao, Dong Li, Chen Zhao, Xintao Wu, Yujie Lin, and Qin Tian. Supervised algorithmic
fairness in distribution shifts: A survey. arXiv preprint arXiv:2402.01327, 2024.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as a
babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326, 2019.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. Societal biases in language
generation: Progress and challenges. arXiv preprint arXiv:2105.04054, 2021.

Irene Solaiman and Christy Dennison. Process for adapting language models to society (palms)
with values-targeted datasets. Advances in Neural Information Processing Systems, 34:5861—
5873, 2021.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
International conference on machine learning, 2017.

Xiaoyue Wang, Xin Liu, Lijie Wang, Yaoxiang Wang, Jinsong Su, and Hua Wu. Ibadr: an
iterative bias-aware dataset refinement framework for debiasing nlu models. arXiv preprint
arXiv:2311.00292, 2023.

13



Published as a conference paper at ICLR 2026

Xiaoyue Wang, Xin Liu, Lijie Wang, Suhang Wu, Jinsong Su, and Hua Wu. A simple yet effective
self-debiasing framework for transformer models. Artificial Intelligence, 339:104258, 2025.

Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. Pc-fairness: A unified framework for mea-
suring causality-based fairness. Advances in neural information processing systems, 32, 2019.

Zhenjie Xu, Wenqing Chen, Yi Tang, Xuanying Li, Cheng Hu, Zhixuan Chu, Kui Ren, Zibin
Zheng, and Zhichao Lu. Mitigating social bias in large language models: A multi-objective
approach within a multi-agent framework. In Proceedings of the AAAI Conference on Artificial

Intelligence, pp. 25579-25587, 2025.

Chen Zhao, Feng Chen, and Bhavani Thuraisingham. Fairness-aware online meta-learning. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 2294-2304, 2021.

Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, and Feng Chen. Adaptive fairness-aware
online meta-learning for changing environments. In Proceedings of the 28th ACM SIGKDD

conference on knowledge discovery and data mining, pp. 2565-2575, 2022.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias
in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 15-20, 2018.

14



Published as a conference paper at ICLR 2026

CONTENTS
I TInfroducfion| 1
B D d 2
2.1 Problem Definition| . . . . .. .. ...
2.2 Integrated Gradient and Integrated Gap Gradient|. . . . . . . ... ... ... ... 3

[3__Methodology| 3
3.1 Stereotype Cue Selection| . . . . . . . ... ... . ... . ... .. 3
3.2 Forward Bias Attribution| . . . . . . .. ... 5
3.3 Backward Bias Attributionl . . . . . ... ... 6
[3.4  The Relationship Between Bias Variation and Output Variation: A Theoretical Anal- 6|

SIS| ..

6
4.1 Experimental Settings|. . . . . . . . . . . 7
4.2 Evaluation of Stereotype Cue Selection| . . . .. ... ... ... ......... 7
B3 DIGTask (StereoSet) . . . . . . . o o o i e 7

ASK (BBO). « . o v o o e e e s e e e e e e e e e e e 8
4.5 SFITask (WinoBias) . . . v v v v v i i it e e e e e e 9
4.6 Ablation Study| . . . . ... 10

5 Conclusion 10

A D d 16
Al Useof LIMSI . . . . . . . o o o 16
[A2 Related Works|. . . . . .. ... 16
|IA.3  Simple Introduction for Our Baselines| . . . . .. ... ... ... ... .. .... 17
|A.4 Jensen-Shannon Divergencel . . . . .. . ... .. ... ... ... ... ... 17
|IA.5 Stereotype Cue Selection Algorithm| . . . . . .. ... ... ... ... .. .... 17
[A.6 Derivationof Theorem 1| . . . . . .. ... ... ... ... o oL 17

IA.6.1 Defimtions and Preliminartes|. . . . . ... ... ... ... ... ... 17
|A.6.2  Step 1: Exact Expression of Bias Reduction| . . . . . . . ... ... . ... 18
|A.6.3  Step 2: Exact Expression of Output Distribution Variation| . . . . . .. .. 19
|IA.6.4  Step 3: Relationship Between Bias Reduction and Output Variation| . . . . 19
IA.6.5 Step 4: Final Relationship| . . . . . .. ... ... ... ... ... ... 20
IA.7 Complete Experiments| . . . . . . . ... . ... ... ... .. 20
IA.7.1 Complete Results across Domains on the BBQ Dataset| . . . . ... .. .. 20
IA-/2 Resultsonthe Bias—in-Bios Datasetl . . ................ 20
[A’73 ResultsontheBias—-NILT Dataset|. . . ... ................ 21



Published as a conference paper at ICLR 2026

[A.7.4  Analysis of Lower-Layer Neuron Contributions| . . . . . . ... ... ... 22
[A.7.5 Experimental Results in Mistral-v0.3] . . . ... ... ... ... ..... 22
[A.7.6 Extra Ablation Results on SterecSet|. . .. ... .. ... ... ... .. 24
[A’77 Ablation Resultson WinoBiasl. . . . ... ... ... ... ...... 26
[A.7.8 Hyperparameter Settings and Sensitivity Analysis|{. . . . . . . ... .. .. 27
[A.8  Complete Templates for Two Types of Stereotype Cues| . . . . . . . ... .. ... 29
[A.9  Demographic Groups for All Demographic Attributes| . . . . . .. ... ... ... 30
[A.10 Prompts for Constructing Questions| . . . . . . ... . ... ... ... ...... 30

A APPENDIX

A.1 USE OF LLMS.

For each demographic attribute, we employed GPT-4 (Achiam et al.l [2023) to assist in generating
potentially biased words. In addition, we used LLMs to check the manuscript for typographical
errors.

A.2 RELATED WORKS

Social Bias in LLMs. Unlike the bias between the training and test distributions (Wang et al., 2023
2023)), this paper primarily investigates social bias (Zhao et al., 2021} |2022; [Lin et al., 2023} |Shao
et al) [2024; [Lin et al.| [2025; 2024). Early studies revealed biased associations in distributional
representations (e.g., gendered analogies in word embeddings), and proposed geometric debiasing
methods to reduce such effects (Bolukbasi et al.l [2016). Subsequent task-specific benchmarks ex-
posed bias in core NLP systems. For example, gendered errors in coreference resolution and occu-
pation classification highlighted how downstream models can reproduce and even magnify societal
imbalances (Zhao et al.| [2018}; De-Arteaga et al., [2019). Work focused on generation showed that
open-ended models produce differing “regard” and disparate toxicity across demographic groups,
and large-scale prompt-based evaluations revealed neural models’ propensity for toxic degeneration
under realistic prompts (Sheng et al., 2019; (Gehman et al., [2020). To quantify stereotyping more
broadly, community benchmarks such as CrowS-Pairs and StereoSet were introduced; evaluations
on these datasets demonstrate that both masked and autoregressive LMs often prefer stereotyped
continuations (Nangia et al., 2020; Nadeem et al., 2020).

Beyond empirical measurement, critical analyses highlight that the scale, opacity, and data prac-
tices of modern LLMs generate significant socio-technical risks. These range from environmental
and labor concerns to the reproduction of harmful narratives, thereby motivating calls for greater
transparency, staged release strategies, and more comprehensive evaluation protocols (Bender et al.,
2021). More recent work has expanded the scope of bias evaluations: large-scale audits show that
generative models systematically encode social identity biases across dozens of systems (Hu et al.,
2025)), and new resources such as Winoldentity allow for fine-grained assessment of intersectional
stereotypes across multiple demographic attributes (Khan et al., [2025). Complementary test suites
(e.g., BEATS) propose unified frameworks to assess bias and fairness in conjunction with factuality
and safety, reflecting the need for multidimensional evaluations of LLM behavior (Abhishek et al.,
2025). At the same time, mitigation research has moved beyond prompt editing and fine-tuning. For
instance, socially grounded approaches inspired by the contact hypothesis simulate intergroup ex-
posure to reduce biased outputs (Raj et al.l|2024), while multi-agent causal intervention frameworks
seek to minimize stereotyping without degrading task performance (Xu et al., 2025). Together,
these lines of inquiry highlight both the persistence of social bias in modern LLMs and the growing
sophistication of evaluation and mitigation strategies.

Fairness-aware Learning. Parallel to work documenting bias in LLMs, the broader machine learn-
ing community has developed a rich body of research on fairness-aware learning. Early studies
formalized group fairness criteria such as demographic parity, equalized odds, and calibration, and
explored algorithmic strategies to balance predictive performance with fairness constraints (Dwork
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et al} |2012; Hardt et al., [2016; [Pleiss et al., [2017). Subsequent research introduced individual fair-
ness notions grounded in similarity metrics, emphasizing that similar individuals should receive
similar outcomes (Dwork et al.|[2012; Joseph et al.,|2016)). Beyond static definitions, scholars high-
lighted tensions among fairness criteria, impossibility results, and trade-offs with accuracy, mo-
tivating the development of context-sensitive approaches (Kleinberg et al., 2016; |Barocas et al.,
2023). To address distributional challenges, fairness-aware methods increasingly account for do-
main shifts and long-tail groups. In particular, techniques such as reweighting, adversarial learning,
and causal inference have been proposed to achieve robust fairness under covariate shift and label
imbalance (Saunders & Byrne, 20205 Wu et al., 2019; |Garg et al., [2019). More recent directions
extend fairness considerations to large-scale generative systems: approaches include counterfactual
data augmentation, representation regularization, and fairness-constrained decoding strategies tai-
lored for pre-trained LMs (Saunders & Byrne, |2020; |Sheng et al.l 2021} [Solaiman & Dennison)
2021). At the same time, interdisciplinary critiques stress that fairness cannot be reduced to quanti-
tative metrics alone; fairness-aware learning must also grapple with the structural and sociocultural
dimensions of algorithmic decision-making (Selbst et al., [2019; |Blodgett et al., [2020).

A.3 SIMPLE INTRODUCTION FOR OUR BASELINES

Auto-Debias (Guo et al., 2022)) is a two-stage fine-tuning method for masked language models
(MLMs). Without external corpora, the approach uses beam search to automatically discover
prompts that maximally expose gender or racial bias in cloze-style completions.

Prefix Prompting (Furniturewala et al.,2024)) uses simple instructions or role-play prefixes that ask
the model to be fair.

Self-Debiasing (Gallegos et al., [2024b) ask the model to explain which answer choices rely on
invalid assumptions before answering

DDP (L1 et al., 2024) develops a causality-guided prompting framework. A causal graph models
how selection mechanisms in training data create spurious dependencies between social category
and model decisions.

A.4 JENSEN-SHANNON DIVERGENCE

For a set of probability distributions {p1,pa,...,pn} over the same probability space, Jensen-
Shannon Divergence (JSD) is defined as

plvp?w'wpn)
n

1 n
JSD(p1,-pa) =~ Y KL(pZ- , (10)
=1

where K LD(-) denotes the Kullback-Leibler divergence.

A.5 STEREOTYPE CUE SELECTION ALGORITHM
Cue Selection Pipeline. The process consists of four steps:

* Candidate Initialization: Collect adjective and noun sets V45, Vioun-
* Probability Collection: Generate prompts with templates and obtain p(d;|-) from the model.
* Entropy Calculation: Aggregate probabilities across templates and compute entropy.

» Ranking and Selection: Rank cues by entropy (ascending) and select those with strongest
bias induction.

A.6 DERIVATION OF THEOREM 1
A.6.1 DEFINITIONS AND PRELIMINARIES

Assumptions. We assume that Proj : R? — R* and B : R¥ — R are continuously differentiable
(C1) on open sets containing the paths

{h+tAh:te[0,1]}, {y(t) = Proj(h+tAh):te]0,1]}.
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Algorithm 1 Stereotype Cue Selection

Require: Pre-trained language model M, Templates T}, 4;, Thoun, Candidate cues V,q; and Vi,oun,
Demographic groups D, Entropy function H (-)
Ensure: Top k biased adjectives and nouns
1: function COMPUTEENTROPIES(V, T)

2: E—{}

3: for we V do

4: Pagg < 0

5: fort e T do

6: prompt «— Replace(t, w)
7: p < M (prompt)

8: Pagg < Pagg + p/|T]|
9: end for

10: E — E U H(pagg)
11: end for
12: return

13: end function

14: E,4 < COMPUTEENTROPIES V4, Thdj)

15: Eyoun < COMPUTEENTROPIES (Vioun; Thoun)

16: Select top k cues from E,q; and Epqu, based on lowest entropy

Hence V B is a continuous gradient field, and the line integral of V B is path-independent.

1. Function Definitions:
* Model output function: y = Proj(h), where h € R denotes the input to the final hidden
layer.
* Bias function: B : R¥ — R, which takes the output distribution ¥ as input.
* Composite function: F'(h) = B(Proj(h)), mapping h to the bias value.

2. Modification Procedure:

* The modification set S < {1, ..., d} (with cardinality |S| = 8d) contains neurons with the
highest positive attribution values.

* Modified input:

C jes
mod _ )™ 1
g {hj j¢s M
 Modification vector: Ah = h™d — }, with
C-T, jeS§
Ah; = i 2
! {0 j¢s @

A.6.2 STEP 1: EXACT EXPRESSION OF BIAS REDUCTION

By definition of the composite function F', the bias reduction is given by:
AB = F(h™%) — F(h) 3)
Using the integral form of the Mean Value Theorem along the path o — ™Y = h + Ah, we have:

AB:f VE(h+tAh) - Ahdt )
0

Expanding the dot product:

ZAhJ - -(h + tAR) dt (5)
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Since Ah; = 0 for j ¢ S, this reduces to:

L oF

AB =Y (C —hy) | o

JeS

——(h + tAh)dt

A.6.3 STEP 2: EXACT EXPRESSION OF OUTPUT DISTRIBUTION VARIATION
For each component y; = Proj;(h), the change is:

Ay; = Proj;(h™%) — Proj;(h)
Applying the integral form of the Mean Value Theorem:

1
= J VProj;(h + tAh) - Ahdt
0

Expanding:

ZAh J aPmﬁ( +tAR) dt

7

Again, due to sparsity of Ah:

— (téProj; —
Ayi=Z(C’—hj)J azoj (7 + tAR) dt

jes 0 J

A.6.4 STEP 3: RELATIONSHIP BETWEEN BIAS REDUCTION AND OUTPUT VARIATION

(6)

)

®)

(€))

(10)

Using the chain rule on the composite function F' = B o Proj, we denote the components of the

projection function by y,,, = Proj,,,. Then

k k

oF 0B ym 0B 0Projm,

aTj - m=1 aym/ 6h] B m=1 aynz ah]

Substituting (11) into (6):

AB = Z(cfﬁj)f

JjeS 0

1 k ~
(2 B (y(ty)- a];fjm<h+tAh>>

m=1 aym

with y(t) = Proj(h + tAh). Interchanging the order of summation and integration:

a5 3 |12 ) (Se-R) 5 1o )

jeS

Define the output-space velocity vector

k

G(t) := %Proj(ﬁ + tAh) =

oh;

Mo~ 7y 2Erodm 7, tAh)]

Jjes m=1

Then (13) becomes
y(1)

AB = Jl VB(y(t))"G(t) dt = VB(y) - dy
0 y(0)

Y

12)

13)

(14)

5)

Since V B is a conservative vector field, the line integral depends only on the endpoints y(0), y(1).
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A.6.5 STEP4: FINAL RELATIONSHIP

We can therefore replace the original curved path y(t) with the straight-line path in output space:
u(s) = y(0) + sAy, se]0,1], (16)

where Ay = y(1) — y(0). Thus,

1
AB = J VB(u(s))" Ay ds. (17
0

Define
#(s) := VB(u(s))" Ay,
which is continuous on [0, 1]. By the Mean Value Theorem for integrals, there exists some 6 € [0, 1]

such that
AB = ¢(0) = VB(y(0) + 0Ay) " Ay. (18)

Final Result.

|AB| = |VB(y(0) + 0Ay) " Ay| < |[VB(y(0) + 0Ay)| - |Ay|, 6e[0,1]. (19)

This completes the proof.

A.7 COMPLETE EXPERIMENTS

A.7.1 COMPLETE RESULTS ACROSS DOMAINS ON THE BBQ DATASET

Table 8: Evaluation result across three demographic attributes on the BBQ dataset.

Llama-3.1 Gender Nationality Religion
Accamp (%) 11 Accais (%) 1/ Average (%) 1
Base 69.07/84.64/76.86 | 33.77/96.23/65.00 | 60.67/92.67/76.67

Auto-Debias 68.86/84.29/76.58 | 33.63/96.23/64.93 | 61.33/92.67/77.00
Prefix Prompting 87.86/79.43/83.65 | 59.87/94.81/77.34 | 77.67 / 84.00 / 80.84
Self-Debiasing ~ 86.50/58.64 /72.57 | 88.70/86.75/87.72 | 88.00 / 73.67 / 80.84

DDP 81.50/83.71/82.61 | 35.45/94.42/64.94 | 53.67/91.67/72.67

1G? 75.29/81.07/78.18 | 33.38/95.97/ 64.68 | 68.33/91.33/79.83

FBA 73.64/83.07/78.36 | 53.38/94.54/73.96 | 72.33 /89.00/ 80.67

BBA 70.71/84.86/77.79 | 74.67/92.98 /83.83 | 78.00/89.00 / 83.50

Llama-3.2 Gender Nationality Religion
Accamp (%) 11/ Accais (%) 1/ Average (%) 1

Base 68.21/76.00/72.11 | 51.30/94.16/72.73 | 57.33/83.67 /70.50

Auto-Debias 68.00/76.64 /72.32 | 50.26/93.90/72.08 | 57.33/83.33/70.33
Prefix Prompting 86.71/62.57/74.64 | 78.05/85.19/81.62 | 83.67/59.33/71.50
Self-Debiasing  65.21/69.36/67.29 | 64.29/84.81/74.55 | 68.67 / 68.33 / 68.50

DDP 78.35/73.07/75.71 | 52.47/93.12/72.80 | 50.33/84.00/67.17
1G? 25.50/58.71/42.11 | 67.66/92.47/80.07 | 64.67/76.33/70.50
FBA 72.00/73.57/72.79 | 67.01/92.21/79.61 | 67.33/79.00/73.17
BBA 72.43/71.14/71.79 | 59.48 /93.38 /76.43 | 72.33 /75.33 / 73.83

A.7.2 RESULTS ON THE B1as—I1N-B10os DATASET

Bias-in-Bios (De-Arteaga et al.,2019) is a thirdperson biography dataset annotated by occupa-
tion and gender. We use LLMs to predict an individual’s profession given their biography.

Metric. For the Bias-in-Bios dataset, we adopt the five evaluation metrics from (He et al., [2022),
including: (1) Accqy , overall accuracy; (2) Acc,,, accuracy on male-labeled instances; (3) Accy,
accuracy on female-labeled instances; (4) Gap-TPR, the difference in true positive rate (TPR)
between male- and female-labeled instances; (5) RMS-TPR, the root-mean-square of the TPR gap
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Table 9: Evaluation results on the Bias—in—-Bio dataset.

Llama-3.1 Accqy  Acc, Accy  Gap-TPR  RMS-TPR
Base 7244  69.16 76.39 6.05 28.50
Auto-Debias 72.31 6894 76.39 6.14 28.43
Prefix Prompting  73.72  69.83 78.41 7.30 28.85
Self-Debiasing 7646 7393 79.47 5.54 25.87
DDP 77.11 7430 80.47 5.72 30.41
(e 7144  68.60 74.88 4.42 27.83
FBA 7335 6993 77.51 5.86 26.43
BBA 7121  71.60 70.59 1.39 6.53
Llama-3.2 Accay  Acc,, Accy  Gap-TPR  RMS-TPR
Base 7147 68.68 74.84 4.50 25.61
Auto-Debias 71.78  69.20 74.87 4.29 27.29
Prefix Prompting 7047 67.43 74.12 5.38 30.88
Self-Debiasing 70.70 6793 74.03 5.44 30.23
DDP 5492 5392 56.14 1.20 29.08
IG* 72.04 69.87 74.62 3.79 25.13
FBA 7732 76.19 78.54 2.38 14.90
BBA 75.00 70.01 79.41 1.02 10.48

across all occupation classes. We selected a lightweight version of the Bias—in—-Bios datasetE]
for testing. The experimental results on Bias—in-Bios are shown in Table[9}

We observe that BBA achieves a significantly stronger debiasing effect on Bias-in-Bios com-
pared to all other methods (including FBA). Meanwhile, on Llama-3.2, both FBA and BBA improve
all accuracy metrics.

A.7.3 RESULTS ON THE B1as—-NLI DATASET

Bias—-NLI (Dev et al.l2020) is an NLI dataset consisting of neutral sentence pairs. It is systemat-
ically constructed by populating sentence templates with a gendered word and an occupation word
with a strong gender connotation (e.g., The woman ate a bagel; The nurse ate a bagel).

Metrics. For the Bias—NLI dataset, we evaluate large language models directly using prompt
rather than performing classification with a fine-tuned BERT model as in (He et al., 2022). We
compute the probabilities of the three labels (entailment, neutral, contradiction), denoted as P., P,,
and P,. A higher value of P, indicates that the model is more fair.

Because the Bias—NLI dataset is exceptionally large, we selected the first 1,000 samples for test-
ing. We find that Llama-3.2 is almost unable to perform correct linguistic reasoning on this dataset,
as shown in the following Table L0}

Table 10: Evaluation results on the Bias—NLI dataset (Llama-3.2).

Llama-3.2 P, P, P,
base 227 03 770

The results on Llama-3.2 show an abnormally low P,,, so we primarily focus on the results obtained
with Llama-3.1 (Table[TT).

Both FBA and BBA substantially increase P,, and the accuracy of FBA is nearly 100%. This
demonstrates that our method enables the model to correctly rule out stereotype-driven reasoning
errors when inferring the relationship between sentences.

https://huggingface.co/datasets/LabHC/Bias_in_Bios_stratify
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Table 11: Evaluation results on the Bias—NLI dataset (Llama-3.1).

Llama-3.1 P, P, P,
base 174 818 0.8
Auto-Debias 153 84.0 0.7
Prefix Prompting 15.1 843 0.6
Self-Debiasing 0.6 759 235
DDP 384 61.1 0.5
IG? 125 869 06
FBA 09 991 00
BBA 04 975 21

Table 12: Forward-IG and Backward-IG magnitude across layers for Llama-3.1 and Llama-3.2.

Llama-3.1 Gender Nationality Profession Religion

Forward-IG (last layer) 1.72x107%  449x107* 1.14x1072? 3.81x 1073
Forward-IG (first layer)  9.94 x 107% 814 x107° 7.31x107° 1.71 x107®
Backward-IG (last layer)  6.89 x 107°  3.57 x 107% 2,09 x 107° 4.25 x 107°
Backward-IG (first layer) 1.71 x 1077 2.85x 107® 293 x107% 1.82x 107"
Llama-3.2 Gender Nationality Profession Religion

Forward-IG (last layer) 9.03 x 107* 7.68x10"* 3.10x107%® 1.31x107®
Forward-IG (first layer) ~ 9.97 x 107 8.83x 107"  6.09 x 107°  2.53 x 107°
Backward-IG (last layer)  7.61 x 107°  2.62 x 107% 1.10 x 107®  6.67 x 107°
Backward-IG (first layer) 5.82 x 1078  2.85 x 107® 247 x 1075 6.12x 107°

Table 13: Evaluation results (StereoSet) for FBA and BBA across layers on Llama-3.1 and
Llama-3.2.

Llama-3.1 Gender Nationality Profession Religion

FBA (last layer) 68.75/100/62.50  64.88/97.09/68.19  67.87/96.05/61.73  51.35/93.67/91.14
FBA (first layer)  75.59/99.22/48.44  64.96/97.30/68.19  72.41/97.53/53.83  52.78/91.14/86.08
BBA (lastlayer)  69.84/98.44/59.38  63.18/95.43/70.27  71.58/95.56/54.32  49.31/92.41/91.14
BBA (first layer)  73.02/98.44/53.13  66.67/96.67/64.45  75.38/97.28/47.90  58.11/93.67/78.48
Llama-3.2 Gender Nationality Profession Religion

FBA (last layer)  69.60/97.66/59.38  58.52/95.22/79.00 = 61.88/94.57/72.10  51.95/97.46/93.67
FBA (first layer)  70.97/96.88/56.25  62.69/95.84/71.72  60.68/94.81/74.56  59.74/97.47/78.48
BBA (last layer)  67.46/98.44/64.06  62.93/96.47/71.52  62.21/96.05/72.59  55.33/94.94/88.61
BBA (first layer)  71.20/97.66/56.25  57.36/96.05/81.91  64.87/96.30/67.65  56.00/94.93/83.54

A.7.4 ANALYSIS OF LOWER-LAYER NEURON CONTRIBUTIONS

We compute the mean Forward-IG and Backward-IG values for the neurons in the first-layer hidden
state and compare them with those from the final layer used in our experiments, as shown in Table[12]
Most lower-layer neurons exhibit gradient signals that decay by more than two orders of magnitude,
with the most severe cases diminishing by up to seven orders of magnitude. Such weakened gradient
signals prevent the model from achieving optimal debiasing performance. We verify this by applying
neuron-level modifications to lower layers on the StereoSet benchmark (Table [I3).

A.7.5 EXPERIMENTAL RESULTS IN MISTRAL-V0.3

Tables [I4] and [T5] present the performance of Mistral-v0.3 on the StereoSet and WinoBias
datasets, respectively. On StereoSet, both FBA and BBA demonstrate certain effectiveness, par-
ticularly in the domains of profession and religion, where FBA achieves notably strong performance.
On WinoBias, although we did not achieve the optimal Gap, our approach still significantly outper-
forms Self-Debiasing, which causes a sharp increase in P,p.,. Overall, BBA attains the second-best
performance.
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Table 14: Evaluation results across four demographic domains on the StereoSet dataset.

Mistral-v0.3 Gender

Nationality

Profession

Religion

SS (%) — 50% /

LMS (%) 1/

ICAT (%) 1

Base 72.36/96.09 /53.12
Auto-Debias 77.127/92.19/42.19
Prefix Prompting 72.27/92.97 /51.56
Self-Debiasing  42.70/69.53 /59.37

DDP 66.39/95.31/ 64.06
1G* 76.03/94.53/45.31
FBA 68.33/93.75/59.38
BBA 68.33/93.75/59.38

60.00/92.52/74.01
61.50/91.27/70.27
55.10/91.68/82.33
48.09/70.89/68.19
58.65/92.52/76.50
45.96/66.94 / 61.54
55.11/89.40/ 80.25
54.19/84.41/77.34

69.39/93.58/57.28
70.08 /91.60/54.81
64.27/92.59/66.17
56.51/72.10/62.72
66.93/94.07/62.22
51.81/68.15/65.68
65.80/94.57 / 64.69
59.08/85.68/70.12

60.81/93.67/73.42
60.00/94.94 /75.95
52.86/88.61/83.54
55.93/74.68 /65.82
63.24 /86.08 / 63.29
51.79/70.89 / 68.35
55.40/93.67/ 83.54
54.93/89.87/81.01

Table 15: Evaluation results on the WinoBias dataset.

Mistral-v0.3

Pstereo Panti Pother l Gap ~L
Base 61.11 38.64 0.25 22.47
Auto-Debias 56.69 41.16 2.15 15.53
Prefix Prompting  71.21  28.79 0.00 42.42
Self-Debiasing 4949  43.43 7.08 6.06
IG? 50.76  48.48  0.76 2.28
FBA 58.59  40.66 0.75 17.93
BBA 55.81 43.43 0.76 12.38
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A.7.6 EXTRA ABLATION RESULTS ON STEREOSET

Some ablation results have already been presented in the main text. Figures ([BEIBI6I7IBIO) report the
ablation results of all models on StereoSet. In most cases, our two attribution methods achieve a
simultaneous improvement in both SS and LMS. In certain cases, when LMS values are comparable,
our methods yield SS scores closer to 50%.

Gender Nationality Profession Religion
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Figure 3: Ablation results of Llama-3.1 on StereoSet: BBA w/o attribution.
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Figure 4: Ablation results of Llama-3.2 on StereoSet: FBA w/o attribution.
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Figure 5: Ablation results of Llama-3.2 on StereoSet: BBA w/o attribution.
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Gender Nationality Profession Religion
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Figure 6: Ablation results of Mistral-v0.3 on StereoSet: FBA w/o attribution.
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Figure 7: Ablation results of Mistral-v0.3 on StereoSet: BBA w/o attribution.
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Figure 8: Ablation results of Llama-3.2 on StereoSet: w/o selection.
100 = FBA == BBA 100
90 FBA w/o selection ) BBA w/o selection
90
o 80 <4
] ‘§ 80
o v
("]
@ Z 70
40

Gender Nationality Profession Religion Gender Nationality Profession Religion

Figure 9: Ablation results of Mistral-v0.3 on StereoSet: w/o selection.
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A.7.7 ABLATION RESULTS ON WINOBIAS

Tables report the ablation results of all models on WinoBias. When our attribution
strategy is replaced with randomly selected neurons, the Gap value rises sharply, indicating that the
model bias is not alleviated at all. Moreover, when stereotype cue selection is removed, a decline in
debiasing performance is observed across all settings except for the FBA method on Llama-3.2.

Table 16: Ablation results of Llama-3.1 on WinoBRias.

Llama-3.1
Pstereo Panti Pother l Gap i
FBA 52.53 4747 0.00 5.06
FBA w/o attribution 62.4 36.75 0.85 25.65
FBA w/o seletion 57.58 4242 0.00 15.16
BBA 50.51 49.49 0.00 1.02

BBA w/o attribution  59.85  40.15 0.00 19.70
BBA w/o seletion 4949  50.51 0.00 1.02

Table 17: Ablation results of Llama-3.2 on WinoBias.

Llama-3.2
Pstereo Panti Pother l Ga'p l
FBA 59.34  40.66 0.00 18.68
FBA w/o attribution 7475  21.16 4.09 53.59
FBA w/o seletion 57.83  42.17 0.00 15.66
BBA 51.52 4848 0.00 3.04

BBA w/o attribution ~ 75.72 19.15 5.13 56.57
BBA w/o seletion 5530 44.70 0.00 10.60

Table 18: Ablation results of Mistral-v0.3 on WinoBias.

Mistral-v0.3
Pstereo Panti Pother l Gap l

FBA 58.59  40.66 0.75 17.93
FBA w/o attribution ~ 64.48  31.20 4.32 33.28
FBA w/o seletion 57.32  39.14 3.54 18.18
BBA 55.81 43.43 0.76 12.38

BBA w/o attribution  61.50  37.66 0.84 23.84
BBA w/o seletion 62.88 35.10 2.02 27.78
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A.7.8 HYPERPARAMETER SETTINGS AND SENSITIVITY ANALYSIS

Since our method does not rely on a training set, we split StereoSet and WinoBias into val-
idation and test sets at a 1:1 ratio. However, due to the limited number of samples in the religion
domain of StereoSet, this domain could not be partitioned. For the approximate computation of
Forward-IG and Backward-IG, we set the number of approximation steps to ns¢ep = 20.

In the process of modifying neuron activations, two parameters are involved: the modification ra-
tio 8 and the constant value C' to which the activations are set. Arbitrarily setting the constant
C may exacerbate bias, and therefore we perform a grid search over the parameters. Specifically,
we set the search range of § to [0.1,0.2,0.3,0.4], and the range of C to [—2,—1,0,1,2]. Tables
(TOIR0I2TIR2I23I24125]26)) present the grid search results of FBA and BBA on the Llama-3.1 model
with StereoSet. The gray cells indicate the parameters ultimately adopted. We observe that
larger absolute values of § and C tend to cause a more severe degradation of the model’s language
modeling ability (i.e., LMS), while simultaneously yielding stronger debiasing effects. This phe-
nomenon is consistent with our previously established Theorem

Table 19: Hyperparameter search of the FBA method on the gender domain (SS, LMS).

C
-2 -1 1 2
N 0

0.1 (68.00,97.66) (67.46,98.44) (73.44,100.0) (73.23,99.22) (68.75, 100.0)
0.2 (59.32,92.19) (68.80,97.66) (72.44,99.22) (74.19,96.88) (71.43,92.97)
0.3 (58.18, 85.94) (66.40,97.66) (78.05,96.09) (78.57,98.44) (60.91, 85.94)
04 (46.15,71.09) (67.74,96.88) (71.43,98.44) (68.85,95.31) (47.78,70.31)

Table 20: Hyperparameter search of the FBA method on the nationality domain (SS, LMS).

X

2

-1

0

1

2

0.1
0.2
0.3
0.4

(69.25, 96.67)
(68.20, 94.80)
(60.43, 86.69)
(52.52, 70.06)

(68.51,97.71)
(69.72,97.51)
(68.13, 94.59)
(68.58, 93.97)

(68.86, 98.13)
(69.43,97.92)
(67.95, 97.30)
(68.71,98.34)

(69.02, 97.30)
(64.88, 97.09)
(64.78, 95.63)
(62.23,95.22)

(65.17, 97.30)
(58.76, 93.76)
(59.06, 88.36)
(50.43, 72.56)

Table 21: Hyperparameter search of the FBA method on the profession domain (SS, LMS).

X

2

-1

0

1

2

0.1 (70.36, 95.80)  (75.96,96.54) (76.20,97.53) (73.05,98.02) (73.55,98.02)
0.2 (68.60, 93.58) (73.08,96.30) (75.76,97.78) (74.11,97.28) (69.41, 92.84)
0.3 (60.34, 87.16) (67.87,96.05) (72.73,97.78) (71.25,97.04) (66.48, 88.40)
0.4 (55.31,76.79) (64.17,92.35) (72.91,97.53) (68.24,94.07) (60.47, 74.32)
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Table 22: Hyperparameter search of the FBA method on the religion domain (SS, LMS).

X

2

-1

0

1

2

0.1
0.2
0.3
0.4

(58.90, 92.41)
(51.35, 93.67)
(59.42, 87.34)
(56.90, 73.42)

(61.64,92.41)
(54.93, 89.87)
(58.11, 93.67)
(62.50, 81.01)

(63.01,92.41)
(65.28,91.14)
(55.41, 93.67)
(62.50, 91.14)

(59.15, 89.87)
(63.01,92.41)
(57.75, 89.87)
(61.11,91.14)

(59.72,91.14)
(63.38, 89.87)
(58.46, 82.28)
(56.67, 75.95)

Table 23: Hyperparameter search of the BBA method on the gender domain (SS, LMS).

X

2

-1

0

1

2

0.1
0.2
0.3
0.4

(73.02, 98.44)
(63.56,92.19)
(58.82, 79.69)
(51.16, 67.19)

(75.59, 99.22)
(69.84, 98.44)
(62.50, 93.75)
(61.95, 88.28)

(75.59, 99.22)
(73.23, 99.22)
(71.20, 97.66)
(70.16, 96.88)

(76.19, 98.44)
(73.81, 98.44)
(76.61, 96.88)
(75.63, 92.97)

(74.59, 95.31)
(74.36,91.41)
(69.81, 82.81)
(52.75,71.09)

Table 24: Hyperparameter search of the BBA method on the nationality domain (SS, LMS).

X

-2

-1

0

1

2

0.1
0.2
0.3
0.4

(65.43,95.01)
(60.92, 90.44)
(58.42, 81.50)
(49.12, 70.69)

(66.88, 97.30)
(63.18, 95.43)
(65.19, 93.76)
(60.68, 85.65)

(66.45, 97.30)
(65.45, 96.88)
(65.13, 94.80)
(61.28,91.27)

(66.60, 97.71)
(65.58, 95.43)
(64.33,92.10)
(62.53, 85.45)

(64.96, 97.30)
(63.35,91.89)
(62.47, 82.54)
(56.73, 72.56)

Table 25: Hyperparameter search of the BBA method on the profession domain (SS, LMS).

X

2

-1

0

1

2

0.1
0.2
0.3
0.4

(73.91, 96.54)
(69.57, 90.86)
(65.88, 83.21)
(56.69, 70.12)

(77.22,97.53)
(74.17, 96.54)
(71.54, 94.57)
(69.36, 88.64)

(75.76, 97.78)
(75.26, 96.79)
(71.58, 95.56)
(71.17, 95.06)

(74.18, 97.53)
(72.42, 95.80)
(73.28, 93.33)
(66.00, 86.42)

(72.89, 96.54)
(66.94,91.11)
(62.54, 81.73)
(54.49, 74.32)

Table 26: Hyperparameter search of the BBA method on the religion domain (SS, LMS).

X

-2

-1

0

1

2

0.1
0.2
0.3
04

(62.50,91.14)
(59.42, 87.34)
(64.52, 78.48)
(49.12,72.15)

(61.11,91.14)
(62.16, 93.67)
(63.89,91.14)
(53.62, 87.34)

(60.81, 93.67)
(57.53,92.41)
(58.90, 92.41)
(56.16,92.41)

(59.46, 93.67)
(58.90, 92.41)
(54.79,92.41)
(52.17, 87.34)

(56.94,91.14)
(49.32,92.41)
(49.25, 84.81)
(49.12, 72.15)
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A.8 COMPLETE TEMPLATES FOR TWO TYPES OF STEREOTYPE CUES

Category Template Examples

Adjective  The [Demographic_Attribute] of this [Stereotype_Adjective] person is [Demographic_Group].
This [Stereotype_Adjective] person belongs to the [Demographic_Attribute] of [Demo-
graphic_Group].
This person who is [Stereotype_Adjective] is of the [Demographic_Attribute] of [Demo-
graphic_Group].
This person who is [Stereotype_Adjective] is of the [Demographic_Group] [Demo-
graphic_Attribute].
This [Stereotype_Adjective] person is in the [Demographic_Attribute] of [Demo-
graphic_Group].
This [Stereotype_Adjective] person is in the [Demographic_Group] [Demographic_Attribute].
The [Stereotype_Adjective] person’s [Demographic_Attribute] is identified as [Demo-
graphic_Group].
This [Stereotype_Adjective] person’s [Demographic_Attribute] is [Demographic_Group].
The [Demographic_Attribute] of this person who is [Stereotype_Adjective] is identified as
[Demographic_Group].
This [Stereotype_Adjective] person identifies as [Demographic_Group] in terms of [Demo-
graphic_Attribute].
This person who is [Stereotype_Adjective] identifies with the [Demographic_Group] [Demo-
graphic_Attribute].
In terms of [Demographic_Attribute], this [Stereotype_Adjective] person is identified as
[Demographic_Group].
The [Demographic_Attribute] identification of this person who is [Stereotype_Adjective] is
[Demographic_Group].
These [Stereotype_Adjective] people associate themselves with the [Demographic_Group]
[Demographic_Attribute].
In terms of [Demographic_Attribute], these [Stereotype_Adjective] people identify themselves
as [Demographic_Group].
These [Stereotype_Adjective] people identify themselves as [Demographic_Group] in relation
to [Demographic_Attribute].
These people who are [Stereotype_Adjective] identify their [Demographic_Attribute] as
[Demographic_Group].

Noun The [Demographic_Attribute] of this [Stereotype_Noun] is [Demographic_Group].

This [Stereotype_Noun] belongs to the [Demographic_Attribute] of [Demographic_Group].
This person, who is a [Stereotype_Noun], is of the [Demographic_Attribute] of [Demo-
graphic_Group].

This [Stereotype_Noun] is of the [Demographic_Group] [Demographic_Attribute].

This [Stereotype_Noun] is in the [Demographic_Attribute] of [Demographic_Group].

This [Stereotype_Noun] is in the [Demographic_Group] [Demographic_Attribute].

The [Demographic_Attribute] of the [Stereotype_Noun] is identified as [Demographic_Group].
This [Stereotype_Noun]’s [Demographic_Attribute] is [Demographic_Group].

The [Demographic_Attribute] of this person who is [Stereotype_Noun] is identified as
[Demographic_Group].

This [Stereotype_Noun] identifies as [Demographic_Group] in terms of [Demo-
graphic_Attribute].

This person who is a [Stereotype_Noun] identifies with the [Demographic_Group] [Demo-
graphic_Attribute].

In terms of [Demographic_Attribute], this [Stereotype_Noun] is identified as [Demo-
graphic_Group].

The [Demographic_Attribute] identification of this [Stereotype_Noun] is [Demo-
graphic_Group].

These [Stereotype_Noun]s associate themselves with the [Demographic_Group] [Demo-
graphic_Attribute].

In terms of [Demographic_Attribute], these [Stereotype_Noun]s identify themselves as
[Demographic_Group].

These [Stereotype_Noun]s identify themselves as [Demographic_Group] in relation to [Demo-
graphic_Attribute].

These people who are [Stereotype _Noun]s identify their [Demographic_Attribute] as [Demo-
graphic_Group].
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A.9 DEMOGRAPHIC GROUPS FOR ALL DEMOGRAPHIC ATTRIBUTES

Demographic Attribute

Demographic Groups

Gender

male, female

Nationality

Russian, Ukrainian, Ethiopia, Afghanistan, Yemen, Somalia, Saudi Arabian,
Italy, Crimean, Hispanic, Arab, Iraq, Syria, Eritrean, Japanese, Jordan, Nor-
weigan, Ghanaian, Sierra Leon, Eriteria, Bengali, Vietnam, Iranian, Lebanon,
Ecuador, Spain, Cameroon, Columbian, Morocco, Bangladesh, African, Nor-
way, Britain, Ethiopian, Cape Verde, Persian people

Profession

football player, manager, prisoner, entrepreneur, prosecutor, mathematician,
commander, chess player, musician, software developer, butcher, nurse, psy-
chologist, mover, physicist, producer, bartender, researcher, politician, tailor,
chemist, engineer, historian, plumber, civil servant, guitarist, performing artist,
delivery man, policeman, assistant

Religion

Christian, Muslim, Buddhist, Hindus

A.10 PROMPTS FOR CONSTRUCTING QUESTIONS

Prompts for FBA

Options: {options}

Based on the context, fill in the blank using the candidate options. Only answer with ONE
word from the options without any other words.

Context: {question}

// Template sentences in which [Demographic_Group] should be filled

// Candidate demographic groups for filling the blank

Options: {options}

Prompts for BBA

According to the demographic attribute of the person, fill in the blank in the sentence using
the following options.

Sentence: {question}

// Template sentences in which [Stereotype_Adjective] or [Stereotype_Noun] should be filled

// Candidate stereotype words for filling the blank

Only provide a single word from the options, nothing else.
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