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Abstract

Binary (0-1) integer programming (BIP) is pivotal in scientific domains requiring
discrete decision-making. As the advance of AI computing, recent works explore
neural network-based solvers for integer linear programming (ILP) problems. Yet,
they lack scalability for tackling nonlinear challenges. To handle nonlinearities,
state-of-the-art Branch-and-Cut solvers employ linear relaxations, leading to ex-
ponential growth in auxiliary variables and severe computation limitations. To
overcome these limitations, we propose BIPNN (Binary Integer Programming
Neural Network), an unsupervised learning framework to solve nonlinear BIP
problems via hypergraph neural networks (HyperGNN). Specifically, (I) BIPNN
reformulates BIPs-constrained, discrete, and nonlinear (sin, log, exp) optimization
problems-into unconstrained, differentiable, and polynomial loss functions. The
reformulation stems from the observation of a precise one-to-one mapping between
polynomial BIP objectives and hypergraph structures, enabling the unsupervised
training of HyperGNN to optimize BIP problems in an end-to-end manner. On
this basis, (II) we propose a GPU-accelerated and continuous-annealing-enhanced
training pipeline for BIPNN. The pipeline enables BIPNN to optimize large-scale
nonlinear terms in BIPs fully in parallel via straightforward gradient descent, thus
significantly reducing the training cost while ensuring the generation of discrete,
high-quality solutions. Extensive experiments on synthetic and real-world datasets
highlight the superiority of our approach.

1 Introduction

For decades, binary integer programming (BIP)—a powerful mathematical tool characterized by
discrete binary decision variables (0 or 1)—is of critical importance in numerous domains, such
as operational optimization [1, 2, 3], quantum computing [4, 5, 6], computational biology [7, 8],
materials science and computational chemistry [9, 10]. However, BIP is generally known to be
NP-complete [11], making large-scale BIP instances computationally intractable.

Along with AI computing shines in scientific discovery, the potential of neural network-based
IP solvers has emerged in recent years. To address integer linear programming (ILP) problems,
MIP-GNN [12] leverages graph neural networks (GNN) to improve the performance. Another
GNN&GBDT-guided framework [13] for large-scale ILP problems can save up 99% of running time
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Figure 1: The BIPNN framework. As shown in c and d, BIPNN’s hypergraph modeling (Sec. 3.1)
stems from the key observation that when variables are treated as nodes, any monomial with coefficient
can be represented as a hyperedge, while polynomials can be expressed through hypergraphs – and
vice versa.

in achieving the same solution quality as SCIP [14], a leading IP solver. However, these neural
network-based ILP solvers lack scalability for nonlinear BIPs (please refer to Appendix A).

To handle nonlinearities, state-of-the-art Branch-and-Cut solvers (e.g., SCIP [15]) rely on linear
relaxation, which introduces a number of auxiliary variables. Once linearized, these problems are
solved using linear programming (LP) solvers (e.g., the Simplex method4). Consequently, large-scale
nonlinear BIPs often suffer from prohibitive computational costs. As BIP solvers continue to evolve,
linearization remains indispensable for making nonlinearities more tractable for BIP solvers.

These limitations motivate us to develop a streamlined and general-purpose BIP solver to advance
the state of the art. To profoundly adapt to real-world applications, our work grapples with chal-
lenges arising from neural networks’ unique characteristics beyond linearization-based methods, as
summarized below:

Challenge 1. Meticulously modeling nonlinear terms in BIP objectives and constraints;

Challenge 2. Utilizing GPU’s parallel computing capability.

To this end, in this work we propose BIPNN (Binary Integer Programming Neural Network), an
unsupervised BIP solver that bridges the gap between nonlinear BIP and deep neural networks.
Our overarching idea stems from the observation of one-to-one mapping correspondence between
polynomial BIP objectives and hypergraph structures (upper right of Fig. 1). As depicted in Fig. 1,
our framework consists of three phases:

4To be precise, the Simplex method is designed to solve linear programming (LP) problems in polynomial
time, meaning they belong to the class P [16].
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1) In the first phase, we employ broadly applicable penalty term method to convert constrained
BIP problems into polynomial unconstrained binary optimization (PUBO5) formalism. To handle
exponential and trigonometric terms, we propose a novel transformation to represent them in the
form of polynomials. These refined polynomial objectives are adaptable to neural network-based
solvers when applied as loss functions.

2) In the second phase, we leverage hypergraph neural networks (HyperGNN) to address Challenge 1,
capturing high-order correlations between binary decision variables, or in other words the polynomial
terms in the refined PUBO objective. By applying a relaxation strategy to the PUBO objective to
generate a differentiable loss function with which we train the HyperGNN in an unsupervised manner.

3) Nevertheless, when we train these HyperGNNs to minimize the PUBO objectives, we encounter
severe obstacles of low computational efficiency in these polynomial losses with numerous variables.
In the third phase, leveraging GPUs, we further propose an algorithm to address Challenge 2 via
matrix operations on the incidence matrices of hypergraphs.

In summary, we contribute:

1) BIPNN, an unsupervised HyperGNN-based solver that allows learning approximate BIP solutions
in an end-to-end differentiable way with strong empirical performance.

2) An empirical study of the performance of BIPNN on synthetic and real-world data, demonstrating
that unsupervised neural network solvers outperform classic BIP solvers such as Gurobi and SCIP in
tackling large-scale nonlinear BIP problems.

3) Large-scale nonlinear optimization has long been challenging due to its inherent complexity and
scalability issues. We advance this field by employing several nonlinearity modeling methods for BIP,
including the polynomial reformulation and unconstrained reformulation. These methods provide
instructive guidance for unsupervised neural network-based solvers.

2 Notations and Definitions

In the following, we will formulate the BIP problem and articulate the definition of hypergraphs.

Definition 1 (Formulation of BIP). Nonlinear BIP is an optimization problem where the decision
variables x = (x1, x2, ..., xm) are restricted to binary values (0 or 1), and the objective function
OBIP or constraints (or both) are nonlinear. Below is the general formulation.

min OBIP = f(x)

s. t. gk(x) ≤ 0 for all k = 1, 2, . . . ,K

ql(x) = 0 for all l = 1, 2, . . . , L

xi ∈ {0, 1} for all i = 1, 2, . . . , n

(1)

where f(x), gk(x) and ql(x) are nonlinear functions of the decision variables x. □

Definition 2 (Hypergraph). A hypergraph is defined by G = (V,E), where V = {v1, v2, ..., v|V |}
stands for a set of vertices and E = {e1, e2, ..., e|E|} denotes a set of hyperedges. Each hyperedge
ej ∈ E is a subset of V . A hypergraph G can be represented by the incidence matrix (Fig. 1 at the
bottom) H ∈ {0, 1}|V |×|E|, where Hij = 1 if vi ∈ ej , or otherwise Hij = 0. □

3 BIPNN: HyperGNN-based Optimizer for PUBO-formulated BIP

For easier comprehension of our approach, in this section we first elaborate how to solve an uncon-
strained, PUBO-formulated BIP problem as depicted in Eq. 2. Then, in Sec. 4, we will show how to
transform a general BIP problem with constraints and nonlinear terms into PUBO formalism.

3.1 Modeling PUBO-formulated BIPs via Hypergraphs

BIPNN employs a HyperGNN-based optimizer (upper right of Fig. 1) to solve PUBO-formulated
BIP problems. Inspired by the binary characteristic of variables, we can reformulate general BIPs as

5The mathematical formulation PUBO is well-known in quantum computing, for modeling complex opti-
mization problems in a way quantum computers may solve efficiently.
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Figure 2: Modeling PUBO-formulated BIPs via hypergraphs.

PUBO problems through the polynomial reformulation in Sec.4.1 and unconstrained reformulation in
Sec.4.2. A PUBO problem is to optimize the cost function:

OPUBO =
∑
i

Qixi +
∑
i,j

Qijxixj +
∑
i,j,k

Qijkxixjxk + · · · (2)

where xi ∈ {0, 1} are binary descision variables and the set of all decision variables is denoted by
x = (x1, x2, · · · , xm). As shown in Fig. 2, for ease of representation, a PUBO objective OPUBO

with n terms can be decomposed into two components: the PUBO vector Q = [Q1, Q2, ..., Qn], and
n linear or polynomial terms such as xi, xixj , or xixjxk. In this way, we discover multi-variable
interactions in OPUBO can be modeled as a hypergraph G = (V,E), where |E| = n, and each
hyperedge e ∈ E encodes a single descision variable xi or a polynomial term such as xixj or xixjxk.

3.2 Neural Network-based Optimizer

The training workflow of the neural network-based optimizer is illustrated at the bottom of Fig. 1.

HyperGNN Architecture. Initially, for a PUBO-transformed hypergraph G = (V,E), HyperGNNs
take the incidence matrix H of G and a randomly initialized X(0) ∈ Rm×d as inputs. Subsequently,
BIPNN applies the sigmoid function to produce the output vector x = (x1, x2, · · · , xm), where
xi ∈ [0, 1] are the relaxation of decision variables xi ∈ {0, 1}. The HyperGNN model operates as
follows:

x = sigmoid(HyperGNN(H,X(0))) (3)

where HyperGNN is a multi-layer hypergraph convolutional network. HyperGNNs are graph-based
deep learning architectures that generalize GNNs to operate on hypergraphs. These HyperGNN
models includes HGNN+ [17], HyperGCN [18], UniGCN [19] (or UniGAT, UniSAGE, UniGIN).
We have tested these models and observed that HGNN+ always outperformed other methods (refer to
Appendix F.4). Thus in this work we use HGNN+ to build BIPNN. The l-th convolutional layer of
HGNN is built as below:

X(l) = ReLU(D
− 1

2
v HWD−1

e HTD
− 1

2
v X(l−1)Θ(l)) (4)

where X(l) is the embedding matrix generated by the l-th convolutional layer. For a vertex vi in the
hypergraph, the degree is defined as deg(vi) =

∑
ej∈E Hij . Similarly, the degree of an edge ej ∈ E

is defined as deg(ej) =
∑

vi∈V Hij . Dv and De are used to denote the diagonal matrices of the
vertex degrees and edge degrees, respectively. W = diag(|e1|, · · · , |e|E||) can be regarded as the
weight of hyperedges. The parameter Θ(l) ∈ Rd(l−1)×d(l)

is learned during training.

Training to Optimize. As an unsupervised learning model, BIPNN relaxes the PUBO objective
OPUBO into a differentiable loss function and trains to optimize it. Specifically, OPUBO can be
expressed by the output x and the incidence matrix H as depicted in Fig. 1. We aim to find the
optimal solution xs = argminOPUBO(x, H). As training progresses, xi ∈ x will gradually converge
to binary solutions.

GPU-accelerated Training. For a large-scale BIP problem, numerous polynomial terms in OPUBO

lead to a high computational cost. To address this, an intuitive idea is to leverage GPU-supported
matrix operations to accelerate training. However, PUBO problems lack a straightforward matrix
formulation. To this end, we propose GPU-accelerated PUBO objective as follows.

OPUBO = ColM(x⊙(B) H + (1−H))QT (5)
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where x is the output of HyperGNN, H is the incidence matrix, and Q = [Q1, Q2, ..., Qn] is
the PUBO vector. More concretely, x ⊙(B) H denotes the element-wise Hadamard product with
broadcasting between m-dimensional vector x and matrix H ∈ Rm×n. We add 1−H on x⊙(B) H
to fill zero-valued elements with 1. Based on this operation, we use the column-wise multiplication
denoted by ColM on the first dimension of the matrix obtained by x⊙(B)H +(1−H). Through the
ColM operation we obtain an n-dimensional vector, of which each element represents a polynomial
term in OPUBO. The final loss function is computed by scaling each polynomial term with its
respective coefficient Qi. The detailed explanation is illustrated in Fig. 1.

Eq. 5 transforms the computation of large-scale polynomials into efficient matrix operations. It
leverages PyTorch-supported broadcasting mechanisms to distribute the vector of decision variables
across each monomial (hyperedge), enabling parallel computation.

Time Complexity Analysis. For x ∈ Rm, Q ∈ R1×n, and H ∈ Rm×n, the time complexity of Eq. 5
is O(m × n). For GPU-accelerated training, element-wise operations such as Hadamard product
are fully parallelizable. Column-wise product over m leads to time complexity O(logm). Thus,
the theoretical best GPU time complexity is O(logm). Utilizing T cores, the realistic GPU time
complexity is O(m×n

T ).

Annealing Strategy. To achieve unsupervised learning, BIPNN relaxes PUBO problems into
continuous space. The differentiable relaxation of discrete decision variables sometimes leads to
continuous solutions xi ∈ [0, 1]. To address this, we employ the continuous relaxation annealing
(CRA) [20] method. Specifically, BIPNN uses the following loss function: OPUBO = ColM(x⊙(B)

H +(1−H))QT +ϕ(x), where ϕ(x) = γ
∑n

i=1(1− (2xi− 1)α) is the penalty term, γ controls the
penalty strength and α is an even integer. We initialize γ < 0 and gradually increase it to a positive
value as training progresses. The annealing strategy enhances the performance of BIPNN in three
aspects, (i) In the high-temperature phase (γ < 0), it smooths the HyperGNN, preventing it from
getting trapped in local optima; (ii) In the low-temperature phase (γ > 0), it enforces the discreteness
of solutions; (iii) It effectively accelerates the training process.

4 BIPNN: Polynomial & Unconstrained Reformulation of BIP

In this section, we explain how to reformulate nonlinear BIPs as unconstrained and polynomial
optimization problems, which are compatible with our neural network-based optimizer.

4.1 Polynomial Reformulation of BIP

Our approach is inspired by the observation that for any binary variable, a nonlinear term such
as ex can be exactly fitted by a polynomial equivalent h(x) = ax + b, such that h(x) = ex for
x ∈ {0, 1}. That is, h(x) = (e − 1)x + 1, where h(0) = 1 and h(1) = e. To handle univariate
nonlinearities, including trigonometric, logarithmic, and exponential terms (e.g., sinx, logx, and
ex), we have the following transformation: h(x) = (h(1)− h(0))x+ h(0). For multivariate terms
such as exixj and sin(xixj), where xixj ∈ {0, 1}, we can perform the transformation as follows:
h(
∏

i∈S xi) = (h(1)− h(0))
∏

i∈S xi + h(0).

BIPNN employs a more general method to handle more intricate multivariate nonlinear terms
(such as sin(xi + xj)). For a set of binary decision variables x1, x2, ..., xn, a non-linear function
h(x1, x2, ..., xn) can be transformed into the polynomial forms as follows.

h(x1, x2, ..., xm) =
∑

S⊆{1,2,...,m}

cS
∏
i∈S

xi (6)

By setting up a system of equations based on all possible combinations of x1, x2, ..., xm, we can de-
termine the coefficients cS to precisely fit h(x1, x2, ..., xm) by leveraging simple inclusion-exclusion
principle (refer to Appendix D.1) as below.

cS =
∑
T⊆S

(−1)|S|−|T |f(T ) (7)

where f(T ) represents the function value when the variables in the subset T are 1 and the others are
0. For each subset S, it needs to calculate 2|S| values of f(T ). □

5



As an example, we have sin(x1 + x2) = 0.8415x1 + 0.8415x2 − 0.7737x1x2. A toy example of
sin(x1 + x2 + x3) is illustrated in Appendix D.1. To be noticed, polynomial reformulation of all
nonlinear terms in a BIP objective is not necessary. If the transformation becomes overly complex,
we may opt to retain the original nonlinear term and directly incorporate it as part of the loss function
of HyperGNN.

4.2 Unconstrained Reformulation of BIP

We propose a novel penalty method to transform the constrained BIP problem into an unconstrained
form. In penalty methods [21, 22], unconstrained reformulation is achieved by adding "penalty terms"
to the objective function that penalize violations of constraints. A well-constructed penalty term
must be designed such that it equals 0 if and only if the constraint is satisfied, and takes a positive
value otherwise. Specifically, given a BIP problem in Eq. 1, for inequality constraints gk(x) ≤ 0,
we have penalty terms Pk(x) = λk · (max (0, gk(x)))

2, for equality constraints ql(x) = 0, we have
penalty terms Ql(x) = µl · (ql(x))2, where λk, µl are sufficiently large penalty coefficients (For the
selection of proper values of λk, µl, please refer to Appendix C). By combining all terms into a single
objective function, we have an unconstrained BIP objective:

min OBIP = f(x) +

K∑
k=1

λk · (max (0, gk(x)))
2
+

L∑
l=1

µl · (ql(x))2 (8)

As part of the loss function of BIPNN, OBIP must be differentiable to enable gradient-based op-
timization. However, max (0, gk(x)) is not a continuously differentiable function, thus finding an
appropriate penalty term is crucial. We propose two methods to address this issue:

1) ReLU-based Penalty. We can use ReLU(gk(x))
2 = (max(0, gk(x)))

2 to handle constraints.
This is a general method for a large number of variables xi in a constraint gk(x).

2) Polynomial Penalty. In the following, we present an algorithm to construct polynomial penalty
terms with 2∆ time complexity for gk(x), where ∆ is the number of variables in constraint gk(x).

For binary variables, do there exist polynomial penalty terms that correspond to BIP constraints?
To answer this question, we have the following discussion. For x1 + 2x2 − 2 ≤ 0, we observe
that the violating subset {x1 = 1, x2 = 1} corresponds to polynomial penalty term λ(x1x2). For
another constraint x1 + 3x2 − 2 ≤ 0, the violating subsets {x1 = 0, x2 = 1} and {x1 = 1, x2 = 1}
correspond to the polynomial penalty term λ(x2 + x1x2) or λx2. Through an in-depth analysis, we
propose a novel method to transform nonlinear BIP constraints into polynomial penalty terms. To
handle an inequality constraint g(x) ≤ 0 for the BIP problem in Eq. 1, our method consists of three
steps (to see a toy example, refer to Appendix D.2):

(i) Initially, we express the constraint g(x) ≤ 0 as a boolean indicator function: ψ(x) ={
1 if g(x) > 0 (violation)
0 otherwise (feasible)

, then define minimal violation subsets V as the smallest variable com-

binations causing constraint violations:

V =

{
S ⊆ {1, ..., n}

∣∣∣∣ψ(x) = 1 when xi = 1 ∀i ∈ S and xj = 0 ∀j /∈ S

}
(9)

each S ∈ V cannot be reduced further without eliminating the violation.

(ii) Generate a penalty term for each minimal violation subset S ∈ V:

P (x) = λ
∑
S∈V

∏
i∈S

xi (10)

where λ is the penalty coefficient.

(iii) Combine each term into the BIP objective function:

min OBIP = f(x) + P (x) (11)

In the worst case, when an enumeration method is used in step (i), it requires calculating 2∆ subsets,
where ∆ is the number of variables in constraint g(x). Nevertheless, in most real-world problems

6
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Figure 3: To solve the hypergraph max-cut problem, BIPNN generates a new hypergraph structure.
However, both of these hypergraphs can be utilized for training the HyperGNN model.

(e.g. max-cut, and maximal independent set or MIS) involving graphs, the variables associated with
each constraint often exhibit locality. □

The polynomial penalty method facilitates to incorporate penalty terms to PUBO objectives and
use GPU-accelerated training pipeline to solve BIPs. As far as we know, only a few number
of constraint/penalty pairs [22] associated have been identified in existing literature. Our work
significantly expands the potential application domains of the penalty method.

5 Discussion

Feasible Solutions. Firstly, a PUBO problem always has feasible solutions. The feasible set is the
entire space of binary variable combinations, since there are no constraints to exclude any combination.
Every possible binary assignment xi ∈ {0, 1} is inherently feasible. Secondly, the feasibility of a
nonlinear BIP problem depends on the constraint compatibility—whether there exists at least one
binary variable assignment x ∈ {0, 1}m that satisfies all nonlinear constraints simultaneously. In
BIPNN, we determine the existence of feasible solutions through (i) Training-phase feasibility check:
if all penalty terms (e.g., constraint violations) converge to zero during training, feasible solutions
exist; otherwise, the problem is infeasible. (ii) Post-training verification: we sample candidate
solutions from the trained model and explicitly verify whether they satisfy all constraints.

The Effectiveness of BIPNN’s Hypergraph Generation Mechanism. As depicted in Fig. 3, when
BIPNN is applied to solve combinatorial optimization (CO) problems on hypergraphs, it generates an
alternative hypergraph structure. However, both of the hypergraphs can be used as the input of BIPNN.
A critical question arises: which type of hypergraph structure achieves better performance when
applied to HyperGNN? The main difference between these two hypergraphs is that the hypergraph
generated by BIPNN breaks down the original hypergraph’s high-order hyperedges into numerous
low-order ones. We argue that BIPNN training with the original hypergraph structure is more
computationally efficiency, while BIPNN-generated hypergraph structure leads to more optimal
solutions. In Sec. 6.3, we will empirically compare the solution quality of both methods.

6 Experimental Results

In this section, we describe our empirical experiments on BIPNN and baseline optimization tools.
Our source codes can be obtained on GitHub6.

Benchmarks. To evaluate BIPNN on BIP problems with diverse scales, the datasets are generated
using DHG library7. To evaluate the quality of solutions and computational efficiency of BIPNN,
datasets of varying scales are generated in three steps: Initially, DHG library is applied to generate
hypergraph structures (where |E| = 2|V |). Subsequently, a random coefficient is assigned to each
hyperedge (representing a polynomial term) to generate PUBO objective functions. Thereafter, several
constraints (penalty terms) were randomly incorporated into the PUBO objectives. To demonstrate
the effectiveness of BIPNN on real-world settings, we also conduct experiments on the hypergraph
max-cut problem (refer to Appendix E), a well-known BIP problem benchmark. Moreover, we
conduct experiments on publicly-available hypergraph datasets (refer to Appendix F.1).

6https://github.com/Classpi/BIPNN-Learning-to-Solve-Binary-Integer-Programming-via-Hypergraph-
Neural-Networks

7https://deephypergraph.readthedocs.io/en/latest/index.html
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Figure 4: Comparison of BIPNN and BIP solvers such as Gurobi and SCIP. d is the degree of
polynomial terms in BIP objective functions. (a)(b) show the solving time required for BIPNN, SCIP
and Gurobi to obtain the same solution. (c)(d) show the ratio of the solutions of BIPNN to SCIP;
(e)(f) illustrate the ratio of the solutions of BIPNN to Gurobi; Runtime is restricted to half an hour.

Baseline Methods. In our experiments, the baseline methods include optimization techniques and
tools such as Gurobi8, SCIP [14] (refer to Appendix A), Tabu search [23].

Implementation Details. Experiments are conducted on an Intel Core i9-12900K CPU with 24 cores,
and an NVIDIA GeForce RTX 3090 GPU with 24 G of memory. We adopt two-layer HGNN+ [17]
as the HyperGNN model for the experiments.

6.1 Comparison with Linearization-based BIP Solvers

Gurobi and SCIP are exact solvers based on the branch-and-cut algorithm. Theoretically, given
sufficient time and computational resources, they guarantee exact solutions. However, for large-
scale problems, due to time constraints, Gurobi and SCIP may terminate prematurely and return
approximate solutions. To conduct the experiment, we generate a specific BIP instance for each size
of variables. Specifically, for a BIPNN-generated hypergraph, the number of vertices (variables) |V |
ranges from 200 to 3000. The degrees of vertices are set to 4 (Fig. 4a) and 6 (Fig. 4b) respectively.

Fig. 4a and Fig. 4b show the comparison of the solving time for BIPNN, SCIP and Gurobi. We
evaluate the solving time taken by BIPNN to obtain the best approximate solution and the time
required by SCIP and Gurobi to find the same solution. Experimental results demonstrate that the
solving time of BIPNN grows linearly and slowly with increasing problem size, while SCIP and
Gurobi’s solving time exhibits exponential growth. This trend becomes more pronounced when the
degree of polynomial terms is 6.

Moreover, we impose half an hour time limit and evaluate the solution quality of BIPNN, SCIP
and Gurobi across varying scales of BIP instances. Fig. 4c, 4d, 4e, 4f show the comparative ratio
of solutions obtained by BIPNN, SCIP and Gurobi. The comparative ratio is defined as Os

BIPNN

Os
Linear

,
where Os

BIPNN is the solution obtained by BIPNN, and Os
Linear is the solution obtained by SCIP and

Gurobi. Experimental results demonstrate that BIPNN starts outperforming SCIP when the number of
variables exceeds 2, 500 when d = 4. As the problem size increases, BIPNN’s solutions increasingly
outperform SCIP’s solutions. For d = 6, BIPNN outperforms SCIP when the number of vertices
exceeds 1, 000. The results on Gurobi show a pattern similar to SCIP. The number of variables
required for BIPNN to outperform Gurobi is 4, 300 when d = 4. For d = 6, BIPNN outperforms
Gurobi when the number of vertices exceeds 3, 500.

8https://www.gurobi.com/

8



Table 1: The solutions of graph/hypergraph max-cut problems.

Method BAT EAT UAT DBLP CiteSeer AmzPhoto Primary High Cora PubMed

Gurobi 655 3,997 8,431 2,869 3,960 72,461 8,448 5,195 1,400 7,226
SCIP 655 3,849 7,899 2,869 3,960 59,258 7,603 4,599 1,215 7,185
Tabu 652 3,970 8,402 2,710 3,717 71,970 8,500 5,160 1,360 6,868

BIPNN 653 3,997 8,463 2,847 3,944 83,446 8,516 5,252 1,397 7,188

(a) d = 4. (b) d = 6. (c) d = 4. (d) d = 6.

Figure 5: Comparison of the quality of solutions and time efficiency of BIPNN when it applys its
generated hypergraph structure or the original hypergraph structure to solve hypergraph max-cut
problems. d is the degree of polynomial terms in BIP objective functions. (a)(b) show the numbers of
cuts; (c)(d) show the solving time.

Additional experimental results on large-scale BIP problems can be found in Appendix F.2. The
performance of BIPNN compared with Tabu search is illustrated in Appendix F.3.

6.2 Comparison on Real-world Datasets

We compare BIPNN against baseline methods on real-world graph and hypergraph datasets, in-
cluding BAT, EAT, UAT, DBLP, CiteSeer, AmzPhoto, Primary, High, Cora and PubMed (refer to
Appendix F.1). Graph datasets include BAT, EAT, UAT, DBLP, CiteSeer, and AmzPhoto. Hypergraph
datasets include Primary, High, Cora, and PubMed. Graph and hypergraph max-cut problems are
selected as the BIP problem benchmarks. We impose 1 hour time limit and evaluate the number of
cuts obtained by Gurobi, SCIP, Tabu, and BIPNN.

As depicted in Tab. 1, Gurobi outperforms SCIP and Tabu on all graph and hypergraph datasets.
Moreover, experimental results show that the performance of Gurobi and BIPNN varies across
different datasets. Gurobi achieved the best performance on four graph datasets and two hypergraph
datasets, while BIPNN achieved the best performance on three graph datasets and two hypergraph
datasets.

6.3 Comparative Analysis on Hypergraph Generation Mechanism

In Sec. 5 and Fig. 3, we propose to evaluate the effectiveness of BIPNN’s hypergraph generation
mechanism by comparing the effects of its generated hypergraph structures against the original
hypergraph structures in a hypergraph CO problem. In this section, we select hypergraph max-cut
as benchmark and conduct experiments to evaluate the performance of BIPNN under both of the
hypergraph structures. Experimental results are depicted in Fig. 5. The number of variables ranges
from 100 to 2000. The degrees of polynomial terms d are set to d = 4 and d = 6 respectively. We
perform 10 tests each time and record the average value of the cut numbers.

As illustrated in Fig. 5a and Fig. 5b, the hypergraph structure generated by BIPNN can identify more
cuts in comparison. However, as depicted in Fig. 5c and Fig. 5d, when the parameter d is larger, the
number of hyperedges (polynomial terms in PUBO objectives) in the hypergraph structure generated
by BIPNN increases sharply, leading to significantly higher computational costs. The results align
with the theoretical analysis we presented in Sec. 5. Unlike conventional machine learning tasks (e.g.,
node classification), we hypothesize that the hypergraph structure for BIPNN should be related to the
loss function. Thus HyperGNN’s energy flow directs each polynomial term along proper gradient
paths.

9



6.4 Ablation Study

Figure 6: Comparison of the
training time for BIPNN with or
without GPU accelerated algo-
rithm for PUBO losses.

GPU Acceleration. The superior time efficiency of BIPNN is
primarily attributed to the GPU-accelerated algorithm employed
in computing large-scale PUBO loss functions. Fig. 6 shows
a comparison of the training times for BIPNN with or without
the GPU-accelerated algorithm. We evaluate the training time
of BIPNN on the hypergraph max-cut problem. The number of
variables ranges from 200 to 1000. The degree of polynomial
terms is set to 4.

We train BIPNN for a fixed number of 1000 epochs. As Fig. 6 il-
lustrates, when GPU acceleration is applied to compute the PUBO
loss function, the training time does not exhibit significant growth
with an increasing number of variables. In contrast, without GPU
acceleration, the training time increases rapidly as the number of
variables rises.

Annealing Strategy. We validate the effectiveness of the anneal-
ing strategy of BIPNN on the hypergraph max-cut problem. The
experiments are conducted on Cora with 1, 330 vertices. The met-
rics include the number of cuts and discreteness of variables. The penalty strength γ is set to −2.5
initially and its value is gradually increased during training. The value of γ reaches 0 after 500 epochs
and continued to increase thereafter.

Figure 7: Quality and discrete-
ness of solutions with or without
the annealing strategy.

As illustrated in Fig. 7, the annealing strategy ensures BIPNN to
get better solutions while guaranteeing all variables to converge
to discrete values. It demonstrates that negative γ values enable
BIPNN to escape local optima, thereby discovering better solu-
tions. Moreover, when γ is set to positive values, it facilitates the
convergence of variables toward discrete values.

7 Conclusion

This work proposes BIPNN, a novel neural network solver for non-
linear BIP problems. It reformulates nonlinear BIPs into PUBO
cost functions, which correspond to hypergraph structures. On
this basis, these PUBO cost functions are used as loss functions
for HyperGNNs, enabling the model to solve BIPs in an unsu-
pervised training manner. Compared with existing BIP solvers
(e.g., Gurobi, SCIP) that rely on linearization, BIPNN reduces the
training cost by optimizing nonlinear BIPs via straightforward gradient descent. Empirical results
demonstrate that BIPNN achieves state-of-the-art performance in learning approximate solutions for
large-scale BIP problems.
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A Related works (Sec. 1)

Gurobi & SCIP. Gurobi is a commercial high-performance mathematical optimization solver. It is
widely used in industry and academia for solving large-scale linear programming (LP), mixed-integer
linear programming (MILP), quadratic programming (QP), and mixed-integer quadratic programming
(MIQP) problems. Gurobi is known for its speed. Moreover, starting with version 12.0, Gurobi
supports nonlinear constraints. SCIP is a powerful open-source optimization solver. It is primarily
designed for solving MILP and nonlinear programs (MINLP) and is highly customizable. SCIP is
widely used in academic research due to its flexibility.

Table 2: Categorizing several related neural network BIP solvers.

Method Supervised Unsupervised Linear Quadratic Polynomial Hypergraph Modeling

BIPNN ✓ ✓ objective & constraints
DiffLO [24] ✓ ✓
HypOp [25] ✓ ✓ constraints only

NeuralQP [26] ✓ ✓ constraints only
MIP-GNN [12] ✓ ✓

In Tab. 2, we present recent neural network-based solvers for BIPs.

DiffILO [24]. DiffILO is an unsupervised method with performance that can exceed Gurobi and
SCIP. Its methodology is the most similar to that of BIPNN. However, DiffILO is designed for linear
BIPs, while BIPNN primarily addresses general nonlinear BIPs. DiffILO employs bipartite graphs
and GNNs to model constraints, whereas BIPNN utilizes HyperGNNs to represent nonlinear BIPs.

HypOp [25]. HypOp is also an unsupervised method. Compared with HypOp, BIPNN first discovers
the mapping correspondence betweeen polynomials and hypergraph structures. Compared to linear
and quadratic problems, the core challenge in solving nonlinear BIPs lies in leveraging GPU to
accelerate training. BIPNN proposes a computational framework specifically for this purpose. In
contrast, HypOp utilizes distributed HyperGNN training, yet its hypergraph modeling solely targets
constraints rather than objective functions, thus rendering HypOp inapplicable to general BIPs.

MIP-GNN [12] & NeuralQP [26]. They are supervised and designed for LP and QP problems.
Supervised learning methods require precomputing vast amounts of labels [24]. Obtaining labels for
nonlinear BIPs is challenging, since Gurobi and SCIP have higher computational overhead when
solving nonlinear BIPs. Although MIP-GNN and NeuralQP demonstrate strong performance, they
are specifically designed for LP and QP problems. In contrast, BIPNN is designed for solving
more complex nonlinear BIP problems, making it inherently difficult to match the performance of
specialized LP and QP solvers.

Overall, BIPNN is proposed for general nonlinear BIPs, and it is fast. We believe BIPNN and
DiffILO collectively address numerous limitations inherent in penalty-based deep learning methods
for solving nonlinear BIP problems. In the future, they could potentially integrate commercial solvers
(e.g., Gurobi, SCIP) to enhance large-scale BIP optimization. BIPNN’s polynomial reformulation,
unconstrained reformulation, and GPU-accelerated PUBO solver, may also potentially enhance other
neural network-based BIP solvers.

B Discussion: supervised methods are not applicable to nonlinear BIPs
(Sec. 1)

Table 3: SCIP’s runtime when solving BIPs with polynomial objectives of degree 4.

Number of monomials 2400 3600 4800 6000

Linear 0.0037 s 0.0047 s 0.0060 s 0.0073 s
Nonlinear 173 s 350 s 553 s 1215 s

Most existing supervised methods are designed for ILP and QP problems. They require precomputing
labels via solvers like Gurobi and SCIP. However, Gurobi and SCIP exhibit exponentially slower
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performance when solving general nonlinear BIPs compared to ILPs, making label acquisition
practically infeasible. To verify this, we measured SCIP’s runtime for BIPs with polynomial objectives
of degree 4 (Tab. 3).

Moreover, recent work DiffILO [24] for linear BIPs reveals that supervised methods frequently
produce infeasible solutions, due to the misalignment between training objectives (minimizing
prediction error) and inference objectives (generating high-quality feasible solutions).

C The selection of proper values of penalty factors (Sec. 4.2)

In common Maximal Independent Set (MIS) problems, the penalty factor is typically fixed at 2.
However, for general BIP problems, the choice of penalty factors critically impacts both constraint
satisfaction and solution quality. This problem has been well-solved by DiffILO [24], an unsupervised
linear BIP solver. Specifically, we can use

µl = µ0 + η · ql (12)

where µ0 is the initial value of the penalty factor µl, η is the learning rate, and ql is the value of the
penalty term. We can initialize µ0 with a small value (e.g., 2 ∼ 5) to broaden the model’s search
space. The learning rate η should be experimentally tuned across different values (e.g., 0.001 ∼ 1).

D Examples of polynomial reformulation and unconstrained reformulation

D.1 A toy example of the polynomial reformulation of BIP (Sec. 4)

For sin(x1 + x2 + x3), where x1, x2, x3 ∈ {0, 1}, we can construct a polynomial to precisely fit the
function, such that it matches sin(x1 + x2 + x3) for all combinations of x1, x2, x3 ∈ {0, 1}. For
multiple binary variables, the polynomial can be generalized as:

P (x1, x2, x3) = a1x1 + a2x2 + a3x3 + b12x1x2 + b13x1x3 + b23x2x3 + cx1x2x3 + d (13)

Based on all possible combinations of x1, x2, x3, we can set up the following equations:

1) When x1 = 0, x2 = 0, x3 = 0: P (0, 0, 0) = d = sin(0) = 0. Thus, d = 0.

2) When x1 = 0, x2 = 0, x3 = 1: P (0, 0, 1) = a3 = sin(1) ≈ 0.8415. Thus, a3 = 0.8415.

3) When x1 = 0, x2 = 1, x3 = 0: P (0, 1, 0) = a2 = sin(1) ≈ 0.8415. Thus, a2 = 0.8415.

4) When x1 = 1, x2 = 0, x3 = 0: P (1, 0, 0) = a1 = sin(1) ≈ 0.8415. Thus, a1 = 0.8415.

5) When x1 = 0, x2 = 1, x3 = 1: P (0, 1, 1) = a2 + a3 + b23 = sin(2) ≈ 0.9093.

Substituting a2 = 0.8415 and a3 = 0.8415: b23 = −0.7737.

6) When x1 = 1, x2 = 0, x3 = 1: P (1, 0, 1) = a1 + a3 + b13 = sin(2) ≈ 0.9093

Substituting a1 = 0.8415 and a3 = 0.8415: b13 = −0.7737.

7) When x1 = 1, x2 = 1, x3 = 0: P (1, 1, 0) = a1 + a2 + b12 = sin(2) ≈ 0.9093

Substituting a1 = 0.8415 and a2 = 0.8415: b12 = −0.7737

8) When x1 = 1, x2 = 1, x3 = 1: P (1, 1, 1) = a1+a2+a3+b12+b13+b23+c = sin(3) ≈ 0.1411.

Substituting known values: c = −0.0623.

Based on the above calculations, the polynomial is:

P (x1, x2, x3) = 0.8415(x1 + x2 + x3)− 0.7737(x1x2 + x1x3 + x2x3)− 0.0623x1x2x3 (14)

D.2 A toy example of the unconstrained reformulation of BIP (Sec. 4)

For a nonlinear constraint with exponential term g(x): 2x1 + ex2 + 3x1x3 ≤ 5, where x1, x2, x3 ∈
{0, 1}, we can find the minimal violation subsets V based on all possible combinations of x1, x2, x3.
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1) When x1 = 0, x2 = 0, x3 = 0: g(x) = 1 ≤ 5, feasible.

2) When x1 = 0, x2 = 0, x3 = 1: g(x) = 1 ≤ 5, feasible.

3) When x1 = 0, x2 = 1, x3 = 0: g(x) = e ≤ 5, feasible.

4) When x1 = 1, x2 = 0, x3 = 0: g(x) = 3 ≤ 5, feasible.

5) When x1 = 0, x2 = 1, x3 = 1: g(x) = e ≤ 5, feasible.

6) When x1 = 1, x2 = 0, x3 = 1: g(x) = 6 ≥ 5, violation.

7) When x1 = 1, x2 = 1, x3 = 0: g(x) = e+ 2 ≤ 5, feasible.

8) When x1 = 1, x2 = 1, x3 = 1: g(x) = 5 + e ≥ 5, violation (not minimal).

Identified minimal violation subsets: {x1, x3}. Thus,

P (x) = λ(x1x3) (15)

Final BIP objective:
OBIP = f(x) + λ(x1x3) (16)

E The hypergraph max-cut problem (Sec. 6)

The max-cut problem of a hypergraph G = (V,E) involves partitioning the vertex set into two
disjoint subsets such that the number of hyperedges crossing the partitioned blocks is maximized.

PUBO Form. The hypergraph max-cut problem on G can be formulated by optimizing a PUBO
objective as follows:

min Omax−cut =
∑
e∈E

(1−
∏
i∈e

xi −
∏
i∈e

(1− xi)) (17)

where xi ∈ {0, 1} are binary decision variables.

For a simple example illustrated in Fig. 3, the original hypergraph consists of three hyperedges:
{x1, x2}, {x3, x4}, and {x1, x2, x3}. Thus, the max-cut objective of G is to minimize 2x1 + 2x2 +
2x3 + x4 − 3x1x2 − x1x3 − x2x3 − 2x3x4. BIPNN typically generates a new hypergraph structure
with five hyperedges, {x1, x2}, {x3, x4}, {x1, x3}, and {x2, x3}, to solve this PUBO objective. we
found that both hypergraphs can be utilized for HyperGNN training in BIPNN framework.

F Datasets and additional results

F.1 Datasets

Table 4: Summary statistics of six real-world graphs: the number of vertices |V |, the number of edges
|E|. Four hypergraphs: the number of vertices |V |, the number of hyperedges |E|, the size of the
hypergraph

∑
e∈E |e|.

Graphs |V | |E| Hypergraphs |V | |E|
∑

e∈E |e|
BAT 131 1,003 Primary 242 12,704 30,729
EAT 399 5,993 High 327 7,818 18,192
UAT 1,190 13,599 Cora 1,330 1,503 4,599

DBLP 2,591 3,528 PubMed 3,824 7,523 33,687
CiteSeer 3,279 4,552

AmzPhoto 7,535 119,081

F.2 Comparison with Gurobi and SCIP

On larger-scale BIPs, the advantage of BIPNN becomes more pronounced. For SCIP and Gurobi, it
is often difficult to find an initial solution within reasonable time on large-scale BIPs. To illustrate
this issue, we have supplemented the following experimental results.
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Table 5: Comparison of BIPNN and BIP solvers such as Gurobi and SCIP on large-scale datasets.

Number of variables (monomials) SCIP Gurobi BIPNN

10,000 (20,000) -2,066 -1,870 -2,566
10,000 (30,000) -105 -1,988 -3,317
10,000 (50,000) -117 None -4,323
20,000 (40,000) None None -5,039

Tab. 5 shows optimization results of different methods on the objective function, with computation
time constrained to half an hour. The degree of each monomial is 6. BIPNN outperforms SCIP and
Gurobi.

F.3 Comparison with Tabu Search
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(b) d = 6.

Figure 8: Comparison of BIPNN and Tabu search. d is the degree of polynomial terms in BIP
objective functions. (a)(b) illustrate the ratio of the solutions of BIPNN to Tabu; Runtime is restricted
to half an hour.

Tabu search is a heuristic method that typically provides approximate solutions. We impose half
an hour time limit and evaluate the difference in solution quality for Tabu when the degrees of
polynomial terms are set to 4 and 6. The number of vertices (variables) |V | in the hypergraph
generated by BIPNN ranges from 200 to 5, 000. Experimental results are depicted in Fig. 8a (d = 4)
and Fig. 8b (d = 6). As shown in the figures, BIPNN achieves the performance comparable to Tabu
when the number of variables exceeds 1, 000. When the number of variables exceeds 2, 500, BIPNN
significantly outperforms Tabu as the variable count increases further.

F.4 Comparison of various HyperGNNs

Table 6: The performance of BIPNN with various HyperGNNs.

Datasets HyperGNNs Runtime (s) VRAM (MB) Number of cuts

Cora HGNN+ 64 421 1,394
UniGCN 66 421 1,394
UniGAT 84 479 1,358

HyperGCN 4,517 533 1,317

Primary HGNN+ 57 229 8,495
UniGCN 59 229 8,496
UniGAT 70 231 8,442

HyperGCN 4,818 235 8,363

High HGNN+ 46 177 5,227
UniGCN 47 179 5,213
UniGAT 55 189 5,209

HyperGCN 3,367 233 5,118

We have evaluated the performance of BIPNN with various HyperGNNs, including HGNN+,
UniGCN, UniGAT, and HyperGCN. HGNN+ always outperformed others in both training time
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and VRAM usage. The evaluation results on the hypergraph max-cut problem have been depicted in
Tab. 6. The evaluation metrics include runtime, VRAM consumption, and the number of cuts. We
conduct the experiments on three hypergraph datasets, including Cora, Primary, and High, with all
models trained for 5000 epochs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we introduce a novel unsupervised neural network frameworks for
solving nonlinear BIP problems. We provide theoretical justification and conduct extensive
experiments on synthetic and real-world datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provided information on method limitations in section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In section 3 and 4, where we discuss the proposed method’s theoretical
proposition, we provide a full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a fully detailed experimental results in section 6. We also provided
the code for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code of our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All implementation details for experiments have been provided in section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported the standard deviation error of the mean and all the results in
section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources used are presented in section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured our compliance
with its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe this work does not have a direct social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All the datasets used in this work are known and widely used. We are not
aware of any risks involved in these datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We share all the packages we used for our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document our experiments thoroughly, anonymize the data, and provide
the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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