
Adaptive Accompaniment with ReaLchords

Yusong Wu 1 2 Tim Cooijmans 2 Kyle Kastner 3 Adam Roberts 1 Ian Simon 1 Alexander Scarlatos 1 4

Chris Donahue 1 5 Cassie Tarakajian 1 Shayegan Omidshafiei 6 7 Aaron Courville 2 8 Pablo Samuel Castro 1 2

Natasha Jaques 1 9 Cheng-Zhi Anna Huang 1 2 8

Abstract

Jamming requires coordination, anticipation, and
collaborative creativity between musicians. Cur-
rent generative models of music produce expres-
sive output but are not able to generate in an on-
line manner, meaning simultaneously with other
musicians (human or otherwise). We propose
ReaLchords, an online generative model for
improvising chord accompaniment to user melody.
We start with an online model pretrained by maxi-
mum likelihood, and use reinforcement learning
to finetune the model for online use. The finetun-
ing objective leverages both a novel reward model
that provides feedback on both harmonic and tem-
poral coherency between melody and chord, and
a divergence term that implements a novel type of
distillation from a teacher model that can see the
future melody. Through quantitative experiments
and listening tests, we demonstrate that the re-
sulting model adapts well to unfamiliar input and
produce fitting accompaniment. ReaLchords
opens the door to live jamming, as well as simul-
taneous co-creation in other modalities.

1. Introduction
Deep generative models produce realistic, high-quality con-
tent, and are seeing increasing integration into the creative
processes of artists. However, such models tend not to be de-
signed for the demands of live scenarios such as interactive
improvisation, which requires anticipation of others’ inten-
tions and adaptation to mistakes, stylistic choices and delib-

1Google DeepMind 2Mila - Quebec AI Institute, Univer-
sité de Montréal 3Google 4University of Massachusetts Amherst
5Carnegie Mellon University 6Work done while at Google 7Field
AI 8Canada CIFAR AI Chair 9University of Washington. Corre-
spondence to: Yusong Wu <wu.yusong@mila.quebec>, Cheng-
Zhi Anna Huang <anna.huang@mila.quebec>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

erate exploration. We focus on music in particular, which is
inherently interactive and dynamic and revolves around an-
ticipatory collaboration in ensemble settings. Most existing
models in this space, while capable of creating expressive
compositions or accompaniments, are not suited for simul-
taneous creation, where adaptation to and alignment with
the ongoing musical structure are crucial.

This paper introduces ReaLchords, a generative model
tailored for online adaptive musical accompaniment.
Emulating the spontaneity of live music jamming,
ReaLchords generates chord accompaniments in re-
sponse to a stream of monophonic melody notes, adapt-
ing on-the-fly to the unfolding musical narrative. Each
chord must be generated without knowing in advance which
melody note it will accompany. This simultaneous inter-
action imposes a conditional independence assumption on
the joint generative process, that an online model must re-
spect. Moreover, a model must be able to gracefully handle
unfamiliar situations and unexpected changes. Likelihood
models, however, suffer from exposure bias due to being
trained entirely on ground truth data, and transfer poorly to
the online settings where mistakes, imperfections and stylis-
tic differences are common (see Figure 1 for an example).

To address this, we use RL finetuning to improve the model
with respect to reward models that consider musical coher-
ence (§3.2). These reward models see the entire composition
and evaluate its musical coherence from various perspec-
tives (§3.3). Our setup bears similarities to RLHF (Ouyang
et al., 2022; Jaques et al., 2019) and RLAIF (Bai et al.,
2022; Lee et al., 2023), however our reward models are
trained through self-supervision rather than human labeling.
Finally, we combine RL finetuning with knowledge distil-
lation (Agarwal et al., 2023; Zhou et al., 2023) in a novel
way, distilling from a teacher that can see the future into a
student that cannot, hence forcing anticipation (§3.4).

We develop key algorithmic components (Figure 2) needed
to produce an online adaptive accompaniment model that is
amenable to interactive use. Our contributions and findings
are as follows: 1

1Listen to audio examples here: https://storage.
googleapis.com/realchords/index.html.

1

https://storage.googleapis.com/realchords/index.html
https://storage.googleapis.com/realchords/index.html

Adaptive Accompaniment with ReaLchords

Figure 1. Online models finetuned with RL are able to recover from mistakes, while models trained with MLE alone do not. We take a
melody from the test set and midway introduce an abrupt transposition designed to disrupt the accompaniment model (top row). The
Online MLE model predicts a bad chord (B7) and fails to adapt. ReaLchords also predicts a bad chord (F]m), but adapts quickly.
Wrong chords highlighted in orange are our own judgment informed by music theory, but the overall pattern is corroborated by an
objective measure of harmonic quality, averaged over many trials of this experiment (bottom row).

] We propose ReaLchords, an online accompaniment
generation model trained by RL finetuning. Fig-
ure 1 shows how ReaLchords adapts to out-of-
distribution input, a necessary skill for live jamming.

] We leverage knowledge distillation to learn from a
non-causal teacher that can see the future (§3.4). Dis-
tillation greatly improves the quality of the model, as
evidenced by the human evaluation shown in Figure 3.

] We further employ a novel set of self-supervised re-
ward models to encourage musical coherence and per-
ceptual quality (§3.3). Based on a human listening test,
we show that our reward models align closely with
human preferences (Figure 3), despite being trained
without human feedback (§3.3).

] We demonstrate through a series of controlled experi-
ments that without RL finetuning, models fail to adapt
to mistakes and perturbations (Figure 4, §5.4).

] Finally, we analyze the behavior of our models in terms
of domain-specific metrics (Table 1, §5.3). We find
that each component in our RL finetuning methods im-
proves the rhythmic and harmonic quality of generated
accompaniments.

2. Related Work
Adaptive music accompaniment systems In contrast to
automatic music generative systems, accompaniment sys-
tems often take input (such as melody) from a user, and
generate output that is meant to be played in synchrony to

complement what the user is playing. Some of these sys-
tems are asynchronous, where the user first provides the full
melody, and the system generates an accompaniment offline.
Examples include MySong (Simon et al., 2008), where a
user sings a melody and the system generates chords to ac-
company them. Most recently, SingSong (Donahue et al.,
2023) supports a very similar interaction, but generates full-
band backing tracks. Both are offline systems.

In contrast, online accompaniment systems need to synchro-
nize with user actions in real-time. Score-following is a
special case where the system has the score, the full context
of the content of what the musician will play, but still needs
to follow along and infer when to play their own part. Mu-
sic Plus One (Raphael, 2010) adapts its playback speed of
an orchestral recording (without the soloist) to a soloist’s
expressive performance. Similarly, Antescofo (Cont, 2008)
follows where a soloist is in a score and triggers live elec-
tronics accordingly.

Generative accompaniment systems or more generally co-
creative music systems, not only have to anticipate user
actions, they need to learn how to respond. Voyager (Lewis,
2003) takes a rule-based approach in how to listen, respond
and generate musical material on the fly, while Omax Broth-
ers (Assayag et al., 2006) recombines what a musician
plays on-the-fly as an accompaniment but often requires
another computer musician to control when it comes in
and what section of material to draw from. ImproteK and
later DJazz (Nika & Chemillier, 2012; Nika et al., 2017)
leverages a shared predefined chord progressions (such as a
Jazz Standard) to coordinate the human-machine improvisa-
tion. Instead of tight synchronization, Spire Muse (Thelle

2

Adaptive Accompaniment with ReaLchords

& Pasquier, 2021) serves as a brainstorming partner which
retrieves musical responses that are more or less similar de-
pending on if the user is in a converging or diverging phase
of ideation.

Recent systems based on deep neural networks have
emerged. BachDuet (Benetatos et al., 2020) trains an LSTM
model using MLE for counterpoint (melody to bassline)
accompaniment. SongDriver (Wang et al., 2022) focuses
on online melody-to-chord accompaniment, similar to our
work. To address exposure bias, SongDriver employs two
MLE-trained models: a transformer model that predicts cur-
rent output based on both current and past outputs, and a
conditional random field (CRF) model that predicts current
output based on previous context. The CRF model makes
online predictions but does not use its own predictions for
future contexts; instead, it relies on the transformer model
for context.

In contrast, our system ReaLchords learns how to re-
spond and in tight synchronization with user melody, by
first learning interdependencies between melody and accom-
paniment from existing songs, and then using RL to tune
the models to respond in an adaptive fashion.

RL finetuning for generative models Reinforcement
learning (RL) finetuning has proven effective in aligning lan-
guage models with human preferences (Ouyang et al., 2022;
Jaques et al., 2019) and constraints (Jaques et al., 2017),
which are often unaddressed in generative pretraining. In
some cases, RL finetuning has been applied to enhance
music generation models (Jaques et al., 2017; Jiang et al.,
2020b). Most closely related to our work is RL-Duet (Jiang
et al., 2020b), which considers a similar online generation
setting, namely a duet between a user and an agent, both
of them playing each note without knowing what the other
will play. Our work provides several contributions over
RL-Duet. First, RL-Duet is trained on Bach Chorales, a
small dataset of approximately 400 songs following strict
rules of counterpoint composition in the style of a particular
composer. In contrast, our models are trained on the diverse
Hooktheory dataset of 38,000 popular songs from a wide
array of artists. To enable effective learning on this scale, we
develop novel multiscale contrastive and discriminative re-
ward models, and also propose a new knowledge distillation
technique specifically geared toward the online generation
setting. Finally, RL-Duet experiments are limited to the
setting in which the RL model is primed with the first few
ground-truth notes of the accompaniment, an unrealistic
assumption for real-time collaborative jamming. As we will
show in §5.4, our methods are able to begin jamming with
the user’s melody within a few beats, and adapt to sudden
perturbations in the key.

Our work is related to the emerging literature on Reinforce-
ment Learning from AI Feedback (RLAIF) (Saleh et al.,

2020; Bai et al., 2022; Lee et al., 2023), which mitigates the
need for extensive human labeling by utilizing an AI assis-
tant for feedback generation. We use this strategy to finetune
online music language models, using an MLE model to ob-
tain a learning signal. Recently, Agarwal et al. (2023) have
shown that adding a distillation objective between the policy
and a larger teacher model during RL finetuning further
improves performance. ReaLchords employs a novel
knowledge distillation objective between the online policy
and an offline model which can see future context, bridg-
ing the gap between online improvisational capabilities and
offline musical coherence.

3. Online Musical Accompaniment
We seek a generative model that can be used for interactive
music accompaniment, where a user plays a melody, and the
model simultaneously plays chords to support it. Accompa-
niment is a special case of the general setting in which two
agents generate a joint sequence (x1, y1), . . . , (xT , yT) in
chronological order. At each step t, agents observe the his-
torical material x<t, y<t, and simultaneously emit the next
pair of tokens xt, yt. Simultaneity imposes a conditional
independence on the generative process:

Pr(xt, yt | x<t, y<t) = Pr(xt | x<t, y<t) Pr(yt | x<t, y<t).

In this general setting, the melody x and chords y interde-
pend through the conditioning on shared history x<t, y<t;
this corresponds to musicians adapting to each other as they
play. As a first step, we consider the specific setting where
the chords do not influence the melody; now one player
leads and the other follows. We call this accompaniment.

We approach this problem by constructing a model πθ that
generates accompaniment y according to a specific autore-
gressive process:

πθ(y | x) =
∏
t

πθ(yt | x<t, y<t). (1)

While our goal at each timestep t is to predict a chord yt
that supports the melody token xt about to be played, the
model’s prediction of yt does not depend on xt. This is
crucial, as it allows the model to be used online as desired.

We train this model in two steps: pretraining on data (§3.1),
followed by finetuning using reinforcement learning (§3.2).
In the rest of this section, we first describe the general ap-
proach, and then detail on the components involved (reward
models §3.3, distillation §3.4, and regularizations §3.5).

3.1. Maximum Likelihood Pretraining

The first step in training πθ is to apply MLE, maximizing
the data likelihood with respect to θ:

max
θ

E
x,y∼pdata

log πθ(y | x).

3

Adaptive Accompaniment with ReaLchords

Figure 2. ReaLchords leverages RL finetuning to learn anticipation and adaptation for online melody-to-chord accompaniment.
Initializing from a model πθ pretrained by MLE, the policy generates a complete chord response to a melody from the dataset, each chord
being predicted given only previous melody and chords (top left). In contrast, the offline model φω (also trained by MLE) predicts each
chord given the complete melody (bottom left). A KL-divergence penalty distills the predictions of the offline model into the online model,
improving its ability to anticipate the future. (Right) The reward stems from an ensemble of multi-scale contrastive and discriminative
models that evaluate the musical coherence between melody and chord. The final training objective in ReaLchords is a sum of the
reward and the distillation loss (center).

The data distribution pdata can be interpreted as standing in
for puser: we simulate user play by sampling fixed melodies
from the dataset. This limits our ability to encourage and
assess the model’s ability to adapt to out-of-distribution
melodies. Nevertheless, the model will still encounter out-
of-distribution combinations of melodies and chords during
inference.

Unfortunately, applying only MLE training to online ac-
companiment model suffers from exposure bias (Arora
et al., 2022): during training, the model is always con-
ditioned on ground-truth context, but this does not occur
during inference. Consequently, MLE models struggle to
learn two skills required in online accompaniment (Jiang
et al., 2020b;a). First, the model must anticipate what the
user is going to play, in order to ensure that its own output
agrees with that of the user. Second, the model must be able
to adapt to and recover from unknown input, due to its own
mistakes or those of the user, due to misanticipation, or due
to user idiosyncrasies.

As a concrete example, Figure 1 shows a failure mode of the
online MLE model. The model fails to adequately anticipate
future inputs, leading to exposure bias and error accumu-
lation due to a distribution mismatch between training and
inference. Whenever the first few time-steps of output do
not fit with the melody input stream the model will continue
its chord progression, ignoring the input.

3.2. Finetuning using Reinforcement Learning

Similar challenges are encountered in imitation learn-
ing (Ross & Bagnell, 2010), where policies trained by
MLE to reproduce expert demonstrations are brittle, and
fail to transfer to the real environment (see e.g. Reddy et al.
(2019)). A rich history of work has demonstrated Reinforce-
ment Learning (RL) finetuning to be an effective remedy.

We begin by initializing the weights of our RL policy πθ
with those of the pretrained online MLE model. As in
eq. 1, at timestep t, the policy predicts action probability
distribution at = yt given state st = (x<t, y<t). Then, we
adopt an RL finetuning methodology similar to the popular
RLHF (RL from Human Feedback) framework used for
language models (Ouyang et al., 2022; Jaques et al., 2019).
Namely, in addition to maximizing RL rewards R(x, y), we
minimize KL-divergence from a pretrained MLE anchor
model φω(y|x) parameterized by ω, as proposed in Jaques
et al. (2017). Let x and y represent the full melody and chord
sequence, each consisting of several tokens (i.e. the full
trajectory). This gives us the KL-regularized RL objective:

max
θ

E
x∼pdata
y∼πθ(·|x)

R(x, y)− βDKL(πθ(· | x) ‖ φω(· | x)).

(2)
To evaluate (2), we sample a batch of melodies x from the
training set, then use the current policy πθ according to
(1) to generate a batch of corresponding harmonies y (Fig-
ure 2, top left). We then evaluate the resulting batch of
compositions (x, y) according to reward models (§3.3) and

4

Adaptive Accompaniment with ReaLchords

regularizers (§3.5) to obtain the reward R(x, y) (Figure 2,
top and bottom right). Additionally, we measure φω(y | x)
under the offline model φω (§3.4) in order to compute the
KL term (Figure 2, bottom left). Finally, we update the
model according to (2), using REINFORCE with a separate
value model serves as baseline estimation for improved sta-
bility (Lee et al., 2023; Agarwal et al., 2023). The separate
value model is also initialized from pretrained online MLE
model, and is trained to estimate the total return. We use
mean square error between the estimated return and total
return as objective to train the value model.

Unlike in RLHF (Ouyang et al., 2022) and RLAIF (Bai et al.,
2022), our reward models are not trained on preference
labels from either human or machine labelers. Instead, they
are trained using positive and negative melody-chord pairs
constructed from a dataset (see Figure 2, §3.3). Nevertheless,
a listening test (§5.1) shows that our reward models align
well with human preferences, as shown in Figure 3.

3.3. Reward Models

We develop a novel ensemble of reward models that eval-
uates the coherence between input (melody) and output
(chord) tracks. We implement two types of coherence evalu-
ation reward models, contrastive and discriminative, each
with different inductive biases. Reward model training and
architectural details can be found in Appendix §F and §G.

The contrastive reward model consists of a melody en-
coder and a chord encoder, which respectively map the
melody x and chord y to embedding vectors Ex, Ey. The
encoders are trained in an unsupervised manner using In-
foNCE loss (Oord et al., 2018; Radford et al., 2021) applied
to positive and negative samples created from the dataset.
As shown in Figure 2, the positive pairs are defined as the
melody-chord pairs from the same song, and the negative
pairs are created by randomly pairing melody and chord
from different songs. The InfoNCE loss essentially maxi-
mizes the cosine similarity for positive pairs, and minimizes
the cosine similarity for negative pairs. The reward for a
given pair x, y is the cosine similarity of Ex and Ey .

The discriminative reward model looks at the entire gen-
erated pair (x, y) as a whole. This model is trained in an un-
supervised manner to discriminate between “real” melody-
chord pairs and randomly paired melodies and chords. Each
training batch case provides a set of positive pair and, by
combining its melody with the chords from another ran-
domly chosen batch case, a negative pair. Once trained,
the model produces a probability of (x, y) being “real“ that
directly serves as the reward.

Due to the bottleneck on the embedding vectors Ex, Ey,
the contrastive models focus on global coherence. The
discriminative models on the other hand are able to evaluate

temporally local coherence. Indeed, our experiments in
§5.3 show that contrastive reward models promote mainly
harmonic quality whereas discriminative reward models
encourage mainly synchronization.

While these reward models are effective, we find that they
can be overly harsh on temporally localized incompatibili-
ties, such as short-lived mistakes that are quickly resolved.
To mitigate this and improve temporal credit assignment, we
further propose to use an ensemble of multi-scale variants
that evaluate isolated fragments without being influenced by
distant mistakes. We train multiple contrastive and discrimi-
native reward models to judge fragments of reduced lengths
({ 12 ,

1
4 ,

1
8 ,

1
16} of the maximum sequence length 256). Dur-

ing finetuning, we apply these models to sliding windows
(50% overlap) of the example.

3.4. Distillation from Offline Teacher Model

As stated in §3.2, during RL finetuning we penalize KL-
divergence from a model pretrained on the data distribution
to ensure the model maintains realistic outputs while max-
imizing rewards (Jaques et al., 2017). However, unlike in
typical RL finetuning, the online MLE model with which
our policy is initialized suffers from a lack of robustness
to out-of-distribution data, and as such is not an ideal an-
chor for use with the KL-regularization term. Agarwal et al.
(2023) demonstrated how the KL penalty can be used not
just to avoid diverging from a checkpoint, but also to distill
knowledge from a larger teacher model. We take this idea
one step further and distill knowledge from an offline model
that can see the future of the melody.

The offline model φ is trained with MLE to autoregressively
predict chords given the full melody x:

φω(y | x) =
∏
t

φω(yt | x, y<t). (3)

In traditional knowledge distillation, ground truth data is
used to obtain the predictions of both the teacher and student
models, and a KL loss is then applied to bring the student’s
predictions closer to the teacher’s. Here, it is instead evalu-
ated on samples generated by the current policy. This is a
special case of on-policy knowledge distillation (Agarwal
et al., 2023; Zhou et al., 2023), which in general allows any
mixture of ground truth data, student samples and teacher
samples. We tested various on-policy knowledge distilla-
tion schedules and found it works best when driven by the
student (§5.3). Thus, during RL finetuning we only train on
outputs from the student.

3.5. Regularization Penalties

RL finetuning can lead to pathological behavior, such as
repetitions and mode collapse (Jaques et al., 2017; Jiang
et al., 2020b). We introduce three regularization penalties

5

Adaptive Accompaniment with ReaLchords

Figure 3. Our reward models are aligned with human preferences.
We carried out a listening test (§5.1) to evaluate the quality of our
models. The online MLE model performs poorly, but is greatly
improved by distillation from the offline MLE model. Our pro-
posed systems ReaLchords and ReaLchords-M improve fur-
ther thanks to RL finetuning. The rewards given by both the con-
trastive and discriminative reward models are strongly correlated
with human evaluations.

to discourage specific failure modes: Repetition: Inspired
by repetition penalties used for training language models
(as in Saleh et al. (2020); Jaques et al. (2019)), we impose
a penalty for chords that are held for too long. Silences:
We impose a penalty for silences beyond the beginning of
a phrase. Ending early: A penalty is imposed for early
end-of-sequence (EOS) tokens. See §D for an ablation that
shows the need of these penalties.

4. Dataset
We train our models on an updated version of the Hookthe-
ory dataset (Donahue et al., 2022), which comprises crowd-
sourced analyses of monophonic melodies and chords from
recordings and now contains 38K melody-chord pairs. We
adopt a frame-based representation where time is quantized
to sixteenth notes, where each frame is a discrete index. We
set a maximum sequence length of 256 for x and y. We aug-

ment the data by randomly transposing up or down by up to
6 semitones. 20% of the data is held out and divided equally
into validation and test sets. We develop on the validation
set and report the test set results in the paper. Please refer to
§L for details on the dataset and data representation.

5. Experiments
Is the system capable of producing accompaniments of high
musical quality? How swiftly can the system adjust to
unfamiliar situations? We address these questions from
three directions.

To directly assess musical quality, we conduct a human lis-
tening test using samples generated from the models (§5.1).
We demonstrate adaptation through several controlled gen-
eration experiments, tracking the quality of the accompa-
niment over time (explained in §5.4). Finally, we evaluate
the system using heuristic metrics to assess the quality of
compositions generated in response to melodies in the test
set (detailed in §5.3).

The following systems are compared in our experiments:

MLE baselines The Online MLE model trained to predict
yt | x<t, y<t without seeing xt (§3.1). The Offline MLE
model that sees the full input x and is used as a teacher for
knowledge distillation (§3.4).

Our proposals These models are trained with both con-
trastive and discriminative rewards, as well as regularization
and knowledge distillation. ReaLchords incorporates the
global reward models, whereas ReaLchords-M incorpo-
rates the multi-scale variants of both reward models.

Ablations The model KD, trained with only knowledge
distillation and regularization. Two models trained by MLE
and then finetuned using either only Contrastive (C) reward
or only Discriminative (D) reward, with regularization and
KL divergence to the MLE checkpoint. A model C+D using
both contrastive and discriminative reward, with regulariza-
tion and KL divergence to the online MLE checkpoint.

5.1. Human and Machine Evaluation on Musicality

Any measure of the quality of a musical piece must ulti-
mately be grounded in human preferences. We carry out
a listening test to evaluate four systems: the Online MLE
baseline, KD, ReaLchords and ReaLchords-M. In the
listening test, participants are presented with 8-second audio
clips from two different systems, and asked to rate which
one sounded more musical, on a 5-point Likert scale. We
recruited ten musicians, and collected 192 ratings with each
system involved in 96 pairwise comparisons (see §J for more
details).

Figure 3 (top) shows the number of wins for each sys-

6

Adaptive Accompaniment with ReaLchords

Table 1. Effect of RL finetuning with our reward models and knowledge distillation on harmonic, synchronization and rhythmic diversity
metrics. Each number is an average over a large number of accompaniments to test set melodies. In row 2-7, we report confidence interval
(95%) of metric values over 3 RL finetunings, each with different random seeds.

Models Harmony
Note in Chord ↑, %

Synchronization
∆ Chord-Note Onset Interval ↓, ×10−3

Rhythm Diversity
Chord Length Entropy ↑

Online MLE 36.99 14.23 2.21

Knowledge Distillation (KD) 46.38 ± 0.45 14.39 ± 1.25 1.80 ± 0.04
Contrastive (C) 47.22 ± 1.22 16.61 ± 4.78 1.80 ± 0.29
Discriminative (D) 44.29 ± 0.99 12.34 ± 7.95 1.70 ± 0.06
C + D 46.12 ± 0.95 12.86 ± 6.17 1.56 ± 0.05
ReaLchords 48.17 ± 0.27 16.09 ± 3.63 1.35 ± 0.30
ReaLchords-M 54.29 ± 1.55 17.17 ± 4.86 1.66 ± 0.20

Offline MLE 63.73 9.85 1.90
Test set 70.94 0.00 2.19

tem. We ran a Kruskal-Wallis H test and confirmed that
there are statistically significant pairs among the permuta-
tions. According to a post-hoc analysis using the Wilcoxon
signed-rank test with Bonferroni correction (with p<0.05/6
as there are 6 pairs of systems), we found the following
statistically significant results: All systems outperformed
the Online MLE baseline. Also, the fully-fledged systems
ReaLchords and ReaLchords-M outperformed distil-
lation alone (KD). While ReaLchords-M appears to out-
perform ReaLchords, this comparison is not significant.

Overall, the results from the listening test show that dis-
tillation alone (KD) accounts for a large improvement in
perceptual quality. The reward models agree with this as-
sessment, even though KD does not directly optimize for
these rewards. In general, we find that the rewards given
by our self-supervised reward models (Figure 3, middle and
bottom) correlate strongly with human preferences, which
justifies their use in lieu of human feedback.

5.2. Quantitative Metrics

In line with prior research (Jiang et al., 2020b; Yang &
Lerch, 2020; Fang et al., 2020), we introduce quantitative
metrics to evaluate the quality of accompaniments:

Harmonic quality We measure harmonic quality by the
note-in-chord ratio, which is the amount of time that the
melody’s pitch class occurs in the chord. For example, if
the melody token xt is a C, and the chord yt is F minor,
then the note-in-chord ratio as time t equals 1. We average
this metric across time t and across all compositions x, y
generated, to obtain the overall note-in-chord ratio for the
model in question.

Synchronization To gauge temporal synchronization be-
tween melody and chord progression, we look at chord-to-
note onset interval, which is the length of time between

the onset of a chord and the onset of the nearest preceding
melody note. The synchronization of a model can be judged
by comparing this quantity’s distribution on the test set ver-
sus on the output of the model. Whereas Jiang et al. (2020b)
compare averages of this quantity, we propose to compare
the full distributions using Earth Mover’s Distance (EMD)
on histograms of chord-to-note onset intervals.

Rhythmic diversity We examine the distribution of dura-
tions of generated chords to assess overall rhythmic behavior.
The entropy of this distribution measures rhythmic diversity.

5.3. Quantitative Evaluation Results

We evaluate each model based on a large number of accom-
paniments to test set melodies. The average metrics are
reported in Table 1.

MLE baselines The behavior of Offline MLE is closest
to that of the test set, as is expected due to its ability to see
the future input. Online MLE exhibits poor harmonic and
temporal coordination with the melody, which suggests that
it produces chords without paying attention to the melody.

Distillation On-policy knowledge distillation (KD in Ta-
ble 1) significantly enhances online generation, particularly
with regard to harmony and synchronization. Distillation
from the offline teacher will suppress the probability of
chords that match poorly with the future melody, forcing the
student to anticipate the immediate future. The student (KD)
learns to produce outputs that align better with the input
context while retaining a causal conditioning structure.

Reward models Training with contrastive and discrimina-
tive reward models, individually (C, D) and combined (C +
D), shows distinct improvements in harmony and synchro-
nization. The use of the contrastive reward model (C) im-
proves more on harmony, presumably because it compresses
the entire melody and the entire accompaniment separately

7

Adaptive Accompaniment with ReaLchords

(a) Accompaniment quality when primed with ground truth.

(b) Accompaniment quality after a cold start.

(c) Accompaniment quality when perturbed midway.

Figure 4. Comparing the quality of overall accompaniment as a
function of the number of beats generated, in three scenarios of
increasing difficulty (§5.4). Quality is measured by note-in-chord
ratio. (a) Priming the online model with ground-truth context (8
beats in this case) results in comparable performance between
models. (b-c) ReaLchords and ReaLchords-M recover from
cold starts and perturbation, while the online model does not.

and merges them only in the final cosine similarity. The
use of the discriminative reward model (D) improves more
on synchronization, while having worse harmony. This is
expected, as the classification is biased towards direct com-
parison. We further examine the bias of different reward
models by plotting reward values against harmonic pertur-
bations, where varying portions of chords in the test set are
replaced with random alternatives. As shown in Figure 6
in §G, the contrastive model is more sensitive to harmonic
perturbations.

The blend of both rewards in ReaLchords offers enhance-
ment in each metrics. Additional experiments applying
RL fine-tuning with ensembles of the same type of reward
models show similar metric improvements, as presented in
Table 6 in §I. This suggests that the observed metric en-
hancements may result from both the combined biases and
the ensemble of reward models.

Combining rewards with distillation Integrating both
reward models with knowledge distillation yields better
harmony but less rhythmic diversity (ReaLchords in Ta-

ble 1). This indicates a tendency of the model to opt for
‘safer’ chord progressions, presumably resulting from satis-
fying both reward maximization and knowledge distillation.
This is further validated in Figure 8 in Appendix §M where
we visualize the chord length histograms and find that this
model tends to hold chords for 2 or 4 beats.

Multi-scale reward models ReaLchords-M further im-
proves harmonic quality thanks to the locally isolated re-
wards from the multi-scale variants of our reward models.
This aligns well with the findings in Figure 3.

5.4. Adaptation Dynamics

To study the temporal dynamics of model adaptation to
unknown input, we measure accompaniment quality as a
function of number of beats generated. A beat is 4 frames
with a total of a quarter note length. We compare among
the dataset and four models: Online MLE, Offline MLE,
ReaLchords and ReaLchords-M. We report harmonic
quality in terms of note-in-chord ratio. In all experiments,
we draw melodies from the test set, and let the models gen-
erate accompaniment. However, we consider three different
scenarios with different interventions: priming, cold-start,
and perturbation.

Priming (Figure 4a): We start with the setting of RL-
Duet (Jiang et al., 2020b), where the models are primed
with several beats of ground truth chords before generating
their own chords. This avoids the cold-start problem of pre-
dicting a chord without knowing anything about the melody,
and gives an indication of the model’s ability to anticipate
what happens next without having to first adapt to what
happened previously. Behavior is similar across the models.
For reference, we also plot the cold-start behavior of On-
line MLE (without priming), which is significantly worse.
We argue that, as a benchmark for online accompaniment,
primed generation is unnatural and too facile.

Cold start (Figure 4b): We now proceed to the cold-start set-
ting, which is more natural and more difficult. Here, models
predict chords immediately and have to adapt to the result-
ing melody-chord combinations, which are usually wrong
and outside of the data distribution. The Online MLEstrug-
gles to adapt to its own past chords, and never gets close to
the primed behavior. ReaLchords and ReaLchords-M
quickly overcome their own mistakes and play as well as if
they were primed.

Perturbation (Figure 4c): Finally, we introduce a delib-
erate perturbation in the middle of the generation process,
to demonstrate the ability of our systems to recover from
serious errors. We transpose the melody up by a tritone (6
semitones) at beat 17, resulting in both an out-of-distribution
melody and almost guaranteeing that the next chord is a poor
fit. This is similar to the push test in legged robotics. The On-

8

Adaptive Accompaniment with ReaLchords

line MLE fails the test: it exhibits a drop in harmonic quality
and never recovers. ReaLchords and ReaLchords-M
quickly adapt to the new key and recover their previous
performance.

Overall, these results confirm that Online MLE suffers from
exposure bias due to only being trained on ground-truth
data. This brittleness, or inability to produce reasonable
output given out-of-distribution (OOD) input not covered
by the training data, is similar to the failures exhibited by
imitation learning or behavior cloning methods in traditional
RL contexts (Reddy et al., 2019), which also rely purely
on supervised learning. Our systems ReaLchords and
ReaLchords-M quickly recover from both cold-start sit-
uations and mid-song disturbances, which highlights their
ability to follow along with a user as they explore ideas.
Thus, ReaLchords solves a critical requirement for an on-
line accompaniment system, which will have to accompany
a diverse range of human users who are likely to play novel
melodies not covered by the training data and change what
they play midway.

Finally, we find an interesting emergent behavior due to
RL finetuning, where models hold off on playing chords
initially, preferring instead to wait for more information
about the melody. This wait and see behavior is also visible
in Figure 1, and examined further in Appendix §A. Similar
behavior occurs in human performers, who often wait for
several bars when improvising with an unfamiliar player.

6. Conclusion
We proposed ReaLchords, an online generative model
that improvise simultaneous chord accompaniment in re-
sponse to melody input. ReaLchords leverages RL fine-
tuning with multi-scale contrastive and discriminative re-
ward models and employs a novel offline-to-online knowl-
edge distillation technique. Throughout our experiments,
we show that ReaLchords accompanies with good har-
mony and synchronization, while effectively adapting to
mistakes and perturbations. We also show that listeners
preferred ReaLchords over the online MLE baseline and
distillation-only models, while validating the proposed re-
ward models align with human judgement. ReaLchords
enables an exciting path towards an effective and engaging
real-time, interactive music accompaniment system.

Acknowledgement
We would like to express our gratitude to the following
individuals for their insightful discussions and valuable ad-
vice on the project: Jesse Engel, Ethan Manilow, Antoine
Caillon, Laura Graesser, Athul Jacob, Kory Mathewson,
Max Schwarzer, Evgenii Nikishin, Zhixuan Lin, Dinghuai
Zhang, Michael Noukhovitch, Ke Chen, Yuxuan Wu, Yi

Deng. We also like to thank the individuals who designed
and built the RL training infrastructure used in this paper:
Léonard Hussenot, Johan Ferret, Robert Dadashi, Geoffrey
Cideron, Alexis Jacq, Sabela Ramos, Piotr Stanczyk, Ser-
tan Girgin, Danila Sinopalnikov, Amélie Héliou, Bobak
Shahriari, Bilal Piot, Matt Hoffmann, Nikola Momchev, and
Olivier Bachem.

Impact Statement
While this work is developed in the domain of music, the in-
teractive dynamic of simultaneous musical accompaniment
has broader societal implications beyond the realm of music
generation. This research could also influence the way AI is
perceived in creative fields, reinforcing the potential of AI
as a collaborative tool rather than a replacement for human
creativity.

References
Agarwal, R., Vieillard, N., Stanczyk, P., Ramos, S., Geist,

M., and Bachem, O. GKD: Generalized knowledge
distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

Arora, K., Asri, L. E., Bahuleyan, H., and Cheung, J. C. K.
Why exposure bias matters: An imitation learning per-
spective of error accumulation in language generation.
arXiv preprint arXiv:2204.01171, 2022.

Assayag, G., Bloch, G., Chemillier, M., Cont, A., and Dub-
nov, S. Omax brothers: a dynamic yopology of agents for
improvization learning. In Proceedings of the 1st ACM
workshop on Audio and music computing multimedia,
2006.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Benetatos, C., VanderStel, J., and Duan, Z. Bachduet: A
deep learning system for human-machine counterpoint
improvisation. In Proceedings of the International Con-
ference on New Interfaces for Musical Expression, 2020.

Cont, A. Antescofo: Anticipatory synchronization and
control of interactive parameters in computer music. In
International Computer Music Conference (ICMC), 2008.

Donahue, C., Thickstun, J., and Liang, P. Melody transcrip-
tion via generative pre-training. In Proceedings of ISMIR
2022, 2022.

Donahue, C., Caillon, A., Roberts, A., Manilow, E., Es-
ling, P., Agostinelli, A., Verzetti, M., Simon, I., Pietquin,

9

Adaptive Accompaniment with ReaLchords

O., Zeghidour, N., et al. Singsong: Generating mu-
sical accompaniments from singing. arXiv preprint
arXiv:2301.12662, 2023.

Fang, A., Liu, A., Seetharaman, P., and Pardo, B. Bach or
mock? a grading function for chorales in the style of js
bach. arXiv preprint arXiv:2006.13329, 2020.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M.,
Turner, R. E., and Eck, D. Sequence tutor: Conserva-
tive fine-tuning of sequence generation models with kl-
control. In International Conference on Machine Learn-
ing, pp. 1645–1654. PMLR, 2017.

Jaques, N., Shen, J. H., Ghandeharioun, A., Ferguson, C.,
Lapedriza, A., Jones, N., Gu, S. S., and Picard, R. Human-
centric dialog training via offline reinforcement learn-
ing. Empirical Methods in Natural Language Processing
(EMNLP), 2019.

Jiang, N., Jin, S., Duan, Z., and Zhang, C. When counter-
point meets chinese folk melodies. Advances in neural
information processing systems, 33:16258–16270, 2020a.

Jiang, N., Jin, S., Duan, Z., and Zhang, C. Rl-duet: Online
music accompaniment generation using deep reinforce-
ment learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 710–718, 2020b.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T.,
Bishop, C., Carbune, V., and Rastogi, A. Rlaif: Scal-
ing reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267, 2023.

Lewis, G. E. Too many notes: Computers, complexity, and
culture in voyager. In New Media, pp. 93–106. Routledge,
2003.

Nika, J. and Chemillier, M. Improtek: integrating harmonic
controls into improvisation in the filiation of omax. In
International Computer Music Conference (ICMC), pp.
180–187, 2012.

Nika, J., Chemillier, M., and Assayag, G. Improtek: intro-
ducing scenarios into human-computer music improvisa-
tion. Computers in Entertainment (CIE), 14(2), 2017.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Raphael, C. Music plus one and machine learning. In ICML,
2010.

Reddy, S., Dragan, A. D., and Levine, S. Sqil: Imitation
learning via reinforcement learning with sparse rewards.
arXiv preprint arXiv:1905.11108, 2019.

Roberts, A., Chung, H. W., Mishra, G., Levskaya, A., Brad-
bury, J., Andor, D., Narang, S., Lester, B., Gaffney, C.,
Mohiuddin, A., et al. Scaling up models and data with
t5x and seqio. Journal of Machine Learning Research,
24(377):1–8, 2023.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
661–668. JMLR Workshop and Conference Proceedings,
2010.

Saleh, A., Jaques, N., Ghandeharioun, A., Shen, J., and
Picard, R. Hierarchical reinforcement learning for open-
domain dialog. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 8741–8748, 2020.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

Simon, I., Morris, D., and Basu, S. Mysong: automatic
accompaniment generation for vocal melodies. In Pro-
ceedings of the SIGCHI conference on human factors in
computing systems, 2008.

Thelle, N. J. and Pasquier, P. Spire muse: A virtual mu-
sical partner for creative brainstorming. In NIME 2021.
PubPub, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Z., Zhang, K., Wang, Y., Zhang, C., Liang, Q., Yu,
P., Feng, Y., Liu, W., Wang, Y., Bao, Y., et al. Songdriver:

10

Adaptive Accompaniment with ReaLchords

Real-time music accompaniment generation without log-
ical latency nor exposure bias. In Proceedings of the
30th ACM International Conference on Multimedia, pp.
1057–1067, 2022.

Yang, L.-C. and Lerch, A. On the evaluation of generative
models in music. Neural Computing and Applications,
32(9):4773–4784, 2020.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. arXiv preprint arXiv:2310.08461, 2023.

11

Adaptive Accompaniment with ReaLchords

Figure 5. Chord silence ratio within each beat of the generation.

A. Wait and See Behavior
To further investigate the wait and see behavior noted at the end of §5.4, we measure ratio of chord silence during a
non-silence note across each beat. Figure 5 shows that the finetuned models ReaLchords and ReaLchords-M, are
often silent during the first few beats. We believe this behavior results from trading off the penalty for silence and the low
reward for bad guesses.

B. Knowledge Distillation Schedules
On-policy knowledge distillation (Agarwal et al., 2023; Zhou et al., 2023) allows the KL to be evaluated with respect to any
mixture of policy, teacher and data distribution. We compare these options and report results in Table 2. Sampling from the
policy alone results in good performance, and we use this choice in all of our experiments.

C. Details of Regularization Penalties
RL finetuning can lead to pathological behavior, such as repetitions and mode collapse (Jaques et al., 2017; Jiang et al.,
2020b). We introduce several regularization penalties to discourage specific failure modes.

Repetition The model has a tendency to repeat itself, generating long-held chords. Inspired by repetition penalties used for
training language models (as in Saleh et al. (2020); Jaques et al. (2019)), we provide a penalty of −1 for each token in a
chord that is held for longer than 32 frames (8 beats), because chords longer than 8 beats rarely occur in the training set.

Silence To avoid behavior where no chords are generated, we provide a penalty of −1 for each silence token if more than
4% of frames are silent accompaniment to a non-silent input. This is the rate at which silent accompaniment occurs in the
training set. We omit this penalty for the first 8 frames (first half-note) to allow early adaptation.

Ending early To discourage early end-of-sequence (EOS) tokens, we provide a penalty of −1 for each token after model
outputs EOS but before the input does. The penalties are given to the whole sequence at the last token of output before EOS.
An ablation experiment in §D demonstrates the need for these penalties.

D. Ablation on Regularizers
To show the need for regularization penalties, we conduct an ablation test. As shown in the Table 3, removing the repetition
penalty results in significantly more long chords. Removing the silence penalty would result in a long chunk of silence at
the beginning of the generation, while removing the early-finish penalty would result in high ratio of samples stop early.

E. Training and Architecture Details of Online and Offline Models
The online model πθ is implemented as an 8-layer autoregressive decoder-only transformer (Vaswani et al., 2017) with
6 heads and hidden dimension of 512. It is trained on interleaved input and output tokens y1, x1, . . . , yT , xT , providing
conditional distributions of the form πθ(yt | x<t, y<t) and πθ(xt | x<t, y6t). To use this model online as per (1),
we alternate drawing yts from πθ(yt | x<t, y<t) and xts from the given melody, foregoing the use of the conditionals

12

Adaptive Accompaniment with ReaLchords

Table 2. Comparing different knowledge distillation schedule, generating with policy data achieves best balance between harmonic,
synchronization and rhythmic diversity metrics.

Models
Melody Note in Chord Ratio

(harmony) ↑
∆ Chord-Note Onset Interval
×10−3 (synchronization) ↓

Chord Length Entropy
(rhythm diversity) ↑

Online MLE 36.99 14.23 2.21

Policy (KD) 46.54 12.81 1.79
Dataset 35.25 19.58 2.05
Dataset + Policy 46.28 13.65 1.67
Dataset + Policy + Teacher 46.64 13.39 1.63

Offline MLE 63.73 9.85 1.90
Test set 70.94 0 2.19

Table 3. Comparing quantitative metrics of ablation experiments on regularization penalties, the proposed penalties effectively prevent RL
training to exploit reward which result in sub-optimal solution. Details in §D.

Models
Note-in-Chord

Ratio (%)
Chord-Note

Onset Interval
Chord Length

Entropy
Chord Silence

Ratio (%)
Long Chords

Ratio (%)
Early Stop
Ratio (%)

Online MLE 36.99 14.23 2.21 7.31 1.67 21.66
Offline MLE 63.73 9.85 1.90 2.91 0.73 2.62
Test set 70.94 0 2.19 2.83 0.71 0
KD 46.54 12.8 11.79 4.55 1.51 0
ReaLchords 48.17 13.01 1.25 4.90 0.02 0

KD
w/o all penalties 45.96 14.98 1.66 32.67 0 0.38

ReaLchords
w/o repetition penalty 48.19 13.17 1.31 4.81 0.78 0

ReaLchords
w/o repetition penalty
w/o silence penalty

46.38 11.12 1.43 26.50 0.32 0

ReaLchords
w/o all penalties 46.92 11.55 1.46 27.85 0.29 0

πθ(xt | x<t, y6t). The online model is trained using Adafactor optimizer (Shazeer & Stern, 2018) and learning rate of 10−3

with a batch size of 256. The online model is trained for 50, 000 steps with 1000 steps of warmup. We apply a dropout with
rate 0.1 to the online model during training.

The offline model φω is implemented as an 8-layer encoder-decoder transformer in the style of T5 (Raffel et al., 2020)
with 6 heads and hidden dimension of 512. This model is trained on pairs of sequences x, y without interleaving, by first
encoding the entire melody x and then generating the entire chord progression y | x conditioned on the encoding of x. The
offline model is trained using Adafactor optimizer (Shazeer & Stern, 2018) and learning rate of 10−3 with a batch size of
256. The offline model is trained for 50, 000 steps with 1000 steps of warmup. We apply a dropout with rate 0.1 to the
offline model during training. We train our online and offline transformers using the T5X framework (Roberts et al., 2023).

F. Training and Architecture Details of Reward Models
The training specification is identical for reward models at all scale, with the only difference lies in their input length. Our
contrastive reward model consists of two identical 6-layer, 6-head transformer encoders with 512 hidden dimension, one for
encoding the entire melody x and one for encoding the entire chord progression y. The contrastive reward model is trained
using Adam optimizer (Kingma & Ba, 2014) and learning rate of 10−4 with a batch size of 128. The contrastive reward

13

Adaptive Accompaniment with ReaLchords

model is trained for 35 epochs with a dropout rate of 0.1.

The discriminative reward model consists of a 6-layer, 6-head transformer encoder with 512 hidden dimension that encodes
the entire composition x, y.The discriminative reward model is trained using Adam optimizer (Kingma & Ba, 2014) and
learning rate of 10−4 with a batch size of 64. The discriminative reward model is trained for 5 epochs which we find after
which point the model starts to overfit. We also applied a dropout rate of 0.1 during training.

G. Test Set performance of Reward Models
We evaluate the contrastive and discriminative reward models on test set, and report performance in Table 4 for contrastive
model, and Table 5 for discriminative model. For contrastive model, we evaluate it on retrieval metrics, namely recall (R@1,
R@5, R@10) and mean average precision (mAP@10). For discriminative model, we use test set pair as positive label, and
generate same number of negative samples by taking randomly pairing across test set. While performance of discriminative
model remains similar across all scale, for contrastive model, the retrieval performance degrades at smaller scale. Given the
focus of contrastive models on harmony evaluation, we posit that the observed decline in performance at smaller scales is
attributed to the increased chance of harmonic coherence between unmatched samples in shorter segments.

We examine the bias of different reward models by plotting reward values against harmonic perturbations, where varying
portions of chords in the test set are replaced with random alternatives. As shown in Figure 6, the contrastive model is more
sensitive to harmonic perturbations.

Figure 6. We take ground-truth samples from the test set, and replace a portion of chords with random chord names but keep the chord
boundary. We then run the perturbed sample through contrastive and discriminative reward models. The points in line show the average
reward value while shaded area shows the confidence interval (95%).The results show that the contrastive model is more attentive to
harmonic perturbation or “mistakes”. Both reward models lower their scores as perturbation or “mistakes” increases.

H. Training Details of RL Finetuning
In RL training, we use a learning rate of 10−4 for both policy model and value model. In the initialization of RL finetuning,
the policy model and the value model are both initialized from online MLE model. The coefficient β between reward
maximization and KL loss in Equation 2 is fixed as 0.5 for all the experiments. We apply a coefficient of 50 to the reward
produced by reward models. We apply a coefficient of 20 to the ending early penalty in all experiments used this penalty.
In experiment using only knowledge distillation objective or using only one reward model, we apply a coefficient of 1 to
both the repetition penalty and silence penalty. To train ReaLchords, we apply a coefficient of 2 to both the repetition
penalty and silence penalty. To train ReaLchords-M, we apply a coefficient of 10 to both the repetition penalty and
silence penalty.

We do not backpropagate gradients through the sampling process of the policy. All rewards, including reward models
and penalties are summed and applied to the last token policy generated. For knowledge distillation objective, we only
backpropagate gradients through the tokens policy generated, excluding the input tokens.

14

Adaptive Accompaniment with ReaLchords

Table 4. The retrieval performance of contrastive reward model on test set.

Contrastive Reward Models Note to Chord Chord to Note
R@1 R@5 R@10 mAP@10 R@1 R@5 R@10 mAP@10

Full context (256 frames) 0.17 0.39 0.49 0.26 0.17 0.39 0.51 0.27
1/2 context (128 frames) 0.05 0.14 0.21 0.09 0.05 0.15 0.21 0.09
1/4 context (64 frames) 0.02 0.08 0.13 0.05 0.02 0.07 0.12 0.05
1/8 context (32 frames) 0.02 0.06 0.10 0.04 0.02 0.05 0.09 0.03
1/16 context (16 frames) 0.01 0.04 0.07 0.03 0.01 0.03 0.06 0.02

Table 5. The classification performance of discriminative reward model on test set.

Discriminative Reward Models Precision Recall F1

Full context (256 frames) 0.69 0.91 0.79
1/2 context (128 frames) 0.69 0.92 0.79
1/4 context (64 frames) 0.71 0.84 0.77
1/8 context (32 frames) 0.69 0.88 0.77
1/16 context (16 frames) 0.68 0.79 0.73

For systems using only reward models (C, D, C+D in Table 1), in addition to regularization penalties, we also include the
knowledge distillation loss between policy and online MLE model. Similar to Jaques et al. (2017), we found without such
KL regularization, the training will be unstable and the models will generate invalid token sequences (e.g. a hold token
before any onset token).

We also attempt to reproduce similar methods used in previous work RL-Duet (Jiang et al., 2020b) but received little success.
We explored using offline MLE model as reward model, or using both offline MLE model and online MLE model as reward
models, alongside with all regularization penalties we use. In all cases, the trained policy only generates repeated same
chord, failing to generate adequate accompaniment.

I. Ensemble Same Type of Reward Models
We conduct experiments on RL finetuning with ensemble of same type of reward models, with results shown in Table 6. For
both contrastive and discriminative model, ensemble with same kind helps improving better metric value.

Table 6. Effect of RL finetuning with our reward models and knowledge distillation on harmonic, synchronization and rhythmic diversity
metrics. In row 2-7, we report confidence interval (95%) of metric values over 3 trainings, each with different random seeds. We
additionally include results of RL finetuning with C+C and D+D (two contrastive or discriminative models trained with different initial
seeds). From the metrics value, the ensemble of reward models helps achieving better metric performances.

Models
Harmony

Note in Chord ↑, %
Synchronization

∆ Chord-Note Onset Interval ↓, ×10−3
Rhythm Diversity

Chord Length Entropy ↑
Online MLE 36.99 14.23 2.21

Knowledge Distillation (KD) 46.38 ± 0.45 14.39 ± 1.25 1.80 ± 0.04
Contrastive (C) 47.22 ± 1.22 16.61 ± 4.78 1.80 ± 0.29
Discriminative (D) 44.29 ± 0.99 12.34 ± 7.95 1.70 ± 0.06
C + D 46.12 ± 0.95 12.86 ± 6.17 1.56 ± 0.05
ReaLchords 48.17 ± 0.27 16.09 ± 3.63 1.35 ± 0.30
ReaLchords-M 54.29 ± 1.55 17.17 ± 4.86 1.66 ± 0.20

C + C 47.30 ± 1.63 10.13 ± 0.44 1.55 ± 0.05
D + D 46.15 ± 0.92 10.56 ± 1.33 1.63 ± 0.18

Offline MLE 63.73 9.85 1.90
Test set 70.94 0.00 2.19

15

Adaptive Accompaniment with ReaLchords

J. Sample preparation for human evaluations
The listening test consisted of pairwise comparisons between different systems. The pairwise comparisons are prepared as
following: We randomly sample 32 melodies from the test set, and have each system generate an accompaniment to the first
eight bars of a song. For each melody, the accompaniments from each system is paired with all other systems, yielding(
4
2

)
= 6 pairs. Going through all 32 melodies, we obtain 6 ∗ 32 = 192 total pairs. We recruited ten musicians, who each

rated 15 to 20 pairs.

K. Quantitative Metrics Details
The entropy of chord length uses a base of e result in unit of nats. The EMD of chord-to-note onset interval reported
in Table 1 is multiplied by 103 for better comparison. To determine the distribution of chord-note onset intervals, we
categorized these intervals into bins defined by the number of frames, using bin boundaries set at [0, 1, 2, ..., 16, 17,∞].
Similarly, for the distribution of chord lengths, we organized the data into bins based on the number of frames, with bin
boundaries established at [0, 1, 2, ..., 32, 33,∞]. Following this, we generated histograms for both the chord-note onset
intervals and chord lengths. Finally, we computed the Earth Mover’s Distance (EMD) between these histograms.

For note-in-chord ratio of a song, we average across the binary value at each frame representing whether the note is in a
chord. For calculating whether the note is in a chord, we exclude the frames where either input melody or output chord
is silence. Then, to report the note-in-chord ratio of a system, we average across the note-in-chord ratio of each song. To
report the note-in-chord ratio at certain beat reported in §5.4 and §A, for each song we only consider the frames at that beat,
and when averaging across songs, we exclude the song where the whole beat is silence.

L. Dataset and Data Representation Details

Figure 7. A visualization of example data samples.

In ReaLchords, we represent each chord by a unique name, assigning each distinct chord name a unique index. Melody
tokens xt indicate both pitch and whether they mark the onset of a new note or the continuation of the previous token.
Similarly, chord tokens yt denote the chord symbol and its onset or continuation status. The Hooktheory dataset we use
comprises 5041 distinct chords. For the output y, each frame yt can be one of three possibilities: a chord selected from
the 5041 available options, a chord hold (indicating the continuation of the previous chord) from the same set of options,
or a silence, which signifies the generation of silence in the current frame. Similarly, there are 128 possible melody pitch
values, ranging from 0 to 127 according to the MIDI pitch standard. For the input x, each frame xt also falls into one of
three categories: a note-on event chosen from 128 possible values, a note hold (indicating the continuation of the previous
note) among the same 128 values, or a silence, indicating no input for the current frame.

As an example shown in Figure 7, the input melody x for that example at each frame would be: [C4 on, C4 hold, C4 hold,
C4 hold, G4 on, G4 hold, G4 hold, G4 hold, A4 on, A4 hold, A4 hold, A4 hold, F4 on, F4 hold, F4 hold, F4 hold], and
the output chords y for that example at each frame would be: [C on, C hold, C hold, C hold, G on, G hold, G hold, G hold,
Am on, Am hold, Am hold, Am hold, F on, F hold, F hold, F hold].

The maximum length of the examples used for training is set to 256 frames, equivalent to 64 beats, with any samples
exceeding this duration being randomly cropped during training.

M. Histogram Statistics of Compared Systems
In Figure 8 and Figure 9, we present the histogram of chord-to-note onset interval, chord length and note-to-chord harmonic
interval for one of each system compared in Table 1. Those histograms are used to calculate statistics report in Table 1.

16

Adaptive Accompaniment with ReaLchords

(a) Test Set

(b) Online MLE

(c) Offline MLE

(d) Knowledge Distillation (KD)

(e) Contrastive Reward Model (C)

(f) Discriminative Reward Model (D)

Figure 8. The histogram of chord onset interval, chord length and harmonic interval for each system compared in §5.3.

17

Adaptive Accompaniment with ReaLchords

(a) Contrastive + Discriminative Reward Model (C+D)

(b) ReaLchords

(c) ReaLchords-M

Figure 9. The histogram of chord onset interval, chord length and harmonic interval for each system compared in §5.3.

18

