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SUMMARY
Epilepsy is a major disorder affecting millions of people. Although modern electrophysiological and imaging
approaches provide high-resolution access to the multi-scale brain circuit malfunctions in epilepsy, our un-
derstanding of how behavior changes with epilepsy has remained rudimentary. As a result, screening for new
therapies for children and adults with devastating epilepsies still relies on the inherently subjective, semi-
quantitative assessment of a handful of pre-selected behavioral signs of epilepsy in animal models. Here,
we use machine learning-assisted 3D video analysis to reveal hidden behavioral phenotypes in mice with ac-
quired and genetic epilepsies and track their alterations during post-insult epileptogenesis and in response
to anti-epileptic drugs. These results show the persistent reconfiguration of behavioral fingerprints in epi-
lepsy and indicate that they can be employed for rapid, automated anti-epileptic drug testing at scale.
INTRODUCTION

There are 65million people worldwide with epilepsy and 150,000

new cases of epilepsy are diagnosed every year in the US.1

Treatment options for children and adults with epilepsies remain

inadequate, as many patients suffer from uncontrolled seizures,

cognitive or neurobehavioral comorbidities, and the negative

side effects of treatment.

Preclinical-translational research inepilepsyreliesoncontinuous

video-electroencephalogram (EEG) monitoring for multiple stages

of investigation (e.g., asadiagnostic tool, aswell as toprobemech-

anistic insights and therapeutic outcomes), and yet, the toolbox

falls short of capturing the complexity and heterogeneity of epi-

lepsy. Continuous video-EEG can capture seizure burden across

various timescales (e.g., ultradian and circadian dynamics2,3) and

disease stages (e.g., epileptogenesis4). However, it is frequently

accompanied by labor-intensive, inherently subjective scoring of

a handful of pre-selected behavioral manifestations of epilepsy.

These phenotypes range from subtle (e.g., repeated head nodding

and forelimb clonus) to overt (e.g., frankmotor seizures), which are

quantified by human observers along the semi-quantitative ‘‘Ra-

cinescale,’’ first introduced in1972.5 Furthermore,mostbehavioral

investigations are restricted to the observable ictal periods, while

inter-ictal periods in these datasets are largely ignored and lack

any consensus annotation of epileptic behavior. Yet, there is

emerging evidence that ictal and inter-ictal impairments often

involve thesamenetwork6–8andcarefuldecompositionofbehavior
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can reveal novel insights into such functional networks.9–11 Thus,

the rich behavioral repertoire represents an untapped source of

disease-relevant insights in epilepsies and enables testing of new

therapeutics in a purely data-driven manner.

To progress toward evidence-based, reproducible preclinical-

translational epilepsy research, we explored the transformative

potential of state-of-the-art machine learning-assisted three-

dimensional (3D) video analysis to phenotypemicewith acquired

and genetic epilepsies and screen for on- and off-target effects

of anti-epileptic drugs (AEDs) in an automated and high-

throughput manner. Specifically, we used the recently devel-

oped motion sequencing (MoSeq)12 approach combining 3D

imaging and unsupervised machine learning to deconstruct at

sub-second timescales the behavior of different mouse models

of epilepsies into stereotyped, recurrently occurring modules

(sub-second behavioral ‘‘syllables’’) that are arranged according

to specific transition rules (‘‘grammar’’). In contrast to the visual

examination of complex behaviors by the experimenter subject

to potential observer bias or to the arbitrary selection of a few

particular behavioral measures (e.g., speed) for assessment,

MoSeq analyzes behavior in a purely data-driven manner and

can handle large datasets at high throughput. Taken together,

our experiments revealed hidden behavioral phenotypes for

different seizure and epilepsy types, epileptogenic time points,

sex, drug type, and drug doses, allowing the automated assess-

ment of epilepsy without the need for recording electrographic

activity in each animal for prolonged periods of time. These
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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insights indicate that the persistently reconfigured behavioral

syllables of epilepsy can be targeted for assessment at scale

in acquired and genetic models to accelerate rigorous, repro-

ducible preclinical research into epilepsies.

RESULTS

Automated analysis of sub-second 3D pose dynamics
outperforms classical approaches in identifying and
assessing epileptic mice during inter-ictal periods
First, we examined if we could uncover distinct phenotypes in

mouse models of acquired and genetic epilepsies (Figure 1A)

without the need for invasive EEGmonitoring, batteries of behav-

ioral testing, and seizure-susceptibility experiments. For ac-

quired epilepsy, we used the unilateral intrahippocampal kainic

acid (IHKA) model of chronic temporal lobe epilepsy (TLE), which

is known to reproduce key histological, electrographic, and

cognitive hallmarks of human TLE, the most prevalent form of

intractable epilepsy in adults.6,13 Our MoSeq-based analysis of

the 3D video recordings from 60 min recording sessions during

the inter-ictal period (i.e., without the occurrence of the rare overt

behavioral seizures) revealed robust differences between the

behavioral repertoires of sham-injected control (CON) and IHKA

mice,with significant up-anddownregulationof specificsyllables

such as ‘‘dart’’ (Video S1) and ‘‘scrunch,’’ respectively (Figure 1B;

see STAR Methods for syllable naming). Alongside the observed

difference in syllable usage, control and epileptic mice also

showed distinct changes in the transitions between two syllables

(i.e., bigram transition probability), especially for syllables that

were differentially expressed between the groups (Figure S1B).

However, the overall predictability (i.e., entropy rate; see STAR

Methods) of mouse behavior remained unchanged (Figure S1C),

suggesting that IHKA did not profoundly alter the grammatical

microstructure of behavior (see also Figure S1A).

Next, in order to determine whether the inter-ictal phenotype of

IHKA mice is also evident to a human observer, four epilepsy re-

searcherswere shown video clips fromepileptic and non-epileptic

animals in a blinded manner and tasked to allocate them to the

appropriate group. In a human vs. machine comparison, a linear

classifier trainedonMoSeqsyllables (F1=0.79±0.29) not onlyout-

performed the classification based on common behavioral mea-

sures such as position (F1 = 0.47 ± 0.35), speed (F1 = 0.60 ±

0.35), or a combination of multiple 2D measures (length, height,

speed, and position; ‘‘scalars’’; F1 = 0.60 ± 0.35) but also sur-

passed these trained experimenters (F1=0.57± 0.10) in identifying

epileptic fromnon-epileptic animals (seedetails aboutF1 scores in

STARMethods; seealsoFigure1C forclassificationmatrices).This

highlights the power of automated, objective behavioral analysis

focusing on sub-second, stereotyped 3D pose dynamics to iden-

tify and assess epileptic animals even in the inter-ictal period,

without the need to monitor animals for days or weeks to observe

and count the usually infrequent behavioral seizures.

Behavioral syllables unveil a previously unrecognized
sex-specific behavioral phenotype in an animal model of
Dravet syndrome
Next, we examined the behavioral phenotype of a genetic epi-

lepsy model, specifically a mouse model carrying a mutation in
the sodium channel b1 subunit (SCN1B),14,15 a model linked to

Dravet syndrome, a form of severe developmental and epileptic

encephalopathy in children. Interestingly, heterozygous muta-

tions in SCN1B have been reported in patients with generalized

epilepsy with febrile seizures plus type 1 (GEFS+1), exhibiting a

mild-to-moderate range of seizure severity and a combination of

seizure types that include febrile seizures, early-onset absence

epilepsy, and focal epilepsies.16–18 Although homozygous

Scn1b null mice show severe ataxia, seizures, and earlymortality

(100% by postnatal day 25), heterozygous littermates lack any

known discernible behavioral phenotype or change in seizure

susceptibility, despite the significant reduction in total brain

Scn1b mRNA.14,19 In spite of the lack of previously reported dif-

ferences in behaviors, MoSeq succeeded in revealing a selective

change in behavior exclusively in female SCN1b+/� mice, with

significant upregulation of syllables such as ‘‘head up’’ move-

ments and downregulation of other syllables such as ‘‘dart’’ (Fig-

ure 1D). Male SCN1b+/�mice, on the other hand, showed no sig-

nificant differences compared with their wild-type littermates

(Figure 1E). These results reveal a previously unrecognized

sex-specific behavioral alteration in mice with heterozygous

deletion of Scn1b, illustrating the value of automated, data-

driven behavioral analysis in genetic epilepsies.

Distinct behavioral phenotypes at different time points
during epileptogenesis in a mouse model of temporal
lobe epilepsy
We further determined whether there are distinguishable time-

dependent behavioral phenotypes during the first few weeks af-

ter insult (Figure 2), which would complement long-standing ef-

forts to study the mechanisms underlying the development of

spontaneous recurrent seizures and identifying targeted treat-

ment strategies for early interventions during epileptogenesis.

As previously described,3,20,21 the emergence of frequent spon-

taneous electrographic seizures in the murine IHKA model of

chronic TLE is preceded by a process of pathogenesis with

distinct electrographic signatures and histopathological

changes. In short, IHKA injection causes an immediate status ep-

ilepticus (lasting up to 24 h), followed by a period of about

1–2 weeks characterized by hippocampal neuronal death,

increased inflammation, synaptic reorganization, and the occur-

rence of isolated or grouped low voltage spikes and spikes-and-

waves.20,21 We tested whether the behavioral repertoire can be

used to discriminate among time points after insult by comparing

single 60 min 3D video recordings sampled every week after

IHKA for a month (i.e., after 1–4 weeks post injection; Figure 2A;

see Figure 2B for the syllable usage of kainic acid-injected mice,

IHKA, and controls, CON). A linear classifier trained on syllable

usage revealed that the modular description of behavior pro-

vided by MoSeq distinguished mouse behaviors during the

different weeks after insult while also outperforming commonly

used metrics such as position, speed, or a combination of

different scalars (see Figure 2C for classification matrices). Spe-

cifically, syllable usage was found to be better than any of the

scalar measures for discriminating between experimental condi-

tions (CON or IHKA) and time points (1–4 weeks) (position F1 =

0.51 ± 0.16; speed F1 = 0.56 ± 0.16; scalars F1 = 0.51 ± 0.16;

and MoSeq F1 = 0.69 ± 0.15; see Figure 2E for group-specific
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Figure 1. Hidden behavioral phenotypes in mouse models of acquired and genetic epilepsies during inter-ictal periods
(A) Experimental paradigm for artificial intelligence (AI)-guided behavioral phenotyping in epilepsy during inter-ictal periods. Mouse 3D pose dynamics (illustrated

by point clouds) in an open-field assay are captured with a depth camera and analyzed with MoSeq. Behavioral syllables identified by MoSeq reveal hidden

behavioral phenotypes in two distinct well-established mouse models of epilepsy, distinguishing sham mice from animals injected with intrahippocampal kainic

acid (IHKA), a model of temporal lobe epilepsy (TLE), and identifying a previously unreported sex-specific phenotype in Scn1b mice, a model linked to Dravet

syndrome. Note that syllable IDs are unique for each experiment and do not correspond to the same syllables across (B), (D), and (E).

(B) Syllable usage in mice (top), obtained four weeks after intrahippocampal injection with either saline (CON; n = 18) or kainic acid (IHKA; n = 20), is ordered by

differential usage (arrow) with the most IHKA-upregulated (up) syllables on the left and IHKA-downregulated (down) syllables on the right. A word cloud (bottom)

with syllable names color-coded (up and downregulated in IHKA, red and blue, respectively) and sized by the relative difference in syllable usage. In a model of

chronic acquired epilepsy, IHKAmice exhibit a distinct behavioral repertoire comparedwith CONmice, with selective up- and downregulation of syllables such as

‘‘dart’’ (ID 20) and ‘‘scrunch’’ (ID 12), respectively. Asterisks indicate a significant change in syllable usage (Kruskal-Wallis and post hoc Dunn’s two-sided test with

permutation with Benjamini-Hochberg false discovery rate of a = 0.05). Error bars indicate 95% bootstrap confidence intervals. See also Figure S1 and Video S1.

(C) Normalized classification matrices (across rows and columns) showing the performance of a linear classifier in discriminating between epileptic (IHKA) and

non-epileptic animals (CON). Left: ‘‘machine.’’ Classifiers were trained using one of the following behavioral measures: position, speed, combined 2D measures

(‘‘scalars’’), or MoSeq syllables. Right: ‘‘human.’’ The classification matrix summarizes the performance of four experimenters tasked to distinguish epileptic and

non-epileptic animals (see results for details). The color bar is shared between the left (‘‘machine’’) and right (‘‘human’’). An ideal classifier performance corre-

sponds to a diagonal white with otherwise black fields (classification rate of 1).

(D) Same as in (B) but comparing female Scn1b+/� mice (n = 10) and Scn1b+/+ littermates (n = 20). In a genetic model of developmental and epileptic en-

cephalopathy, Scn1b+/�mice exhibit a distinct behavioral repertoire compared with Scn1b+/+ littermates, with selective up- and downregulation of syllables such

as ‘‘head up’’ and ‘‘dart,’’ respectively. Kruskal-Wallis and post hoc Dunn’s two-sided test with permutation were used, with Benjamini-Hochberg false discovery

rate with a = 0.05. Error bars indicate 95% bootstrap confidence intervals.

(E) Same as in (D) but comparing male Scn1b+/� mice (n = 14) and Scn1b+/+ littermates (n = 14). Unlike female Scn1b+/� mice (D), male Scn1b+/� mice do not

exhibit a distinct behavioral repertoire compared with control male littermates. Kruskal-Wallis and post hoc Dunn’s two-sided test with permutation were used,

with Benjamini-Hochberg false discovery rate with a = 0.05. Error bars indicate 95% bootstrap confidence intervals.
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Figure 2. Distinct behavioral phenotypes during epileptogenesis in a mouse model of TLE

(A) Sketch illustrating the experimental paradigm to use AI-guided behavioral phenotyping to monitor the pathogenesis in animal models of epilepsies. Here, a

60min 3D video was recorded every week after induction of status epilepticus in the IHKAmodel of TLE over the period of a month, revealing distinct phenotypes

in the first and later weeks.

(B) Dendrogram of syllables indicating the MoSeq distance between syllables (top), and heatmap of syllable usage (bottom) in mice recorded 1–4 weeks after

intrahippocampal injection with either saline (CON; n = 10) or kainic acid (IHKA; n = 10).

(C) Normalized classification matrices (across rows and columns) summarizing the performance of a linear classifier in distinguishing experimental conditions

(CON or IHKA) and time points (1–4 weeks) based on different behavioral measures (position, speed, combined scalar measures, or MoSeq syllables). An ideal

classifier performance corresponds to a diagonal white with otherwise black fields (classification rate of 1).

(D) Normalized F statistic highlighting the relevance of each indicated syllable for discriminating time points after IHK from CON (‘‘behavioral fingerprint’’; see

STAR Methods for details).

(E) F1 scores for linear classifiers distinguishing experimental conditions (CON or IHKA) and time points (1–4 weeks) based on different behavioral measures. Box

plots represent the distribution across all cross-validation folds, with whiskers representing 1.5 times the inter-quartile range (p < 0.01, asterisks indicate sig-

nificant differences between MoSeq and scalars, paired two-sided t test corrected with Holm-Bonferroni step-down procedure).

(F) Linear discrimination analysis (LDA) plot indicating the similarity of mean behavioral summaries of mice within conditions (CON or IHK) and within time points

(1–4 weeks). Dashed lines highlight the separation between conditions (CON vs. IHK) and clusters of time points after IHKA (IHKA week 1 vs. IHKA weeks 2–4)

along the LDA-1- and LDA-2-axis, respectively.

(G) Word cloud with syllable names color-coded (up- and downregulated in IHKA, red, and blue, respectively) and sized by the normalized F statistics in one vs.

CON comparison (see Figure 2D). IHKA mice exhibit a distinct behavioral repertoire compared with CON mice during week 1 and, for example, week 3

(representative of later weeks 2–4), with selective upregulation of syllables such as ‘‘scrunch long’’ and ‘‘dart,’’ respectively. Asterisks indicate significant syllables

(Holm-Bonferroni-corrected p < 0.01 from the two-sided F-test).
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Figure 3. Hidden behavioral phenotypes in epilepsy for anti-epileptic drug screening at scale

(A) Schematic illustrating the pipeline for anti-epileptic drug (AED) screening at scale. Multiple open-field assays can be run in parallel (e.g., 4 setups in this study).

Deploying this pipeline identified unique behavioral phenotypes for different drug-dose pairs, including levetiracetam (LEV), phenytoin (PHT), and valproic acid

(VAL) in wild-type mice, while revealing on- and off-target effects of LEV in the IHKA mouse model of TLE. See also Figure S2 and Table S1.

(B) Behavioral summary for different AEDs.Wild-type mice were injected with an either high or low dose of levetiracetam (LEV-H or LEV-L; n = 12 each), phenytoin

(PHT-H or PHT-L; n = 12 each), and valproic acid (VAL-H or VAL-L; n = 12 each) or control solution (CON; n = 24; see STARMethods for details). From left to right,

the position (normalized by the arena center position), velocity, length, and height, as well as MoSeq-identified syllable usages, were computed for each

mouse (rows).

(legend continued on next page)
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F1 scores). To better understand and visualize the relationship

between the behavioral repertoire of different groups, we

embedded MoSeq behavioral summaries into a 2D space using

linear discrimination analysis (LDA). Although CON and IHKA

mice separated along one axis of the LDA space (LDA-1), record-

ings of IHKA mice from weeks 2–4 clustered together and sepa-

rated along the other axis (LDA-2) from recordings from week 1

(Figure 2F). Similarly, when we compared the relevance of indi-

vidual syllables for discriminating weeks after IHKA, the subsets

of syllables identified by a normalized F statistic (the behavioral

‘‘fingerprint’’) that best summarized the behavioral phenotypes

of weeks 2–4 were more similar between each other, and less

so compared with those of week 1 after IHKA injection (Fig-

ure 2D). Discrimination-relevant syllables during the later weeks

(e.g., week 3) included fast dart movements and the syllable

‘‘head down,’’ pointing toward an impulsive phenotype, whereas

syllables associated with more lethargic behaviors were charac-

teristic of the first week after insult (e.g., long-lasting scrunches

and hunching during a forward movement) (Figure 2G).

Behavioral fingerprints accelerate objective anti-
epileptic drug screening
Uncovering hidden behavioral phenotypes in animal models of

epilepsies and at different time points during epileptogenesis in

a fully automated and unbiased manner opens the opportunity

to reliably test both established and candidate therapeutics

rapidly and at scale. Building on the success of MoSeq in distin-

guishing different psychiatric medications,22 we determined

whether there are behavioral fingerprints of commonly used

AEDs that not only correspond to drug types but perhaps even

also to drug doses and on- and off-target effects (Figure 3A).

We first tested if we could identify sets of syllables characteristic

of established AEDs and doses, including levetiracetam (LEV),

phenytoin (PHT), and valproic acid (VAL), in non-epileptic ani-

mals during random open-field exploration (Figures 3B–3F). In

a comparison of linear classifiers trained on different behavioral

metrics, MoSeq outperformed all scalar metrics in discriminating

between different drugs (Figures S2A–S2C) and between drug-

dose pairs (Figure 3D). While an obvious phenotype such as
(C) Normalized classification matrices (across rows and columns) representing th

discriminating different drug-dose pairs based on speed (top) or MoSeq-identifie

(the best performing scalar measure; see results)—showed high performance for

phenotype. However, MoSeq-based classification outperformed those of scalar

(D) Mean precision-recall curves and F1 values (including standard error) for diffe

under the curve (AUC) is 0.16 (Position), 0.39 (Speed), 0.35 (Scalars), and 0.76 (M

(E) Normalized F statistics (‘‘behavioral fingerprints’’; see STARMethods for detail

drug-dose pair either from the control treatment (one vs. CON) or all other treatme

(Holm-Bonferroni-corrected p < 0.01 from the two-sided F-test). As an example, t

the one vs. rest comparison that distinguish LEV-H from all other drugs.

(F) LDA plot indicating the similarity between the mean behavioral summaries of

(G) Difference in syllable usage between non-epileptic (CON) and chronically epile

dose levetiracetam (LEV-H; see STAR Methods for details). Values are normalize

(orange-shaded rectangles indicate the error bars). The syllables are ordered by

evenmore from controls (‘‘off-target’’ effect) are on the left and thosewhich get clo

hoc Dunn’s two-sided test with permutation were used, with Benjamini-Hochbe

dence intervals.

(H) Word cloud for data in (G), with syllable names color coded (up- and downre

syllable usage. High-dose levetiracetam treatment in IHKA mice leads to an u

downregulation of syllables related to ‘‘dart’’ (e.g., ‘‘short dart left’’ or ‘‘dart right’
the one associated with high-dose valproic acid could easily

be identified by both MoSeq and scalar measures (see VAL-H

in the classification matrix of MoSeq and the best performing

scalar speed in Figure 3C), scalar measures struggled with

more subtle phenotypes (for a detailed comparison between

MoSeq and scalars, see the overview of the different scalar mea-

sures and syllable usage of every mouse in Figure 3B).

We further explored to what extent behavioral syllables capture

similarities and distinct characteristics of different AED dose pairs.

By iteratively removing a single drug-dose pair from our dataset

(‘‘held-out’’ data) and training a linear classifier on the remaining

data, we found that the highest classification rate for the held-out

data remainedwithin its drug label (e.g., held-out LEV-H predicted

as LEV-L and vice versa) (Figure S2D), indicating that doses of the

samedrug elicited a similar syllable repertoire. The behavioral sim-

ilarity between doses of a given drug was also evident in the clus-

teringofdrug-dosepairswithin the3DembeddingspaceofanLDA

(Figure3F)aswell as in thehierarchical clusteringofpairwisecosine

distances between the syllable repertoire of different drug-dose

pairs (Figure S2E). To capture the distinct characteristics of a given

AED treatment, we compared the behavioral fingerprints (i.e., the

set of syllables identified by a normalized F statistic; Figure 3E) of

different drug-dose pairs and found a set of significant syllables

that discriminated a given pair from either the control treatment

(one vs. CON; Figure 3E left) or all other treatments (one vs. rest;

Figure 3E right) for the majority of drug-dose pairs. Behavioral fin-

gerprints captured the phenotype of a given AED treatment and

indicated similarities between doses of the same drug and high-

lighted differences between drugs, providing a comprehensive,

yet intuitive description of the underlying behavioral phenotype

(see plots of normalized F statistic in Figure 3E and word clouds

in Figure S2F). For example, LEV-H could be distinguished from

other AED dose pairs by only three syllables, including the syllable

‘‘move forward,’’ whichwas significantly increased comparedwith

controls (Figures 3E andS2F; see also Table S1 for additional infor-

mation about the syllables in this dataset).

Next, we testedwhether on- and off-target effects of AED treat-

mentcouldbe identified inamodel ofTLE (Figures3Gand3H). The

murine IHKA model with its high frequency of non-convulsive
e performance of a linear classifier (i.e., means of all cross-validation folds) for

d syllable usage (bottom). Both classifiers—trained on either MoSeq or speed

high-dose valproic acid (VAL-H), which is known to induce an overt behavioral

measures otherwise (see results for details).

rent behavioral measures across all drug treatments. The corresponding area

oSeq).

s) highlighting the relevance of each indicated syllable for distinguishing a given

nts (one vs. rest). The number of significant syllables is indicated in parentheses

he text bubble names the three significantly upregulated syllables for LEV-H in

mice across drug-dose pairs.

ptic (IHKA) mice, which were intraperitoneally injected with either saline or high-

d to the difference between CONSaline and IHKASaline, which are aligned at zero

the change in usage (arrow), where syllables usages in IHKALEV-H that diverge

ser to those of CON (‘‘on-target’’ effect) are on the right. Kruskal-Wallis and post

rg false discovery rate with a = 0.05. Error bars indicate 95% bootstrap confi-

gulated with red and blue, respectively) and sized by the relative difference in

pregulation of syllables such as ‘‘move forward’’ (off-target effect) and to a

’; on-target effect). Asterisks indicate significant syllables (see G).
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spontaneous recurrent seizures mimics refractory (AED-resistant)

epilepsy and is thus widely used for AED screening and has previ-

ously been shown to respond to levetiracetam, but not other AEDs

such as phenytoin or carbamazepine.13 Therefore, we tested LEV,

which is part of the latest generation of AEDs,23 in IHKA mice. As

expected, high-doseLEV in IHKAmice (IHKALEV-H) led toanormal-

ization of some syllables toward control conditions (on-target ef-

fects). In other words, the difference in syllable usage between

non-epileptic control, CONSaline, and IHKALEV-H was reduced

compared with the difference between CONSaline and saline-in-

jected epileptic IHKA mice, IHKASaline (Figure 3G). However, we

also identified syllables in IHKA mice after LEV-H treatment that

further diverged from control conditions (i.e., the difference be-

tween CONSaline and IHKALEV-H increased compared with the dif-

ference between CONSaline and IHKASaline; Figure 3G). The latter

can be considered off-target effects of high-dose LEV. Interest-

ingly, some of these syllables that were upregulated in IHKALEV-H

andconsideredpart of anoff-target effect (e.g., syllable ‘‘move for-

ward’’; Figures 3G and 3H) were also upregulated in non-epileptic

wild-type mice injected with high-dose LEV (e.g., syllable ‘‘move

forward’’; Figures 3E and S2F). Likewise, syllables similar to those

identified as characteristic of IHKA mice in previous experiments

(e.g., dart; see Figures 1B and 2G) were significantly reduced

(e.g., short dart left; syllable ID 33) after LEV-H treatment in IHKA

mice (Figures 3G and 3H), indicating an on-target effect (note, nu-

merical syllable ID in Figures 1B and 3G are based on the fre-

quency of the respective datasets).

Unsupervised segmentation of seizure behavior allows
automated seizure assessment and links to traditional
human-defined scoring
The results presented above showed that MoSeq was able to

identify behavioral phenotypes in different epilepsy models and

also allowed the study of AEDs in an automated manner free of

human errors or bias, solely based on inter-ictal behaviors. The

latter point is important since it is considerably easier to investi-

gate the prolonged inter-ictal periods than the current practice of

restricting the analysis of the behavioral manifestations of epi-

lepsy (e.g., in AED testing) to the typically rather infrequent

seizure (i.e., ictal) events. For these reasons, our focus so far in

this study has been exclusively on the inter-ictal periods. In the

last series of experiments, however, we set out to examine

whether a similar MoSeq-based approach could also be used

to discriminate between different ictal events and whether a Mo-

Seq-based analysis of ictal periods could be related in a mean-

ingful manner to the standard semi-quantitative, human

observer-based seizure scoring strategies such as the Racine

scale. However, it is non-trivial to relate MoSeq syllables to the

Racine scale for various reasons. First, syllables identified by

MoSeq typically last only for a few hundred milliseconds,

whereas human observers using Racine scales most often focus

on behaviors that last considerably longer, in the order of several

seconds (e.g., rearing and falling). Second, traditional scoring

scales heavily build on the scoring of distinct movements of indi-

vidual body parts (e.g., forelimb clonus), whereas MoSeq takes

the whole-body movement into account when assessing a

behavioral state (e.g., forelimb clonus with rearing would be

distinguished from forelimb clonus without rearing). Third,
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manual scoring of rodent seizure behavior by human observers

utilizing Racine scales typically focuses on and reports only the

most severe seizure behavior observed during the observation

period, in contrast to the series of syllables automatically identi-

fied by MoSeq. In order to account for such differences between

the MoSeq and Racine scale-based approaches, we aimed to

establish if the syllable composition as determined byMoSeq re-

flects the composition of a manually observed series of behav-

iors during seizure events. Specifically, we sought to determine

if MoSeq can classify and group together ictal events that were

identified by human observers as being similar using Racine

scale-based scoring.

In order to achieve the latter goal, we recorded the natural

behavior of individual mice exploring an open field using an over-

head camera in 5min sessions. In themiddle of the session at the

2.5 min time point, we delivered a focal electrical stimulation to

the dorsal hippocampus to evoke a seizure (Figure 4A).

Repeated delivery of such stimuli over time is known to lead to

the appearance of more and more robust behavioral seizure

events, a process referred to as ‘‘kindling.’’24,25 For the tradi-

tional human observer-based ‘‘manual’’ analysis of the evoked

behavioral seizure responses during kindling, we employed a

version of the traditional Racine scale26 that extends from simple

indications of abnormal activity (e.g., behavioral arrest, which is

assigned a score of 1) to modest manifestations of seizures (e.g.,

bilateral forelimb clonus, with a score of 4) to severe seizures

with tonic postures (score of 8; see Figure 4B for the complete

list). Figure 4C illustrates real-life examples from the experiments

described below of observations of various ictal events during

different kindling sessions, referred to as ‘‘Racine score (RS)

sets,’’ with the ‘‘maximal Racine score’’ (MRS) for each

set also indicated. For example, when the human observer noted

behavioral arrest followed by violent running and jumping, the re-

sulting RS set based on the table in Figure 4B was (1 and 7), with

the typically reported MRS = 7 (Example A in Figure 4C); for

another animal that displayed a combination of behavioral arrest,

myoclonic jerks, bilateral forearm clonus, repeated rearing, and

falling as well as violent running and jumping, the RS set was

(1, 3, 4, 6, and 7), with the MRS value being also 7 (Example B

in Figure 4C). To avoid pitfalls associated with the typical prac-

tice of focusing only on the single behavior with the highest RS

(i.e., the MRS), we utilized all human-observed Racine stage be-

haviors (the RS sets) noted during each post-stimulation period

for every animal (Figure 4D, lower left). In addition to comparing

MoSeq and human-based observations utilizing the Racine

scale, we also carried out a quantitative comparison between

the ability of the various automated behavioral measures (i.e.,

position, speed, scalars, andMoSeq) to distinguish ictal periods,

using a 30 s time window after the electrical stimulation to

approximate the windows used for the manual analysis. We

trained a linear classifier for each automated behavioral measure

to test its ability to classify stimulation sessions or RS sets (note

that we used syllables exclusively in this 30 s post-stimulation

time window for classification; see below).

Each kindling session included a single stimulation given to

each of the n = 7 mice used in these experiments, and the

mice were subjected to a total of 22 kindling sessions. Due to

occasional experimental difficulties (e.g., detachment of a
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cable), this resulted in a total of 125 recording sessions across

the seven mice (instead of the expected total of 7 3 22 = 154).

In order to reduce the number of session labels for classification,

we grouped the 22 kindling sessions into 4 session blocks (Fig-

ure 4D, upper left panel).

For session classification, we evaluated the performance of

different classifiers that were trained on the different behavioral

measures to distinguish each session block. The results showed

that MoSeq outperformed traditional 2D measures at identifying

different session blocks (position F1 = 0.22 ± 0.08; speed F1 =

0.27 ± 0.09; scalars F1 = 0.30 ± 0.09; and MoSeq F1 = 0.49 ±

0.11; see also Figure 4E for classification matrices and Figure 4F

for group-specific F1 scores). Interestingly, embedding MoSeq

behavioral summaries (i.e., syllable usages) into a 2D space us-

ing LDA clustered the later sessions (blocks 3 and 4) with more

severe seizures together and separated the session blocks 1–4

in reverse numerical order along one axis of the LDA space

(LDA-1; Figure 4G).

As we did for the session classification above, we reduced the

number of unique RS sets for classification by grouping statisti-

cally similar RS sets together in one of five RS blocks (Figure 4H;

see STAR Methods for details). Similar to the session classifica-

tion results described above, the classifier trained on MoSeq

behavioral summaries also performed best in distinguishing

different RS blocks (position F1 = 0.16 ± 0.07; speed F1 =

0.25 ± 0.08; scalars F1 = 0.26 ± 0.08; and MoSeq F1 = 0.39 ±

0.13; see also Figure 4I for classification matrices and Figure S3

for group-specific F1 scores). Moreover, LDA embedding of Mo-

Seq summaries in 2D space grouped RS blocks based on

severity along one axis (LDA-1; Figure 4J).

Together, these findings suggest that unsupervised segmen-

tation of seizure behavior with MoSeq can classify seizure be-

haviors that were identified as similar based on human observa-
Figure 4. Automated seizure assessment through unsupervised segm

(A) Experimental setup for assessing seizure behavior with AI-guided behavioral ph

combined with the synchronous acquisition of electroencephalographic (EEG) dat

depth data for MoSeq analysis). For manual analysis, an experimenter identified al

is commonly reported by selecting only the maximum Racine scores (MRSs; se

syllable composition during seizures captures the aggravating nature of repeated

a similar composition of seizure behavior.

(B) Behavioral description of different seizure stages adapting a version of the tra

(C) Example of two seizures with the same maximum Racine score but a differen

behavior wasmanually summarized in a set of observed RS behaviors (‘‘RS set’’).

an RS set (1 and 7), which denotes behavioral arrest and violent running and jumpin

in example B, another animal displaying a combination of behavioral arrest, myo

violent running and jumping (i.e., an RS set of [1, 3, 4, 6, and 7]) would also be re

(D) EEG, speed, height, and MoSeq-identified syllables during kindling sessions.

sessions in 7 mice; illustrative example shown for session 4 with mice 1–7 stacked

analysis (see E–G below). Bottom: a zoomed-in 60 s window around the stimulatio

Racine scores in black and not-observed ones in white. Two example RS sets a

‘‘speed’’ due to the increase during seizures to improve the visualization for both

(E) Normalized classification matrices (across rows and columns) representing th

Each classifier was trained on different behavioral measures (position, speed, co

corresponds to a diagonal white with otherwise black fields (classification rate o

(F)F1 scores for linear classifiers discriminatingbetweensessionblocks basedondif

Asterisks indicate significant differences between MoSeq and scalars (p < 0.01; pa

(G) LDA plot indicating the similarity of mean MoSeq summaries (i.e., syllable us

(H) Grouping RS sets into RS blocks for classification (see results).

(I) Same as (E), but to distinguish different RS blocks. See also Figure S3.

(J) Same as (G), but to distinguish different RS blocks.
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tions utilizing the Racine scale. These ictal period-focused

automated behavioral assessments provide a link to traditional

seizure scoring systems and indicate that MoSeq-based anal-

ysis can be applied to both inter-ictal periods as well as for the

automated, unbiased assessment of seizures.

DISCUSSION

In this study, we explored the potential of machine learning-as-

sisted 3D video analysis to phenotype mice with acquired and

genetic epilepsies and screen for on- and off-target effects of

AEDs in an automated and high-throughput manner. Our exper-

iments revealed characteristic behavioral phenotypes during

inter-ictal periods for different epilepsy types (acquired and ge-

netic), distinct time points during epileptogenesis, as well as dif-

ferences in behavioral fingerprints as a function of sex, drug type,

and drug doses, allowing the automated, unbiased assessment

of epilepsy without the need for recording electrographic activity

in each animal for prolonged periods of time. In addition, our re-

sults showed that MoSeq-based approaches can be also used

to classify ictal behaviors. These insights indicate that behavioral

phenotypes can be targeted for assessment at scale in acquired

and genetic models of epilepsies to accelerate rigorous, repro-

ducible preclinical research into the epilepsies.

Toward rigorous behavioral fingerprinting in the
epilepsies
Behavioral manifestations have long been recognized as an

important feature of epilepsy disorders, as evidenced by the

wealth of studies describing behavioral changes associated

with seizures in human patients27 as well as in a variety of animal

models, including fruit flies,28 zebrafish,29–31 sea lions,32 non-hu-

man primates,33 and rodents (discussed below). However, our
entation of behavior

enotyping. In a hippocampal kindling assay, intrahippocampal stimulation was

a and RGB-D data (i.e., red, green, and blue color data for manual analysis and

l behavior associated with different Racine scores (RSs), which for each seizure

e results for details). Comparing MoSeq to manual analysis revealed that the

kindling across sessions and can be used to identify different groups that share

ditional Racine scoring system.

t composition of observed behavior. For each seizure, all seizure-associated

In example A, a human observer summarizes the behavior during a seizure with

g (see B), andwould commonly only report theMRS value, which is 7. Similarly,

clonic jerks, bilateral forearm clonus, repeated rearing, and falling as well as

ported as having an MRS of 7.

Top: each row represents the data of one 5 min recording session (total of 125

on top of each other). Sessions are grouped into session blocks 1–4 for further

n. On the left is a list of the RS sets for each of the 125 seizures, with observed

re written out (same examples as in C). Note: a log scale was chosen for data

ictal and inter-ictal periods.

e performance of a linear classifier for distinguishing different session blocks.

mbined scalar measures, or MoSeq syllables). An ideal classifier performance

f 1).

ferent behavioralmeasures (whiskers represent 1.5 times the inter-quartile range).

ired two-sided t test corrected with Holm-Bonferroni step-down procedure).

ages) of mice within the same session block.
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understanding of behavioral manifestations of epilepsy remains

most often confined to coarse assessments of relatively sparse

ictal events (i.e., conspicuous motor seizures), which are readily

discerned by the naked eye of human observers. The current

gold standard method in the study of rodent models of epilepsy

is the use of behavioral seizure scales,5,34–39 where the manual

assessments heavily depend on the expertise and intuition of

the human observer. In addition, a fine-grained, sub-second

behavioral analysis even by an experienced observer quickly be-

comes infeasible when large datasets need to be scored, and the

strain on human resources further opens the door to problems

with reproducibility and potential inter-observer biases.

In our study, we showed that unsupervised behavioral analysis

allows an automated, unbiased assessment of epilepsy in animal

models of epilepsies. We demonstrated that an experimenter

with the help of MoSeq can reliably decompose behaviors from

large datasets in different epilepsy models under various experi-

mental conditions (over 300hof datawere acquiredandanalyzed

in this study; Figure S4). Importantly, we also found that 60 min

long recording of inter-ictal behavior per animal during random

free exploration is sufficient to sort epileptic mice from non-

epileptic littermates without requiring any additional information

(e.g., 24/7 video-EEG or histopathology). Therefore, such unsu-

pervised assessment of behavior with sub-second precision

constitutes a type of behavioral fingerprinting for epilepsy that

is effective even during the easily accessible inter-ictal periods.

Because the approach takes into account subtle differences in

pose dynamics that are not evident by eye, it can also yield unex-

pected insights. For example, we discovered a previously unrec-

ognized sex-specific behavioral phenotype in mice with hetero-

zygous deletion of Scn1b and identified subtle changes in

behavioral repertoire at different time points during epileptogen-

esis. The latter could beparticularly interesting for post-traumatic

epilepsy research where amajor current challenge is to find early

biomarkers for individuals who are on track to eventually develop

epilepsy, and an automatedbehavioral assessment that does not

require ictal episodesmay pave the way for an entirely novel way

of forecasting disease progression after brain insults, yielding a

‘‘thermometer’’ for epilepsy in the form of artificial intelligence

(AI)-assisted diagnostics. Furthermore, it is the inter-ictal periods

that comprise most of the lives of patients with epilepsy, with

cognitive and behavioral comorbidities often profoundly impair-

ing the quality of life even during such nominally seizure-free

periods. Therefore, capturing the behavioral manifestations of

epilepsy during inter-ictal automated observation periods may

be particularly important for the non-invasive assessment of

meaningful biological variables indicating disease states.

Potential for rapid, scalable anti-epileptic drug testing
Our results also indicated that MoSeq can be used to automat-

ically discriminate between mice injected with different AEDs

by characterizing the underlying structure of their behavior dur-

ing free exploration. We administered wild-type mice with one

of three different AEDs (VAL, PHT, and LEV) at either high or

low doses and showed that MoSeq outperformed traditional

analysis methods (such as 2D measures, including the animal’s

position and speed) in predicting drug-dose pairs. As a strictly

data-driven approach without human observers, MoSeq
captured an unbiased spectrum of behavioral patterns that

then could be used to identify on- and off-target effects of

AEDs in epilepsy. Our results in a model of TLE indicate that

our pipeline can be used to discriminate IHKA mice treated

with a vehicle from those injected with LEV, at a dose previously

shown to reduce the seizure frequency in this model.13 There-

fore, our findings highlight the potential of MoSeq for AED

screening by measuring unrestrained naturalistic behavior in an

automated fashion without the need of labor-intensive and

expensive video-EEG monitoring.

Implications and outlook
In addition to gaining insights into the potential for automated

behavioral assessment during the inter-ictal periods, we also ac-

quired 3D videos of a variety of seizures in kindled mice to relate

the automatedMoSeq outcomemeasures to the currently widely

used Racine scale-based seizure assessment approaches. Our

results revealed that seizures of similar severity were composed

of similar MoSeq-identified syllables, illustrating the potential for

co-alignment of classical seizure scoring practices and MoSeq.

These insights indicate that it should be possible to transition

from the labor-intensive, human observation-based seizure ana-

lyses to a more automated, scalable approach while continuing

to benefit from the accumulated knowledge about seizures ac-

quired in the past decades relying on traditional Racine scales

for assessment. It should be noted that although our data

demonstrate that MoSeq-based analysis can be applied to

both inter-ictal and ictal periods, clear links between MoSeq

and traditional epilepsy-related expert annotations of behaviors

could be established only for the ictal period. This is because,

compared with the approach used in Figure 4 for seizures, there

is no analogous way to meaningfully relate the differential

expression of specific MoSeq-defined behavioral syllables

(e.g., in epilepsymodels, or as a result of AED effects) to changes

in epileptic behavioral attributes that may be in principle observ-

able by humans during the inter-ictal period. Indeed, consensus

annotation for inter-ictal behavior does not exist, and even

expert observers largely failed to correctly perform the related

classification tasks when no overt motor seizures were present.

Importantly, recent results revealed that syllables identified by

MoSeq in control mice are closely correlated with particular

neuronal activity dynamics in the striatum (and perhaps also

elsewhere) during naturalistic behaviors,40 indicating that the

behavioral syllables are anchored in actual patterns of circuit ac-

tivity in the brain. Identification of the precise cell types and brain

regions involved in the altered expression of behavioral syllables

that we observed in our epilepsy models will be able to rely on

recent advances in multi-site single unit recordings from thou-

sands of neurons across the brain, likely yielding new insights

into the nature of circuit plasticity associated with ictal and in-

ter-ictal behaviors. It is interesting to note in this regard that

the brain circuits responsible for generating and spreading

epileptiform activity in epilepsy may also underlie comorbidities

(e.g., impairments in memory and sleep disturbances) that

persist during non-seizure periods.6–8

Future studies will be needed to determine whether epilepsy-

associated syllables identifiedwithMoSeq are shared in a variety

of different animal models of epilepsy andwhether such syllables
Neuron 111, 1440–1452, May 3, 2023 1449
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can be targeted for closed-loop interventions6,41,42 where the

electrical stimulation or optogenetic intervention would be trig-

gered by the appearance of particular syllables in an on-demand

manner. Such syllable-based on-demand, closed-loop, optoge-

netic interventions in the striatum of control mice have been

recently demonstrated to result in changed syllable expression

in spontaneously behaving animals in a persistent manner

following the intervention.43 Application of a similar approach to

syllables whose expression have been changed in epilepsy will

be an exciting undertaking in future projects. It is interesting to

note that such an approach would not require invasive depth

electrodes for detecting seizure onsets (since syllable detection

is based on 3D video recordings and online analysis), and the

intervention could target not only the epileptic focus (e.g., the hip-

pocampalCA1 in the IHKAmodel of TLE) but also themore super-

ficially located and thus more easily accessible, extra-focal re-

gions such as the cerebellum that can have powerful effects on

TLE as well as on-going behavior.41,42 A closely related question

is whether targeting particular syllables during the inter-ictal pe-

riods for closed-loop interventions would have beneficial effects

on comorbidities andperhapsevenon the rateof seizures aswell.

In summary, although various novel tools bear great potential

to create better animal models for a variety of epilepsies (e.g.,

CRISPR-Cas944) and can also accelerate drug discovery on a

molecular level (e.g., DeepMind’s AlphaFold45), current behav-

ioral assessment practices in epilepsy research constitute a ma-

jor bottleneck for advancing mechanistic insights into epilepsies

and screening for new AEDs in a reproducible fashion at scale.

Our findings suggest that the unbiased detection of hidden in-

ter-ictal and ictal behavioral phenotypes may begin to overcome

this bottleneck and advance the field toward unbiased assess-

ment approaches for epilepsies.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved and performed in accordance with the Administrative Panel of Laboratory Animal Care of Stanford

University (Protocol 30183), and with the animal care guide- lines of the National Institutes of Health. For modeling electrical kindling,

TLE and for the drug study, C57BL/6J male mice were used (The Jackson Laboratory, #000664). For modeling Dravet syndrome,

both male and female Scn1b+/- and Scn1b+/+ littermate mice, congenic on the C57BL/6J background for over 15 generations

were used (for details, see14). Mice were 12-24 weeks old. Animals were given food and water ad libitum. All animals were group

housed and in a 12-hour light/12-hour dark cycle.

METHOD DETAILS

Intrahippocampal injections
Stereotaxic injectionswere carried out as previously described.3 Briefly, micewere anesthetized with 2-5% isoflurane and given local

anesthetic (s.c. 0.5%bupivacaine). Kainic acid (70 nL, 20mM in saline; Tocris Bioscience) or saline (sham controls) were injected into

the left dorsal hippocampus (from bregma: 2.0 mm posterior, 1.25 mm left, 1.6 mm ventral). Mice were allowed to recover and then

were returned to the vivarium for at least one week.

Electrical kindling seizure model
Teflon-coated twisted bipolar electrodes (tip separation of 0.5mm) were implanted chronically into the dorsal hippocampus of mice

(from bregma: 2.0 mm posterior, 1.25 mm left, 1.6 mm ventral), similar to as described previously.46 Following 1-2 weeks of recovery

from surgery, seizures were elicited by electrical kindling stimulation (150–300mA of current delivered in 1ms biphasic pulses at 50Hz

for 10 second). Kindling was achieved by stimulating 4–7 sessions daily for 4 days. All kindling sessions were performed in an en-

closed glass arena and recorded with a side RGB camera for off-line manual seizure scoring, in addition to an overhead Intel

RealSense D415 RGB-D camera which was used for both manual seizure scoring and for MoSeq analysis (described below). Elec-

trical stimulation was delivered in the middle of the 5-min recording session.

Behavioral data acquisition
Behavioral data acquisition was performed similar to previous descriptions.12,22,40 For Figures 1, 2, and 3, mice were placed in the

center of a circular open-field assay (OFA) enclosure (18 inch diameter, 15 inch high; US Plastics) and recordings started immediately

after. The opaque enclosure, which was painted black with spray paint (Acryli-Quik Ultra Flat Black; 132496) to avoid image artifacts,

was illuminated with red light during the recording. Animals were allowed to freely explore the OFA enclosure for 60 min. For all ex-

periments (Figures 1, 2, 3, and 4), the enclosure was cleaned between mice consecutively with 10% bleach, 1% alconox, and 70%

ethanol. For the epileptogenesis experiments, mice were recorded weekly over four weeks after intrahippocampal injection. All data

acquisition were obtained at the same time of day during the night phase, i.e., during the active period, of mice. For TLE, Scn1b, and

drug study experiments, all mice were recorded for 60 minutes during inter-ictal periods. An experimenter observed the animal for

15minutes prior during the recording session to ascertain the lack of overt motor seizures. No overt seizure behaviors were observed

prior to the placement of the animal into acquisition setup nor during the recording. For electrical kindling experiments, electrical

stimulation was delivered in the middle of the 5-min recording session to evoke seizures.

Drug treatments
Six drug-dose combinations of three well-characterized anti-epileptic drugs (AEDs) were used in this study: Levetiracetam (LEV),

Phenytoin (PHT), andValproicAcid (VAL), eachat lowandhighconcentrations. Individual drug-dosecombinationswerechosenbased

on previous studies13,21 which used the same mouse model of TLE. Levetiracetam (Gland Pharma Limited; NDC 0409-1886-02) was

dissolved in saline and used at 400 mg/kg and 800 mg/kg for LEV-Low (n=12 mice) and LEV-High (n=12 mice) respectively. Valproic

Acid (HikmaPharmaceutical USA Inc.;NDC0143-9785-01)wasdissolved in saline andusedat 150mg/kgand300mg/kg for VAL-Low

(n=12mice) andVAL-High (n=12mice) respectively. Phenytoin (HikmaPharmaceutical USA Inc.;NDC0641-2555-41)wasdissolved in

saline and used at 20mg/kg and 30mg/kg for PHT-Low (n=12mice) and PHT-High (n=12) respectively. Salinewas used as vehicle for

control experiments (n=24 mice). All drugs were prepared fresh before the recording, and each mouse was injected once with one

drug-dosecombination. For all drug andvehicle injections, an injection volumeof 6mL/kgbodyweightwasdelivered intraperitoneally.

After the drug was administered (experimenter was not blinded to drug type and dose), the animal was immediately transferred to the

recordingbox to start data acquisition.Data acquisition andanalysiswasperformed in ablindedmanner by theMoSeqpipeline,which

uses a universally unique identifier (UUID), a 128-bit label, insteadof othermetadata (e.g., animal or group ID) to identify recording ses-

sions. The use of theUUID obviates the need for any additional de-identification by an experimenter. All micewere recorded for 60mi-

nutes, and all reported results are based on the assessment of AED effects throughout the entire recording duration. Time-dependent

drug effects within the recording period were not assessed in this study.
e2 Neuron 111, 1440–1452.e1–e5, May 3, 2023
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Behavioral recording
Data acquisition was performed as previously described.12,22,40 Briefly, each mouse was tracked in 3D with a Kinect 2 for Windows

(Microsoft) or an Intel RealSense D415 stably suspended above the recording arena (i.e., the open-field assay enclosure), which pro-

vides a top-down view. The camera was placed at a working distance of approximate 0.65 m for optimal sensor position. Raw data

from the camera were sent to an acquisition computer (i5-6400 Intel Quad Core with 16GB DDR4 RAM and NVIDIA GeForce GT1030

2GB graphics card) via USB 3.0 cables, and depth frames were retrieved (30 frames per second) and saved to disk in raw binary

format using a custom user interface programmed in C#/C++.

Electroencephalographic (EEG) recordings
The bipolar electrode implanted for kindling experiments was also used to record EEG from the dorsal hippocampus. EEG was ac-

quired with the Intan RHS Stim/Recording System (sampled at 30kHz). A subset of sessions were excluded because data acquisition

was interrupted in the middle of the session.

QUANTIFICATION AND STATISTICAL ANALYSIS

Motion Sequencing (MoSeq) - Data extraction
Data preprocessing, extraction, and modeling pipeline (written in the Python programming language) were performed as previously

described12,22,40 on either local machines or the Stanford cluster computer (Sherlock 2). Briefly, custom mouse-tracking software

was used to extract the mouse’s position, orientation, and body morphometry from the raw depth data. The 3D image of the mouse

was extracted and aligned using a previously published pipeline.12,22,40 First, raw depth images were denoised through resampling

and background subtraction (using a background image composed of the median value of the first 1000 frames). For kindling exper-

iments, chroma keying was used for both cable removal and extraction of the mouse and combined with spatio-temporal filtering to

fill in holes. For all experiments, the resulting images were composed of values indicating how high each pixel is relative to the back-

ground image, with all negative values and all values above a maximum height being set to zero. The orientation and center-of-mass

of the mouse contour were calculated and used to extract a square (80x80 pixel) centered on the mouse in every frame. The resulting

timeseries of aligned images was sampled at 30 frames per second.

MoSeq - Data modeling
Principal components analysis (PCA) was used to reduce the dimensionality of the extracted time-series, and covariance between

the resulting principal components (PC) were removed by whitening the PC time-series across data obtained from all subjects. The

whitened PCs were fit using an autoregressive hierarchical Dirichlet process hidden Markov model (AR-HMM), as described previ-

ously.12 Separate models were used for different datasets (electrical kindling, IHKA, SCN1b female, SCN1bmale, IHKA epileptogen-

esis, AEDwildtypemice, and AED IHKAmice). The AR-HMMwas used to identified syllables which captured 90-95%of the variance;

the number of syllables ranged between 27-60 syllables (includes 5-min and 60-min recording sessions).

Behavioral summaries and wordclouds
Preprocessed behavioral recordings of mice in the open-field assay enclosure were summarized to compare their performance to

distinguish different experimental groups. We used the following parameters, as described previously22: position, speed, length,

height, scalars, andMoSeq. Position summaries were generated from histograms partitioning the normalized distance from the arena

center into 90 bins. Speed summaries were obtained from the first derivative of the 2D position, which was used to generate a his-

togramwith 90 bins spaced between 0 and 20 pixels. Length summaries were obtained from themajor axis of the ellipse of themouse

body contour, which was used to generate a histogram with 45 bins spaced between 20 and 100 pixels. Height summaries were

obtained from the maximum height of the extracted mouse image, which was used to generate a histogram with 45 bins spaced be-

tween 0 and 60 mm. Scalar summaries were generated by concatenating the length, height, speed and position summaries. MoSeq

summaries were generated with histograms describing usage frequency of each syllable (numerical syllable ID) to which the (blinded)

experimenter gave a semantic description (syllable names). Wordclouds with syllable names were generated in Python to visualize

the relative usage frequency of syllables between experimental groups (available through github.com/amueller/word_cloud). Font

size corresponds to difference in frequency between indicated groups, and color corresponds to whether syllable expression was

increased or decreased (red or blue, respectively).

MoSeq-based behavioral distance measurements
We assessed similarity between pose trajectories of different syllables, as previously described.22,40 Briefly, we used the autore-

gressive coefficients described by the AR-HMM model to simulate pose trajectories for each syllable over ten time-steps

(corresponding to 300 ms). We then generated a distance matrix by computing the pairwise correlation distance between the

top most-used syllables and represented this distance matrix as a dendrogram using the Voor Hees hierarchical clustering algo-

rithm (scipy.cluster.hierarchy.linkage). Low distances (values near 0) represent similar syllables, and high distances (values near 6)

represent dissimilar syllables.
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Linear classification of behavioral summaries
We performed linear classification of behavioral summaries using logistic regression (Scikit-Learn Python package), as previously

described.22 We used a ‘‘one-vs-rest’’ formulation of multi-class classification, with an L2 weight penalty with an inverse regulariza-

tion strength. We performed 500-fold cross-validation, using randomly shuffled folds with 10% of data held-out per fold; the relative

proportion of each label were the same in both train and held-out sets using a stratified sampling. As is standard practice, the model

uses user-provided group labels (e.g., IHKA vs. CON), and the model’s performance is assessed by the concordance of the true la-

bels with the model’s predicted labels on the held-out dataset. A linear classifier model can have the following outcomes for each

sample in the held-out set: true positive (model correctly predicts the positive ‘‘class’’, i.e., group label), true negative (model correctly

predicts the negative class), false positive (model incorrectly predicts the positive class), and false negative (model incorrectly pre-

dicts the negative class). These outcomes are used to obtain the F1 scores (described below). To classify drug identity alone, data

from all doses (low and high) were merged. The mean and standard error of performance metrics are reported. We evaluated the

performance of our linear classifier by computing confusion matrices, precision-recall curves, and F1 scores.

Confusion matrices

Each confusion matrix is a square matrix where the number of rows and columns are equal to the number of possible target labels

(e.g., six drug-dose pairs). Each square (indexed by i,j) represents the proportion of time a data point with the true label iwas classified

with label j. When i=j, the classifier correctly predicted the label; thus, an ideal classifier generates a matrix with a white diagonal

amidst otherwise black fields (where classification rate is plotted on a scale of black to white, corresponding to 0 to 1). Matrices

were normalized to one across each row and column to indicate the probability of classification or misclassification. The held-out

confusion matrix (Figure S2D) was calculated by N repetitions of the training and evaluation process, where N is the number of treat-

ment groups, in order to analyze the treatments which the classifier considers most similar to the target treatment class. For each

iteration, one target class was removed from the training set and added into the held-out set of each fold, which forces the classifier

to never correctly classify the held-out treatment class. The complete held-out confusionmatrix was generated by repeating this pro-

cess for all treatment groups.

Precision-recall (PR) curves

Precision and recall are calculated as follows:

Precision =
tp

tp + fp
& Recall =

tp
tp + fn

8<
:

tp = number of true positives
fp = number of false positives
tn = number of true negatives

The number of false positives, true positives, and true negatives are the outcomes of the linear classifier model, as described

above. PR curves were generated to plot the precision and recall of linear classifier model as a decision threshold is varied, i.e.,

by measuring the false-positive and true-positive rates at a decision threshold for all data in the validation set. The number of false

positives, true positives, and true negatives are the outcomes of the linear classifier model. The harmonicmean of precision and recall

gives the F1 score, which is a measure of binary classification performance:

F1 = 2 x
precision x recall

precision+ recall

F1 values were calculated for each label class, and class-weighted averaging across F1 score of all classes was used to generate a

single mean F1 score as a behavioral summary. Standard errors were also calculated.

Cosine distance matrix for behavioral summary distance comparisons
The cosine distance was computed between pairs of behavioral summaries (using the SciPy Python package). The cosine distance

was chosen since it is well suited for high-dimensional data and allows a comparison between behavioral summaries with different

units. To visualize the relationships between behavioral summaries, we show a reordered squarematrix containing all pairwise cosine

distances using hierarchical clustering (Ward’s linkage).

Discrimination-relevant syllables (‘‘behavioral fingerprint’’) and transitions
As previously described,22 we used a F univariate statistical test to identify which syllables were most relevant for discriminating be-

tween conditions (e.g., between drug-dose pairs or between timepoints during epileptogenesis), with the reasoning that syllables

whose usage frequency was highly statistically dependent on a given condition would be useful for linear classification, and therefore

be considered characteristic of that condition. To represent the grammatical relationship between behavioral syllables, we per-

formed an analysis of the bigram probabilities and the entropy rate as described previously.12

Visualizing behavioral summaries with low-dimensional embeddings
To visualize the relationship between conditions (e.g., between drug-dose pairs, between timepoints of epileptogenesis), we calcu-

lated low-dimensional (2D or 3D) embeddings from MoSeq behavioral summaries (i.e., mean syllable usages per session). We used

linear discriminant analysis (LDA; from the Scikit-Learn Python package using the ‘svd’ – singular value decomposition – solver) to

calculate a low-dimensional projection of the behavioral summaries which maximized linear separability between groups. Similar
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separation was obtained with 2D or 3D embedding. The LDA input for Figure 2F with 8 groups was 59 syllables x 80 sessions, for

Figure 3Fwith 7 groups, 50 syllables x 96 sessions, and for seizure behavior (30-secwindows) in Figure 4Gwith 4 groups, 27 syllables

x 125 sessions, and in Figure 4J with 5 groups, 27 syllables x 125 sessions.

Human vs. Machine performance in identifying epileptic animals
To benchmark the ability of MoSeq to identify epileptic animals based on the inter-ictal phenotype, we compared its performance to

that of four trained epilepsy researchers (blinded to experimental conditions) who were shown multiple 1-minute video clips from

epileptic and non-epileptic mice and tasked with allocating them to the appropriate group. We trained a linear classifier on Mo-

Seq-identified syllables or other common behavioral measures such as position, speed, or a combination of different scalars. We

evaluated classifier performance as described above and reported the F1 scores and classification matrices. The performance of

human experimenters was evaluated by computing the mean of the F1 scores of each experimenter. Note that the expert classifica-

tion shown in Figure 1C had no influence on the grouping and was an additional experiment that was performed in order to compare

MoSeq to human performance in identifying epileptic animals. For all experiments, the group labels were provided as metadata (see

Figures S4B and S4C) at the time of data acquisition based on biological (e.g., genetic mutation) or physical variables (e.g., time after

injection) in models of epilepsy (e.g., IHKA model of TLE).

Grouping of Racine score sets
To group Racine score sets (‘‘RS sets’’) into RS blocks, we first identified unique RS sets (30 unique RS sets in our dataset). Cosine

distancewas then used for grouping unique RS sets into RS blocks (see also section ‘‘Cosine distancematrix for behavioral summary

distance comparisons’’ for details). The hierarchical clustering was thresholded at 3.5 using the fcluster function of SciPy Python

package to reduce the number of clusters (i.e., number of RS blocks) for classification. For the kindling experiments, MoSeq ex-

tracted behavioral syllables that were similar to previous reports,12,22,40 including syllables such as ‘‘rearing’’ and ‘‘scrunching’’. How-

ever, right after the kindling stimulus, MoSeq extracted previously unreported behavioral syllables that could be described with ex-

pressions found in traditional scoring systems such as ‘‘wild running and jumping’’.

Statistical tests
Error bars indicate 95% bootstrap confidence intervals. For statistical tests that assume normality, distributions were assumed to be

normal but was not formally tested. In box-and-whisker plots of linear classifier performance, the box represents the distribution

across 500 cross-validation folds and whiskers represent 1.5-times the inter-quartile range.

Behavioral syllables with differential usage across conditions (e.g. CON vs. IHKA, or Scn1b+/- vs. Scn1b+/+) were identified using

the Kruskal-Wallis test, post-hoc Dunn’s two-sided tests with permutation, and Benjamini–Hochberg false discovery rate (FDR) of

0.05. In the Kruskal-Wallis test, the H-statistic (from the actual data) and theH-permutation (from permuted data inwhich group labels

were randomly shuffled for all groups) were calculated for each syllable. RawP-valueswere computed using the ratio of permutations

where H-permutation is larger than H-data. These P-values were corrected using the Benjamini-Hochberg FDR across syllables, and

syllables with FDR < 0.05 were identified as significant. For each syllable with FDR < 0.05 in the Kruskal-Wallis test, we performed a

Dunn’s post-hoc two-sided test by calculating z-data (the z-statistic from the actual data) and z-permutation (from permuted data in

which group labels were shuffled). Raw P-values were computed using the ratio of permutations where z-permutation is larger than

z-data. These P-values were corrected using Benjamini-Hochberg FDR across all pairwise comparisons, and syllables with

FDR < 0.05 were identified as significant.

To assess differences in syllable usage between non-epileptic (CON) and chronically epileptic mice (IHKA) injected with either sa-

line or high dose levetiracetam (LEV-H), we first normalized syllable usage of IHKALEV-H mice to the difference between CONSaline and

IHKASaline. We reasoned that ‘‘off-target’’ effects should correspond to changes in IHKALEV-H syllable usage which diverged from us-

age observed in controls, and ‘‘on-target’’ effects should correspond to changes in IHKALEV-H syllable usage which moved closer to

the usage observed in controls. We used the Kruskal-Wallis and post-hoc Dunn’s two-sided test with permutation, with P-values

corrected using the Benjamini–Hochberg FDR; syllables with FDR < 0.05 were identified as significant.

To identify syllables which distinguished a given drug-dose pair from the control treatment (i.e., one-vs-CON comparison) or from

all other treatments (one-vs-rest), we compared syllable usage using the two-sided F-test with P-values corrected using the Holm-

Bonferroni correction and significance set to P<0.01. These statistically significant syllables are indicated in wordclouds with their

size scaled to the normalized F statistic and color-coded by whether the syllable was significantly up- or down-regulated (red or

blue, respectively).

Differences in F1 scores across behavioral summary types were tested for statistical significance using the paired two-sided t-test,

corrected with Holm-Bonferroni step-down procedure, with significance set at P<0.01 after correction.
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