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ABSTRACT

Off-policy learning (OPL) in contextual bandits aims to learn a decision-making
policy that maximizes the target rewards by using only historical interaction data
collected under previously developed policies. Unfortunately, when rewards are
only partially observed, the effectiveness of OPL degrades severely. Well-known
examples of such partial rewards include explicit ratings in content recommen-
dations, conversion signals on e-commerce platforms that are partial due to delay,
and the issue of censoring in medical problems. One possible solution to deal with
such partial rewards is to use secondary rewards, such as dwelling time, clicks, and
medical indicators, which are more densely observed. However, relying solely on
such secondary rewards can also lead to poor policy learning since they may not
align with the target reward. Thus, this work studies a new and general problem of
OPL where the goal is to learn a policy that maximizes the expected target reward
by leveraging densely observed secondary rewards as supplemental data. We then
propose a new method called Hybrid Policy Optimization for Partially-Observed
Reward (HyPeR), which effectively uses the secondary rewards in addition to the
partially-observed target reward to achieve effective OPL despite the challenging
scenario. We also discuss a case where we aim to optimize not only the expected
target reward but also the expected secondary rewards to some extent; counter-
intuitively, we will show that leveraging the two objectives is in fact advantageous
also for the optimization of only the target reward. Along with statistical analysis
of our proposed methods, empirical evaluations on both synthetic and real-world
data show that HyPeR outperforms existing methods in various scenarios.

1 INTRODUCTION

In applications that involve dynamic decision-making, such as ad placement and recommendation
systems, exploration can be costly and risky. These constraints limit the use of online exploration of
actions, thereby motivating the study of offline policy learning methods. Off-policy learning (OPL)
addresses this need by enabling the policy optimization using only logged bandit data generated
under old (or logging) policies (Joachims et al., 2018; Su et al., 2019; 2020a; Uehara et al., 2022).

A typical approach to OPL is using policy gradient (PG), which we can estimate unbiasedly based on
the logged data via techniques like Inverse Propensity Score (IPS) and Doubly Robust (DR) (Dudı́k
et al., 2014). OPL methods based on PG iterations perform effectively in ideal scenarios with large
sample sizes and relatively small action spaces (Saito & Joachims, 2021; Sachdeva et al., 2023;
Taufiq et al., 2024). However, in many application scenarios, rewards are only partially observed due
to missing data (Jakobsen et al., 2017; Wang et al., 2019b; Jadidinejad et al., 2019; Christakopoulou
et al., 2022), censoring (Ren et al., 2019; Wang et al., 2019a), delayed observation (Wang et al.,
2022b; Imbens et al., 2022; Wang et al., 2023; Saito et al., 2024a), data fusion (Imbens et al., 2022),
and multi-stage rewards (Wan & McAuley, 2018; Hadash et al., 2018; Ma et al., 2018; Saito, 2020).
For instance, on e-commerce platforms, binary conversions serve as a target reward to maximize.
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Table 1: Examples of Partially-Observed Rewards in Various Real-Life Scenarios

Scenario Reward Reason for Partial Observation

Streaming Platform Explicit Rating Multi-stage & Missing (Hadash et al., 2018)
E-commerce Conversion Multi-stage & Delayed (Ktena et al., 2021)
Ad-placement Product Purchase Missing & Delayed (Ashkan & Clarke, 2009)
Clinical Trials Long-term Health Censoring (Pratap et al., 2020)
Financial Investment Long-term Return Delayed (Arroyo et al., 2019)
Subscription Platform User Retention Delayed (Wang et al., 2022b)
Remediation Academic Performance Delayed (Barnett, 2011)

Unfortunately, conversions are only observed for products that were clicked and seen by the user.
To make matters worse, conversion signals are obtained only after weeks-long delays (Ktena et al.,
2021), and most of them are yet to be observed when policy learning is conducted. Table 1 provides
a list of real-life examples and causes of partially-observed rewards. When rewards are only partially
observed due to such causes, the estimation of PG would result in high variance and inefficient OPL.

Our work thus proposes a new formulation and method to address this challenging but highly general
problem: OPL with partial observations of the reward. In scenarios with only partial observations
of the target reward, one possible idea to perform OPL more effectively is to use more frequently
observed secondary rewards instead. For instance, in e-commerce recommender systems, we often
observe not only the conversion signals but also other implicit feedback such as clicks and dwell
time, which are much more densely observed with no missingness (Liu et al., 2010; Jadidinejad
et al., 2019). Thus, in our problem formulation, we consider both the target reward that is only
partially observed (e.g., user ratings, conversions, retention, future earnings, and survival days) and
the secondary rewards that are fully observed (e.g., clicks, dwell time, and short-term medical indi-
cators). Considering the case where we also aim to optimize secondary rewards, we explore learning
a policy that maximizes a weighted sum of the target reward and secondary rewards. This represents
a more general objective rather than focusing only on the optimization of the target reward.

With the availability of the secondary rewards, one feasible approach to perform OPL is to maximize
some aggregation of the secondary rewards as a surrogate for the target reward. Nonetheless, a
significant drawback of this approach is the potential for high PG estimation bias, as secondary
rewards often do not align perfectly with the target reward (Liu et al., 2010; Jadidinejad et al.,
2019). We also do not know how to construct an appropriate aggregation function of the secondary
rewards. Therefore, there is a dilemma between the target and secondary rewards: the former more
accurately aligns with our ultimate objective, while the latter provides more observations. Using
only the former leads to high variance in PG estimation due to missing observations, while relying
solely on the latter results in high bias due to a potential misalignment with the ultimate objective.

To solve this new OPL problem more effectively, we focus on developing a method that can leverage
both target and secondary rewards in a principled way. Specifically, we propose Hybrid Policy
Optimization for Partially-Observed Reward (HyPeR), a method which estimates the PG leveraging
both types of rewards. We show that our PG estimator can substantially reduce the estimation
variance compared to typical estimators such as IPS and DR while maintaining unbiasedness under
reasonable conditions. In addition, while our approach generally performs effectively using the
predefined weight between the target and secondary rewards within the objective, we demonstrate
that further enhancement can be achieved by strategically tuning the weight to improve the bias-
variance trade-off of the PG estimation, which we can perform based only on observable logged
data. Finally, we conduct comprehensive experiments on both synthetic and real-world datasets,
where the HyPeR algorithm outperforms a range of existing methods in terms of optimizing both
the target reward objective and the combined objective of the target and secondary rewards.

The key contributions of our work can be summarized as follows.

• We formulate the general problem of Off-Policy Learning (OPL) for contextual bandits
with partially-observed rewards, encompassing many prevalent scenarios such as missing
data, delayed rewards, and censoring, all of which are instances of this general problem.

• We propose a new method to address OPL with partial rewards by leveraging more densely
observed secondary rewards to estimate the policy gradient with reduced variance.

• We consider a combined objective defined by a weighted sum of the target and secondary
rewards and introduce the novel concept of a strategic use of an incorrect weight in our
method to maximize the advantage of combining the two types of rewards.
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2 OFF-POLICY LEARNING

2.1 THE CONVENTIONAL FORMULATION

We first formulate the conventional OPL problem regarding the typical contextual bandit set-
ting (Dudı́k et al., 2014; Swaminathan & Joachims, 2015a; Farajtabar et al., 2018). In the typical
formulation, context x ∈ X ⊆ Rdx is a dx-dimensional vector that is drawn i.i.d. from an unknown
distribution p(x). Given context x, a possibly stochastic policy π(a|x) chooses an action a within a
finite action space denoted here by A. The (target) reward r ∈ [0, rmax] (e.g., ratings, conversions,
retention, survivals) is then sampled from an unknown conditional distribution p(r|x, a).
The existing literature defines the objective function in OPL by the expected target reward (often
referred to as the policy value) as below (Swaminathan & Joachims, 2015b).

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)], (1)

where q(x, a) := E[r |x, a] is the expected reward given x and a, which we call the q-function. In
OPL, the goal is to learn a policy πθ, parameterized by θ, that would maximize the policy value:
θ∗ ∈ argmaxθ∈Θ V (πθ). In particular, OPL aims to learn such a policy using only logged data
consisting of tuples (x, a, r) generated under the logging policy denoted by π0. More specifically,
the logged data we can use to perform OPL can be written as D = {(xi, ai, ri)}ni=1 ∼ p(D) where
the data distribution is induced by the logging policy, i.e., p(D) =

∏n
i=1 p(xi)π0(ai|xi)p(ri|xi, ai).

2.2 OFF-POLICY LEARNING VIA POLICY GRADIENT

Most existing approaches in OPL are based on PG iterations (Ma et al., 2020; Chen et al., 2021).
This method updates the policy parameter θ via iterative gradient ascent: θt+1 ← θt + ∇θV (πθ)
where the policy gradient is represented as ∇θV (πθ) = Ep(x)πθ(a|x)[q(x, a)∇θ log πθ(a|x)] Saito
et al. (2024b). This form of PG can be derived by the log-derivative trick and suggests to update the
policy parameter θ so that the resulting policy πθ can choose actions that have high expected reward.

To implement the PG iteration, we first need to estimate the PG, since it is an unknown vector. To
achieve this using only the logged data D collected under the logging policy π0, the relevant liter-
ature relies on estimators such as IPS and DR, which enable unbiased estimation of the PG (Dudı́k
et al., 2014; Metelli et al., 2021). These PG estimators are specifically defined as follows.

∇θV̂IPS(πθ;D) :=
1

n

n∑
i=1

w(xi, ai)rigθ(xi, ai), (2)

∇θV̂DR(πθ;D) :=
1

n

n∑
i=1

{
w(xi, ai)(ri − q̂(xi, ai))gθ(xi, ai) + Eπθ(a|xi)[q̂(xi, a)gθ(xi, a)]

}
,

(3)

where w(x, a) := πθ(a |x)/π0(a |x) is the importance weight and gθ(x, a) := ∇θ log πθ(a |x)
is the policy score function. q̂(x, a) is an estimator of the q-function, which we can obtain by
performing reward regression in the logged data D.

These estimators are unbiased (i.e., Ep(D)[∇θV̂IPS(πθ;D)] = Ep(D)[∇θV̂DR(πθ;D)] = ∇θV (πθ))
under full support, which requires that the logging policy sufficiently explore the action space.

Condition 1 (Full Support). The logging policy π0 is said to have full support if π0(a|x) > 0
for all x ∈ X and a ∈ A .

The importance weighting technique used by IPS and DR enables an unbiased estimation of the PG,
thereby resulting in effective OPL even without additional exploration. However, if the problem is
far from ideal with smaller data sizes, large action spaces, and noisy or partial rewards, existing OPL
methods can easily collapse due to substantial variance in PG estimation (Saito & Joachims, 2022).
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2.3 PARTIALLY-OBSERVED REWARDS

As discussed in the introduction and in Table 1, there are many real-life cases where we can observe
the target reward only partially. To precisely formulate such a scenario, we introduce an additional
random variable, o ∈ {0, 1}, to represent whether the reward is observed for each data point. If
oi = 1, the reward ri is observed; otherwise, it is unavailable, as indicated by setting ri = N/A.
Considering a scenario where the observation indicator comes from an unknown distribution 0 <
p(o|x) < 1, we can generalize the data generating process as D = {(xi, ai, oi, ri)}ni=1 ∼ p(D) =∏n

i=1 p(xi)π0(ai|xi)p(oi|xi)p(ri|xi, ai), which encompasses many realistic situations like missing
data, delayed rewards, data fusion, multi-stage rewards, and censoring.

To implement OPL with such partially-observed rewards, we can simply apply the PG approach
using only the data with observed rewards, which we call r-IPS and r-DR:

∇θV̂r-IPS(πθ;D) :=
1

n

n∑
i=1

oi
p(oi|xi)

w(xi, ai)rigθ(xi, ai), (4)

∇θV̂r-DR(πθ;D) :=
1

n

n∑
i=1

oi
p(oi|xi)

{
w(xi, ai)(ri − q̂(xi, ai))gθ(xi, ai) + Eπθ(a|xi)[q̂(xi, a)gθ(xi, a)]

}
,

(5)

where we can see that these estimators use only the data with reward observations (oi = 1) to esti-
mate the PG. We can readily show that these estimators are unbiased, but they are often substantially
inefficient and produce high variance in PG estimation. This is because they use only a part of the
data in D and naively discard all the information when oi = 0.

3 OFF-POLICY LEARNING WITH SECONDARY REWARDS

To deal with the issue of inefficiency in OPL when the rewards are partial, we propose a new for-
mulation of OPL with secondary rewards. In many real-life scenarios, we not only observe the
target reward such as the conversion signals that we are optimizing, but also secondary rewards such
as clicks and dwell time (Wan & McAuley, 2018; Jadidinejad et al., 2019; Christakopoulou et al.,
2022). By leveraging these secondary rewards, we aim to reduce variance in PG estimation and to
achieve a more efficient OPL even under the challenging scenarios with partially-observed rewards.

To implement this idea, we extend the typical formulation of OPL by introducing the secondary
rewards denoted by s ∈ Rds , which can be multi-dimensional. We consider the secondary rewards
to be sampled from an unknown conditional distribution of the form: p(s|x, a) after taking action a
for context x. The logged dataset that we can use in the setting can be written as follows.

D := {(xi, ai, oi, si, ri)}ni=1 ∼ p(D) =
n∏

i=1

p(xi)π0(ai|xi)p(oi|xi)p(si|xi, ai)p(ri|xi, ai, si),

(6)

In addition to the introduction of secondary rewards, we consider the generalized objective called
the combined policy value, which is defined as a weighted sum of the expected target and secondary
rewards, considering a situation where we aim to optimize the secondary rewards as well.

Vc(π;β) := (1− β)Vr(π) + βVs(π) = (1− β)Ep(x)π(a|x)[q(x, a)] + βEp(x)π(a|x)

[
ds∑
d=1

fd(x, a)

]
,

(7)

where fd(x, a) := E[sd|x, a] is the d-th dimension of the expected secondary reward and β ∈ [0, 1)
is a parameter to control the prioritization between the optimization of the target reward and that of
the secondary rewards. When β = 0, this generalized objective reduces to the typical policy value
defined in Eq. (1). With some positive value of β, we can address practical situations where we aim
to optimize not only the target reward but also the secondary rewards to some extent.

Given this extended problem of OPL with secondary rewards and with the combined policy value,
we can consider a baseline method of using some aggregation of the secondary rewards as a surrogate

4



Published as a conference paper at ICLR 2025

for the target reward. This baseline approach of using only the secondary rewards as surrogates,
which we call s-IPS and s-DR, estimates the PG as follows:

∇θV̂s-IPS(πθ;D) =
1

n

n∑
i=1

w(xi, ai)F (si)gθ(xi, ai), (8)

∇θV̂s-DR(πθ;D) (9)

=
1

n

n∑
i=1

{
w(xi, ai)(F (si)− F (f̂(xi, ai)))gθ(xi, ai) + Eπθ(a|xi)[F (f̂(xi, a))gθ(xi, a)]

}
,

where f̂(x, a) is an estimator of f(x, a) and F (s) is some aggregation of the secondary rewards,
such as their weighted average, designed to imitate the target reward. By replacing the target reward
with F (s), s-IPS and s-DR can use all the data points irrespective of the observation indicator oi, thus
reducing the variance. However, unless the function F (s) accurately describes the target reward,
which is untestable, the estimators often produce substantial bias against the true PG regarding the
target reward, which leads to ineffective OPL as we will show in our experiments.

4 HYBRID POLICY OPTIMIZATION FOR PARTIALLY-OBSERVED REWARD

This section proposes a new OPL algorithm to maximize the combined policy value in Eq. (7) with
only partially-observed target rewards and secondary rewards that do not necessarily align accurately
with the target reward. We also newly introduce the concept of strategically using a different value
of the balancing factor γ compared to the true value of β in the objective in Eq. (7) to improve the
finite-sample effectiveness of the algorithm.

The key idea behind our algorithm is the introduction of a new estimator of the PG using secondary
rewards to reduce variance while also optimizing the secondary rewards depending on the value of
β in the objective function.

To derive our method, we first focus on the PG estimation regarding the target policy value Vr(πθ).
Particularly to address the variance issue in existing methods, we propose leveraging secondary
rewards through the following estimator for∇θVr(πθ).

∇θV̂r(πθ;D) :=
1

n

n∑
i=1

{
Eπθ(a|xi) [q̂(xi, a)gθ(xi, a)] + w(xi, ai) (q̂(xi, ai, si)− q̂(xi, ai)) gθ(xi, ai)

+
oi

p(oi|xi)
w(xi, ai) (ri − q̂(xi, ai, si)) gθ(xi, ai)

}
, (10)

where q̂(x, a, s) is an estimator of the q-function conditional on the secondary rewards (i.e.,
q(x, a, s)), which we can derive, e.g., by solving q̂ = argminq′

∑
(x,a,s,r)∈D(r − q′(x, a, s))2

using D. Note also that we can estimate the conditional reward-observation probability p(oi|xi)
when it is unknown by regressing o to x observed in the logged data D by a supervised classifier.
We need to perform this estimation task before performing OPL not only for our method, but also
for baseline methods such as r-IPS and r-DR.

We first show that our PG estimator is unbiased under the same conditions as r-DR.

Theorem 1. (Unbiasedness) Under Condition 1, Eq. (10) is unbiased against the true PG
regarding the target reward, i.e.,

E[∇θV̂r(πθ;D)] = ∇θVr(πθ) = ∇θVc(πθ;β = 0)

See Appendix B.1 for the proof.

In addition to its unbiasedness, our PG estimator fully utilizes the information from the secondary
rewards, thus reducing the variance compared to r-DR in most cases. The following demonstrates
that the variance of Eq. (10) can be much lower than r-DR.
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Theorem 2. (Variance Reduction) Under Condition 1, we have

n(VD[∇θV̂r-DR(π;D)]− VD[∇θV̂r(π;D)])

= Ep(x)π0(a|x)p(s|x,a)

[
ρ2

p(o|x)2
w(x, a)2gθ(x, a)

2
(
∆q,q̂¬s(x, a, s)

2 −∆q,q̂(x, a, s)
2
)]

where ρ2 := V[o|x] is the variance of the observation indicator. ∆q,q̂¬s(x, a, s) :=
q(x, a, s) − q̂(x, a) and ∆q,q̂(x, a, s) := q(x, a, s) − q̂(x, a, s) are the estimation error
of q̂(x, a) and q̂(x, a, s), respectively. See Appendix B.2 for the proof.

Theorem 2 indicates that there is a reduction in variance if q̂(x, a, s) is better than q̂(x, a) in esti-
mating q(x, a, s), which is often the case since secondary rewards are typically somewhat correlated
with the target reward. Thus, Eq. (10) is expected to perform better than r-DR while being unbi-
ased under the same condition. To demonstrate this, in the experimental sections, we investigate the
difference in performance between Eq. (10), which we name HyPeR(γ = 0), against r-DR.

Based on the new estimator for the PG regarding the target reward defined in Eq. (10), we finally
introduce our HyPeR estimator.

∇θV̂HyPeR(πθ;D, γ) = (1− γ) · ∇θV̂r(πθ;D) + γ · ∇θV̂s(πθ;D), (11)

where the first term ∇θV̂r(πθ;D) estimates the PG regarding the target policy value Vr(πθ) as in
Eq. (10). The second term ∇θV̂s(πθ;D) estimates the PG regarding the secondary policy value
Vs(πθ), which we can define by simply applying DR to the sum of secondary rewards as

∇θV̂s(πθ;D)

=
1

n

n∑
i=1

{
Eπθ(a|xi)

[
ds∑
d=1

f̂d(xi, a)gθ(xi, ai)

]
+ w(xi, ai)

ds∑
d=1

(
sdi − f̂d(xi, ai)

)
gθ(xi, ai)

}
.

In Eq. (11), γ ∈ [0, 1) is a tunable parameter that defines the mixture ratio between the estimators of
the PG regarding the target reward and secondary rewards. When using the predefined weight (i.e.,
γ = β), Eq. (11) is unbiased against the combined policy gradient (i.e., E[∇θV̂HyPeR(πθ;D)] =
∇θV (πθ)), but the following discusses a strategic tuning of γ to further improve the finite-sample
effectiveness of our HyPeR algorithm.

4.1 STRATEGIC TUNING OF THE WEIGHT γ

Although the natural choice of γ in our PG estimator is β, which defines the true objective in Eq. (7),
we argue that intentionally using γ ̸= β can further improve the combined policy value in the finite-
sample setting. This is due to the potential differences in variance between the different types of
rewards. Specifically, strategically shifting weights from the predefined balance, β, can lead to
better estimation due to variance reduction, even though it introduces some bias. For example,
consider an objective function that is a sum of two estimands, X + Y . If estimator X̂ carries less
variance than estimator Ŷ , it is likely better to give more weight to X̂ to achieve less variance, even
at the cost of introducing some bias. When dealing with multiple reward types, this can occur in
various situations, such as when one reward is less noisy than the other, or as in our study, when one
reward type (secondary reward) is more frequently observed than the other (target reward).

In HyPeR, the PG regarding the target reward ∇θV̂r(πθ;D) often carries much higher variance
compared to that regarding the secondary rewards ∇θV̂s(πθ;D) due to the partial-observation na-
ture. Thus, although setting γ = β will make the HyPeR estimation unbiased and at least reduce
the variance from existing methods, it can still have high variance, particularly when β takes a small
value. On the other hand, increasing the weight of γ will likely lead to less variance since this prior-
itizes the second term more, while introducing some bias. This creates an interesting bias-variance
trade-off, and we aim to tune γ to achieve the optimal combined policy value by the resulting policy:

γ∗ = argmax
γ∈[0,1)

V (πθ(·; γ,D);β), (12)
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where πθ(·; γ,D) is a policy optimized under the weight γ used in our policy gradient estimator in
Eq. (11), and its value is evaluated under the originally defined weight β.

Since the true policy value is unknown, we need to perform Eq. (12) from only the logged dataset
D. The most straightforward method is via splitting the dataset D into training (Dtr) and validation
(Dval) sets. Then, we train a policy using Dtr (i.e., πθ(·; γ,Dtr)) and estimate the value using Dval

(i.e., V̂ (πθ;β,Dval)). However, an issue with this naive procedure is that the policy πθ(·; γ,Dtr)
is trained on a smaller dataset Dtr instead of the full dataset D that is used in real training. In
the PG estimation, variance is inversely proportional to the data size |D|, while bias is unaffected.
Therefore, the naive tuning procedure may end up selecting a higher weight than the optimal weight
γ∗ by overly prioritizing variance reduction. To address this issue, we ensure that |Dtr| = |D|
through bootstrapping:

D′
tr =

{
(x′

i, a
′
i, s

′
i, o

′
i, r

′
i) | i = 1, ..., n

}
, (13)

where {(x′
i, a

′
i, s

′
i, o

′
i, r

′
i)}ni=1 ∼ Dtr is sampled independently with replacement. By doing so, we

alleviate the issue regarding the variance estimation, since D′
tr now has the same size as the full

dataset D. Using D′
tr, we propose to solve the bi-level optimization to data-drivenly tune γ:

γ̂∗ = argmax
γ∈[0,1]

V̂ (πθ(·; γ,D′
tr);β,Dval). (14)

5 SYNTHETIC EXPERIMENT

Synthetic Data Generation. To create synthetic data, we sample 10-dimensional context vectors
x from a standard normal distribution, and the sample size is fixed at n = 2000 by default. We then
synthesize the logging policy as π0 = softmax(ϕ(xTMX,Aa+xT θx+aT θa)), whereM, θx, θa are
parameter matrices randomly sampled from a uniform distribution with range [−1, 1], and actions
a ∈ A are sampled following this logging policy (|A| = 10). ϕ is a parameter that controls how
deterministic the logging policy would become, and we set this at ϕ = −2.0 by default. We then
synthesize each dimension of the 5-dimensional expected secondary rewards given x and a as

fd(x, a) = xTM′
X,Aa+ xT θ′x + aT θ′a, (15)

and secondary rewards s are sampled from a normal distribution sd ∼ N (fd(x, a), σ
2
s). In the

main text, we set the default to σs = 0.5, and the results for other values of σs can be found in
Appendix C.2. We finally synthesize the expected target reward function as
q(x, a, f(x, a)) := (1− λ)(xTM′′

X,Aa+ xT θ′′x + aT θ′′a + xTMX,F f + aTMA,F f) + λfT θf .

(16)
λ ∈ [0, 1] is an experimental parameter to control how much secondary rewards are correlated
with the target reward. When λ = 1, secondary rewards are completely correlated with the tar-
get reward, while a smaller λ will make it less correlated. We use λ = 0.7 as a default setting
throughout the synthetic experiment. The target reward is sampled from a normal distribution as
r ∼ N (q(x, a, f(x, a)), σ2

r) with default σr = 0.5 (results with other σr values are provided in
Appendix C.2). The target reward observation probability is an experimental parameter and is set to
p(o|x) = 0.2 for all x by default.1 The true weight β, which is used to define the combined policy
value Vc(π;β), is set to β = 0.3 and it is also one of the experimental parameters.

In the synthetic experiments, we generally use the predefined weight β for HyPeR, and represent
it as HyPeR(γ = β). We compare HyPeR(γ = β) against HyPeR(γ = 0), r-IPS, r-DR, s-IPS and
s-DR. For s-IPS and s-DR, we use F (s) = sT (θf + εF ), where θf is identical to that of Eq. (16),
and εF ∼ N (0, σ2

F ) is the noise to simulate the inaccuracy of describing the target reward.

5.1 RESULTS AND DISCUSSION

We run OPL simulations 100 times with different train-test splits. We report the relative policy
values calculated by (V (π∗) − V (πθ))/(V (πθ) − V (πunif)), where π∗ is the optimal policy and
πunif is a uniform random policy. This way, the performance of a random policy will have a value
of 0, and an optimal policy would have a value of 1, thus easier to interpret. Note that the shaded
regions in the plots represent 95% confidence intervals estimated via bootstrapping.

1Appendix C.2 presents additional experimental results with estimated observation probabilities, which
support the same conclusion as the main text.
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Figure 1: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing target reward observation probabilities (p(o|x)) on Synthetic Data.

Figure 2: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing training data sizes (n) on Synthetic Data.

How does HyPeR perform with varying target reward observation probabilities? Figure 1
evaluates the relative policy value when we vary the observation probability of the target reward
p(o|x). We observe that HyPeR(γ = β) provides the highest combined policy value in all cases.
It is also able to optimize both the target and secondary policy values in a balanced way. In ad-
dition, HyPeR(γ = β) outperforms all the baselines regarding the target policy value, and it even
outperforms HyPeR(γ = 0) when the observation probability is low. This is because the secondary
reward maximization component of HyPeR reduces the variance of the PG estimation, as secondary
rewards are denser. We also observe that HyPeR(γ = 0) (target reward maximization component
of HyPeR) is always performing better than r-DR, which suggests the effective use of secondary
rewards enhances the estimation of the target gradient∇θVr(πθ) alone, as in Theorem 2.

How does HyPeR perform with varying training data sizes? Figure 2 evaluates the methods’
policy values with different training data sizes. Larger data size generally makes gradient estimations
more accurate as it decreases the variance. Therefore, as the data size increases, the methods that
use the target reward in their estimation (i.e., HyPeR(γ = β), HyPeR(γ = 0), r-IPS, and r-DR)
perform increasingly better compared to the ones that do not (i.e., s-IPS and s-DR). The left plot in
Figure 2 shows that HyPeR(γ = β) performs the best in most cases regarding the combined policy
value Vc(π). It even performs the best in terms of the target policy value Vr(π), particularly when
the data size is small due to the use of secondary rewards and resulting variance reduction.

How does HyPeR perform with varying correlation between target and secondary rewards?
Figure 3 shows the results with different degrees of correlation between the secondary rewards and
the target reward, controlled by λ in Eq. (16). A larger λ indicates that the target reward can be
more predictable by the secondary reward. We can also see that HyPeR(γ = β) is the best option
in almost all cases for both the combined policy value and target policy value. We also observe that
HyPeR(γ = β), s-IPS, and s-DR perform comparatively well when secondary rewards are more
correlated (larger λ), as they find more advantage in using the secondary rewards as surrogates.

How do HyPeR and data-driven weight selection perform with varying true weight β? Sec-
tion 4.1 showed that a data-driven tuning of the weight γ will potentially improve the performance of
HyPeR. To empirically evaluate whether our weight-tuning method can make further improvement,
in addition to HyPeR(γ = β), we add HyPeR(Tuned γ̂∗) and HyPeR(Optimal γ∗) for comparison.
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Figure 3: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing degrees of target-secondary reward correlation (λ) on Synthetic Data. Secondary rewards
can completely explain the target reward at λ = 1, and they are less correlated with smaller λ.

Figure 4: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing β, which is a weight that balances target and secondary policy values in the combined policy
value. Higher β means the secondary policy value becomes more dominant.

HyPeR(Tuned γ̂∗) estimates the optimal weight through estimation using the method described in
Section 4.1. HyPeR(Optimal γ∗) is a skyline that performs HyPeR with a truly optimal weight γ∗,
which is not feasible in practice but it is a useful reference. Due to the increase in the number of
comparisons, here we reduce r-IPS and s-IPS from the baselines, which always perform worse than
DR-based methods (Appendix C.1 shows the complete results including r-IPS and s-IPS). Figure
4 provides the results, including HyPeR(Tuned γ̂∗) and HyPeR(Optimal γ∗), with varying weight
β. From the results, we can see that HyPeR(Tuned γ̂∗) always outperforms HyPeR(γ = β) and all
other feasible methods, suggesting the effectiveness of our weight tuning procedure. This obser-
vation also interestingly implies that an incorrect weight (i.e., γ̂∗ ̸= β) can lead to a better policy
performance compared to γ = β, due to the variance reduction at the cost of some bias in the PG
estimation as discussed in Section 4.1. Appendix C.1 also empirically demonstrates the advantage
of leveraging the bootstrapping procedure in our tuning process.

6 REAL-WORLD EXPERIMENT

To assess the real-world applicability of HyPeR, we now evaluate it on the KuaiRec dataset (Gao
et al., 2022).2 This is a publicly available fully-observed user-item matrix data collected on a short
video platform, where 1,411 users have viewed all 3,317 videos and left watch duration as feedback.
This unique feature of KuaiRec enables to perform an OPL experiment without synthesizing the
reward function (few other public datasets retain this desirable feature).

Setup. We use watch ratio (= watch duration/video length) as target reward r. We use four-
dimensional secondary rewards; each dimension has a realistic reason why the platform would want
to maximize it. The first dimension is binary, where s1 = 1 if r ≥ 2.0, and s1 = 0 if r < 2.0; this
reward maximization lets the platform prioritize sessions with an exceptionally long watch ratio.
The second dimension is also binary, where s2 = −1 if r < 0.5, and s2 = 0 if r ≥ 0.5. This
dimension is built to strictly punish and refrain from sessions with an exceptionally low watch ratio
(raising the engagement floor). The third dimension of the secondary rewards is time since video
upload (multiplied by -1), which is implemented to prioritize newer videos over older ones. The last

2https://kuairec.com/
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Figure 5: Comparing the combined policy values of OPL methods under (left) varying target reward
observation probabilities (p(o|x)), (center) varying data sizes (n), and (right) varying true weights
β in the combined policy value on the KuaiRec dataset.

dimension is video length, which is designed to prioritize longer videos when watch ratios are sim-
ilar. Note that all continuous rewards are normalized to the range [0, 1]. We use the first dimension
of the secondary rewards to express F (s) for s-IPS and s-DR.

To perform OPL experiments on the dataset, we randomly choose 988 users (70%) for training and
423 users (30%) for evaluation. We set the target reward observation probability to p(o|x) = 0.2 for
all x, training data size to n = 1000, and weight β = 0.3, as default experimental parameters. The
actions are chosen randomly with size |A| = 100, and Appendix C.3 shows results with varying
numbers of actions. We define the logging policy as π0(a|x) = softmax(ϕ(xTMX,Aa + xT θx +
aT θa)), with ϕ = −2.0, and run 100 simulations with different train-test splits

Results. Figure 5 provides real-world experiment results with varying target reward observation
probabilities p(o|x), varying training data sizes n, and varying weights β in the combined policy
value. In this section, we provide comparisons of the combined policy values for r-DR, s-DR,
HyPeR(γ = 0), HyPeR(γ = β), HyPeR(Tuned γ̂∗) and HyPeR(Optimal γ∗). In Figure 5, we
observe that HyPeR(γ = β) and HyPeR(Tuned γ̂∗) both outperform the baselines by far. Moreover,
by comparing HyPeR(Tuned γ̂∗) against HyPeR(γ = β), we can see that intentionally using the
tuned weight leads to better performance, particularly under more challenging scenarios (i.e., sparse
target reward observation and small training data size). We also observe, in Appendix C.3, that
HyPeR outperforms the baseline methods in terms of not only the combined policy value, but also
the target and secondary policy values. It is also interesting to see that, in terms of the secondary
policy value, the policy performance becomes much worse when we use only the target reward (i.e.,
performance of r-DR at β = 1), compared to the case where we use only the secondary rewards
(i.e., performance of HyPeR(γ = β) at β = 1). This demonstrates that the secondary rewards that
we used in our real experiment is not highly correlated with the target reward, ensuring the problem
is non-trivial and making it crucial to leverage both types of rewards via our hybrid approach.

7 CONCLUSION AND FUTURE WORK

This paper studies the general problem of off-policy learning (OPL) in contextual bandits with
partially-observed target rewards. Relying only on the target reward to learn a policy often leads
to a high variance and inefficient learning in this setup. We propose Hybrid Policy Optimization
for Partially-Observed Reward (HyPeR), a novel approach that integrates secondary rewards to
improve policy gradient estimation. HyPeR effectively reduces variance while maintaining unbi-
asedness and can easily be extended to deal with the combined objective of maximizing both the
target and secondary rewards from available data. Experiments on synthetic and real-world datasets
demonstrate that HyPeR outperforms existing methods in optimizing both the target and combined
policy values. In future work, it would be valuable to extend our formulation and method to the
problem of offline reinforcement learning. Conducting an experiment in a real environment would
also further demonstrate the effectiveness, applicability, and real-world impact of our method.
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A RELATED WORK

A.1 OFF-POLICY LEARNING

The contextual bandit framework has been used as one of the favored methods for online decision-
making under uncertainty (Lattimore & Szepesvári, 2020). There is also a growing demand for
refining decision-making using only historical datasets without requiring active exploration. Con-
sequently, off-policy learning (OPL) methods, which learn decision-making policies solely from
historical datasets collected under a different policy in the contextual bandit framework, have at-
tracted attention (Joachims et al., 2018). This area of research could be applied to many real-world
interactive systems like recommender systems and ad placement (Saito & Joachims, 2021; Aminian
et al., 2024).

There are mainly two families of approaches in OPL: regression-based approach and policy-based
approach. The regression-based method uses a regression estimate that was trained on the data to
predict the rewards from the logged data (Sachdeva et al., 2020; Jeunen & Goethals, 2021). The
policy is then made by simply choosing the action with the highest predicted reward deterministi-
cally or from a distribution based on the estimates. A drawback of this approach is the bias formed
by the inaccurate regression estimation. In contrast, the policy-based approach aims to update the
policy by gradient ascent iterations. The policy gradient needs to be estimated from data using tech-
niques like IPS and DR (Dudı́k et al., 2014; Su et al., 2020a). These estimators are unbiased under
certain assumptions. However, when rewards are only partially observed, they often suffer from
extremely high variance (Saito & Joachims, 2021; Sachdeva et al., 2023; Taufiq et al., 2024). One
possible approach to address this variance issue is through the use of secondary rewards that are
more frequently observed instead, which lowers variance substantially. However, as secondary re-
wards often misalign with the target rewards, this suffers greatly from bias. Targeting this problem,
HyPeR effectively uses both types of rewards to enhance the estimation of the gradient.

We did not compare pessimistic OPL methods in our experiments because they are not relevant to
our context (Swaminathan & Joachims, 2015a; London & Sandler, 2019; Gabbianelli et al., 2024;
Sakhi et al., 2024). Our main motivation is to address the prevalent problem of partial target rewards,
an issue that pessimistic techniques are not designed to solve. However, our proposed method could
easily be combined with a pessimistic approach if desired. It is also important to note that when
tuning hyperparameters in OPL, there is the issue of overestimation in the validation estimate of the
policy value. In such cases, it may be beneficial to use correction methods as proposed in (Saito
& Nomura, 2024). Additionally, the line of work on adaptive estimator selection (Su et al., 2020b;
Udagawa et al., 2023) is relevant in this context. However, their primary focus is on data-adaptive
estimator selection for OPE, rather than on effectively tuning hyperparameters for OPL.

Our work is also related to the multi-objective optimization problems (Wang et al., 2022a; Alizadeh
et al., 2023). However, these works solely focus on achieving weights that meet the designer’s
desired balance of multiple rewards, where the rewards generally have no relation to each other.
In contrast, our work is crucially different from the fact that we use secondary rewards to enhance
the estimation of the target rewards and the combined reward function, particularly in a practical
situation where target rewards are only partially observed.

A.2 PARTIAL TARGET REWARDS AND SECONDARY REWARDS

Our work is related to various fields that deal with partial observations of rewards due to reasons like
missing data (Jakobsen et al., 2017; Wang et al., 2019b; Jadidinejad et al., 2019; Christakopoulou
et al., 2022), censoring (Ren et al., 2019; Wang et al., 2019a), delayed observation (Wang et al.,
2022b; 2023; Saito et al., 2024a), data fusion (Imbens et al., 2022), and multi-stage rewards (Wan
& McAuley, 2018; Hadash et al., 2018). Problems involving partially-observed data have been ex-
tensively studied. For example, Liu et al. (2010) propose to unify implicit and explicit feedback
in a recommendation setting, to enhance collaborative filtering. Wan & McAuley (2018) have ad-
dressed the implicit-explicit feedback problem by modeling them into a monotonic behavior chain
and considering them as multi-stage rewards. Christakopoulou et al. (2022) have proposed to de-
sign a reinforcement learning model that uses user trajectories (secondary reward) to maximize user
satisfaction (target reward). Wang et al. (2022b) investigate the relationship between short-term
surrogates and long-term user satisfaction.
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In the field of off-policy evaluation and learning, perhaps the closest setting to our work is
LOPE (Saito et al., 2024a), which aims to estimate the long-term performance of the evaluation
policy. To achieve this, in addition to the long-term rewards from historical datasets, Saito et al.
(2024a) leverage short-term rewards collected in an online experiment. However, while Saito et al.
(2024a) specifically focus on such a setting where short-term online experiments can be done, we
do not assume access to such online experiment data. In addition, under their formulation, the two
types of rewards have no difference in observation density, i.e., the long-term reward is not partial.

B PROOFS AND DERIVATIONS

B.1 PROOF OF THEOREM 1

Proof. To demonstrate the unbiasedness of the estimator in Eq. (10), we show that its expectation is
equal to the true policy gradient given in Eq. (1).

ED[∇θV̂r(πθ;D)] = ED

[
1

n

n∑
i=1

Eπθ(a|xi) [q̂(xi, a)gθ(xi, a)]

+
πθ(ai|xi)

π0(ai|xi)
(q̂(xi, ai, si)− q̂(xi, ai)) gθ(xi, ai) +

oi
p(o|x)

πθ(ai|xi)

π0(ai|xi)
(ri − q̂(xi, ai, si)) gθ(xi, ai)

]
= Ep(x)

[
Eπθ(a|x) [q̂(x, a)gθ(x, a)]

+ Eπ0(a|x)p(s|x,a)

[
πθ(a|x)
π0(a|x)

(q̂(x, a, s)− q̂(x, a)) gθ(x, a)

]
+ Eπ0(a|x)p(s|x,a)p(o|x)p(r|x,a,s)

[
o

p(o|x)
πθ(a|x)
π0(a|x)

(r − q̂(x, a, s)) gθ(x, a)

]]

= Ep(x)

[
Eπθ(a|x) [q̂(x, a)gθ(x, a)] + Eπ0(a|x)

[
πθ(a|x)
π0(a|x)

(q̂(x, a, f(x, a))− q̂(x, a)) gθ(x, a)

]

+ Eπ0(a|x)p(o|x)

[
o

p(o|x)
πθ(a|x)
π0(a|x)

(q(x, a, f(x, a))− q̂(x, a, f(x, a))) gθ(x, a)

]]

= Ep(x)

[
Eπθ(a|x) [q̂(x, a)gθ(x, a)] + Eπθ(a|x)

[
(q̂(x, a, f(x, a))− q̂(x, a)) gθ(x, a)

]

+ Eπ0(a|x)

[
πθ(a|x)
π0(a|x)

(q(x, a, f(x, a))− q̂(x, a, f(x, a))) gθ(x, a)

]]

= Ep(x)πθ(a|x)

[
q(x, a, f(x, a))

]
= ∇θVr(π)
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B.2 PROOF OF THEOREM 2

Proof. Using the law of total variance, the difference in variance of the j-th element of the gradient
estimator can be decomposed into

n(VD[∇θV̂r-DR(πθ;D)]− VD[∇θV̂r(πθ;D)]])

= Ep(x)π0(a|x)p(s|x,a)p(o|x)

[( o

p(o|x)
w(x, a)g

(j)
θ (x, a)

)2

σ2(x, a, s)
]

(17)

+ Vp(x)π0(a|x)p(s|x,a)p(o|x)

[
Ep(r|x,a,s)

[
Eπθ(a|x)[q̂(x, a)g

(j)
θ (x, a)]

+
o

p(o|x)
w(x, a)(r − q̂(x, a))g

(j)
θ (x, a)

]]
− Ep(x)π0(a|x)p(s|x,a)p(o|x)

[( o

p(o|x)
w(x, a)g

(j)
θ (x, a)

)2

σ2(x, a, s)
]

− Vp(x)π0(a|x)p(s|x,a)p(o|x)

[
Ep(r|x,a,s)

[
Eπθ(a|x)[q̂(x, a)g

(j)
θ (x, a)]

+ w(x, a)(q̂(x, a, s)− q̂(x, a))g
(j)
θ (x, a) +

o

p(o|x)
w(x, a)(r − q̂(x, a, s))g

(j)
θ (x, a)

]]
,

where σ2(x, a, s) := V[r|x, a, s], and g
(j)
i (x, a) is the policy score function of the j-th element. We

now focus on each of the terms. After canceling out the first and the third term, the second term
further simplifies using the law of total variance:

Ep(x)π0(a|x)p(s|x,a)

[
ρ2

p(o|x)2
w2(x, a)g

(j)
θ (x, a)2∆q,q̂¬s(x, a, s)

2

]
(18)

+ Vp(x)π0(a|x)p(s|x,a)

[
Eπθ(a|x)[q̂(x, a)g

(j)
θ (x, a)] + w(x, a)(q(x, a, s)− q̂(x, a))g

(j)
θ (x, a)

]
,

where ρ2 := V[o|x], and ∆q,q̂¬s(x, a, s) := q(x, a, s)− q̂(x, a). The fourth term can be simplified
into

−

(
Ep(x)π0(a|x)p(s|x,a)

[
ρ2

p(o|x)2
w2(x, a)g

(j)
θ (x, a)2∆q,q̂(x, a, s)

2

]

+ Vp(x)π0(a|x)p(s|x,a)

[
Eπθ(a|x)[q̂(x, a)g

(j)
θ (x, a)] + w(x, a)(q(x, a, s)− q̂(x, a))g

(j)
θ (x, a)

])
where ∆q,q̂(x, a, s) := q(x, a, s)− q̂(x, a, s). Thus, we finally have

n(VD[∇θV̂r-DR(πθ;D)]−∇θV̂r(πθ;D)]) (19)

= Ep(x)π0(a|x)p(s|x,a)

[
ρ2

p(o|x)2
w(x, a)2gθ(x, a)

2
(
∆q,q̂¬s(x, a, s)

2 −∆q,q̂(x, a, s)
2
)]

C ADDITIONAL EXPERIMENTS

C.1 DETAILED SYNTHETIC EXPERIMENT RESULTS

In this section, we provide more detailed experimental results for the comparisons conducted in
Section 5. Specifically, we present results for additional baseline methods, including what we refer
to as r-DM and s-DM. These are regression-based methods (also known as Direct Methods), which
use regression estimates to predict expected target rewards based solely on logging data. The policy
is then derived by choosing the action with the highest predicted reward in a deterministic manner.
Note that r-DM trains its regression model on a partial dataset due to the use of target rewards,
whereas s-DM trains on the full dataset but uses only secondary rewards for regression.

For the experiment involving weight-tuned methods (experiments with varying β values), we also
compare the values of parameters γ̂∗ and γ∗ used for HyPeR (Tuned γ̂∗) and HyPeR (Optimal γ∗).
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Table 2: Comparison of the tuned γ values for varying β values
β Mean γ̂∗ w/o Replacement Mean γ̂∗ w/ Replacement Mean γ∗

0.0 0.5595 0.3971 0.4788
0.2 0.6075 0.5762 0.5067
0.4 0.7390 0.7241 0.5542
0.6 0.8681 0.8198 0.6371
0.8 0.9019 0.8771 0.8014
1.0 1.0000 1.0000 1.0000

Figure 6: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing target reward observation probabilities (p(o|x)).

Results. Figures 6, 7, and 8 present additional experiments related to the research questions ad-
dressed in Section 5, including r-DM and s-DM. Specifically, Figure 6 evaluates the policy values
under varying observation probabilities for the target rewards, Figure 7 evaluates the methods with
different training data sizes, and Figure 8 presents results for different degrees of target-secondary
reward correlation. Across all experimental scenarios, we observe that r-DM and s-DM perform
significantly worse than the corresponding IPS and DR methods due to high bias in the regression
estimates.

Figure 9 shows results with varying true weights β in the combined objective. In this experiment,
we additionally compare two more baseline methods: HyPeR(Tuned γ̂∗ w/o replacement) and
DR with F (s, r). HyPeR(Tuned γ̂∗ w/o replacement), unlike our tuning method, performs tuning
of γ using sampling without replacement, i.e, without bootstrapping. We compare this baseline
method to empirically show the effectiveness of our tuning method of leveraging the bootstrapping
procedure. DR with F (s, r) is another additional baseline that naively combines the target and
secondary rewards in its policy gradient estimation; it uses Doubly Robust where the reward is
defined as F (s, r) = r when o = 1, and otherwise F (s, r) = F (s) as in the method s-DR.

In Figure 9, we also observe that the additionally compared baseline methods all performed worse
than the corresponding DR methods. The result also demonstrates that parameter tuning with re-
placement empirically outperforms tuning without replacement for a range of the true weight β
values in the combined policy value objective. Moreover, by comparing HyPeR against the method
of DR with F (s, r), the results empirically demonstrate how combining the target and secondary
rewards is indeed crucial and that HyPeR does it effectively.

We also share the tuned γ̂∗ values and compare them with the ground truths in Table 2 below.

C.2 ADDITIONAL SYNTHETIC EXPERIMENTS

In this section, we additionally address three more research questions: two questions regarding the
optimization performance under varying noise levels in each reward type and one concerning the
effectiveness of HyPeR with estimated observation probabilities p(o|x).
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Figure 7: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing training data sizes (n)

Figure 8: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing degrees of target-secondary reward correlation (λ). Secondary rewards can completely ex-
plain the target reward at λ = 1, and they are less correlated with smaller λ.

Figure 9: Comparing the combined, target, and secondary policy values of OPL methods with vary-
ing β, which is a weight that balances target and secondary policy values in the combined policy
value. Higher β means the secondary policy value becomes more dominant.
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Figure 10: Comparing the combined, target, and secondary policy values of OPL methods with
varying noise of secondary reward (σs).

Figure 11: Comparing the combined, target, and secondary policy values of OPL methods with
varying noise of target reward (σr).

How does HyPeR perform under varying noise levels in secondary rewards? Figure 10 eval-
uates the relative policy value when the noise level in the secondary rewards is varied. As the
secondary rewards become noisier, their variance increases. Consequently, methods that incorpo-
rate secondary rewards in their estimation (i.e., HyPeR(γ = β), HyPeR(γ = 0), s-DR, s-IPS, and
s-DM) perform worse as noise increases. Most notably, the performance of s-IPS and r-DR degrades
the most. In contrast, while HyPeR-based methods are also affected by the noise, their performance
does not degrade as severely as that of the baseline methods that rely solely on secondary rewards,
demonstrating its robustness to the noise due to the effective combination of the two types of re-
wards.

How does HyPeR perform under varying noise levels in target rewards? Figure 11 presents
the results for different noise levels in the target rewards. As the noise increases, the variance in the
target rewards becomes higher. This affects methods that utilize target rewards in their estimation
(i.e., HyPeR(γ = β), HyPeR(γ = 0), r-DR, r-IPS, and r-DM). While HyPeR methods are negatively
impacted, they consistently outperform the baseline methods that rely exclusively on target rewards,
showing robustness as well.

How does HyPeR perform with estimated observation probabilities? To investigate the robust-
ness of HyPeR to estimated probabilities p(o|x), we conducted experiments under unknown p(o|x)
with varying levels of noise on o. The results are shown in Figure 12, where the methods that rely
on p(o|x) are affected by the estimation error and the presence of noise. We observed, however,
that HyPeR consistently achieves better combined policy values compared to the baseline methods
even under the realistic case with estimated probabilities p(o|x). In particular, HyPeR (Tuned γ̂∗)
demonstrates better robustness to the noise in p(o|x), as it can adaptively assign greater weight (via
the tuning procedure) to the secondary policy gradient when effective.

20



Published as a conference paper at ICLR 2025

Figure 12: Comparing the combined, target, and secondary policy values of OPL methods with
varying noise in the observation probability (σo). Note that the conditional probabilities (p(o|x))
are fully unknown and they are estimated based on the logged data.

Table 3: Comparison of γ∗ and γ̂∗ values for different scenarios.
(a) Varying Target Reward Observation Proba-
bilities (p(o|x)) (c.f. Figure 13)

p(o|x) Mean γ∗ Mean γ̂∗

0.0 1.0000 1.0000
0.2 0.6262 0.5926
0.4 0.5811 0.5542
0.6 0.5124 0.5002
0.8 0.4771 0.4701
1.0 0.4299 0.4512

(b) Varying Training Data Sizes (n) (c.f. Fig-
ure 14)

Data Size Mean γ∗ Mean γ̂∗

500 0.7205 0.5458
1000 0.6612 0.5890
2000 0.5678 0.6392
4000 0.4462 0.5309
8000 0.3356 0.4794
16000 0.2878 0.4306

(c) Different Beta Values (β) (c.f. Figure 15)
β Mean γ∗ Mean γ̂∗

0.0 0.5743 0.5287
0.2 0.6603 0.5833
0.4 0.7193 0.6386
0.6 0.7577 0.6549
0.8 0.8592 0.8021
1.0 1.0000 1.0000

(d) Different Action Sizes (|A|) (c.f. Figure 16)
Action Size Mean γ∗ Mean γ̂∗

25 0.5998 0.5312
50 0.6057 0.5159
100 0.5686 0.5008
200 0.6241 0.4925
400 0.5972 0.5328
800 0.6124 0.5086

C.3 DETAILED AND ADDITIONAL REAL-WORLD EXPERIMENT RESULTS

In this section, we share more detailed experiment results of the real-world data experiments in
Section 6. We add r-DM, r-IPS, s-DM, and s-IPS as baselines compared to the main text.

Results. Figures 13, 14, and 15 present more detailed results from the real-data experiments in
Section 6, including additional methods for comparison. Figure 13 evaluates the policy values under
varying observation probabilities of the target rewards, while Figure 14 evaluates the methods with
different training data sizes. Figure 15 evaluates the methods with different true weights β in the
objective. In this experiment, we also compare DR with F (s, r) (the yellow line), which serves as a
baseline that naively utilizes both target and secondary rewards when available.

In this section, we also evaluate the relative policy values when varying the size of the action set |A|,
as shown in Figure 16. As the action set size increases, the performance of all methods degrades
due to an increase in variance in gradient estimation. However, we observe that HyPeR methods
consistently outperform all other methods across all evaluated policy values.

Below, Tables 3, 3, 3, and 3 present the tuned γ̂∗ values for the four real-world experiments, com-
pared to the true optimal value γ∗, averaged over the number of simulations.
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Figure 13: Comparing the combined, target, and secondary policy values of OPL methods with
varying target reward observation probabilities (p(o|x)) on KuaiRec Dataset

Figure 14: Comparing the combined, target, and secondary policy values of OPL methods with
varying training data sizes (n) on KuaiRec Dataset

Figure 15: Comparing the combined, target, and secondary policy values of OPL methods with
varying β, which is a weight that balances target and secondary policy values in the combined
policy value. Higher β means the secondary policy value becomes more dominant on KuaiRec
Dataset.

Figure 16: Comparing the combined, target, and secondary policy values of OPL methods with
varying action size |A| on KuaiRec Dataset.
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