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Abstract
The performance of Transformer models has001
been enhanced by increasing the number of pa-002
rameters and the length of the processed text.003
Consequently, fine-tuning the entire model be-004
comes a memory-intensive process. High-005
performance methods for parameter-efficient006
fine-tuning (PEFT) typically work with Atten-007
tion blocks and often overlook MLP blocks,008
which contain about half of the model pa-009
rameters. We propose a new selective PEFT010
method, namely SparseGrad, that performs011
well on MLP blocks. We transfer layer gra-012
dients to a space where only about 1% of013
the layer’s elements remain significant. By014
converting gradients into a sparse structure,015
we reduce the number of updated parameters.016
We apply SparseGrad to fine-tune BERT and017
RoBERTa for the NLU task and LLaMa-2 for018
the Question-Answering task. In these ex-019
periments, our method provides higher quality020
than LoRA and MeProp, robust popular state-021
of-the-art PEFT approaches.022

1 Introduction023

Due to the tendency to increase the size of trans-024

former models with each new generation, we need025

efficient ways to fine-tune such models on down-026

stream task data. The usual practice is fine-tuning027

a large pre-trained foundational model on a down-028

stream task. The major problem that prevents029

efficient fine-tuning is a steady increase in the030

memory footprint. One of the best strategies is031

high-performance methods for parameter-efficient032

fine-tuning (PEFT). Typically, such methods (e.g.,033

LoRA(Hu et al., 2021)) focus on attention blocks034

and do not consider dense MLP blocks. Since035

MLP blocks can take a significant fraction of the036

model parameters (see Table 1)), we propose to fo-037

cus instead on MLP blocks. We introduce a novel038

selective PEFT approach called SparseGrad. Our039

method is based on finding a special sparsification040

transformation that allows us to fine-tune about041

1% of the dense MLP layer parameters and still 042

show good performance in downstream tasks. 043

Table 1: Number of parameters for different layers in
various Transformer architectures.

Blocks/Model BERT RoBERTabase LLaMa-2

Full model 109 M 100% 125 M 100% 6.7 B 100%
MLP 57 M 52% 57 M 45% 4.3 B 64%
Embeddings 24 M 22% 40 M 32% 0.1 B 1%
Attention 28 M 25% 28 M 22% 2.1 B 31%

We validate our approach on BERT (Devlin 044

et al., 2018) and RoBERTa (Liu et al., 2019) mod- 045

els on GLUE (Wang et al., 2018a) benchmark and 046

in both cases obtain results better than LoRA (Hu 047

et al., 2021) method. We also fine-tune LLaMa- 048

2 (Touvron et al., 2023) 2.7B on the OpenAssis- 049

tant dataset (Köpf et al., 2023) and also achieve 050

performance higher than LoRA. 051

2 Related Work 052

In the last few years, many approaches to 053

PEFT have appeared. Lialin et al. (2023) dis- 054

tinguishes three types of methods: additive, 055

reparametrization-based, and selective. In addi- 056

tive PEFT, small neural networks called adapters 057

are added to the main model to steer the outputs 058

of its modules (Pfeiffer et al., 2020). Adapters 059

are trainable, therefore, the main model remains 060

unchanged. Houlsby et al. (2019) adapt this ap- 061

proach to NLP. In reparametrization-based ap- 062

proaches low-rank representations of trainable pa- 063

rameters are used. For example, LoRA (Hu et al., 064

2021) parameterizes the weight update by a train- 065

able low-rank matrix decomposition. In the origi- 066

nal paper, LoRA is applied to self-attention mod- 067

ules, but not to MLP ones. In the selective meth- 068

ods, parts of the model or sets of the parameters 069

are chosen for fine-tuning using some heuristics. 070

Such methods include, for example, Bit Fit (Za- 071

ken et al., 2021) or MeProp (Sun et al., 2017), 072

where only top-k parameters are updated during 073
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backpropagation. The approach proposed in this074

paper is related to selective methods.075

3 Method076

Our aim is to reduce the amount of trainable pa-077

rameters at the fine-tuning stage. Taking into ac-078

count that fine-tuning data is restricted to a lim-079

ited scope, we assume there is a basis where080

the weight gradient matrix is very close to being081

sparse. We found such a space by collecting in-082

formation about gradients in the usual pre-training083

process and applying tensor decomposition to it.084

We propose a new PyTorch layer class, SparseG-085

radLinear, which facilitates the transition to this086

space, accumulates gradients in a sparse form, and087

enables the reverse transition.088

Figure 1: Gradients on the 5-th BERT MLP: U ∂L
∂W V.T

(right) is more sparse than the original ∂L
∂W (left).

3.1 Pre-training: Finding The Proper089

Transition Matrices090

To obtain transition matrices, a pre-training proce-091

dure is necessary. During pre-training, we perform092

several steps of standard training by freezing the093

entire model and unfreezing only the linear lay-094

ers in MLP blocks. By stacking gradients of the095

weights W ∈ RD_in×D_out over all blocks and096

over several training steps, we obtain a 3D tensor097

of size D_in × D_out × (n_step ∗ n_blocks),098

where n_steps - number of pre-training steps,099

n_blocks - number of MLP blocks in the model.100

Applying Higher Order SVD (HOSVD) (Cichocki101

et al., 2016) to this tensor yields matrices U ∈102

RD_in×D_in, corresponding to the dimension Din103

and V ∈ RD_out×D_out, corresponding to Dout.104

These matrices are orthogonal to every stacked105

gradient in the initial tensor. In this way, we106

get two orthogonal transition matrices which are107

shared across all modules of the model. The result108

of the multiplication of U, V and ∂L
∂W turns out to 109

be sparse. Examples of ∂L
∂W with and without tran- 110

sition to the new space are shown in the Fig. 1. 111

3.2 Layer with SparseGradients 112

Table 2: Correspondence of variables in Torch Auto-
grad for a regular Linear layer and SparseGradLinear.

Variable / Layer Linear SparseGrad

Weights W T W̃ T = UW TV T

Input X X̃ = XUT

Output Y = XW T Ỹ = X̃W̃ T

Grad Output ∂L
∂Y

∂L
∂Y V T

Grad Input ∂L
∂X = ∂L

∂Y W ∂L
∂X̃

= ∂L
∂Y V T W̃U

Grad Weights ∂L
∂W = ∂L

∂Y

T
X ∂L

∂W̃
= ∂L

∂Ỹ

T
X̃

SparseGradLinear can be conceptualized as 113

three consecutive linear layers: the first with fixed 114

weights UT , defined by the HOSVD, the second 115

with trainable new weightsW̃ T = UW TV T and 116

the third with fixed weights V , defined by the 117

HOSVD. A Fig. 3 in the Appendix A depicts sig- 118

nal propagation in this structure. We modified the 119

Torch Autograd function to incorporate transition 120

matrices. As the modules following SparseGrad- 121

Linear in both forward and backward passes re- 122

main unaltered, it is imperative to ensure consis- 123

tency in the output Y = XW T and input gradi- 124

ents ∂L
∂X . Table 2 outlines these adjustments and il- 125

lustrates the correspondence of variables in Torch 126

Autograd computations between the Linear layer 127

and SparseGradLinear. 128

We explore the gradient matrices ∂L
∂W̃

calculated 129

using formulas from Table 2 on various BERT and 130

RoBERTa modules. Our findings indicate that ap- 131

proximately 1% of the matrix elements remain sig- 132

nificant (see Appendix D). Guided by this heuris- 133

tic, in our experiments we leave the top 1% of 134

the largest elements and set the rest to zero. To 135

deal with SparseGradients, we use SparseAdam 136

optimizer1 - the masked version of the Adam al- 137

gorithm. The remaining model parameters are 138

trained with the standard AdamW optimizer. 139

3.3 Sparse-by-Dense Matrix Multiplication 140

We provide the SparseGradLinear class with up- 141

dated Forward and Backward procedures. How- 142

ever, the addition of multiplications by U, V into 143

them increased the execution time and affected 144

peak memory in the training loop. 145

1SparseAdam
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The sparsity of the gradient tensor ∂L
∂W̃

=146

∂L
∂Ỹ

T
X results in some of the multiplicators being147

sparse. We explore the structure of each compo-148

nent in this formula and figure out that ∂L
∂Ỹ

has a149

sparsity approximately equal to ∂L
∂W̃

. Histograms150

of the number of its non-zero elements are pre-151

sented in Fig. 2. It also shows that the sparsity is152

"strided" - most of the rows are completely filled153

with zeros. These rows can be excluded from the154

multiplication procedure, thus optimizing it.155

Figure 2: Histograms of nonzeros throughout train-
ing with respect to the entire number of elements in
∂L
∂Y (left) and the strided structure of ∂L

∂Y (right).

More precisely, to multiply the sparse matrix156

A ∈ Rb×c by a dense matrix B ∈ Rc×d we se-157

lect rows and cols - indices of rows and columns158

of A which contain nonzero elements and multiply159

as follows:160

C = A(rows, :)(:, cols)B(cols, :) (1)161

We employ C either for further multiplications,162

or convert it into COO format and send it to163

SparseAdam optimizer. Indexes in COO format164

are defined by restoring indexes of A:165

Ccoo(rows(k), cols(l)) = C(k, l). (2)166

As it is shown in the Table 3, such procedure sig-167

nificantly speeds up the harnessing of SparseG-168

radLinear.169

4 Time and Memory Consumption per170

Training Iteration171

We measure the peak memory allocated during172

training using the CUDA memory allocator statis-173

tics. Table 3 demonstrates this statistic on average174

for all GLUE datasets for the RoBERTabase model.175

The comprehensive Tables 8 and 7, which outline176

metrics for each dataset separately, can be found in177

Appendix B. Among all methods, LoRA presents178

the most efficient memory usage, preserving 30%179

of the peak memory. SparseGrad, while using180

slightly more memory, still achieves a 20% sav- 181

ings. The increase in peak memory with SparseG- 182

rad is attributed to the maintenance of matrices U 183

and V and their multiplication to the dense ob- 184

jects, such as Input X . 185

Table 3: Training speed and memory requirements av-
eraged on the GLUE benchmark. The last two rows
of the Table 3 reveal the results for the SparseGrad
method with Sparse-by-Dense and Regular matrix mul-
tiplication, respectively.

Method Steps/Sec Mem, MB

Regular FT 4.11 1345
LoRA 4.7 944
SparseGradSD 4.3 1016
SparseGradReg 0.9 1210

In terms of training time, LoRA demonstrates 186

the fastest training, followed by SparseGrad, and 187

then standard fine-tuning. TTable 3 shaows that 188

using Sparse-by-Dense multiplication saves ap- 189

proximately 12% memory, leading to an almost 190

five-fold increase in speed. 191

5 Experiments 192

We conducted experiments on three transformer- 193

based encoder models, BERT and RoBERTa base 194

and large, on the GLUE (Wang et al., 2018b) 195

benchmark, and the LLaMa-2 decoder model on 196

the OpenAssistant Conversations corpus (Köpf 197

et al., 2023). We compared the fine-tuning of the 198

full model (Regular FT scheme) with three PEFT 199

methods, namely LoRA, MeProp and SparseGrad, 200

applying to MLP blocks. To harness LoRA, we 201

use an official repository code. For the MeProp 202

method, we kept the largest elements in the ∂L
∂W 203

matrix. The proposed SparseGrad involves replac- 204

ing layers in MLP blocks with its SparseGrad- 205

Linear equivalents. 206

5.1 Natural Language Understanding with 207

BERT and RoBERTa 208

We fine-tune BERT, RoBERTabase and 209

RoBERTalarge (Liu et al., 2019) using Regu- 210

lar FT, LoRA, and SparseGrad schemes for 20 211

epochs with early stopping for each task in the 212

GLUE. We varied the batch size and learning 213

rate using the Optuna framework (Akiba et al., 214

2019). Optimal training parameters for each task 215

are available in the Appendix E. In LoRA we 216

take the rank 10 for RoBERTalarge and rank 7 217

for BERT and RoBERTabase and SparseGrad, 218

MeProp which keeps approximately 1% of the 219
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Table 4: Comparative results of RoBERTalarge for 20-epoch task-specific fine-tuning.

Method #Trainable params AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
Model MLP Layer

Regular FT 355 mln 4 mln. 85.6 91.9±.4 67.1±2.3 90.8±.2 89.9±.3 92.9±.9 92.3±.1 63.9±7.6 96.7±.3

LoRA 168 mln. 0.05 mln 83.7 92.1±.3 64.4±.8 90.7±.2 89.9±.3 93.2±.3 91.8±.2 60.2±4.1 96.6±.1

SparseGrad 168 mln. 0.05 mln 85.4 92.4±.2 63.2±3.4 90.7±.2 90.5±.5 93.3±.5 91.7±.1 64.7±6.1 96.8±.2

MeProp 168 mln. 0.05 mln 84.3 92.3±.1 63.7±1.1 90.4±.2 89.4±.9 92.5±.5 91.4±.1 59.2±7.4 96.2±.5

layer parameters. The average scores for all220

GLUE tasks for BERT and RoBERTabase are in221

the Table 5; per-task results are placed in the222

Appendix C. Table 4 depicts the scores for the223

RoBERTalarge model. Our results indicate that224

SparseGrad outperforms LoRA with an equiv-225

alent number of trainable parameters across all226

models. For BERT, SparseGrad even exceeds the227

performance of Regular FT. Concerning MeProp,228

it provides weaker results than SparseGrad in all229

cases except the RoBERTalarge performance on230

CoLA. It was explained that in MeProp, elements231

with the largest magnitude in the gradient are232

selected. In contrast, our approach first transforms233

the elements into a space where the histogram of234

the elements is sharper (see Fig 1). This implies235

that with the same cut-off threshold, MeProp may236

remove more significant elements compared to237

SparseGrad.238

Table 5: Average scores over the GLUE benchmark for
BERT and RoBERTabase models.

Model BERT RoBbase

Regular FT 109 mln 82.5 125 mln 84.2
LoRA 54 mln 81.6 68 mln 83.1
SparseGrad 54 mln 82.6 68 mln 83.6
MeProp 54 mln 82.1 68 mln 82.5

5.2 Conversations with LLaMa-2239

We apply the SparseGrad method to fine-tune240

LLaMa-2 7B (Touvron et al., 2023) model on the241

OpenAssistant conversational dataset (Köpf et al.,242

2023).Fine-tuning was performed on a single GPU243

NVIDIA A40 during 1 epoch with learning rate244

9e−4. For Regular FT, we unfroze up_proj and245

down_proj layers in the MLP modules with a246

block index divisible by 3 (0, 3, 6, . . . ). We ap-247

ply LoRA with rank 32 to the selected blocks,248

leaving the rest of the model untrainable. In the249

SparseGrad and MeProp methods, we also con-250

sider selected MLP modules in the transformer251

and leave ≈ 100, 000 (0,2%) nonzero elements in252

the gradient matrix. We validate obtained models253

on the question set MT-Bench Inf from Inflection- 254

Benchmarks (Zheng et al., 2023). We use the 255

FastChat platform2 for answer generation and 256

GPT-4 to evaluate the responses. We submit the 257

model’s answers to GPT-4, which then rates them 258

on a scale from 1 to 10. The resulting losses and 259

average GPT-4 rates on the Inflection-Benchmarks 260

are shown in Table 6: the models show approx- 261

imately the same results, but SparseGrad sligtly 262

surpasses LoRA, MeProp and Regular FT. The 263

examples of responses on Inflection-Benchmark 264

samples are in the Appendix F. 265

Table 6: Comparative results for LLaMa-2 on
OpenAssistant-1 dataset.

Method #Train Valid I-Bench
(on MLP) params Loss Score

Regular FT 22% 1.250 ±0.03 4.407
LoRA 0.5% 1.249 ±0.05 5.025
SparseGrad 0.5% 1.247 ±0.03 5.132
MeProp 0.5% 1.259 ±0.04 4.261

6 Conclusion 266

We propose a new selective PEFT method called 267

SparseGrad, which identifies a space where the 268

gradients exhibit a sparse structure and updates 269

only its significant part. SparseGrad is validated 270

through experiments conducted on the BERT, 271

RoBERTa and LLaMa-2 model models, demon- 272

strating its superiority over the additive LoRA and 273

selective MeProp method. 274

In summary, our method serves as an alterna- 275

tive to LoRA in situations where the performance 276

of the final model takes precedence over the exe- 277

cution time. The source code is available at anon- 278

imized repository.3 279

7 Limitations 280

The main limitation of our method is the addi- 281

tional memory requirements during the Pretrain- 282

2https://github.com/lm-sys/FastChat
3https://anonymous.4open.science/r/

sparse_grads-0C5E/

4

https://anonymous.4open.science/r/sparse_grads-0C5E/
https://anonymous.4open.science/r/sparse_grads-0C5E/


ing Phase. The extra memory is assessed as fol-283

lows: we need to unfreeze the MLP layers, which284

hold approximately half of the training parame-285

ters in Transformers (see Table 1), store and de-286

compose a large tensor. For instance, 30 pre-287

training steps result in a tensor of approximately288

276 MB for BERT and ROBERTA models, and289

5.2 GB for LLaMa-2.7 B models. The decompo-290

sition part can be the most memory-consuming, as291

it involves reshaping a 3-dimensional tensor into292

a matrix with a dimension size equal to the prod-293

uct of two dimension sizes of the tensor (Cichocki294

et al., 2016).295

However, this part is executed only once during296

the entire fine-tuning process and can be computed297

on the CPU in a short time. The Higher Order298

SVD decomposition of such objects takes approx-299

imately 78 seconds for BERT and RoBERTabase300

layers and about 668 seconds for LLaMa on an In-301

tel Xeon Gold 6342 CPU processor.302

8 Ethics Statement303

Our proposed approach involves a novel method304

for fine-tuning large language models, which can305

be considered as cost-effective as we only update306

0.1% of the weights. This type of fine-tuning307

is environmentally friendly as it reduces resource308

wastage. We utilized pre-trained models from309

the Hugging Face repository and implemented up-310

dates using the Pytorch library. We exclusively311

used open-source datasets to avoid any potential312

harm or ethical concerns. By prioritizing ethi-313

cal standards and recognizing potential risks, we314

strive to promote responsible and sustainable re-315

search practices.316
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A Appendix A 401

Trainable

 
TrainableFixed Fixed

Trainable

 
TrainableFixed Fixed

Forward Backward

I

II

Figure 3: SparseGradLinear is equivalent to 3 linear layers:: first with frozen weights UT , second with trainable
new weights W̃ = UWV T , third with frozen weights V . The row I illustrates signal propagation in the original
Linear Layer, while the II row illustrates it in the SparseGradLinear.

B Appendix B 402

Method / Dataset AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

Regular FT 4.11 2.9 4.3 4.2 4.1 3.1 4.7 4.2 5.1

LoRA 4.7 2.8 5.8 6.2 6.3 3.4 4.1 3.2 4.4
SparseGrad, Sparse-by-Dense 4.3 3.8 1.8 3.9 3.1 3.5 5.6 6.3 6.2
SparseGrad, Regular 0.9 0.4 0.3 0.4 1.9 0.8 0.7 1.6 1.1

Table 7: The training step execution speed, measured in steps per second (where a higher value indicates faster
execution), is reported for the RoBERTa base model. The last two rows describe the SparseGradMethod with
Sparse-by-Dense multiplication and with Regular matrix multiplication.

Method / Dataset AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

Regular FT 1345 1344 1358 1350 1362 1369 1333 1314 1339

LoRA 944 969 978 986 998 938 935 902 855
SparseGrad, Sparse-by-Dense 1016 997 1082 1017 1110 1019 981 960 980
SparseGrad, Regular 1210 1283 1212 1256 1183 1245 1172 1116 1209

Table 8: Peak memory measurement in MB for training loop for the model RoBERTa base.
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Table 9: Comparative results of BERT model for 20-epoch task-specific fine-tuning.

Method #Trainable AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
Parameters

Model MLP Layer

Regular FT 109 mln 3 mln 82.5 89.3±.6 59.0±1.9 84.0±.3 86.2±1.1 89.3±1.3 91.1±0 67.4±2.8 92.7±.1

LoRA 53 mln 0.03 mln 81.6 89.2±.7 58.4±2.3 84.2±.2 83.8±.6 89.3±.8 91.0±0 64.6±2.1 92.3±.2

SparseGrad 53 mln 0.03 mln 82.6 89.2±.4 58.8±0 84.0±1.3 86.6±.5 89.4±1.6 90.9±.3 69.3±2.9 92.4±.1

MeProp 53 mln 0.03 mln 82.1 88.9±.5 58.4±.8 83.3±.3 84.2±.6 89.6±.3 90.4±.4 64.9±.9 92.1±.1

Table 10: Comparative results of ROBERTA for 20-epoch task-specific fine-tuning.

Method #Trainable AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
parameters

Model MLP Layer

Regular FT 125 mln. 3 mln. 84.2 90.4±.3 59.7±1.4 87.7±.1 90.0±.6 90.6±.8 91.5±.1 68.8±2.5 94.7±.2

LoRA 68 mln. 0.03 mln. 83.1 90.5±.2 60.6±1.7 87.5±.1 88.4±.6 90.0±.8 91.4±.1 63.1±2.3 94.5±.1

SparseGrad 68 mln. 0.03 mln. 83.6 90.8±.2 60.0±1.6 87.5±.1 89.6±1.1 91.5±.6 91.5±.1 65.6±2.1 94.2±.1

MeProp 68 mln. 0.03 mln. 82.5 90.7±.1 59.2±1.3 85.9±.1 89.1±0.9 89.4±.5 90.5±.1 61.5±1.6 94.2±.1
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The average GLUE results for the BERT and RoBERTabase models with respect to the number of re- 405

maining updated parameters in Linear layers. Table 11 shows that under the 0.8% of the remaining 406

parameters, performance tends to decrease.

Table 11: Average GLUE score as a function of the weight gradient sparsity.

% of remaining Model
parameters BERT RoBbase

in MLP layers

0.8% 75.44 82.5
1% 82.61 83.1
1.3% 82.63 82.6
4.2% 82.64 82.1

407

Table 12: GLUE score as a function of the weight gradient sparsity in BERT

Method AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

SparseGrad 82.6 89.2±.4 58.8±0 84.0±1.3 86.6±.5 89.4±1.6 90.9±.3 69.3±2.9 92.4±.1

SparseGrad 18k 81.5 89.1±.3 59.1±.5 83.8 ±.1 84.6±.8 89.4±.8 90.8±.2 63.5±5.2 92.4±.6

SparseGrad 22k 82.2 89.7±.6 60.0±.4 83.9±.1 84.6±1.5 88.8±1.0 91.1±.0 67.7±2.5 92.3±.3

SparseGrad 30k 82.0 89.2±.4 59.1±.5 84.1±.3 85.4±.6 89.3±.6 90.8±.2 65.6±4.6 92.2±.4

SparseGrad 100k 82.2 89.3±.3 60.0±.3 83.8 ±.2 85.1±1.2 88.9±1.0 91.2±.0 65.6±3.3 92.4±.3

Table 13: GLUE score as a function of the weight gradient sparsity in ROBERTA

Method AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

SparseGrad 83.6 90.8±.2 60.0±1.6 87.5±.1 89.6±1.1 91.5±.6 91.5±.1 65.6±2.1 94.2±.1

SparseGrad 18k 83.4 90.9±.2 59.7±.1 87.4 ±.4 89.2±.7 89.1±.4 91.5±.1 60.4±5.8 94.0±.4

SparseGrad 22k 83.6 90.6±.2 58.8±.4 87.7 ±.1 90.0±.3 90.1±.1 91.3±.1 65.5±3.7 94.6±.2

SparseGrad 30k 83.6 90.8±.3 59.4±.4 87.6 ±.1 89.8±.4 91.0±.1 91.3±.1 64.9±8.6 94.2±.1

SparseGrad 100k 83.9 90.9±.3 59.8±.5 87.0±.1 89.7 ±.5 89.6±.5 91.4±.1 69.4±3.2 94.1±.3
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Best training parameters for all models. In all experiments, we repeat fine-tuning 3 times over different409

seeds and report the average score.

Table 14: Best training parameters on GLUE benchmark for BERT model.

Dataset batch size learning rate

STSB 32 1.24e-4

CoLA 32 3.15e-5

MNLI 32 6.07e-6

MRPC 32 1.22e-5

QNLI 16 1.94e-5

QQP 32 1.41e-5

RTE 16 6.81e-5

SST2 32 1.47e-5

410

Table 15: Best training parameters on GLUE benchmark for RoBERTa model.

Dataset batch size learning rate

STSB 16 2.70e-5

CoLA 16 1.01e-5

MNLI 32 1.51e-5

MRPC 32 1.9e-5

QNLI 16 1.91e-5

QQP 16 5.11e-6

RTE 32 3.05e-5

SST2 16 1.33e-5

Table 16: Best training parameters on GLUE benchmark for RoBERTa-large model.

Dataset batch size learning rate

STSB 32 7.71e-5

CoLA 16 1.8e-5

MNLI 16 1.15e-6

MRPC 32 2.47e-5

QNLI 16 8.83e-6

QQP 32 7.2e-6

RTE 32 1.02e-5

SST2 32 1.02e-5
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Responses from the models to an example from Inflection-Benchmarks are shown. While all models 412

perform fairly well, the LoRA-trained model overlooks the fact that public speaking can be stressful for 413

an introvert when answering the first question. 414

[Question 1]
Write a persuasive email to convince your introverted friend, who dislikes public speaking, to volunteer as a guest
speaker at a local event. Use compelling arguments and address potential objections. Please be concise.

LLaMa2-7B Regular FT:

Here’s a persuasive email to convince your introverted friend to volunteer as a guest speaker at a local event:
Subject: Join us as a guest speaker at our local event
Dear (Friend’s Name), I hope this email finds you well. I hope you’re doing well! I’m writing to invite you to be a
guest speaker at our upcoming local event. As a friend, I know how passionate you are!

LLaMa2-7B LoRA:

Subject Line: Please, Volunteer as a Guest Speaker! Dear John, I hope you are doing well. I am writing to you because
I know you are an introverted person and do not like public speaking. However, I have a great opportunity for you to
volunteer as a guest speaker at the evant!

LLaMa2-7B Sparse Grad:

Subject: Volunteer as a Guest Speaker at a Local Event
Dear [Name], I hope this email finds you well. I wanted to reach out to you about an exciting opportunity to volunteer
as a guest speaker at a local event. As you know, public speaking can be a nerve-wracking experience, but it’s also a
great way to share your knowledge and expertise with others.

[Question 2]
What are some business etiquette norms when doing business in Japan?

LLaMa2-7B Regular FT:

If you’re doing business in Japan, it’s important to follow their business etiquette norms. Here are some key things to
keep in mind:
1. Hierarchy: In Japan, it’s important to respect the hierarchy in the workplace. Address your Japanese colleagues with
the appropriate title, and don’t speak to them unless they initiate the conversation.
2. Punctuality: Being punctual is considered very important in Japanese culture, so make sure to arrive on time for
meetings and events.
3. Business Cards: Business cards are an important part of doing business in Japan. Make sure to have your own
business card made beforehand and carry it with you at all times.

LLaMa2-7B LoRA:

Of course! Here are some business etiquette norms when doing business in Japan:
1. Business Cards: Business cards are a vital part of business interactions in Japan. Always have a few business cards
with you and exchange them with others during introductions.
2. Punctuality: Time is sacred in Japan, and being punctual is essential for business meetings. Arrive on time or even
a few minutes early.
3. Gifts: Gifts are common in business interactions in Japan, especially for special occasions. Small personalized gifts
such as chocolates or flowers are appropriate.

LLaMa2-7B Sparse Grad:

Here are some business etiquette norms to keep in mind when doing business in Japan:
1. Respect for seniority: In Japanese culture, age and seniority are highly respected, so it is important to show respect
to those who are older or in a higher position than you.
2. Business cards: Business cards are an important part of doing business in Japanese culture, and it is customary to
exchange business cards at the beginning of a meeting.
3. Gifts: Gifts are often given as a sign of appreciation or gratitude in Japanese culture. It is important to give gifts that
are appropriate for the occasion and not too extravagant.

415
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