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ABSTRACT

Hallucinations in Large Language Models (LLMs) remain a major obstacle, par-
ticularly in high-stakes applications where factual accuracy is critical. While rep-
resentation editing and reading methods have made strides in reducing hallucina-
tions, their heavy reliance on specialised tools and training on in-domain samples,
makes them difficult to scale and prone to overfitting. This limits their accuracy
gains and generalizability to diverse datasets. This paper presents a lightweight
method, Norm Voting (NoVo), which harnesses the untapped potential of attention
head norms to dramatically enhance factual accuracy in zero-shot multiple-choice
questions (MCQs). NoVo begins by automatically selecting truth-correlated head
norms with an efficient, inference-only algorithm using only 30 random samples,
allowing NoVo to effortlessly scale to diverse datasets. Afterwards, selected head
norms are employed in a simple voting algorithm, which yields significant gains
in prediction accuracy. On TruthfulQA MC1, NoVo surpasses the current state-
of-the-art and all previous methods by an astounding margin—at least 19 accu-
racy points. NoVo demonstrates exceptional generalization to 20 diverse datasets,
with significant gains in over 90% of them, far exceeding all current representa-
tion editing and reading methods. NoVo also reveals promising gains to finetun-
ing strategies and building textual adversarial defence. NoVo’s effectiveness with
head norms opens new frontiers in LLM interpretability, robustness and reliability.

1 INTRODUCTION

One of the most significant challenges facing Large Language Models (LLMs) is their tendency to
hallucinate—outputs that are factually incorrect or entirely fabricated (Zhang et al., 2023b). This
flaw is particularly serious in high-stakes applications like finance and healthcare, where even small
errors can lead to huge losses and compromised patient safety (Kang & Liu, 2023; Pal et al., 2023a).
Reducing factual hallucinations is a critical research area with major practical benefits, essential for
realising the full potential of LLMs to revolutionise these industries by enhancing efficiency and
decision-making, and safeguarding against costly and harmful errors (Kaddour et al., 2023).

Given these serious risks and the high cost of retraining LLMs, it is crucial to find affordable tech-
niques to reduce factual hallucinations. Although inference techniques such as retrieval augmenta-
tion and prompt engineering work well, they come with significant limitations: latency and external
dependencies, and the need for user expertise, respectively (Zhao et al., 2024; Sahoo et al., 2024). In
response, we turn to representation editing and reading methods (REAR) (Zou et al., 2023), which
operate within the model, ensuring rapid response times and eliminating the need for external data
or user interaction. REAR methods reduce hallucinations by modifying or extracting factual infor-
mation encoded in LLMs’ latent feature vectors (hidden states), such as attention heads (Bronzini
et al., 2024). This process often requires specialized tools such as probes and autoencoders (Li et al.,
2024; Zhang et al., 2024), trained and tuned on in-domain samples. Thus, existing REAR methods
are difficult to scale and prone to overfitting, leading to limited accuracy gains and generalizability to
diverse datasets. Tackling these limitations is crucial, since REAR methods can improve factuality
with minimal costs, latency, and user friction; highly desirable attributes for practical applications.

This paper presents Norm Voting (NoVo), a more accurate and generalizable REAR method for
reducing factual hallucinations in LLMs. NoVo works by efficiently measuring latent truth (Zou
et al., 2023) in certain attention head norms, thus avoiding the log likelihood layer, which can induce
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hallucinations by favouring fluency over factuality (Ji et al., 2023). NoVo first selects attention head
norms that correlate with truth, using only inference passes over 30 random samples, allowing NoVo
to scale to numerous datasets. Then, selected head norms participate in majority voting, which acts
as an ensemble of weak learners (Schapire, 1990), resulting in more accurate predictions. The
entire process is summarised in Figure 1. NoVo is made lightweight by design for scalable use, not
requiring any specialised tools or training, which enables wide evaluations across a diverse range
of reasoning, factuality, and understanding datasets. As far as we know, we are the first to explore
attention head norms as a measure of latent truth. This raises exciting questions about their wider
roles in interpreting and addressing hallucinations.

Figure 1: Overview of our method. NoVo improves factuality over the log likelihood.

On TruthfulQA MC1, an unsolved hallucination benchmark, NoVo achieves a new state-of-the-art
(SOTA) accuracy of 78.09% on a 7B model, substantially outperforming the log likelihood and the
best REAR method by at least 24 and 19 accuracy points. NoVo scales and generalizes well to 20
diverse datasets featuring varied topics and formats, with significant gains in over 90% of them,
dramatically surpassing previous REAR methods, which could only be evaluated on a few factual-
ity benchmarks. In addition, NoVo achieves promising gains on AdversarialGLUE and DeBERTa
finetuning. We choose to evaluate NoVo on solving multiple-choice questions (MCQs), which tests
foundational cognitive skills (Bloom et al., 1964), are critical for real-life applications in high-stakes
standardized assessments (OSHA, 2016; Pal et al., 2023b; NCBE, 2024; ETS, 2024), offer an objec-
tive metric across diverse benchmarks for academic evaluation (Mee et al., 2024), and pose unique
technical challenges that reveal core limitations and internal misalignments within LLMs (Zheng
et al., 2024; Kiela et al., 2021). We analyse why head norms are correlated with truthfulness, and
find that they reliably spike by up to 83% in token positions of both factual proposition comple-
tions and pertinent factual associations, despite having a misleading context. Beyond MCQs, our
findings reveal a more fundamental, task-agnostic problem in high-stakes scenarios: factual hallu-
cinations caused by misalignments between hidden states and language likelihood. NoVo’s strong
performance across diverse and representative benchmarks demonstrates that this problem can be
mitigated using head norms. These norms not only enable reliable ranking of truthfulness across
multiple candidate spans during decoding or retrieval but also show promise in enhancing model ro-
bustness and alignment during fine-tuning, ultimately contributing to more trustworthy generations
in high-stakes scenarios.

Our main contributions can be summarised in three points: 1 We use head norms to accurately rank
truthfulness between several candidate texts, evaluated on diverse MCQs. 2 We show and explain
the correlation between head norms and truth 2 We demonstrate and mitigate a fundamental cause
of factual hallucinations: language likelihood misalignments with internal states, using TruthfulQA.

2 RELATED WORKS

Representation Editing Some REAR methods involve manually modifying hidden states dur-
ing inference towards hidden state clusters, formed by the forward propagation of true and false
sequences (Burns et al., 2023), to improve factual accuracy. All methods here require cross-fold
training on in-domain samples from the test set, with some set aside for validation. Inference Time
Intervention (ITI) edits specific attention head hidden states towards those clusters (Li et al., 2024),
using custom-built linear probes and visualisation tools. Similarly, TruthForest (TrFr) edits heads
toward multiple directions (Chen et al., 2024), while Truthx edits concepts of truth disentangled
from hidden states with a deep autoenconder (Zhang et al., 2024), as a specialised tool.

Representation Reading There are decoding strategies that use hidden states to improve the fac-
tuality of LLMs without editing. This includes Decoding by Contrasting Layers (DoLa) (Chuang
et al., 2024), which extracts factual information in intermediate layers, tuned with in-domain sam-
ples, and Induce-then-Contrast Decoding (ICD) (Zhang et al., 2023a), which contrasts LLM outputs
with a special hallucinatory model trained on a large external dataset. RePE (Zou et al., 2023) uses
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a different, more direct approach with highly curated templates and samples, to measure truth in
hidden states, with an special technique known as linear artificial tomography. All these methods
here extract factual information from hidden states without editing, to improve factual accuracy.

Unlike current REAR methods, NoVo uses only attention head norms and does not require any
external modules, custom-built probes, special techniques, in-domain sample training, or curated
resources. This makes NoVo lightweight, allowing to scale and generalize to numerous datasets.
Together with a simple voting algorithm, NoVo is also significantly more accurate.

3 METHOD

3.1 BACKGROUND

Prior Insights Previous studies have demonstrated that the hidden states in the multi-layer percep-
tron (MLP) modules of LLMs can be linearly classified into true-false clusters (Burns et al., 2023;
Azaria & Mitchell, 2023; Zou et al., 2023). Further studies extended this idea to individual heads
in the multi-head attention (MHA) module (Li et al., 2024; Chen et al., 2024). In computer vision,
studies have shown that the L2 norm of the final feature vector in convolutional networks correlates
with image quality (Kim & Lee, 2017; Yan et al., 2019). Insights from these works show that it is
reasonable to expect the L2 norm of some heads, denoted T , to correlate with truth.

Setup In the forward pass of an auto-regressive decoder transformer LLM, token sequences of
length s are embedded and featurized through multiple layers, each consisting of a MHA and MLP
module, before reaching the logit layer for next-token prediction. An LLM with L layers and H
heads per MHA will have a total of LH heads throughout the network, excluding the logit and
embedding layers. The MHA at layer l ∈ {1, 2 . . . , L} takes as input X(l−1) ∈ Rs×d from the
previous layer and projects each feature in the sequence to their key, query and value states

Ql = X(l−1)W l
query Kl = X(l−1)W l

key V l = X(l−1)W l
value (1)

ignoring the bias term, where Ql,Kl,V l ∈ Rs×d and d is the model dimension. Splitting them on
the column axis gives Ql,h,Kl,h,V l,h ∈ Rs×d′

for h ∈ {1, 2 . . . , H} and d′ = d/H . The context
vectors, or attention heads, Cl,h ∈ Rs×d′

, are thus computed via the attention mechanism as

Cl,h = Al,hV l,h Al,h = softmax
(
Ql,h(Kl,h)T√

d′
+M

)
, (2)

where M enforces auto-regression by setting Al,h to a lower triangular matrix. In Equation 2,
each head in the sequence Cl,h is the attention weighted sum of each value state in V l,h, computed
component-wise from the current and all previous sequence positions as

Cl,h = Al,hV l,h =


a11v11 · · · a11v1d′∑2
j=1 a2jvj1 · · ·

∑2
j=1 a2jvjd′

...
. . .

...∑s
j=1 asjvj1 · · ·

∑s
j=1 asjvjd′

 (3)

Motivation Insights from prior works suggests a reasonable expectation that T correlates with the
truthfulness of a text sequence. Furthermore, LLMs encode diverse language features in their hidden
states, which often self-organise along meaningful dimensions (Mikolov, 2013). It is plausible that
one of these dimensions reflects the alignment of truthful propositions with reality, where the coher-
ence of certain concepts such as passengers and planes, might consistently express itself as L2 norm
magnitude changes in some head dimensions. The expectation that L2 norms can measure truth, as
a broad and continuous scalar, is well-aligned with findings made by Lin et al. (2022), which framed
truth as a probability measure, and Li et al. (2024), which proposed that latent truth is expressed in
multiple directions. For both auto-regressive and bi-directional LLMs, the end token attends to the
entire sequence, without needing to know where specific factual claims appear. Therefore, we define
T as the attention head norm at the final sequence position such that T l,h =

∥∥∥Cl,h
−1,:

∥∥∥
2
. This process

is shown in Figure 2. We do not assume the correlation direction, and allow for inverse relationships
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as well. In Appendix F, we show that the latter approach is better. Since T l,h is unbounded, with
correlation direction and l, h being unspecified, it cannot be used yet. T l,h instead forms the basis
for NoVo, which addresses these issues and operationalises T l,h to improve factual accuracy.

Figure 2: The Norm Matrix at the right contains all T l,h values taken throughout the LLM, but
cannot be used to answer MCQs. Instead, this operation forms the basic building block of NoVo.

3.2 NORM VOTING (NOVO)

Norm Selection The goal of this stage is to operationalise T l,h by resolving its unbounded nature,
and specifying all (l, h) indices that correlates with truth, including the correlation direction. Figure
3 shows this stage in five steps. In step 1 , 30 random samples are fed into the LLM to produce 30
Norm Matrices, packed as a tensor. The idea here is that all head norms are initially assumed to
correlate with truth, each producing two predictions from the argmax and argmin operators. These
are packed into an intermediate tensor, as the correlation direction is unknown. The unbounded
nature of T l,h is resolved here, since both operators are relative. In step 2 , each head receives
an accuracy score across 30 samples for both sets of prediction, forming a matrix with two rows
representing each prediction set, and columns that represent each head’s accuracy. It is clear here
that most heads are poor performers. In steps 3 and 4 , the correlation direction and strength are
identified using these accuracies scores as a proxy measure. This approach does not require any
training, special techniques or external tools, making NoVo lightweight and scalable. The row with
the highest accuracy indicates the correlation direction. Steps 4 and 5 determines which heads are
strongly correlated with truth, by taking the higher accuracy of the two rows. This is followed by a
thresholding operation, set at the 85th percentile (P85) of all accuracies. We refer to these remaining
heads as “Voters”. For clarity, (l, h) is enumerated as consecutive integers, starting from 0 for the
first head in the first layer. This entire stage is only performed once, as the Index Vector and
Indicators are reused, and takes less than 10 seconds on one NVIDIA A100 GPU. The number of
samples and threshold are hyper-parameters, found to be optimal at 30 and P85. The search for these
two values is detailed in Appendix B, with a hyper-parameter free variant explored in Appendix C.

Figure 3: The selection stage uses the Norm Matrix from Figure 2 to determine the correlation
direction of each T l,h, serialised as Indicators. All (l, h) indices that vary with truth are also
specified in the Index Vector, expressed as enumerated integers for clarity.

Voting Inference Now that the latent measure of truth T l,h is operationalised with NoVo, zero-
shot MCQ classification can begin. The goal of this stage is to output more accurate predictions via
majority voting, shown in four steps in Figure 4. In Step 1 , an example MCQ with three options is
fed through the LLM to produce the Norm Matrix. Each answer is prepended with the question and
optional instructions as input, following standard practice. In Step 2 , Voters are selected with the
Index Vector from the previous stage. In Step 3 , the correlation direction of each Voter is flagged
with Indicators, also from the previous stage. This allows for dynamic selection between the argmax
or argmin operators, for individual Voter predictions. While each Voter’s T is unbounded and could
become very large, we observe in practice that it is well-conditioned to varying truthfulness in a
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sequence. In most cases, T ranges between 0.5 to 3. In step 4 , all Voter predictions participate in a
majority vote via the mode operator, resulting in the final MCQ prediction of the LLM.

Figure 4: The voting stage uses the Norm Matrix from Figure 2, and the Indicators and Index Vector
from Figure 3, to accurately answer MCQ questions during LLM inference.

4 EXPERIMENT AND DISCUSSION

4.1 SETTINGS

Experiments We evaluate NoVo in three key areas: 1 its effectiveness in reducing factual hallu-
cinations compared to existing REAR methods, 2 its generalizability across various reasoning and
natural language understanding (NLU) tasks, and 3 its adaptability to broader classification tasks,
indicated by its finetuning performance. Experimental results for the first area are shown in Table
1. Results for the second area are presented in Tables 2, 3, and 4, while the third area is reported
at the bottom of Table 2. To avoid over-reporting results, all experiments use 30 random training
samples drawn without tuning for Norm Selection, and use zero-shot prompts without tuning (Perez
et al., 2021). More information on experimental details, random variations, hidden state analysis,
and additional models can be found in Appendices A, D, H, and I respectively.

Models NoVo is evaluated in two classification settings: zero-shot and finetuned. Zero-shot is
the primary setting used in most experiments, and the results are presented in Tables 1 through 4.
Finetuning, on the other hand, is used in only one experiment, which is reported at the bottom of
Table 2. In the zero-shot setting, NoVo is applied to four 7B decoder LLMs: Llama2 and LLama2-
Chat (Touvron et al., 2023), Vicuna (Chiang et al., 2023) and Mistral-Instruct (Jiang et al., 2023).
For the finetuned setting, NoVo is applied to DeBERTa-Large (He et al., 2023). Additionally, Table 2
includes results from two finetuned 11B models, UnifiedQA and UNICORN (Khashabi et al., 2020;
Lourie et al., 2021), for reference purposes only, without making any direct comparisons.

Datasets We evaluate NoVo’s effectiveness in reducing factual hallucinations on TruthfulQA MC1
(Lin et al., 2022), a standard and unsolved hallucination benchmark used by all previous REAR
methods. For our generalizability experiment, we apply NoVo to diverse datasets covering multiple
topics and presented in various formats. This includes CommonsenseQA 2.0 (CQA2) (Talmor et al.,
2021) for commonsense reasoning. QASC (Khot et al., 2020) tests for scientific knowledge. SWAG
(Zellers et al., 2018) and HellaSwag (HSwag) (Zellers et al., 2019) requires sentence completions
about challenging commonsense scenarios. SIQA (Sap et al., 2019) and PIQA (Bisk et al., 2020)
looks for social and physical reasoning, respectively. CosmosQA (Cosmos) (Huang et al., 2019)
requires causal reasoning over narrative contexts. CICERO V1 and V2 (CICv1, CICv2) (Ghosal
et al., 2022b; Shen et al., 2022) tests for multi-turn dialogue and strategic reasoning. We use a MCQ
variant from Ghosal et al. (2022a). Adversarial GLUE (AdvGLUE) (Wang et al., 2021) tests model
robustness to adversarial texts in NLU tasks. FACTOR-Expert (expert) (Muhlgay et al., 2023),
Natural Questions (nq) (Kwiatkowski et al., 2019), and TriviaQA (trivia) (Joshi et al., 2017) all
contain general factual questions from expert domains or online documents. We reformulate nq and
trivia following Li et al. (2024). MMLU (Hendrycks et al., 2020) involves a broad range of topics,
and Arc (Clark et al., 2018) contains science question. All datasets report accuracy.

4.2 MAIN RESULTS

Hallucination Mitigation Table 1 reports the zero-shot accuracy of NoVo on TruthfulQA MC1
across four models. Results show that NoVo significantly outperforms all existing REAR methods
across all models. Notably, they all require either cross-fold training, few-shot prompting, or custom
instruction, but NoVo uses only true zero-shot prompts with 30 random samples from Arc-Easy’s
train split for Norm Selection. NoVo on a 7B model surpasses GPT4 by a remarkable margin of
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19 points, setting a new SOTA accuracy of 78.09%. The median point gain across all competing
methods including the log likelihood (LM), for each model, is reported with a green arrow beside
NoVo’s result. Here we see that the overall gains are remarkably high, with the highest at 31 points.

Table 1: TruthfulQA MC1—NoVo achieves SOTA accuracy with zero-shot only. Other approaches
require either cross-fold training, few-shot prompting, or custom instructions.

Zero-shot Few-shot Custom

Model LM NoVo TruthX ITI TrFr DoLa ICD RePE GPT4

Llama2-7B-Chat 34.27 70.13 26.6 54.22 40.67 39.30 33.53 46.32 58.9

59.0Llama2-7B 28.48 69.16 31.3 49.94 37.86 33.80 31.21 40.76 -
Vicuna-7B 34.64 69.89 30.0 50.67 39.90 38.80 33.05 47.19 -
Mistral-7B-Instruct 53.86 78.09 22.0 56.43 55.73 - 48.83 58.13 -

Table 2: Experiments on generalization and finetuning at the top and bottom, respectively.

Model Method CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2
0.84 15.88 3.53 0.40 12.70 0.96 18.00 0.28 22.55

Llama2-7B-Chat LM 55.65 19.76 60.51 56.30 45.45 72.63 36.42 37.74 42.34
NoVo 56.04 43.95 68.36 59.49 60.29 72.96 51.73 36.01 63.61

Llama2-7B LM 49.98 25.16 74.59 71.59 49.08 76.99 38.53 38.34 37.85
NoVo 52.11 35.42 75.01 70.53 58.44 71.92 51.76 29.52 60.37

Vicuna-7B LM 50.89 36.20 67.62 61.03 46.26 74.86 33.47 34.55 36.49
NoVo 51.40 42.66 69.67 69.20 61.15 74.37 56.45 39.23 69.42

Mistral-7B-Instruct LM 61.90 31.53 63.31 75.28 46.93 76.39 31.69 40.25 38.52
NoVo 62.02 66.09 69.65 63.35 70.68 76.66 67.57 46.09 73.52

DeBERTa-Large
SFT 67.37 71.74 92.37 94.72 80.18 87.41 85.51 88.04 92.67
TEAM 68.38 74.35 94.12 95.57 79.89 85.92 86.86 86.84 93.25
+NoVo 68.42 75.65 93.38 94.35 80.83 87.58 88.09 89.47 93.69

UnifiedQA-11B SFT - 78.50 - - 81.40 89.50 - - -
UNICORN-11B 70.20 - - 93.20 83.20 90.10 91.80 - -

Table 3: Generalization experiments on Adversarial GLUE.

Datasets SST2 4.10 QQP 5.66 MNLI 12.04 MNLI-MM 9.82 QNLI 1.08 RTE 7.09

Methods LM NoVo LM NoVo LM NoVo LM NoVo LM NoVo LM NoVo

LLama2-7B-Chat 55.54 79.60 63.14 63.26 35.42 51.48 35.68 51.58 75.00 76.65 49.57 54.28
Llama2-7B 63.74 65.26 43.41 63.26 35.40 43.43 35.69 39.42 51.86 65.27 44.41 52.61
Vicuna-7B 74.65 77.43 54.02 63.26 35.42 55.39 35.68 55.48 81.87 74.99 48.19 54.16
Mistral-7B-Instruct 72.95 78.34 77.28 79.36 74.98 69.65 74.54 69.13 83.64 84.14 46.99 66.61

Table 4: Generalization on factuality tests.

Llama2-7B expert nq trivia mmlu arc
Chat 18.3 13.6 31.4 1.11 1.22

NoVo 76.82 72.30 97.81 47.13 68.51
TruthX 65.25 59.60 66.79 - -
ITI 51.69 57.83 65.96 -
ICD - - - 46.02 67.29

Generalizability The top of Table 2 reports
NoVo’s zero-shot validation accuracy on multi-
ple reasoning datasets. For Norm Selection, each
dataset uses 30 randomly drawn samples from
their train splits. Median point gains across models
for each dataset, are indicated with a green arrow,
while negative values are marked red. NoVo sub-
stantially outperforms the LM in QASC, Cosmos,
CICv2, and SIQA, with modests gains in CQA2,
SWAG, and CICv1. However, accuracy drops in
HSwag and PIQA. Table 3 reports the 10-fold average zero-shot validation accuracy on AdvGLUE,
with each fold holding out 30 random samples for Norm Selection. Median point gains across
models for each subset, are indicated with a green arrow. NoVo mostly outperforms the LM on all
six subsets, with accuracy drops limited to instruction models. Table 4 reports the 10-fold average
zero-shot validation accuracy on factuality benchmarks, with each holding out 30 random samples
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for Norm Selection. Median point gains across competing methods for each dataset, are indicated
with a green arrow. NoVo significantly outperforms all REAR methods here. Results from Tables 2,
3, and 4 show that NoVo scales and generalizes well across diverse reasoning, factuality and NLU
datasets, with competitive gains on AdvGLUE suggesting potential for adversarial textual defence.

Finetuning The bottom of Table 2 reports finetuned test accuracies using DeBERTa. Finetuned
NoVo (+NoVo) is compared to standard finetuning (SFT) and an effective SFT variant known as
TEAM, which reformulates each question to admit binary answers (Ghosal et al., 2022a). NoVo
outperforms SFT in all datasets except HSwag by an average of 1.3 points, and surpasses TEAM in
all but HSwag and SWAG by an average of 0.7 points. These results suggest NoVo’s potential for
adapting to and improving finetuned accuracy for general classification, beyond zero-shot MCQs.
The implementation of +NoVo is detailed in Appendix A.

4.3 ERROR ANALYSIS

Table 5 shows representative samples from PIQA, our lowest-performing dataset. We see that NoVo
misclassifications often involve equally plausible answers that require strong stereotypes to disam-
biguate. For example in the fifth row, many buckets can hold both paint and acid depending on the
specific context. The stereotype here is that either the acid is very strong, or that the bucket is metal-
lic. In contrast, NoVo’s correct predictions, misclassified by the LM, are equally difficult, yet do
not require strong stereotypes to solve. For example in the sixth row, not all jars are twist-to-open,
but this disambiguation is not needed, because the other option is mostly untrue for typical jars.
Additionally, we observe that questions with identical answer options, such as “no” and “no, it is
not.”, are unpredictably answered. We conclude that NoVo’s good performance on misleading ques-
tions, limitations in selecting stereotypical answers, and randomness in identical answer options, all
contribute to result variations across datasets.

Table 5: Misclassified PIQA samples on Llama2-7B.

Misclassified by NoVo Correctly classified by NoVo
Correctly classified by LM Misclassified by LM

Q: rag Q: how do you buckle down on something?
Correct: cleans furniture. Correct: concentrate on nothing else.
Wrong: cleans clothes. Wrong: leave it alone.
Q: ornament Q: lipstick
Correct: can decorate tree. Correct: can be used to write words.
Wrong: can decorate desk. Wrong: can be used to speak words.
Q: how do you stream a movie? Q: What do you use to make a DIY lotion bar smell good?
Correct: watch it over the internet. Correct: You can use scented oils, about ten drops will do.
Wrong: watch it on your tv. Wrong: You can use oils and add as many drops as you’d like.
Q: soap Q: mold
Correct: can clean a car. Correct: can cover a shovel.
Wrong: can clean mold. Wrong: is more useful than a shovel.
Q: a bucket Q: a knife
Correct: can hold paint. Correct: can transfer grapes from a glass
Wrong: can hold acid. Wrong: can transfer liquid from a glass
Q: To thicken a mixture Q: open jar
Correct: Add corn starch Correct: tap bottom and twist
Wrong: Add corn syrup. Wrong: make sure you hear the click
Q: Retain study notes in brain Q: how do you prepay a pizza delivery order?
Correct: Go over notes one last time one day before test. Correct: give the company your card information before they deliver.
Wrong: Go over notes one last time one week before test. Wrong: give the company your cash before they deliver.
Q: a shelf Q: Keep paint from drying.
Correct: can hold a book. Correct: Place saran wrap over opening before closing with lid.
Wrong: can hold milk. Wrong: Place paper towel over opening before closing with lid.

4.4 DISCUSSION

NoVo’s SOTA accuracy on TruthfulQA show that head norms are a reliable way to avoid fluent
factual hallucinations from misleading questions. Gains in over 90% of the 20 diverse benchmarks
and 4 models, suggests that the relationship between truthfulness and head norms is generalisable.
Error analysis on low-performing benchmarks suggests that while NoVo mitigates fluent falsehoods
in misleading questions, this same ability struggles to form strong stereotypes for highly ambigu-
ous questions that probes for assumptive behaviour. Beyond MCQs, we show strong evidence that
head norms can reliably rank truthfulness across multiple texts, which is useful for generative and
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retrieval strategies that outputs several candidate spans for truth-filtering. NoVo is suitable for hallu-
cination detection on-the-fly, due to its lightweight nature. Promising results on AdversarialGLUE
and DeBERTa finetuning showcase the potential of head norms for improving adversarial robustness
and finetuning accuracy during alignment, resulting in safer open-ended generations. Overall exper-
imental results strongly indicates a more fundamental task-agnostic problem: factual hallucinations
stem from misalignments between internal states and the language modelling likelihood (Zhou et al.,
2024; Jaiswal et al., 2024). Using MCQ tasks, we demonstrate the internal misalignment problem
in hallucinations, and use the strong correlation between head norms and truthfulness to mitigate it.

5 ANALYSIS

5.1 WHAT DO VOTERS MEASURE?

Figure 5: Attention-weighted value state components at various sequence positions.

Plotting We plot the token contributions for each Voter in Figure 5. Each column represents
a Voter (head), broken down into its attention-weighted value contributions per token on the left
vertical axis and with cell color intensity. Voters are taken at various sequence positions on the
horizontal bottom axis, starting from the end (-1). A line plot summarises the relative norm gain
for each Voter over the wrong answer, graded on the right vertical axis. Because heads are high-
dimensional, the plot displays the mean across all vector components per cell. These three Voter are
selected here for display based on their representative patterns, with more shown in Appendix E.

Figure 6: T1 and T2 are evenly spread out after
the ninth layer of Llama2-7B.

Voter Specialisation Voter 527 has the largest
norm gains at the last three positions, with a dras-
tic drop in the middle, slowly recovering at the
first two tokens. In this Voter, most end tokens
strongly attend to themselves, especially when
taken at the final sequence position. In contrast,
both Voters 509 and 665 places more weights
to other tokens, such as between ‘can’ and ‘fly’.
When taken at these intermediate positions where
such tokens occur, these two Voters show far
larger gains than when taken at the end sequence
position. Plotting other Voters in Appendix E re-
veal broadly similar patterns to Figure 5, suggest-
ing two general types of Voters. We characterise
Type-1 Voters (T1) as those attending to periods
and end tokens as a measure of structure, while
Type-2 Voters (T2) attend to individual token associations as a measure of resolution and depen-
dence. Table 6 and Figure 6 show that both Voter types exhibit similar performance, with no clear
preference for either, and are evenly distributed throughout the upper portions of the model, sug-
gesting no specific localisation of these roles.
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What is being Measured Based on NoVo’s majority voting process back in Figure 4, we see that
each Voter type plays a distinct yet complementary role in shaping the model’s capacity for making
more factual predictions in MCQs. These analyses suggests that the reason head norms correlate
with truthfulness is due to strong attention spikes by up to 83% over non-factual statements, in token
positions where either the factual proposition is complete, or when relevant factual associations
occurs. We further note that even small semantic shifts in meaning can alter truth, leading to large
but organised movements in the high-dimensional space of attention heads, causing points to lay in
a predictably different hypersphere surface. These mechanisms are possible reasons why truth and
L2 head norms are correlated

5.2 EFFECTIVENESS OF USING MULTIPLE VOTERS

Table 6: Mistral-7B-Instruct: Summary of Individual Voter Accuracies (%) on TruthfulQA

Voter Count Mean Std Min 25Q 50Q 75Q Max

All 1024 37.29 8.00 20.32 31.43 35.86 41.49 69.77
Type-1 165 42.17 9.46 26.56 34.76 40.63 48.59 69.77
Type-2 86 39.49 9.59 25.53 32.81 37.45 44.96 63.89

Plotting To assess the effectiveness of the majority vote, we analyse each Voter’s contribution to
the overall accuracy of NoVo. On the left of Figure 7, Voters are sorted by individual accuracy and
are gradually included in voting process at each step of the horizontal axis, with percentage values
graded on the left vertical axis. The smoothed Pearson correlation between the error vectors for the
current and previous mix is plotted alongside the accuracy curve, with the values graded on the right
vertical axis. The dotted and solid black vertical lines indicate the point of no significant increase and
our chosen threshold in Section 3.2, respectively. On the right of Figure 7, the hamming distances
between error vectors of the top 50 Voters are plotted on a 2D space using t-SNE (Van der Maaten &
Hinton, 2008). Clusters and centroids are marked by colour and crosses. The top-right table shows
how accuracy changes when the majority vote draws only from that many error clusters.

Figure 7: Left TruthfulQA MC1 Accuracy plotted against the number of Voters, with error correla-
tion. Right The error vectors from the top 50 Voters are visualised and clustered with K-Means.

Ensemble Principles It may be intuitive to select amongst high-performing, upper-layer Voters.
For example, a single Voter in Table 6 already surpasses the previous SOTA on TruthfulQA-MC1.
However, these top performers make up only the 95th percentile, where accuracy quickly drops be-
low that. We observe that accuracy increases with number of Voters, especially when error correla-
tion is low and when Voters are sampled from different error clusters. This indicates the importance
of error variability across Voters when combining them. Improvements plateau after 240 Voters,
closely matching the threshold used in our experiments. We believe that this plateau is due to our
naive ensemble approach, and that more sophisticated selection and combination strategies could
yield better results and different points of diminishing returns. We propose a weighted combination
strategy in Appendix C. In Table 2, NoVo finetuning involves learning weights to each Voter with
the classification layer, which could be seen as learning an selection and combination function. We
observe that NoVo follows fundamental ensemble principles when combining Voters; using multiple
Voters with varying error traits can boost overall accuracy.
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5.3 ABLATIONS

Figure 8: Sequence, Voter, and text ablation plots using Mistral-7B-Instruct.

Plotting We perturb sequences and remove Voters with high error variability from NoVo, and plot
their effects on TruthfulQA MC1. The left of Figure 8 compares T1 and T2 when taken further
away from the sequence end. Here, different lengths are padded with previous norms while ex-
cluding sequences with extreme lengths. The middle removes Voters from the majority vote. Here,
variability is measured by the Hamming distance between error vectors. Low variability removal
involves evenly removing Voters across error clusters, while high variability removal exhausts one
cluster at a time. There are six error clusters, with sizes from ranging 16 to 79. The right compares
T1 and T2 with sequences perturbed with random character and punctuation insertions. Table 7
shows how removing the period at sequence end affects accuracy on datasets with different Voter
mixes. The mix represents T1 and T2 separated by a forward slash, with change in accuracy points.

Table 7: End sequence period ablation on various datasets.

TruthQA CQA2 QASC HSwag SIQA PIQA Cosmos CICv2

Change -25.34 -0.04 -34.87 -16.21 0 0 -17.05 0
Mix 165/86 60/178 209/51 147/51 75/147 64/119 131/96 140/121

Ablation Outcomes we see that T1 accuracy drops more abruptly compared to T2 when moved
away from sequence end. Both degrade significantly beyond a certain point, with T1 holding out
above T2. 1 This is likely due to T1 losing overall sequence structure quickly, while T2 maintains
token associations that vary by position. When taken near sequence start, T2 loses all associations
while T1 Voters can still predict on sequences with concise assertions, such as ‘no’. Similarly, T1
does not hold out as well as T2 when sequences are perturbed, 2 likely due to insertions having a
lower chance of affecting specific token associations versus the overall structure, with both nearing
random guessing at extreme levels. Period removal generally affects datasets with more T1 Voters,
3 which indicates both as an importance as a source of overall structural information. Removing
Voters evenly across error clusters preserves accuracy better than sequentially exhausting clusters,
with it dropping sharply once a cluster is exhausted. 4 This demonstrates the importance of having a
variety of Voters for final prediction. Taken together, these ablations reinforce our interpretations in
Sections 5.1 and 5.2, regarding the structural, associative, and aggregative roles of Voters in NoVo.

6 CONCLUSION

In this paper, we introduced Norm Voting (NoVo), an effective method for enhancing the factual
accuracy of LLMs, by measuring latent truth in certain attention head norms. NoVo significantly
outperforms all existing methods on the challenging TruthfulQA MC1 benchmark, and achieves a
new SOTA. NoVo also demonstrates strong generalization across a diverse set of topics and question
formats, showcasing its potential beyond specific datasets. More importantly, NoVo does not require
any specialized tools or in-domain sample training, making it scalable and lightweight. These at-
tributes make NoVo more suitable for practical use in real-world applications. Our findings not
only advances REAR methods for mitigating hallucination, but also opens new avenues for future
research in mechanistic interpretability, model reliability, and robustness.
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A EXPERIMENTAL DETAILS

Finetuning Supervised finetuning (SFT) feeds the final layer hidden state to the task-specific layer,
such as a classifier for MCQ tasks. We use SFT as a baseline for our finetuning experiments in Table
2. TEAM is a variant of SFT that improves accuracy by restructuring all question and answer pairs
to admit binary true or false answers. We adapt NoVo for finetuning, which we refer to as +NoVo,
such that it is similar to SFT but does not require the binary restructuring used in TEAM. In +NoVo,
all attention head norms are serialised as a vector and fed to the classifier. Here, the classifier does
not receive the final hidden state, unlike SFT or TEAM. Different from the original zero-shot design
of NoVo, the Norm Selection and Voting Inference stages described in Section 3.2 does not apply
to +NoVo, and can instead be seen as a learnt function represented by the classifier weights. SFT,
TEAM, and +NoVo trains all parameters in the model. We use the same finetuning parameters set by
TEAM (Ghosal et al., 2022a), with the exception of the learning rate, which we change to 3e-6 for
the model and 3e-5 for the classifier, across all three methods. We also implemented early stopping.

Table 8: Dataset and model details, grouped by colour, based on their occurrence in experiments.

Name Used Full Name Author Source
TQA TruthfulQA Lin et al. (2022) GitHub
CQA2 CommonsenseQA 2.0 Talmor et al. (2021) GitHub
QASC Question-Answering via Sentence Composition Khot et al. (2020) HuggingFace
SWAG Situations With Adversarial Generations Zellers et al. (2018) GitHub
HSwag HellaSwag Zellers et al. (2019) GitHub
SIQA Social IQA Sap et al. (2019) AllenAI
PIQA Physical IQA Bisk et al. (2020) AllenAI
Cosmos CosmosQA Huang et al. (2019) GitHub
CICv1 CICERO v1 Ghosal et al. (2022b) GitHub
CICv2 CICERO v2 Shen et al. (2022) GitHub
SST2 Stanford Sentiment Treebank v2 Wang et al. (2021) GitHub
QQP Duplicate Question Detection Wang et al. (2021) GitHub
MNLI Multi-Genre Natural Language Inference Wang et al. (2021) GitHub
MNLI-MM Multi-Genre Natural Language Inference Mismatched Wang et al. (2021) GitHub
QNLI Question Natural Language Inference Wang et al. (2021) GitHub
RTE Recognizing Textual Entailment Wang et al. (2021) GitHub
expert FACTOR Expert Muhlgay et al. (2023) GitHub
nq Natural Questions Kwiatkowski et al. (2019) HuggingFace
trivia Trivia QA Joshi et al. (2017) HuggingFace
mmlu Massive Multitask Language Understanding Hendrycks et al. (2020) HuggingFace
arc AI2 Reasoning Challenge Clark et al. (2018) HuggingFace
Llama2-7B meta-llama/Llama-2-7b Touvron et al. (2023) HuggingFace
Llama2-7B-Chat meta-llama/Llama-2-7b-chat-hf Touvron et al. (2023) HuggingFace
Vicuna-7B lmsys/vicuna-7b-v1.5 Chiang et al. (2023) HuggingFace
Mistral-7B-Instruct mistralai/Mistral-7B-Instruct-v0.2 Jiang et al. (2023) HuggingFace
DeBERTa-Large microsoft/deberta-v3-large He et al. (2023) HuggingFace
UnifiedQA-11B - Khashabi et al. (2020) -
UNICORN-11B - Lourie et al. (2021) -

Reporting Results In Table 1, we re-implement results for DoLa, ICD, ITI by adapting from their
official repositories. All other competing results are reported as presented in their original papers.
MC1 accuracy is reported without cross training or validation. In Table 2, all results are implemented
by us. All 7B decoder models here report zero-shot accuracy on the validation set, with 30 samples
drawn from each dataset’s respective training splits for Norm Selection. For DeBERTa finetuning,
we train on the full training split and report accuracy on the test set. No cross training or validation
is performed here. In Table 3, all results are implemented by us. we perform 10-cross validation
with 30 samples set aside randomly for Voter selection in each fold; the rest are used for evaluation.
We report the average accuracy across all 10 folds. In Table 4, we report all competing results as
presented in their original papers or from other studies that re-implemented them. All methods here
use Llama2-chat-7B. we perform 10-cross validation with 30 samples set aside randomly for Norm
Selection in each fold; the rest are used for evaluation. We report the average accuracy across all
10 folds. In all experiments, samples used for Norm Selection are drawn randomly once, without
tuning or hand-picking. Visit our code repository to reproduce reported results and view fine-grained
implementation details. All model and datasets used in this paper are fully detailed and referenced
in Table 8.
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B NORM SELECTION HYPER-PARAMETERS

Figure 9: Analysing the effect of sample difficulty during Norm Selection, on downstream accuracy.

Grid Search The number of samples used and percentile threshold for Norm Selection are hyper-
parameters. We search through different combinations of these two values for each dataset individu-
ally, shown in Figure 10. To do so, we use 200 samples drawn randomly from the respective training
splits of various reasoning and factual datasets, with a varying portion held out for validation, de-
pending on the number of samples used for selection. We report the held-out accuracy for every
combination and plotted them as a darker purple cell for higher values. We see that 30 samples gave
the best held-out accuracy for all datasets, with some going as low as 10. Increasing the number
of samples beyond 30 improves accuracy with greatly diminishing returns. The optimal percentile
threshold hovers between 80 to 90, with the middle value as 85. No external tools, training, or
specialised resources were used for this grid search. Samples used here are fully excluded when
conducting zero-shot experiments.

Figure 10: 10 to 30 samples at the 85th percentile threshold is optimal for Norm Selection. This
range is outlined with a dotted rectangle. Color intensity increases with held-out accuracy values.

Sample Type In Figure 9, difficulty per sample is the percentage of Voters that misclassified it.
The horizontal axis marks the average difficulty across 30 samples used during Norm Selection, and
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the left vertical axis marks the validation accuracies for each respective dataset. In Table 9, we apply
different dataset samples in the pairwise manner for Norm Selection, on a given dataset. The full
training split is used, with the model set as Mistral-7b-Instruct. The left column and top row indicates
the Norm Selection and evaluated datasets respectively. ArcE refers to Arc-Easy. We see that using
difficult samples with question-answering styles similar to those in the downstream dataset can
improve Norm Selection and higher accuracies. However, drawing a different set of samples while
maintaining a high average difficulty, leads to large variations in downstream validation accuracy.
When the average difficulty becomes too high, such that individual Voter accuracy approaches the
random baseline for that dataset, Norm Selection becomes increasingly ineffective. Accuracy drops
when the sample style diverges from the downstream dataset. From these findings, we conclude that
using difficult in-domain samples for Norm Selection gives the best results.

Table 9: Effect of sample domain during Voter selection on validation accuracy.

Datasets ArcE CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2

ArcE 84.70 59.94 55.94 59.66 49.64 70.98 75.14 53.70 37.96 70.74
CQA2 75.39 61.67 56.80 54.55 41.86 66.33 67.46 63.15 39.98 65.25
QASC 80.93 60.80 67.60 61.23 50.24 68.99 73.56 66.83 40.69 65.57
SWAG 80.93 59.86 59.61 74.19 64.63 69.55 76.17 57.96 39.41 66.32
HSwag 80.04 60.61 57.24 72.83 70.11 65.15 76.50 58.32 41.33 63.65
SIQA 83.81 59.74 60.15 58.89 43.63 70.21 71.98 57.69 39.83 72.24
PIQA 82.26 59.90 54.64 67.38 61.69 70.93 79.22 54.24 40.54 70.63
Cosmos 77.38 60.02 57.13 60.33 48.51 68.47 71.87 68.94 42.85 70.31
CICv1 81.15 60.13 58.86 63.84 54.26 67.55 74.59 62.78 51.48 72.02
CICv2 79.82 59.98 49.14 54.59 42.86 65.76 70.57 57.25 43.89 75.73

We note that Table 9 also reflects out-of-distribution (OOD) performance. Computing the standard
deviation for each column reveals that OOD performance is mostly dependent on the evaluated
dataset, rather than NoVo. For instance, NoVo can be calibrated significantly OOD on multi-turn
CICv1 dialogues, sentence completion SWAG, or factual-style Arc-Easy, and evaluated for CQA2
commonsense yes-no questions with only a 0.59 standard deviation. The smallest OOD standard
deviations are CQA2, Arc-Easy and SIQA, with SWAG, HSwag, and Cosmos as notable outliers.
We note that we intentionally maximised OOD differences between datasets by ensuring varied
question topics and formats, to challenge NoVo’s generalizability. We also note that NoVO’s SOTA
TruthfulQA performance was calibrated OOD on Arc-Easy.

C HYPER-PARAMETER-FREE DISCOVERY

Table 10: NoVo-F is competitive with both NoVo and LM for zero-shot MCQ answering.

Model Method TQA CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2

Llama2-7B-Chat
LM 34.27 55.65 19.76 60.51 56.30 45.45 72.63 36.42 37.74 42.34
NoVo 70.13 56.04 43.95 68.36 59.49 60.29 72.96 51.73 36.01 63.61
NoVo-F 71.48 57.58 50.32 71.20 61.74 62.85 73.88 53.70 42.32 62.37

Llama2-7B
LM 28.48 49.98 25.16 74.59 71.59 49.08 76.99 38.53 38.34 37.85
NoVo 69.16 52.11 35.42 75.01 70.53 58.44 71.92 51.76 29.52 60.37
NoVo-F 70.75 54.66 52.38 73.73 68.94 61.26 74.92 51.66 38.07 61.87

Vicuna-7B
LM 34.64 50.89 36.20 67.62 61.03 46.26 74.86 33.47 34.55 36.49
NoVo 69.89 51.40 42.66 69.67 69.20 61.15 74.37 56.45 39.23 69.42
NoVo-F 69.65 54.94 55.40 71.63 69.05 62.08 74.65 61.71 47.87 67.57

Mistral-7B-Instruct
LM 53.86 61.90 31.53 63.31 75.28 46.93 76.39 31.69 40.25 38.52
NoVo 78.09 62.02 66.09 69.65 63.35 70.68 76.66 67.57 46.09 73.52
NoVo-F 79.44 61.51 69.76 73.78 71.77 71.08 79.16 68.17 52.28 75.94

We propose a hyper-parameter free Norm Selection algorithm, without requiring the number of sam-
ples or percentile threshold to be specified. Similar to Section 3.2, inference passes are performed
over the entire training set, with individual accuracies assigned to each head. Heads that perform
worse than the random baseline are excluded. Instead of using a percentile threshold, all heads
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are Voters with weights assigned according to their accuracy scores, normalized between 0 and 1.
During the inference stage, final prediction is made via the weighted sum of all Voter predictions.
While more computationally expensive, this approach eliminates the random variation present in
the original Norm Selection process, and removes the need to specify the percentile threshold and
sample size hyper-parameters. Table 10 compares this approach, denoted NoVo-F, with NoVo and
LM. We see that NoVo-F is competitive with NoVo in most datasets.

D RANDOM VARIATIONS OF EXPERIMENTAL RESULTS

Random variations attributable to the sampling process in Norm Selection are recorded in Table 11.
Random variations experiments are conducted over 200 runs, across all ten datasets (TruthfulQA,
CQA2, QASC, SWAG, HSwag, SIQA, PIQA, Cosmos, CICv1, and CICv2) and across all four
models (10 x 4 = 40 reports, each 200 runs). Standard deviations are all within 1.5 points, with the
exception of Llama2-7b-Cosmos at 1.64, and Vicuna-7b-QASC at 1.53. Interquartile ranges are all
within 2.3 points. All experimental results reported in the paper fall within the IQR, with 70% of
them within 0.5 points from the median. These random variation experiments show that there is no
over-reporting of results.

Table 11: Random variations across 200 runs, for zero-shot experiments in Tables 1 and 2.

Model Stats TQA CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2

Mistral

Mean 78.37 61.75 66.70 70.49 62.78 70.34 76.15 67.64 46.81 74.41
Std 0.68 0.37 0.87 1.30 1.5 0.67 0.62 0.89 1.37 1.06
Min 77.23 61.24 65.44 67.57 60.37 69.24 75.35 66.26 44.46 72.49
25Q 77.85 61.47 65.98 69.58 61.52 69.86 75.63 66.93 45.71 73.62
50Q 78.34 61.65 66.52 70.46 62.61 70.27 76.01 67.50 46.86 74.34
75Q 78.82 61.98 67.28 71.49 63.80 70.78 76.55 68.17 47.88 75.13
Max 80.78 63.28 69.65 73.95 67.75 72.72 78.13 71.36 50.30 77.66

Llama
Mean 70.21 56.26 44.88 68.14 61.06 61.01 73.09 53.19 63.27 64.75
Std 1.17 0.43 1.17 0.78 1.23 0.67 0.51 1.14 0.49 1.15
Min 68.30 55.73 43.30 67.07 59.28 60.18 72.58 51.66 35.64 63.33

Chat

25Q 69.28 55.96 43.95 67.52 59.93 60.49 72.80 52.19 35.89 63.83
50Q 70.13 56.14 44.65 68.01 60.86 60.80 72.91 52.86 36.20 64.47
75Q 71.00 56.42 45.57 68.56 61.80 61.37 73.20 53.87 36.58 65.43
Max 74.66 57.62 49.03 70.75 65.93 63.36 75.41 58.96 38.53 69.21

Llama

Mean 69.77 51.76 35.26 74.76 70.32 58.74 72.61 51.89 29.95 61.36
Std 1.33 0.60 1.35 0.42 0.59 0.69 0.61 1.64 0.53 0.97
Min 67.93 50.45 33.58 74.29 69.58 57.88 71.92 49.92 29.31 60.04
25Q 68.67 51.55 34.01 74.43 69.83 58.24 72.13 50.41 29.53 60.64
50Q 69.52 51.79 35.04 74.63 70.19 58.55 72.52 51.73 29.83 61.17
75Q 70.66 51.94 36.28 74.99 70.81 59.11 72.91 52.65 30.23 61.74
Max 73.19 54.66 38.98 76.43 71.84 61.31 75.19 56.28 31.66 65.00

Vicuna

Mean 70.01 51.82 44.40 69.91 70.21 61.36 73.33 57.59 40.71 70.35
Std 0.72 0.58 1.53 0.58 0.71 0.65 0.44 1.23 1.13 1.17
Min 69.03 50.77 42.44 69.17 69.20 60.64 72.85 55.98 39.04 68.89
25Q 69.40 51.63 43.17 69.44 69.67 60.90 73.01 56.60 39.83 69.45
50Q 69.89 51.79 44.17 69.66 70.12 61.15 73.17 57.34 40.53 70.05
75Q 70.50 51.83 45.16 70.29 70.61 61.58 73.52 58.17 41.45 71.03
Max 73.44 55.84 49.68 71.45 72.51 63.77 74.81 61.34 44.57 73.88

E ADDITIONAL CONTEXT ATTRIBUTION PLOTS

Additional Plots Figures 11 and 12 show additional context attribution plots from Type-1 and 2
Voters respectively. Each plot visualises the attention-weighted value state components at various
sequence positions, illustrated as heat maps with a line plot marking the relative norm gain of the
correct answer at each position, graded on the right vertical axis. One cell represents the average
component value for a given context vector. Similar to Figure 5, the horizontal bottom axis represent
Voters taken at various sequence positions, starting from the end on the left and moving towards the
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Figure 11: Type-1 Voters on various question samples.

Figure 12: Type-2 Voters on various question samples.

start on the right. The left vertical axis is the attention weighted sum of value states. Unlike Figure
5, we omit some axis labels and show only the correct answer for clarity. The number at the top
of each plot identifies the (l, h) index of the Voter, enumerated as integers. All context attribution
plots, including Figure 5, are taken from inference passes with Mistral-7b-Instruct.

Voter Specialisation Here, we observe similar patterns to those in Figure 5. Type-1 Voters
strongly focus on last token positions either throughout the sequences, or on punctuation marks
and conjunctions, indicating a structural scope of focus. Some Type-2 Voters focus on meaningful
associations, such as disambiguation, looking for qualifiers and superlatives. Others are seemingly
random or attend to identity connections. Regardless of patterns, most heads do not necessarily
need to be taken at the last sequence position to be effective. For example, when asked if cops are
allowed to lie in the US, relative norm gain increases midway through the sequence: “it depends on
the circumstances”, and decreases when the assertion becomes ambiguous with the phrase: “of the”.
As long as the relevant claim can be localised in the sequence to answer the question, norm gains
increases. However, this behaviour was the reason for taking heads at the last sequence position in
Section 3.1, as it did not require knowing where these claim lay for every new sequence.
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F NORM CORRELATION DIRECTION

To better understand the impact of fixing the head norm correlation direction during Norm Selection,
we introduce two distinct variants: NoVo-A and NoVo-B. These two methods differ primarily in their
approach to the selection of norm values. Specifically, NoVo-A selects the highest norm values,
while NoVo-B chooses the lowest norm values. These two variants allows us to investigate how
prioritizing one correlation direction influences performance across various datasets. In contrast to
these static methods, NoVo adapts its selection strategy based on the correlation direction of each
Voter, by using Indicators (as illustrated in Figure 3). Table 12 provides a comparative analysis of
these three approaches: NoVo-A, NoVo-B, and NoVo, across a variety of reasoning and factuality
benchmarks. The results demonstrate a clear advantage for the dynamic selection mechanism. This
can be attributed to the flexibility of adjusting to the correlation direction of individual Voters, as
opposed to the rigid strategies employed by NoVo-A and NoVo-B, which may miss high-performing
Voters on the other direction, for the Voting Inference stage.

Table 12: Dynamic direction selection (NoVo) versus fixed max-min selection (Variants A and B).

Model Method TruthfulQA CSQA2 QASC HSwag SIQA PIQA Cosmos CICv2

Mistral
NoVo-A 72.58 61.51 67.93 57.82 69.75 74.59 66.33 74.73
NoVo-B 76.74 60.13 53.67 51.95 63.25 70.13 61.61 60.48
NoVo 78.09 62.02 66.09 63.35 70.68 76.66 67.57 73.52

Llama2

Chat

NoVo-A 64.63 56.40 39.63 51.78 55.83 67.41 48.14 58.62
NoVo-B 68.18 53.13 35.31 55.25 58.34 65.89 48.51 60.73
NoVo 70.13 56.04 43.95 59.49 60.29 72.96 51.73 63.61

Llama2
NoVo-A 62.06 52.22 33.59 60.70 53.38 70.51 46.40 58.27
NoVo-B 62.79 51.99 21.06 65.38 55.89 64.42 49.92 57.52
NoVo 69.16 52.11 35.42 70.52 58.44 71.93 51.76 60.37

Vicuna
NoVo-A 65.73 51.83 38.77 60.19 58.34 67.68 46.37 65.47
NoVo-B 65.12 52.54 31.10 63.47 59.62 68.88 53.17 66.86
NoVo 69.89 51.40 42.66 69.21 61.16 74.37 56.45 69.42

G NOVO PERFORMANCE ANALYSIS WITH TRUTHFULQA

TruthfulQA consists of 817 samples, each belonging to one of 38 categories such as science, geog-
raphy, humanities, politics and law, finance, and pop culture. During inference, the model does not
see the category label. Samples are crafted to mislead with common and imitative misconceptions.
Around 53% of all samples were adversarially filtered with GPT-3-175B to increase the difficulty
of the dataset. TruthfulQA is designed for both generative question-answering and multiple-choice
questions. The latter task comes in multiple evaluation tracks, where each consists of one or more
correct answers. We evaluated on the most difficult track, MC1, with only one correct answer.

Figure 13 plots the accuracy of NoVo on a per-category basis, using Mistral-7B-Instruct. Each label
has a number prefix to indicate the total number of samples in that category. NoVo surpasses the
LM in all categories. The categories with the smallest gains over the LM were: weather, sociology,
proverbs, politics, and history. Similarly, the largest gains over the LM were: advertising, confusion-
people, education, finance, indexical errors, and misquotations. The best performing categories are
saturated at full accuracy: advertising, logical falsehoods, mandela effect, topical misconceptions,
misinformation, politics, science, subjective and superstitions. The worst performing categories are
outliers: confusion-others and confusion-people, scoring just under 30%.

For categories with small gains over the LM, we find that samples require both niche and nuanced
knowledge, coupled with answer options that are extremely similar in factuality. For example, when
asked if Nigeria has won a Nobel prize, the answer options, amongst others, are either “no”, or “no,
Nigeria has not won a Nobel prize”. In such cases, the LLM will need to differentiate between two
similarly correct options. In contrast, categories with the largest gains over the LM did not face this
issue. There are also categories that are high-performing with low-gain, and vice versa; politics and
confusion-people are two such examples, respectively. Since knowledge about politics is widely
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Figure 13: MC1 accuracy plotted per category for NoVo (Ours) and LM.

available on the internet and are highly connected to other subjects, LLMs would fare better in these
topics using either approach. Conversely, samples in the confusion-people category require long-
tailed knowledge of lesser known celebrities that may be difficult to recall (Kandpal et al., 2023).
In this area, NoVo shows promising gains by correctly answering questions in the confusion-people
topic, but is still ultimately inaccurate. The LLM here recognises minor celebrities, but is almost
always misled by their names which are shared with more famous counterparts. We believe that
NoVo is ultimately bounded by the underlying model’s capability.

We find no discernible differences in performance when evaluating between samples that did and
did not undergo adversarial filtering. A sample is considered adversarially filtered when both hu-
mans and LLM consistently gets it wrong. The authors of TruthfulQA curated additional unfiltered
samples that were similar in style, but did not undergo additional model inference to test for predic-
tion trends. Our analysis reveals that NoVo outperforms the LM in both types of samples by a huge
margin, about 20% absolute points.

H NOVO ON OTHER HIDDEN STATES

Table 13: L2 norms from different hidden states are used for NoVo and evaluated.

TQA CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2

Query 71.60 59.62 50.54 51.20 36.58 61.62 54.62 51.16 36.11 65.57
Key 66.46 59.31 48.70 52.53 34.68 58.75 57.45 44.76 29.73 53.46
Value 64.38 63.36 57.34 55.24 42.11 61.67 65.56 52.23 31.91 63.83
Head 78.09 62.02 66.09 69.65 63.35 70.68 76.66 67.57 46.09 73.52
Out 60.47 62.30 47.52 49.37 32.00 57.63 55.71 42.38 25.99 48.90
FFN1 47.25 54.51 38.77 38.39 34.74 51.13 48.86 47.47 31.05 44.73
FFN2 48.10 53.29 50.65 36.83 32.45 46.88 54.52 43.05 25.80 41.41

Results in Table 13 validate the choice of using attention head norms, as opposed to other represen-
tations. The L2 norms of the Query, Key, Value, Out, and FFN hidden states are fed to NoVo, on
Mistral-7B-Instruct, and evaluated on various datasets. Note that for this model, the Key vector is
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not multi-headed. Results show that in general, the norms of multi-headed representations perform
better in predicting the correct answer. The FFN and Out norms performed the worse, with the
Query and Value norms closing to gap towards head norms. We believe that a measure as coarse
and broad as the L2 norm would work better on more fine-grained (multi-headed) representations
of each token, rather than monolithic ones. The head can be interpreted as the final output of an
information retrieval process, with Query and Value vectors acting as intermediate outputs. Hence,
their states are not important in isolation. We conclude that among these representations, attention
head norms are most indicative of truthfulness and is the best choice for NoVo.

I ADDITIONAL EXPERIMENTS ON DIFFERENT MODELS

Table 14: NoVo evaluated on four more models in varying alignment stages and sizes.

TQA CQA2 QASC SWAG HSwag SIQA PIQA Cosmos CICv1 CICv2

phi3-3.8b-it LM 45.65 61.39 47.41 70.06 71.70 50.36 78.62 37.86 41.03 42.16
NoVo 69.03 61.05 51.84 70.72 60.61 66.33 77.92 52.86 45.71 77.83

zephyr-7b-beta LM 52.51 63.60 40.06 65.92 72.96 45.34 77.04 25.13 38.19 36.71
NoVo 75.64 64.82 59.29 73.14 69.94 65.40 77.90 56.31 48.11 70.10

llama3-8b LM 29.25 53.40 51.08 75.87 75.12 52.71 79.43 38.99 38.87 35.92
NoVo 70.03 52.96 36.08 76.45 76.49 54.55 72.25 43.60 40.88 62.19

gemma2-9b-it LM 47.86 71.07 61.45 67.62 63.53 50.46 75.73 41.24 41.38 47.26
NoVo 79.68 71.46 75.49 74.73 72.65 73.64 80.74 74.64 52.88 72.02

Table 14 presents additional evaluations on four more currently popular models, doubling the num-
ber of evaluated models from four to eight. The evaluation includes models of varying sizes ranging
from 3.8B to 9B. A good mix of instruction-tuned, chat-tuned, and based pretrained models is en-
sured. Results show major gains of 20 points averaged across TruthfulQA, QASC, SIQA, Cosmos,
and CICv2. Moderate gains of 3.7 points averaged across CQA2, SWAG, and CIC1 are reported,
with accuracy drops of 0.7 points averaged across HSwag and PIQA being reported. We note that
these performance characteristics are largely similar to the original models in Tables 1 and 2. These
results show that NoVo can generalize to a wide variety of decoder LLMs.
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