

000 001 002 003 004 005 006 007 008 009 010 TOKEN-LEVEL INFERENCE-TIME ALIGNMENT FOR VISION-LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Vision-Language Models (VLMs) have become essential backbones of modern
 012 multimodal intelligence, yet their outputs remain prone to hallucination-plausible
 013 text misaligned with visual inputs. Existing alignment approaches often rely on
 014 expensive fine-tuning with annotated preference data or sequence-level inference
 015 strategies that provide only coarse, delayed feedback. To overcome these limita-
 016 tions, we present **TITA** (Token-level Inference-Time Alignment), a lightweight
 017 framework that freezes the base VLM and instead trains a reward model to approx-
 018 imate its distribution. During inference, implicit preference signals are extracted as
 019 log-probability ratios between the reward model and the target VLM, yielding dense
 020 autoregressive feedback. This formulation can be viewed as an inference-time
 021 variant of Direct Preference Optimization (DPO), providing token-level corrective
 022 signals without retraining the backbone. Extensive evaluations on LLaVA-1.5-7B
 023 and 13B show consistent gains across 12 benchmarks, with improvements of +8.6%
 024 on MMVet and +6.7% on POPE, indicating stronger general understanding and
 025 reduced hallucinations. Additional experiments on Qwen2.5-VL-7B and DeepSeek-
 026 VL2-27.5B show comparable gains, especially in hallucination reduction and VQA
 027 accuracy, while incurring negligible inference overhead. Our code is available at:
 028 <https://anonymous.4open.science/r/TITA-BEC6>

049 1 INTRODUCTION

050 Vision-Language Models (VLMs) have transformed multimodal AI, enabling image captioning,
 051 visual question answering (VQA), and instruction following by grounding text generation in visual
 052 input (Liu et al., 2024a; 2023; Li et al., 2023c; Wang et al., 2024a; Wu et al., 2024a; Zhang et al.,
 053 2024; Zhu et al., 2023; Wu et al., 2024c). Yet despite their broad success, VLMs remain prone to a
 054 persistent failure mode: *hallucination*—outputs that are fluent but misaligned with the actual visual
 055 input. Such hallucinations not only degrade generation quality but also pose substantial safety and
 056 reliability risks for trustworthy multimodal AI deployment (Ye et al., 2023; Zhao et al., 2023; Bai
 057 et al., 2024; Huang et al., 2024; Leng et al., 2024; Zang et al., 2025).

058 At the core of this issue, hallucinations often arise from the dominance of language priors over visual
 059 grounding, inherited from large-scale pretraining (Li et al., 2023a; Zhu et al., 2023; Hurst et al.,
 060 2024; Shen et al., 2025). When visual signals are weak or ambiguous, models default to text-based
 061 statistical patterns, amplifying factual inconsistencies. As a result, addressing hallucinations is
 062 therefore a central step toward aligning VLMs with human-centric objectives such as accuracy and
 063 trustworthiness. Recent studies have explored alignment strategies to better balance visual grounding
 064 and language generation, yet existing solutions still struggle to achieve an effective trade-off between
 065 performance, scalability, and practicality. As illustrated in Figure 1, current approaches can be
 066 broadly categorized into training-time and inference-time alignment.

067 Training-time alignment methods leverage supervised fine-tuning or reinforcement learning with
 068 human or model-based feedback (Xiong et al., 2024; Zhou et al., 2024b; Kapuriya et al., 2024).
 069 While effective, they require large annotation budgets or expensive preference labels from proprietary
 070 models, limiting accessibility and scalability. Moreover, retraining is often necessary to adapt to new
 071 domains, further increasing costs (Zhao et al., 2024; Favero et al., 2024; Bai et al., 2025).

072 In contrast, inference-time methods avoid retraining by steering frozen VLMs with external reward
 073 models (Cui et al., 2024; Deng et al., 2024; Zhu et al., 2024; Yan et al., 2024; Zhou et al., 2024c).

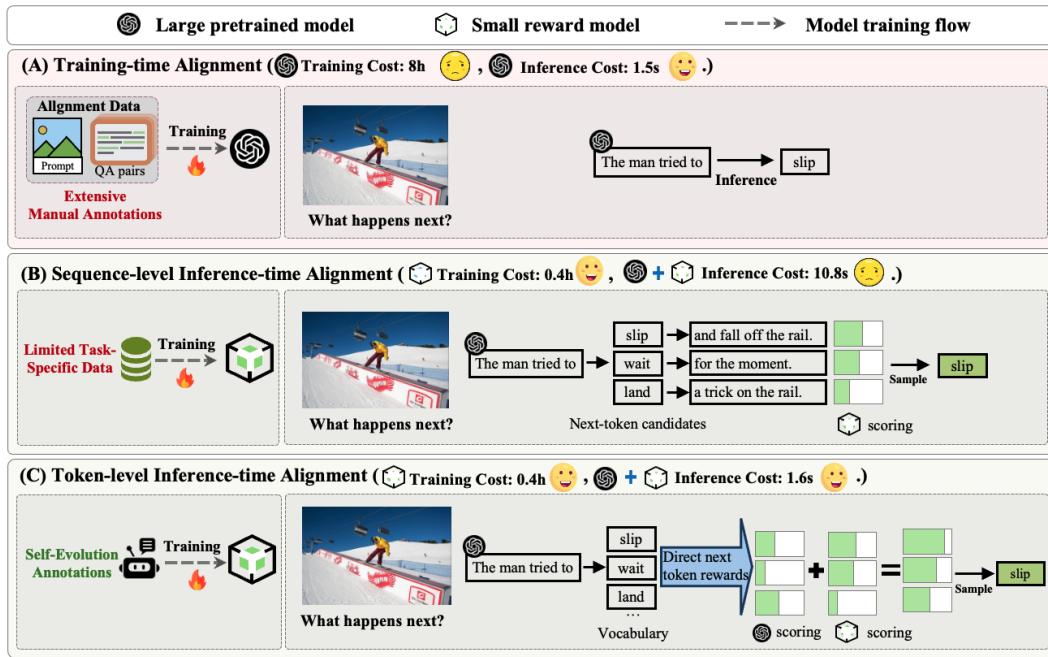


Figure 1: Overview of preference alignment strategies for VLMs (LLaVA-1.5-7B). (A) Training-time alignment fine-tunes base model π_θ with human-labeled preferences. (B) Sequence-level inference-time alignment reranks complete responses with reward models. (C) TITA with token-level decoding guidance via implicit preference optimization for lightweight and fine-grained alignment.

Most operate at the sequence level: they assign rewards to entire responses, offering only delayed and coarse-grained feedback while incurring heavy overhead from sampling and reranking. However, this design introduces two critical drawbacks. First, reward signals are delayed and coarse-grained, providing no guidance during intermediate decoding steps where hallucinations typically emerge. Second, evaluating full sequences for each candidate substantially inflates inference costs. Thus, despite progress, hallucination reduction remains expensive and insufficiently fine-grained.

Intuition and Motivation. We argue that hallucinations originate not only from weak visual grounding but also from the lack of timely alignment signals during generation (Sun et al., 2023; Li et al., 2024). Sequence-level feedback arrives only after hallucinations have already manifested. By contrast, token-level guidance can intervene earlier, providing fine-grained signals at each decoding step to suppress hallucinations before they propagate. Inspired by prior work (Fu et al., 2024), we further observe that preference information need not rely on costly human annotation or explicit reward models: it can be implicitly captured through log-probability ratios between reference and target models, enabling lightweight preference estimation without retraining.

Our Approach. Motivated by these observations, we introduce TITA (Token-Level Inference-Time Alignment), a lightweight framework that mitigates hallucinations by transforming sparse sequence-level feedback into dense, autoregressive signals. Instead of fine-tuning the base VLM, it compares token-level probability distributions between a reward model and the target VLM, deriving implicit preferences via log-probability ratios without human annotations or handcrafted rewards. A token-mapping mechanism ensures compatibility across heterogeneous tokenizers, enabling plug-and-play inference-time alignment for off-the-shelf VLMs without modifying their parameters (Figure 1(C)).

In this paper, we establish TITA as a general token-level preference-alignment strategy that suppresses hallucinations in VLMs without explicit VLM finetuning, or manually annotated token-level data. Theoretically, we prove that TITA can approximate any dense reward distribution over token sequences, bridging the gap between coarse sequence-level and fine-grained token-level alignment (Section A). Methodologically, we design a self-supervised preference construction pipeline that leverages augmented visual inputs to generate robust token-level reward signals without human labels (Section 3.1). Empirically, we conduct extensive evaluations across three representative VLM

108 families and 12 benchmarks, where TITA consistently reduces hallucinations while preserving base
 109 model capabilities and incurring minimal computational overhead (Section 4.2).
 110

111 2 RELATED WORK 112

113 **Hallucination in VLMs.** VLMs have demonstrated impressive performance across a wide range of
 114 multimodal tasks by leveraging the extensive world knowledge of LLMs and the visual perception
 115 capabilities of pretrained image encoders (Li et al., 2023c; Liu et al., 2024a; 2023; Wang et al., 2024a;
 116 Chen et al., 2024b; Zang et al., 2025). Due to the imbalance in model capacity and data scale between
 117 modalities during pretraining, VLMs often exhibit a bias toward language priors, which can lead
 118 to hallucinations—fluent yet visually inconsistent or factually incorrect outputs (Bai et al., 2024;
 119 Huang et al., 2024; Leng et al., 2024). This compromises factual accuracy and limits deployment in
 120 high-stakes applications like healthcare and scientific reasoning (Chen et al., 2024a; Sun et al., 2024;
 121 Wu et al., 2024b). Mitigating hallucination has therefore become a central research challenge. Prior
 122 efforts (Li et al., 2023a; Yu et al., 2024; Sun et al., 2025) have focused on aligning VLM outputs with
 123 human preferences to improve factual consistency and enhance trustworthiness.
 124

125 **Preference Alignment in VLMs.** Recent efforts aim to align VLMs with human preferences via
 126 training-time or inference-time strategies. Training-time alignment involves supervised fine-tuning or
 127 reinforcement learning based on human-annotated (Sun et al., 2023; Guo et al., 2025; Shen et al.,
 128 2025) or model-generated preference data (Ren et al., 2024; Zhang et al., 2025; Wan et al., 2025).
 129 These approaches often yield strong performance but require substantial computational resources
 130 and repeated retraining when adapting to new tasks or preferences. In contrast, inference-time
 131 alignment introduces external reward models to guide generation from frozen VLMs, avoiding full
 132 model updates. While more flexible, most existing inference-time methods operate at the sequence
 133 level (Gou et al., 2024; Dong et al., 2025; Sun et al., 2025), computing rewards over entire responses.
 134 This coarse-grained feedback delays correction of intermediate errors and increases inference latency.
 135 Moreover, simulating full candidate completions per decoding step adds significant overhead.
 136

137 **Data Augmentation in VLMs** Although data augmentation is ubiquitous in vision tasks (Grill
 138 et al., 2020; He et al., 2020), its effects (Chen et al., 2024c; Yuan et al., 2024) on VLMs are
 139 considerably less stable: even subtle perturbations can induce semantic shifts and degrade output
 140 consistency. Rather than treating this as noise, recent work leverages this property to mine preference
 141 pairs from divergent outputs (Awais et al., 2025; Yu et al., 2023b). This turns augmentation into a
 142 tool for weak supervision, enabling preference-based training without costly human labels.
 143

144 **Self-Evolution Strategies.** To further reduce reliance on costly human annotations, self-evolution
 145 has emerged as an effective paradigm where models generate their own alignment signals. Approaches
 146 such as self-consistency ranking, feedback distillation, and preference mining have been explored in
 147 LLMs (Chen et al., 2024c; Patel et al., 2024; Wang et al., 2024b; Ding & Zhang, 2025). Self-evolution
 148 has been mostly explored in language-only settings, while its application to VLMs remains limited.
 149 TITA extends this paradigm by introducing token-level, self-generated preference signals under
 150 visual grounding constraints, enabling effective modality alignment with efficiency and scalability.
 151

152 3 METHODS 153

154 In response to the inherent tendency of aligned VLMs to develop shallow heuristics rather than
 155 principled reasoning, we present a token-level preference optimization framework that fundamentally
 156 rethinks the alignment process.
 157

158 3.1 PREFERENCE DATASET CONSTRUCTION 159

160 In preference optimization, the dataset is a collection of quadruplets $\mathcal{D} = \{(q_n, I_n, y_w^n, y_l^n)\}_{n=1}^N$,
 161 where q_n is the input question, I_n is the associated image, y_w is the preferred response, and y_l is the
 162 less preferred one. Preferences are modeled with the Bradley–Terry (BT) formulation:
 163

$$p(y_w \succ y_l | q, I) = \frac{\exp(r(q, I, y_w))}{\exp(r(q, I, y_w)) + \exp(r(q, I, y_l))}, \quad (1)$$

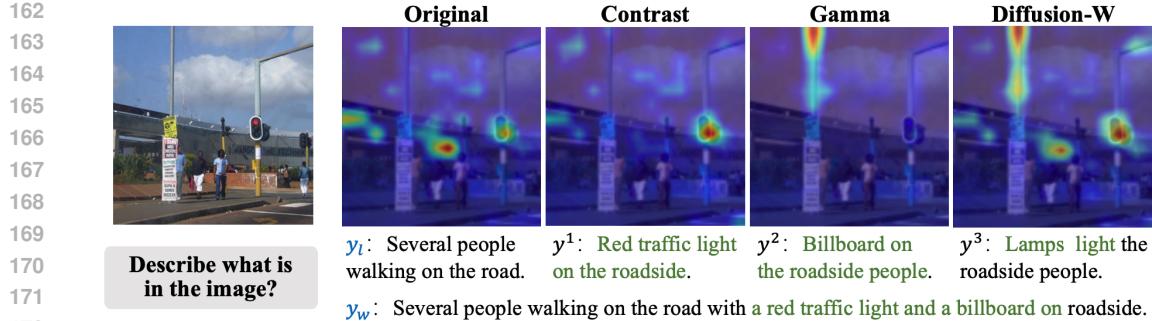


Figure 2: Attention visualization demonstrating how TITA enables holistic caption generation. The winner answer y_w is generated by fusing multiple responses obtained from augmented versions of the image, capturing more comprehensive and details compared to the original generation y_l .

where $r(q, I, y)$ is the reward score for response y conditioned on the input (q, I) . This formulation naturally captures our intuition that the winning answer should have a higher probability of being preferred, while maintaining a meaningful comparison with the competitive loser.

To construct more informative preference pairs, we leverage the diversity of model outputs generated under multiple image augmentations. Given an input (q, I) , we first obtain a baseline response from the original image:

$$y_l \leftarrow \pi_\theta(\cdot | q, I), \quad (2)$$

$$y^k \leftarrow \pi_\theta(\cdot | q, f_k(I)), \quad k \in [1, \dots, K], \quad (3)$$

$$y_w \leftarrow \pi_\theta(\cdot | \hat{y}^1 \| \hat{y}^2 \| \dots \| \hat{y}^K), \quad (4)$$

where f_k denotes the k -th image augmentation method, and y_l serves as the *loser* response. The responses $\{y^1, y^2, \dots, \hat{y}^K\}$ are concatenated along with a fusion prompt (e.g., “Please provide a comprehensive fusion based on the following candidate answers.”), and passed back into the model to generate a unified answer y_w , which serves as the *winner* response. This encourages alignment with responses that aggregate diverse visual cues across augmentations.

Figure 2 illustrates how different augmentations highlight distinct visual cues and lead to semantically richer descriptions. The fused output captures fine-grained elements (e.g., red traffic light, billboard) that are overlooked in the original response, validating the effectiveness of our augmentation-guided preference construction.

3.2 TOKEN-LEVEL REWARD MODEL

Let $y = (y_1, y_2, \dots, y_t)$ denote the output token sequence, where y_t is the token at position t , and $y_{<t}$ is the prefix. Then the autoregressive reward model assigns token-level rewards by modeling the log-likelihood of each token conditioned on the input and its prefix:

$$r(q, I, y) = \sum_t \pi_r(y_t | q, I, y_{<t}), \quad (5)$$

where $\pi_r(y_t | q, I, y_{<t})$ is a learnable distribution function. Generating the next token requires only one forward pass through the target and reward models. This is significantly faster than previous methods that require generating several candidate tokens, completing the full response for each, and then selecting the best next token. And we prove that this parameterization is sufficiently expressive to guide target LLMs to any distribution achievable by traditional reward models within the KL-regularized RL framework in Appendix A.

Unlike sequence-level reward models (Zhang et al., 2025), which compute next-token rewards by generating full responses following each next-token candidate and then evaluating them with the sequence-level reward model, our approach avoids this computational burden.

Training reward model on a preference dataset involves predicting token-level reward to ensure the sequence-level rewards align with the data, using a negative log-likelihood loss function as follows:

$$\mathcal{L}(\pi_r; \mathcal{D}_p) = -\mathbb{E}_{\mathcal{D}_p} \left[\log \sigma \left(\beta \sum_t \log \pi_r(y_{w,t} | q, I, y_{w,<t}) - \beta \sum_t \log \pi_r(y_{l,t} | q, I, y_{l,<t}) \right) \right], \quad (6)$$

216 3.3 INFERENCE-TIME GUIDANCE
217

218 In this section, we present our auto-regressive inference-time alignment method. In practical scenarios,
219 fine-tuning a smaller, typically weaker language model (e.g., 1B/7B) is often feasible, while fine-
220 tuning a larger, stronger model (e.g., 70B) may be impractical due to resource constraints. By leverag-
221 ing our proposed auto-regressive reward model, which predicts next-token rewards $\log \pi_r(y_t|q, I, y_{<t})$
222 in a manner similar to how language models predict next-token log probabilities, Equation 7 can be
223 interpreted as a form of controlled decoding from multiple models:

224
$$\log \pi(y|q, I) = -\log Z(q, I) + \sum_t \log \pi_\theta(y_t|q, I, y_{<t}) + \lambda \cdot \sum_t \log \pi_r(y_t|q, I, y_{<t}), \quad (7)$$

225

226 This formulation allows TITA to apply previous decoding techniques (Dekoninck et al., 2023) to
227 sample the next token y_t , conditioned on the query with image (q, I) and the partially generated
228 response $y_{<t}$, by computing the next-token conditional probability as follows:

229
$$\pi(y_t|q, I, y_{<t}) \propto \pi_\theta(y_t|q, I, y_{<t}) (\pi_r(y_t|q, I, y_{<t}))^\lambda. \quad (8)$$

230

233 **Algorithm 1** Token-level Inference-time Alignment

234 **Require:** Dataset with query prompts and images: $\mathcal{D} = \{(q_n, I_n)\}_{n=1}^N$; target model π_θ ; target
235 model tokenizer \mathcal{T}_θ ; reward model π_r ; reward model tokenizer \mathcal{T}_r ; alignment hyper-parameter β ;
236 inference query prompt and image: (q^*, I^*) ; number of output tokens T ; scaling factor λ ; Image
237 augmentation methods $\{f_k(\cdot)\}_{k=1}^K$, \mathbb{P} is the softmax-derived token probability distribution.
238 1: $\mathcal{D}_p \leftarrow \{\}$ // Construct preference dataset \mathcal{D}_p for reward model training.
239 2: **for** $n = 1, \dots, N$ **do**
240 3: **for** each augmentation methods $f_k(\cdot)$ **do**
241 4: $I_n^k \leftarrow f_k(I_n)$ // Augment images.
242 5: $\hat{y}_n^k \sim \pi_\theta(\cdot|q_n, I_n^k)$ // Generate candidate response from augmented input.
243 6: **end for**
244 7: $y_l^n \sim \pi_\theta(\cdot|q_n, I_n)$ // Loser response generated by the pretrained model.
245 8: $y_w^n \sim \text{Fusion}(\hat{y}_n^1, \hat{y}_n^2, \dots, \hat{y}_n^K)$ // Winner response generated from fusion candidate answers.
246 9: $\mathcal{D}_p \leftarrow \mathcal{D}_p \cup (q_n, I_n, y_w^n, y_l^n)$ // Adding the triplet to the preference dataset.
10: **end for**
247 11: // Training the auto-regressive reward model π_r .
248 12:
249
$$\min_{\pi_r} -\mathbb{E}_{(q, I, y_w, y_l) \sim \mathcal{D}_p} \left[\log \sigma \left(\beta \sum_t \log \pi_r(y_{w,t}|q, I, y_{w,<t}) - \beta \sum_t \log \pi_r(y_{l,t}|q, I, y_{l,<t}) \right) \right]$$

250
251 13: // Token-level reward guidance during inference stage.
252 14: **for** $t = 0, \dots, T - 1$ **do**
253 15: **if** $\mathcal{T}_r \neq \mathcal{T}_{\text{target}}$ **then**
254 16: $\mathbb{P}[\mathcal{T}_r(\mathcal{V})] \leftarrow \pi_r(y_t|q^*, I^*, y_{<t})$
255 17: // Logits mapping with top- k tokens.
256 18: $\mathcal{V}^{(k)} \leftarrow \text{top-}k \text{ tokens with highest likelihood}$
257 19: $\mathbb{P}[\mathcal{T}_\theta(\mathcal{V}^{(k)})] \leftarrow \mathbb{P}[\mathcal{T}_r(\mathcal{V}^{(k)})]$
258 20: $\pi_{\text{decode}}(y_t|q^*, I^*, y_{<t}) \leftarrow \pi_\theta(y_t|q^*, I^*, y_{<t}) (\mathbb{P}[\mathcal{T}_\theta(\mathcal{V}^{(k)})])^\lambda$
259 21: **else**
260 22: $\pi_{\text{decode}}(y_t|q^*, I^*, y_{<t}) \leftarrow \pi_\theta(y_t|q^*, I^*, y_{<t}) (\mathbb{P}[\mathcal{T}_r(\mathcal{V})])^\lambda$
261 23: **end if**
262 24: // Next predict token sampling:
263 25: $y_t \leftarrow \text{top-1 token from logits } \pi_{\text{decode}}(y_t|q^*, I^*, y_{<t})$
264 26: $y_{<t+1} \leftarrow y_{<t} \parallel y_t$
265 27: **end for**
266 **Ensure:** Generated response $y_{<t}$

267
268 Unlike training the reward model with DPO, where the reference policy (i.e., the target LLM) must
269 be pre-specified during training, TITA trains the autoregressive reward model without relying on

any specific target LLM during the training phase. This design allows the trained autoregressive reward model to be flexibly paired with different target LLMs during the inference stage, providing significant configurability. For instance, a smaller autoregressive reward model can guide a larger target LLM for weak-to-strong alignment. The key distinction lies in inference-time flexibility: DPO ties alignment to a specific target LLM chosen during training, whereas TITA decouples reward model training from the target LLM, enabling diverse and adaptable inference-time applications.

We illustrate the complete pipeline of TITA in Algorithm 1. After alignment with Equation 6, in each token generation step, if the reward model π_r and the target model π_θ have different tokenizers, we need to map the logits of π_r to the logits of π_θ . When mapping logits, we decode the top- k tokens with the highest probability from $\pi_r(y_t|q, I, y_{<t})$, and then use the tokenizer of the target model to encode these tokens and assign the corresponding probabilities. According to Equation 8, we obtain the output of the target model guided by the reward model. We select the token with the highest probability and repeat this process to generate the complete output.

4 EXPERIMENTS

4.1 SETTINGS

Implements Details. To align with previous preference-based approaches on hallucination mitigation, we take LLaVA-1.5-7B and 13B as the backbone models to validate the effectiveness of TITA. To evaluate the effectivenss of TITA on more advanced and powerful model, we implement TITA based on Qwen2.5-VL-7B-Instruct (Bai et al., 2025) and DeepSeek-VL2-27B (Wu et al., 2024c). And we use TinyLLaVA-1.5B (Zhou et al., 2024a) as the small reward model (Note that the source data obtained from the LLaVA665k SFT dataset (Liu et al., 2024a)). Specifically, image-question pairs from OCRVQA (Mishra et al., 2019) and TextVQA (Singh et al., 2019) (collectively referred to as “text+ocr”) within LLaVA665k are used to generate the DPO preference data. Following the settings of prior work (Liu et al., 2024a; Zhao et al., 2023), we take CLIP-VIT-L-336px as the vision encoder, the batch size is 128, and the learning rate is $2e^{-6}$. The default LoRA rank is set to 1024 and the scale parameter β in DPO is fixed at 0.1.

Baselines. We compare TITA with both training- and inference-time preference alignment methods. The training-time methods include Fact-RLHF, CSR, and SeVa. Fact-RLHF (Sun et al., 2023) employs reinforcement learning from human feedback to optimize the base model. CSR (Zhou et al., 2024c) proposes a calibrated self-rewarding strategy that iteratively improves the model by leveraging internally generated reward signals. SeVa (Zhu et al., 2024) also uses DPO for alignment but is limited by its reliance on comparisons between raw and enhanced visual outputs, restricting its ability to model deep semantic preferences. As for inference-time alignment, we consider Critic-V (Zhang et al., 2025), which adopts a Reasoner-Critic architecture: the Reasoner generates reasoning paths based on visual content and corresponding queries, while Critic offers real-time feedback to refine these reasoning trajectories. See the Appendix B.2 for more detailed methods.

Evaluation Benchmarks. We evaluate TITA using three categories of benchmarks: (1) *Comprehensive Evaluation*: SEED (Li et al., 2023b), LLaVA-Bench (Liu et al., 2024b), MMbench (Liu et al., 2025), MME (Yin et al., 2023), MMVet (Yu et al., 2023a). (2) *General Visual Question Answering (VQA)*: VisWiz (Gurari et al., 2018), GQA (Hudson & Manning, 2019), ScienceQA (Lu et al., 2022), MMStar (Chen et al., 2024b). (3) *Hallucination Detection*: CHAIR (Rohrbach et al., 2018) and POPE (Li et al., 2023d). More detailed information in Appendix B.1.

Table 1: Training cost and configurations of alignment methods evaluated on LLaVA-1.5-7B. For inference-time methods, cost refers to the training time of the reward model.

Methods	Alignment Stage	Optimization	Dataset	Training Target	Cost
Fact-RLHF (Sun et al., 2023)	Training-time	RLHF	Human-annotated	Pretrained Model	16.4h
CSR (Zhou et al., 2024c)	Training-time	DPO	Self-generated	Pretrained Model	6.8h
SeVa (Zhu et al., 2024)	Training-time	DPO	Self-generated	Pretrained Model	7.5h
Critic-V (Zhang et al., 2025)	Inference-time (Seq-L)	DPO	GPT-annotated	Reward Model	2.9h
TITA (Ours)	Inference-time	DPO	Self-generated	Reward Model	0.4h

Seq-L: Sequence-level reward, used to rank the score of each answer with a finetuned critic (reward) model.

324
 325 Table 2: Comparison of TITA and competing alignment methods on LLaVA-1.5-7B and 13B models
 326 across vision-language evaluation benchmarks. \downarrow indicates lower is better.

Model	MME ^P	MME ^C	SEED	LLaVA ^W	MMVet	MMB	SQA	GQA	VisWiz	CHAIR _s \downarrow	CHAIR _i \downarrow	POPE
<i>Base Model: LLaVA-1.5-7B</i>												
Base	1510.7	348.2	58.6	63.4	30.5	64.3	66.8	62.0	50.0	48.8	14.9	85.9
+ Fact-RLHF (Sun et al., 2023)	1490.6	335.0	58.1	63.7	31.4	63.4	65.8	61.3	51.7	38.7	11.3	81.5
+ CSR (Zhou et al., 2024c)	1524.2	367.9	60.3	71.1	33.9	65.5	70.7	62.3	54.1	21.0	6.0	86.8
+ SeVa (Zhu et al., 2024)	1531.0	369.2	65.8	72.2	37.2	65.7	67.5	60.7	51.5	20.5	5.8	86.7
+ Critic-V (Zhang et al., 2025)	1528.4	355.0	63.4	67.8	35.7	64.0	66.5	59.4	51.0	26.8	7.9	86.5
+ TITA (Ours)	1538.4	369.5	66.6	72.5	39.1	65.5	70.7	62.3	54.8	20.3	5.6	91.7
<i>Base Model: LLaVA-1.5-13B</i>												
Base	1531.3	295.4	61.6	70.7	35.4	67.7	71.6	63.3	53.6	48.3	14.1	85.9
+ Fact-RLHF (Sun et al., 2023)	1494.2	310.4	60.7	64.9	32.6	64.7	68.2	62.8	54.5	41.2	13.7	86.7
+ CSR (Zhou et al., 2024c)	1530.6	303.9	62.9	74.7	37.8	68.8	75.1	63.7	56.8	28.0	7.3	87.3
+ SeVa (Zhu et al., 2024)	1533.9	305.1	68.6	80.1	41.0	68.7	71.2	63.4	54.7	23.6	6.5	87.4
+ Critic-V (Zhang et al., 2025)	1529.5	307.1	64.1	68.8	39.2	66.7	67.0	60.2	52.5	26.0	7.4	80.1
+ TITA (Ours)	1540.0	309.5	68.6	80.5	42.3	68.2	71.8	63.9	55.2	23.5	6.6	92.6

4.2 COMPARISON WITH STATE OF THE ART

341
 342 **Better efficiency.** Table 1 shows the extremely low training cost of TITA. Compared with training-
 343 time alignment, such as Fact-RLHF (Sun et al., 2023), CSR (Zhou et al., 2024c), and SeVa (Zhu
 344 et al., 2024), TITA only needs to train the small reward model (only 1.5B in our experiment setting).
 345 Compared with sequence-level inference-time alignment, such as Critic-V (Zhang et al., 2025),
 346 TITA does not need to rank each answer, but directly assists the pretrained model to infer the next
 347 token, which greatly improves efficiency.

348
 349 **Better effectiveness.** To comprehensively evaluate the effectiveness of our proposed alignment strat-
 350 egy, we compare TITA with several SOTA baselines. The results in Table 2 illustrate that TITA con-
 351 sistently outperforms baseline models across multiple benchmarks, highlighting its strengths in
 352 various vision-language tasks. Across MMVet and MMBench, TITA achieved superior overall
 353 scores regardless of model size, with specific scoring details in the Appendix 5. In the 7B setting, it
 354 attains an “All” score of 39.1% on MMVet, surpassing SeVa (37.2%) and CSR (33.9%). This trend
 355 continues in the 13B setting, where TITA maintains its lead with an “All” score of 42.3%. The
 356 consistently better performance across different scales suggests that the proposed alignment strategy
 357 is not only effective but also scalable, offering robust enhancements to the model’s comprehension
 358 abilities as capacity increases. Further analysis in Appendix B.3 further shows that TITA explicitly
 359 strengthens visual grounding in the middle layers, thereby mitigating hallucination by preventing the
 360 model from over-relying on linguistic priors.

361
 362 **Generality to recent VLMs.** To examine
 363 whether the effectiveness of TITA extends
 364 beyond LLaVA, we further evaluate it on
 365 more recent LVLMs, including Qwen2.5-VL-
 366 7B-Instruct and DeepSeek-VL2-27B. For com-
 367 parison, we adopt Critic-V (Zhang et al., 2025)
 368 as the representative sequence-level inference-
 369 time alignment baseline, since it is among the
 370 most competitive and widely adopted decod-
 371 ing strategies in recent literature. As shown in
 372 Table 3, while Critic-V substantially improves
 373 alignment at the cost of high inference latency, TITA
 374 achieves even stronger hallucination reduc-
 375 tion and VQA gains with negligible overhead.
 376 These results demonstrate that token-level reward
 377 guidance not only generalizes well to modern VLMs but also provides a more efficient alternative to
 378 state-of-the-art sequence-level inference-time methods.

379
 380 **Comparison with alternative decoding methods.** We also compare TITA with representative
 381 inference-time decoding methods, including VCD (Leng et al., 2024), M3ID (Favero et al., 2024),
 382 and MARINE (Zhao et al., 2024). While these approaches adjust logits through heuristic probability

383 Table 3: Performance of TITA on recent VLMs.

Model	Inference Time	CHAIR _s \downarrow	CHAIR _i \downarrow	POPE	MMVet
<i>Base Model: Qwen2.5-VL-7B-Instruct</i>					
Base	1.2s	37.1	9.4	91.3	61.8
+ Critic-V	7.9s	18.1	6.0	95.9	64.4
+ TITA (Ours)	1.4s	10.5	3.8	96.1	65.0
<i>Base Model: DeepSeek-VL2-27B</i>					
Base	3.9s	41.3	11.7	88.8	52.8
+ Critic-V	23.5s	16.7	8.3	94.1	56.0
+ TITA (Ours)	4.2s	12.5	4.9	94.7	57.3

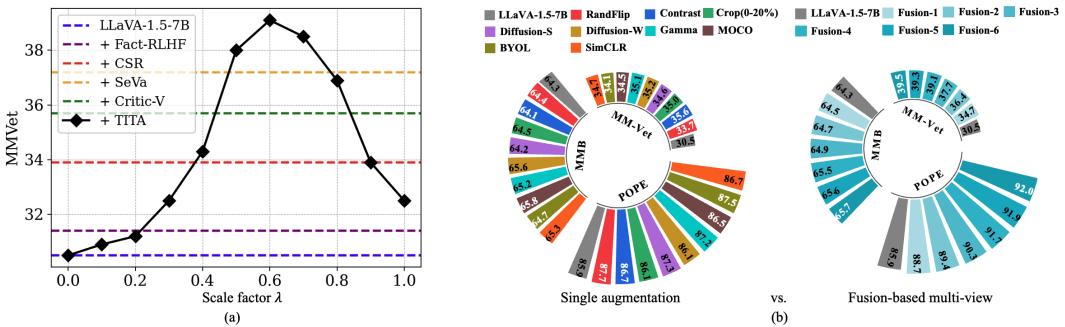


Figure 3: **Ablation studies on reward integration and reward modeling:** (a) MMVet accuracy under different scale factor λ in Equation 8. TITA achieves optimal performance at $\lambda = 0.6$. (b) Comparison of single-view versus fusion-based reward modeling. Fusion-based multi-view preference construction consistently improves performance across MMVet, MMB, and POPE benchmarks.

combinations, TITA provides reward-guided token-level alignment. TITA achieves consistently stronger results across hallucination and reasoning benchmarks, more detailed in Appendix B.2.

4.3 ABLATIONS

Ablation of scale factor λ . Figure 3(a) reports the effect of λ on MMVet. The black diamonds denote our method, and the dashed curves correspond to baseline results. As λ increases from 0 to 0.6, MMVet improves from 30.3% to 39.0%, yielding a gain of 8.7 percentage points. At the optimal value $\lambda=0.6$, TITA surpasses the strongest baseline (SeVa) by about 1.6%, and exceeds Critic-V, CSR, Fact-RLHF, and the LLaVA-1.5-7B base model by 3.2%, 5.1%, 7.6%, and 8.7%, respectively. When λ continues to increase, performance declines, likely because excessive reliance on the reward model reduces generation diversity or fluency. These results indicate that moderate values of λ (approximately 0.5 to 0.7) strike a favorable balance between preference alignment and generation quality. Consistency of the peak region across tasks, as shown in Appendix C, further indicates that λ is not highly sensitive and transfers reliably across evaluation settings.

Ablation of reward model. We assess the reward modeling strategy through two settings: (1) constructing preference pairs using a single image augmentation, and (2) constructing winners via our fusion-based approach. The left panel of Figure 3(b) shows that using a single augmentation (e.g., *RandFlip*, *Contrast*) leads to modest gains over the baseline—for example, *Contrast* and *Diffusion-W* improve MMVet by 3.1% and 2.7%. Although these augmentations provide useful preference signals, their limited semantic variation yields inconsistent improvements on MMB and POPE. In contrast, the right panel of Figure 3(b) shows that our fusion-based construction, which aggregates multiple augmented responses into a stronger winner, yields consistent improvements across benchmarks. As the number of fused responses increases (from *Fusion-1* to *Fusion-6*), performance steadily rises, reaching gains up to 8.6% on MMVet and 6.7% on POPE. These findings demonstrate the importance of stronger contrastive pairs and validate the effectiveness of multi-view fusion for reward modeling.

Quantitative validation of y_w . To further verify the superiority of fusion-based winners (y_w) over original responses (y_l), we use GPT-4o-2024-08-06 as the evaluator. Evaluation sets are constructed from TextVQA and OCRVQA, where each (I, q) is paired with y_w and y_l . As shown in Table 4, y_w achieves significantly higher win rates (97.3% on TextVQA, 85.1% on OCRVQA), while y_l is rarely preferred. These results provide strong quantitative evidence for adopting y_w as the preferred winner in reward modeling.

Table 4: Quantitative comparison between fusion-based winners (y_w) and original responses (y_l).

Dataset	y_w win rate	y_l win rate	Tie rate
TextVQA	97.30%	0.44%	2.26%
OCRQVA	85.12%	2.95%	11.93%

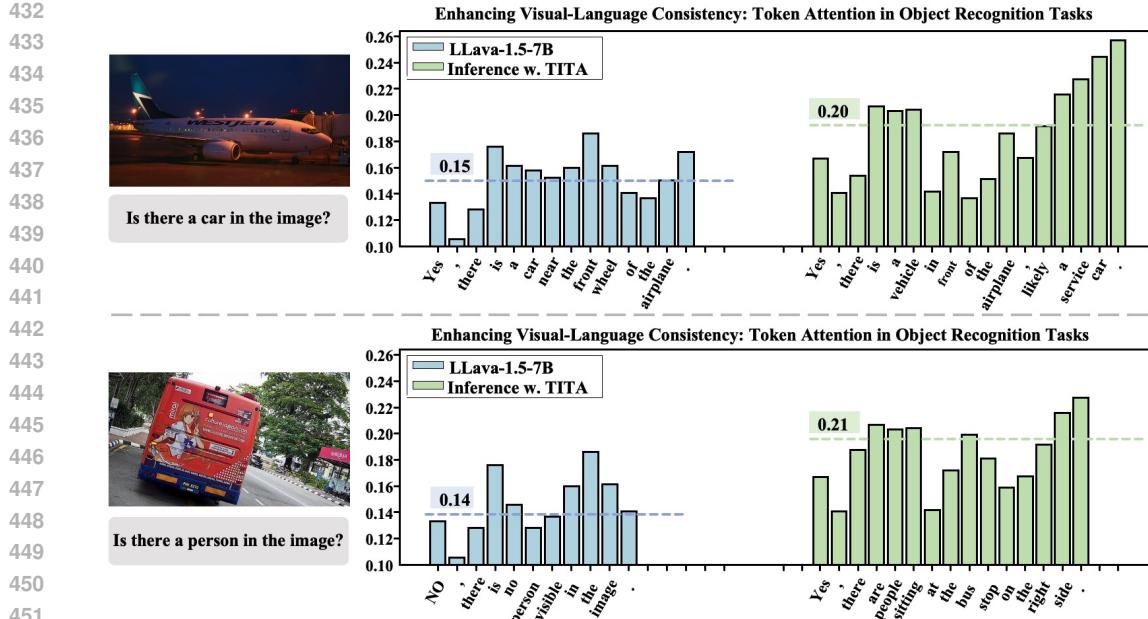


Figure 4: Visualization of response-token attention over visual features on the POPE benchmark. Compared to the baseline LLaVA-1.5-7B, TITA-guided inference produces higher and more focused attention weights on visually grounded tokens.

4.4 GENERATION EXAMPLES

To qualitatively assess the alignment improvements of TITA, we provide comparative generation examples in hallucination-prone scenarios. Figure 4 compares outputs from the baseline LLaVA-1.5-7B and the same model with TITA-guided inference on the POPE benchmark. The baseline often generates descriptions that reference objects or attributes absent from the input image, whereas the TITA-guided output remains consistent with the visual evidence, illustrating improved grounding.

To further understand this effect, we visualize response-token attention over visual features. The baseline shows diffuse or irrelevant attention, frequently neglecting salient regions of the image. In contrast, TITA yields sharper and semantically aligned attention distributions, suggesting stronger integration of visual cues into the decoding process. These qualitative observations complement the quantitative results in Section 4.2, demonstrating that TITA can reduce hallucinations and strengthen visual grounding at a fine-grained level without requiring original model retraining.

5 CONCLUSION

We introduced TITA, a lightweight inference-time framework for token-level alignment in VLMs. Unlike training-time alignment, it does not require finetuning or modifying the base model, and unlike supervised approaches, it avoids reliance on human-labeled token-level data. Instead, TITA transforms sparse sequence-level rewards into dense autoregressive signals, enabling fine-grained hallucination suppression directly during decoding. This is achieved by deriving implicit preference signals from log-probability ratios between a reward model and the target model, with a token-mapping mechanism ensuring compatibility across heterogeneous tokenizers. Experiments on three representative LLM families (LLaVA, Qwen2.5-VL, DeepSeek-VL2) and twelve benchmarks demonstrate that TITA consistently reduces hallucinations, improves multimodal reasoning accuracy, and maintains low computational cost. Taken together, these results establish token-level inference-time alignment as an efficient and scalable paradigm for building reliable VLMs.

Limitations. While TITA relies on a reward model, we explicitly mitigate bias through log-probability ratio calibration and self-supervised preference construction, and the consistent improvements across 12 benchmarks indicate that residual bias has minimal practical impact.

486 REFERENCES
487

488 Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,
489 Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a
490 new era in vision: a survey and outlook. *IEEE Transactions on Pattern Analysis and Machine
491 Intelligence*, 2025.

492 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
493 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
494 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
495 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
496 <https://arxiv.org/abs/2502.13923>.

497 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
498 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
499 2024.

500 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Chen, Xidong
501 Wang, Zhenyang Cai, Ke Ji, Xiang Wan, et al. Towards injecting medical visual knowledge into
502 multimodal llms at scale. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
503 Language Processing*, pp. 7346–7370, 2024a.

504 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
505 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
506 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024b.

507 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
508 contrastive learning of visual representations. In *International conference on machine learning*, pp.
509 1597–1607. PMLR, 2020.

510 Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
511 converts weak language models to strong language models. *arXiv preprint arXiv:2401.01335*,
512 2024c.

513 Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, and Ser-Nam Lim. On the robustness of
514 large multimodal models against image adversarial attacks. In *Proceedings of the IEEE/CVF
515 Conference on Computer Vision and Pattern Recognition*, pp. 24625–24634, 2024.

516 Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled text generation
517 via language model arithmetic. *arXiv preprint arXiv:2311.14479*, 2023.

518 Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, Quanquan Gu, James Y Zou, Kai-Wei Chang, and
519 Wei Wang. Enhancing large vision language models with self-training on image comprehension.
520 *Advances in Neural Information Processing Systems*, 37:131369–131397, 2024.

521 Yi Ding and Ruqi Zhang. Sherlock: Self-correcting reasoning in vision-language models. *arXiv
522 preprint arXiv:2505.22651*, 2025.

523 Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei
524 Liu. Insight-v: Exploring long-chain visual reasoning with multimodal large language models. In
525 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 9062–9072, 2025.

526 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
527 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control
528 by visual information grounding. In *Proceedings of the IEEE/CVF Conference on Computer Vision
529 and Pattern Recognition*, pp. 14303–14312, 2024.

530 Deqing Fu, Tong Xiao, Rui Wang, Wang Zhu, Pengchuan Zhang, Guan Pang, Robin Jia, and Lawrence
531 Chen. Tldr: Token-level detective reward model for large vision language models. *arXiv preprint
532 arXiv:2410.04734*, 2024.

533 Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
534 Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
535 transformation. In *European Conference on Computer Vision*, pp. 388–404. Springer, 2024.

540 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 541 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 542 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*
 543 *information processing systems*, 33:21271–21284, 2020.

544
 545 Jiawei Guo, Tianyu Zheng, Yizhi Li, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Graham Neubig,
 546 Wenhui Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction
 547 tuning at scale. In *Proceedings of the 63rd Annual Meeting of the Association for Computational*
 548 *Linguistics (Volume 1: Long Papers)*, pp. 13869–13920, 2025.

549 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 550 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
 551 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
 552 2018.

553 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 554 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 555 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

556
 557 Wen Huang, Hongbin Liu, Minxin Guo, and Neil Zhenqiang Gong. Visual hallucinations of multi-
 558 modal large language models. *arXiv preprint arXiv:2402.14683*, 2024.

559 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 560 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 561 *vision and pattern recognition*, pp. 6700–6709, 2019.

562
 563 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 564 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 565 *arXiv:2410.21276*, 2024.

566
 567 Janak Kapuriya, Chhavi Kirtani, Apoorv Singh, Jay Saraf, Naman Lal, Jatin Kumar, Adarsh Raj
 568 Shivam, Astha Verma, Avinash Anand, and Rajiv Ratn Shah. Mm-phyrlhf: Reinforcement learning
 569 framework for multimodal physics question-answering. *arXiv preprint arXiv:2404.12926*, 2024.

570 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 571 Mitigating object hallucinations in large vision-language models through visual contrastive decod-
 572 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 573 pp. 13872–13882, 2024.

574
 575 Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
 576 Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-
 577 language models on natural adversarial samples. *arXiv preprint arXiv:2410.14669*, 2024.

578 Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan Li, and
 579 Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. *arXiv preprint arXiv:2306.05425*,
 580 2023a.

581
 582 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 583 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 584 2023b.

585
 586 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 587 pre-training with frozen image encoders and large language models. In *International conference*
 588 *on machine learning*, pp. 19730–19742. PMLR, 2023c.

589
 590 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 591 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023d.

592
 593 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 594 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision-
 595 ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
 596 Part V 13*, pp. 740–755. Springer, 2014.

594 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 595 *neural information processing systems*, 36:34892–34916, 2023.
 596

597 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 598 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 599 pp. 26296–26306, 2024a.

600 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 601 *neural information processing systems*, 36, 2024b.
 602

603 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 604 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 605 In *European Conference on Computer Vision*, pp. 216–233. Springer, 2025.
 606

607 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 608 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 609 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 610 2022.

611 Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
 612 question answering by reading text in images. In *2019 international conference on document*
 613 *analysis and recognition (ICDAR)*, pp. 947–952. IEEE, 2019.
 614

615 Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-
 616 Burch, and Sepp Hochreiter. Large language models can self-improve at web agent tasks. *arXiv*
 617 *preprint arXiv:2405.20309*, 2024.

618 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 619 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 620 *in Neural Information Processing Systems*, 36, 2024.
 621

622 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
 623 Jin. Pixellm: Pixel reasoning with large multimodal model. In *Proceedings of the IEEE/CVF*
 624 *Conference on Computer Vision and Pattern Recognition*, pp. 26374–26383, 2024.
 625

626 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 627 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.
 628

629 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 630 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 631 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
 632

633 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
 634 Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference*
 635 *on computer vision and pattern recognition*, pp. 8317–8326, 2019.
 636

637 Linzhuang Sun, Hao Liang, Jingxuan Wei, Bihui Yu, Tianpeng Li, Fan Yang, Zenan Zhou, and
 638 Wentao Zhang. Mm-verify: Enhancing multimodal reasoning with chain-of-thought verification.
 639 *arXiv preprint arXiv:2502.13383*, 2025.
 640

641 Shenghuan Sun, Alexander Schubert, Gregory M Goldgof, Zhiqing Sun, Thomas Hartvigsen, Atul J
 642 Butte, and Ahmed Alaa. Dr-llava: Visual instruction tuning with symbolic clinical grounding.
 643 *arXiv preprint arXiv:2405.19567*, 2024.
 644

645 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 646 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 647 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.
 648

649 Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing
 650 Xiong, Yi Xin, Yifan Jiang, et al. Srpo: Enhancing multimodal llm reasoning via reflection-aware
 651 reinforcement learning. *arXiv preprint arXiv:2506.01713*, 2025.
 652

648 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 649 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 650 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

651

652 Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong
 653 Zhang, and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models. *arXiv*
 654 *preprint arXiv:2410.12735*, 2024b.

655

656 Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, ZhaoYang Liu, Zhe Chen, Wenhai Wang, Xizhou
 657 Zhu, Lewei Lu, Tong Lu, et al. Visionlm v2: An end-to-end generalist multimodal large language
 658 model for hundreds of vision-language tasks. *Advances in Neural Information Processing Systems*,
 37:69925–69975, 2024a.

659

660 Jinge Wu, Yunsoo Kim, and Honghan Wu. Hallucination benchmark in medical visual question
 661 answering. *arXiv preprint arXiv:2401.05827*, 2024b.

662

663 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 664 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 665 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024c.

666

667 Tianyi Xiong, Xiayao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang,
 668 and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. *arXiv preprint*
 669 *arXiv:2410.02712*, 2024.

670

671 Siming Yan, Min Bai, Weifeng Chen, Xiong Zhou, Qixing Huang, and Li Erran Li. Vigor: Improving
 672 visual grounding of large vision language models with fine-grained reward modeling. In *European
 673 Conference on Computer Vision*, pp. 37–53. Springer, 2024.

674

675 Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
 676 Pengcheng Shi, Yaya Shi, et al. Mplug-owl: Modularization empowers large language models with
 677 multimodality. *arXiv preprint arXiv:2304.14178*, 2023.

678

679 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 680 multimodal large language models. *arXiv preprint arXiv:2306.13549*, 2023.

681

682 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
 683 Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
 684 from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on
 685 Computer Vision and Pattern Recognition*, pp. 13807–13816, 2024.

686

687 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 688 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
 689 *preprint arXiv:2308.02490*, 2023a.

690

691 Xiaotian Yu, Yang Jiang, Tianqi Shi, Zunlei Feng, Yuexuan Wang, Mingli Song, and Li Sun. How
 692 to prevent the continuous damage of noises to model training? In *Proceedings of the IEEE/CVF
 693 Conference on Computer Vision and Pattern Recognition*, pp. 12054–12063, 2023b.

694

695 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
 696 Weston. Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 2024.

697

698 Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo
 699 Ma, Haodong Duan, Wenwei Zhang, et al. Internlm-xcomposer2. 5-reward: A simple yet effective
 700 multi-modal reward model. *arXiv preprint arXiv:2501.12368*, 2025.

701

702 Di Zhang, Jingdi Lei, Junxian Li, Xunzhi Wang, Yujie Liu, Zonglin Yang, Jiatong Li, Weida Wang,
 703 Suorong Yang, Jianbo Wu, et al. Critic-v: Vlm critics help catch vlm errors in multimodal reasoning.
 704 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 9050–9061, 2025.

705

706 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 707 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

708

709 Linxi Zhao, Yihe Deng, Weitong Zhang, and Quanquan Gu. Mitigating object hallucination in large
 710 vision-language models via image-grounded guidance. *arXiv preprint arXiv:2402.08680*, 2024.

702 Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond
703 hallucinations: Enhancing lylms through hallucination-aware direct preference optimization. *arXiv*
704 *preprint arXiv:2311.16839*, 2023.

705 Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
706 A framework of small-scale large multimodal models. *arXiv preprint arXiv:2402.14289*, 2024a.

708 Xiongtao Zhou, Jie He, Yuhua Ke, Guangyao Zhu, Víctor Gutiérrez-Basulto, and Jeff Z Pan. An
709 empirical study on parameter-efficient fine-tuning for multimodal large language models. *arXiv*
710 *preprint arXiv:2406.05130*, 2024b.

711 Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao Wang,
712 Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models. *arXiv*
713 *preprint arXiv:2405.14622*, 2024c.

715 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
716 hancing vision-language understanding with advanced large language models. *arXiv preprint*
717 *arXiv:2304.10592*, 2023.

718 Ke Zhu, Liang Zhao, Zheng Ge, and Xiangyu Zhang. Self-supervised visual preference alignment.
719 In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 291–300, 2024.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A THEORETICAL JUSTIFICATION FOR LOG-PROBABILITY REWARD IN VLMs
757

758 In this subsection, we provide a theoretical justification for using the log-probability form $\log \pi_r(y | q, I)$
759 as a general parameterization of reward functions in preference-based learning for VLM. Here,
760 the input $x = (q, I)$ encodes a query prompt q and a corresponding image I . Modeling reward
761 in this multimodal context poses unique challenges due to the entangled semantics of linguistic
762 and visual inputs. We demonstrate that, under the Plackett-Luce model and its special case, the
763 Bradley-Terry model, the log-likelihood $\log \pi_r(y | q, I)$ retains the full representational capacity of
764 the reward function class—up to an equivalence relation that preserves both preference structures and
765 the resulting optimal policy.

766 **Theorem I.** Let \mathcal{R} denote the class of reward functions consistent with the Plackett-Luce model
767 over multimodal input (q, I) . Then, for every $r \in \mathcal{R}$, there exists a probability distribution $\pi_r(y | q, I)$
768 such that the log-probability reward $\log \pi_r(y | q, I)$ belongs to the same preference equivalence class
769 as r . Moreover, this parameterization is unique within each equivalence class.
770

771 This result implies that using the autoregressive likelihood $\log \pi_r(y | q, I)$ as a surrogate reward
772 function in VLMs is not merely an approximation but a complete and expressive formulation under the
773 Plackett-Luce framework. Despite the complexity of multimodal grounding—where visual evidence
774 and linguistic instructions jointly influence the response—the log-probability form preserves the full
775 range of expressible preferences encoded by reward functions in \mathcal{R} .

776 To formalize this claim, we first define equivalence classes of reward functions based on the preference
777 distributions they induce.
778

779 **Lemma.** (Adapted from (Rafailov et al., 2024)) Under the Plackett-Luce or Bradley-Terry model,
780 two reward functions $r_1(q, I, y)$ and $r_2(q, I, y)$ are equivalent if they induce the same pairwise
781 preference probabilities over responses:

$$782 \quad P(y \succ y' | q, I) = \frac{\exp(r(q, I, y))}{\exp(r(q, I, y)) + \exp(r(q, I, y'))}$$

785 Furthermore, any pair of equivalent reward functions leads to the same optimal policy in constrained
786 reinforcement learning settings.

787 *Proof.* Let $r(q, I, y) \in \mathcal{R}$ be an arbitrary reward function. Define its normalized variant via the
788 softmax transformation:
789

$$790 \quad \hat{r}(q, I, y) := \log \frac{\exp(r(q, I, y))}{\sum_z \exp(r(q, I, z))} = r(q, I, y) - \log \sum_z \exp(r(q, I, z))$$

792 The corresponding conditional distribution is:
793

$$794 \quad \pi_r(y | q, I) = \frac{\exp(r(q, I, y))}{\sum_z \exp(r(q, I, z))},$$

796 and hence $\log \pi_r(y | q, I) = \hat{r}(q, I, y)$.
797

798 We now show that $\hat{r}(q, I, y)$ and $r(q, I, y)$ belong to the same preference equivalence class. Observe
799 that the transformation introduces only a constant shift:

$$800 \quad r(q, I, y) - \hat{r}(q, I, y) = \log \sum_z \exp(r(q, I, z)),$$

802 which is independent of y . Therefore, the pairwise preference between any two outputs remains
803 unchanged:
804

$$805 \quad \frac{\exp(r(q, I, y))}{\exp(r(q, I, y)) + \exp(r(q, I, y'))} = \frac{\exp(\hat{r}(q, I, y))}{\exp(\hat{r}(q, I, y)) + \exp(\hat{r}(q, I, y'))}.$$

808 Since the preference structure is preserved, the same ranking over outputs is induced, and thus
809 the same optimal policy is obtained when optimizing under such preferences. This confirms that
log $\pi_r(y | q, I)$ is a faithful representative of the equivalence class defined by $r(q, I, y)$. \square

810 **Theorem II.** All reward equivalence classes can be represented with the parameterization
 811 $\log \pi_r(y|q, I)$ for some probability distribution $\pi_r(y|q, I)$.
 812

813 *Proof Sketch.* Take any reward function $r(q, I, y)$. Consider the following reward function
 814

$$815 \quad \hat{r}(q, I, y) := \log \frac{\exp r(q, I, y)}{\sum_z \exp r(q, I, z)}.$$

816 First, $\hat{r}(q, I, y)$ is consistent with the parameterization $\log \pi_r(y|q, I)$ with $\pi_r(y|q, I) =$
 817 $\frac{\exp r(q, I, y)}{\sum_z \exp r(q, I, z)}$. Second, since $r(q, I, y) - \hat{r}(q, I, y) = \log \sum_z \exp r(q, I, z)$ does not depend of
 818 y , $\hat{r}(q, I, y)$ and $r(q, I, y)$ are equivalent. Therefore, $\hat{r}(q, I, y)$ is a member of the equivalence class
 819 of $r(q, I, y)$ with the desired form, and we do not lose any generality in our reward model from the
 820 proposed parameterization. \square
 821

824 B EXPERIMENTAL DETAILS

825 B.1 EVALUATION BENCHMARKS

826 LLaVA-Bench (In the wild) (Liu et al., 2024b): A challenging benchmark of 60 diverse tasks de-
 827 signed to evaluate models in naturalistic settings. It specifically tests visual instruction-following and
 828 question-answering capabilities in real-world scenarios, offering insights into practical applicability.

829 MM-Vet (Yu et al., 2023a): A comprehensive evaluation suite comprising 128 diverse tasks that assess
 830 six core visual-language capabilities. This benchmark uniquely combines mathematical reasoning,
 831 logical inference, and visual knowledge understanding, providing a rigorous test of multi-modal
 832 comprehension.

833 MM-Bench (Liu et al., 2025): A large-scale multi-modal benchmark with 4.7K samples, focusing on
 834 visual knowledge and reasoning capabilities. This dataset provides a balanced assessment of both
 835 factual knowledge and analytical reasoning in multi-modal contexts.

836 POPE (Li et al., 2023d): A specialized benchmark containing 8,440 samples designed to evaluate
 837 model hallucination. It specifically tests models' ability to provide accurate Yes/No responses about
 838 object presence in images, serving as a critical measure of visual grounding reliability.

839 MME (Yin et al., 2023): A benchmark with 14 tasks assessing perception and cognition in LVLMs,
 840 challenging interpretative and analytical skills.

841 SEED (Li et al., 2023b): A benchmark designed to evaluate the generative comprehension capabilities
 842 of large vision-language models (LVLMs). It includes an extensive dataset of 19K multiple-choice
 843 questions with precise human annotations, spanning 12 distinct evaluation dimensions that cover both
 844 spatial and temporal understanding across image and video modalities.

845 ScienceQA (Lu et al., 2022): A multimodal benchmark crafted to evaluate and diagnose the multi-
 846 hop reasoning abilities and interpretability of AI systems within the science domain. It features
 847 an extensive dataset of approximately 21k multiple-choice questions, spanning a broad spectrum
 848 of scientific topics and supplemented with detailed answer annotations, associated lectures, and
 849 explanations.

850 GQA (Hudson & Manning, 2019): A dataset specifically engineered for advanced real-world vi-
 851 sual reasoning, utilizing scene graph-based structures to generate 22 million diverse, semantically-
 852 programmed questions. It incorporates novel evaluation metrics focusing on consistency, grounding,
 853 and plausibility, thereby establishing a rigorous standard for vision-language task assessment.

854 VisWiz (Gurari et al., 2018): A visual question answering (VQA) dataset derived from naturalistic
 855 settings, featuring over 31,000 visual questions. It is distinguished by its goal-oriented approach,
 856 with images captured by blind individuals and accompanied by their spoken queries, along with
 857 crowdsourced answers.

858 MMStar (Chen et al., 2024b): A benchmark of 1,500 test samples designed to address issues of low
 859 vision-language alignment and potential training-data leakage. It is carefully curated and spans 6
 860 core capability areas and 18 fine-grained evaluation axes.

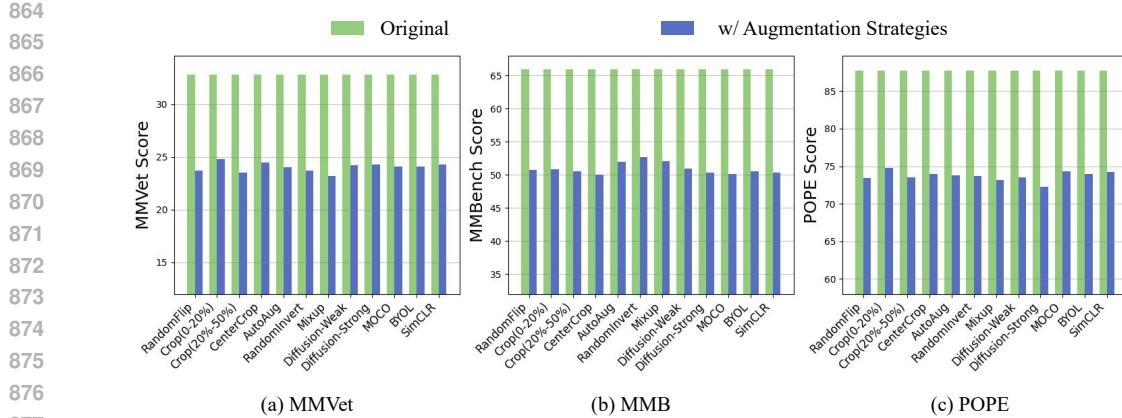


Figure 5: Comparison of 12 data augmentation strategies applied to LLaVA-1.5, including various geometric and color transformations as well as contrast learning enhancement methods. By analyzing these methods, the goal is to find the combination that best improves the performance of LVLMs.

CHAIR (Rohrbach et al., 2018): A well-established benchmark for evaluating object hallucination in image captioning tasks, with two variants: CHAIR_i and CHAIR_s , which assess hallucination at the instance and sentence levels, respectively. we randomly sampled 500 images from the COCO (Lin et al., 2014) validation set and evaluated object hallucination using the CHAIR metric. Note that a lower CHAIR score indicates fewer hallucinations, which implies better alignment between the captions and the actual content of the images.

$$\text{CHAIR}_i = \frac{\text{Number of hallucinated objects}}{\text{Number of all mentioned objects}},$$

$$\text{CHAIR}_s = \frac{\text{Number of captions with hallucinated objects}}{\text{Number of all captions}}.$$

B.2 EXPERIMENTAL SETUP

Image augmentation strategies We implement three effective image-side augmentation strategies to generate diverse responses from our model. By applying these techniques to the original images, we produce multiple distinct responses which are then synthesized into a comprehensive final output. This approach enhances model robustness by introducing controlled variations in visual input while maintaining semantic consistency. The augmentation strategies include:

- $\text{Crop}(s_{\min}, s_{\max})$: Crop the image from minimum scale to the maximum scale ($s_{\min} = 0.2$, $s_{\max} = 0.5$ in our paper).
- Diffusion-S (Strong): Applies gaussian noise with 500 diffusion steps, creating significant but controlled perturbation.
- Diffusion-W (Weak): Introduces gaussian noise with 200 diffusion steps, offering a more moderate level of visual distortion.
- Contrast: Enhances image contrast by a factor of 2, accentuating visual boundaries and feature differences.
- Gamma: Performs gamma correction at a value of 0.8, lightening dark regions in the image. (Note that gamma values above 1 make shadows darker, while values below 1 make dark regions lighter).

Impact with Augmentation Strategies To assess the impact of augmentation strategies, we analyzed 12 widely used techniques (Chen et al., 2020; Grill et al., 2020; He et al., 2020) (Figure 5). We found that overly aggressive methods (e.g., strong diffusion noise) hindered feature learning, while overly simple ones (e.g., random flipping) offered limited gains. Accordingly, we adopted a balanced combination of three effective augmentations with the original images.

918
 919 Table 5: Performance breakdown on MMVet, MMBench, and POPE benchmarks, covering subskills,
 920 multilingual understanding, and hallucination robustness.

Model	MMVet						MMBench			POPE			
	All	rec	ocr	know	gen	spat	math	en	cn	All	rand	pop	adv
LLaVA-1.5-7B	30.5	35.7	21.9	17.7	19.7	24.7	7.7	64.3	58.3	85.9	89.5	86.7	81.7
+ Fact-RLHF	31.4	36.5	22.7	18.1	20.9	32.3	7.7	63.4	56.8	81.5	86.5	83.9	83.0
+ CSR	33.9	37.2	23.3	21.9	24.5	27.7	7.7	65.5	59.4	86.8	89.4	87.4	83.6
+ SeVa	37.2	40.2	29.9	21.8	23.9	34.3	7.7	65.6	59.2	86.7	89.4	87.1	83.6
+ Critic-V	35.7	37.6	28.1	21.0	22.5	28.5	7.7	64.0	58.5	86.5	88.1	86.4	83.5
+ TITA (Ours)	39.1	44.8	31.2	30.7	34.5	36.0	7.7	65.5	59.2	91.7	92.6	93.0	90.2
LLaVA-1.5-13B	35.4	38.9	32.2	23.3	24.8	29.7	24.8	67.7	63.6	85.9	89.6	86.5	82.0
+ Fact-RLHF	32.6	41.2	28.9	22.8	23.7	34.1	25.2	64.7	58.0	86.7	89.4	87.5	82.5
+ CSR	37.8	41.0	32.5	24.6	30.1	32.8	24.8	68.8	64.5	87.3	89.4	88.1	82.2
+ SeVa	41.0	45.4	32.8	32.4	36.7	37.0	25.4	68.7	64.8	87.4	90.5	89.0	82.7
+ Critic-V	39.2	39.5	30.0	25.7	29.2	34.7	24.6	66.7	62.0	80.1	90.3	88.2	82.6
+ TITA (Ours)	42.3	44.8	36.2	33.1	38.5	39.0	24.8	68.2	64.2	92.6	93.2	93.7	91.0

934 Table 6: Comparison of TITA with inference-time decoding methods.

Model	Inference logits	CHAIR _s ↓	CHAIR _i ↓	POPE	MMVet
<i>Base Model: LLaVA-1.5-7B</i>					
Base	$\log \pi_\theta(y q, I)$	48.8	14.9	85.9	30.5
+ VCD (Leng et al., 2024)	$(1 + \lambda) \log \pi_\theta(y q, I) - \lambda \log \pi_\theta(y q, \hat{I})$	28.1	11.0	86.3	32.9
+ M3ID (Favero et al., 2024)	$(1 - \lambda) \log \pi_\theta(y q, I) + \lambda \log \pi_\theta(y q)$	27.1	6.4	88.0	36.2
+ MARINE (Zhao et al., 2024)	$(1 - \lambda) \log \pi_\theta(y q, c, I) + \lambda \log \pi_\theta(y q, I)$	17.8	7.2	90.5	38.5
+ TITA (Ours)	$(1 - \lambda) \log \pi_{\text{reward}}(y q, I) + \lambda \log \pi_\theta(y q, I)$	20.3	5.6	91.7	39.1

934
 935 **Additiona Detail Results** Table 5 provides a detailed breakdown of performance across three
 936 representative benchmarks: MMVet, MMBench, and POPE. MMVet evaluates model capabilities
 937 across seven fine-grained categories, including reasoning (rec), OCR, knowledge, generation (gen),
 938 spatial understanding (spat), and math. MMBench is split into English (en) and Chinese (cn) subsets
 939 to assess multilingual general knowledge understanding. POPE focuses on hallucination detection,
 940 with evaluations under different conditions: random (rand), popular (pop), and adversarial (adv)
 941 prompts. These results highlight the consistent improvements brought by our method across diverse
 942 evaluation dimensions.

943
 944 **Comparison with Rencen Decoding Method** We further examine the relationship between
 945 TITA and recent inference-time decoding optimization methods, including VCD (Leng et al.,
 946 2024), M3ID (Favero et al., 2024), and MARINE (Zhao et al., 2024) in the Table 6. These approaches
 947 adjust the decoding process by combining different conditional probability terms. While effective in
 948 certain cases, such heuristics lack explicit preference signals and therefore provide limited control
 949 over hallucination behavior.

950 B.3 WHY VISUAL ATTENTION IN MIDDLE LAYERS IMPLIES HALLUCINATION

951
 952 To understand why hallucinations emerge in VLMs and why TITA’s decoding guidance is effective,
 953 we analyze how LLaVA-1.5-7B processes visual information during object-token generation. Prior
 954 work suggests (Li et al., 2023a; Zhu et al., 2023; Hurst et al., 2024; Shen et al., 2025) that VLMs rely
 955 heavily on linguistic priors, often before visual evidence is fully incorporated. We therefore examine
 956 (a) the visual attention ratios across layers and heads, and (b) the logit contribution of attention
 957 sublayers to real-object prediction. These diagnostics help identify where visual grounding happens,
 958 when language priors take over, and what goes wrong when hallucination occurs.

959
 960 The further analysis in Fig. 6 reveals a clear two-stage processing pattern in LLaVA-1.5-7B. In the
 961 middle layers (5–18), the model consistently assigns higher attention to image tokens, indicating
 962 that these layers serve as a visual evidence accumulation stage. However, their direct contribution
 963 to the final output remains limited. In contrast, the upper layers (19–26) exhibit a sharp rise in
 964 logit contribution, reflecting a semantic refinement stage where the model converts accumulated
 965 representations into object-token predictions.

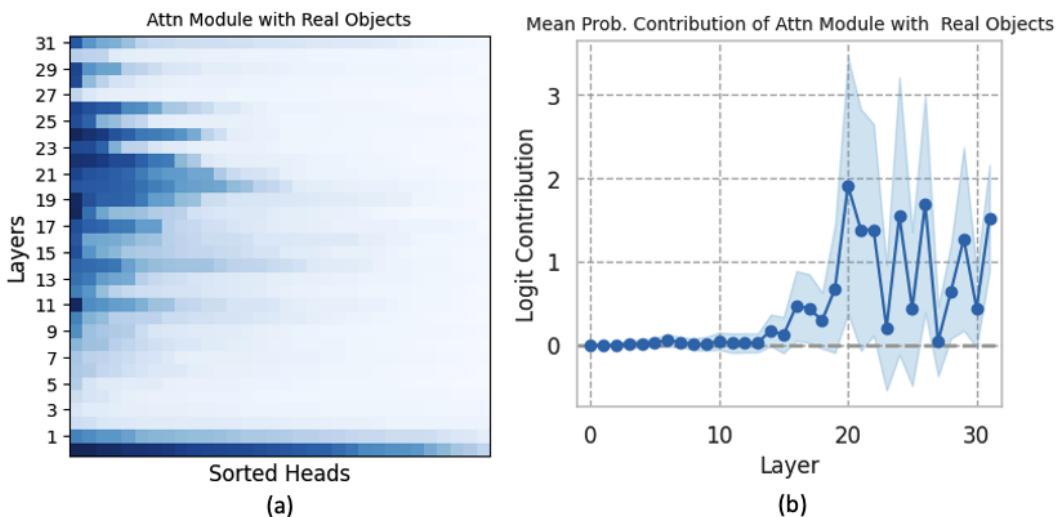


Figure 6: Visual Attention Dynamics Across Layers and Their Role in Grounded Object Generation. (a) Layer-head distribution of visual attention ratios for real object tokens in LLaVA-1.5-7B. Each row (layer) is sorted by attention ratio. (b) Mean logit contribution of attention sublayers to correct object-token prediction. Middle layers steadily gather visual information, while upper layers convert these representations into semantic predictions.

This layered structure explains why hallucinations occur: if the model fails to gather sufficiently strong visual grounding during the accumulation stage, the semantic refinement stage defaults to linguistic priors, leading to visually inconsistent outputs. TITA mitigates this failure mode by reinforcing visual-token attention precisely during the accumulation stage, ensuring that the refinement stage builds on reliable visual information rather than textual bias. These results provide quantitative evidence for the mechanism by which TITA reduces hallucinations.

C CASE STUDY: PLUG-AND-PLAY INTEGRATION

Our approach follows a plug-and-play paradigm, where a lightweight task-specific reward model guides a large-scale pre-trained language model during inference, without requiring fine-tuning or architectural modification of the target model. This modularity allows easy adaptation across domains and tasks. As illustrated in Figure 7, the reward model is first trained on domain-specific data, then used at inference time to inject task-aware preferences by influencing the token selection process through reward-weighted logits. This setup preserves the original capabilities of the base model while introducing fine-grained control from the auxiliary reward model.

A potential challenge in this plug-and-play setup is the mismatch between the tokenizers of the reward model and the target model. To ensure compatibility, we adopt a logits mapping strategy during inference. Specifically, at each decoding step $[t]$, we first obtain the top- k tokens from the reward model's output distribution $\pi_r(y_{[t]} | x, y_{<[t]})$. These token IDs are decoded into text using the reward model's tokenizer. The resulting strings are then re-encoded using the target model's tokenizer to identify the corresponding token(s) in the target vocabulary. The reward scores from the original top- k tokens are mapped to the re-encoded tokens, and the resulting distribution is aligned with the target model's vocabulary. Finally, the mapped reward logits are interpolated with the target model's original logits to form a reward-aware distribution for sampling. This mechanism enables effective reward transfer across models with different tokenization schemes, preserving the modularity and generality of our approach.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

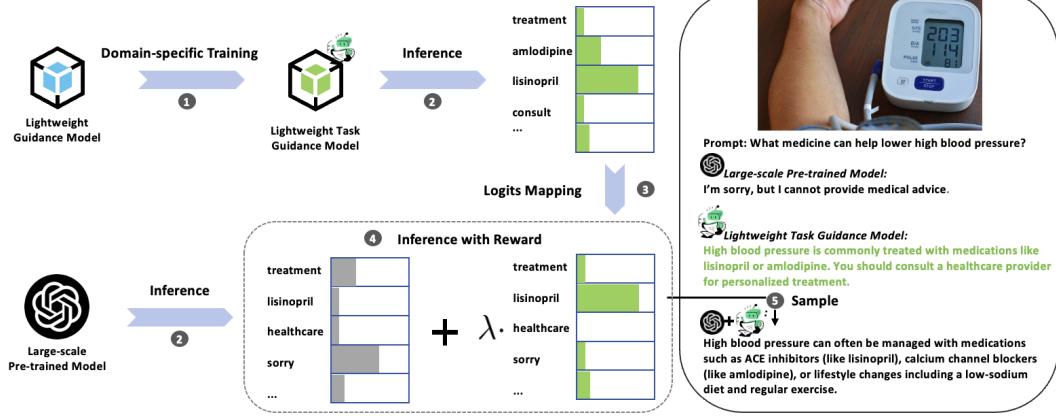


Figure 7: Token-level reward guidance using a lightweight model. Mapped reward logits are combined with the target model’s logits to enable plug-and-play task adaptation without modifying the base model.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079