Under review as a conference paper at ICLR 2025

EQUIVARIANT NEURAL FUNCTIONAL NETWORKS
FOR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper systematically explores neural functional networks (NFN) for trans-
former architectures. NFN are specialized neural networks that treat the weights,
gradients, or sparsity patterns of a deep neural network (DNN) as input data and
have proven valuable for tasks such as learnable optimizers, implicit data repre-
sentations, and weight editing. While NFN have been extensively developed for
MLP and CNN, no prior work has addressed their design for transformers, de-
spite the importance of transformers in modern deep learning. This paper aims
to address this gap by providing a systematic study of NFN for transformers. We
first determine the maximal symmetric group of the weights in a multi-head atten-
tion module as well as a necessary and sufficient condition under which two sets
of hyperparameters of the multi-head attention module define the same function.
We then define the weight space of transformer architectures and its associated
group action, which leads to the design principles for NFN in transformers. Based
on these, we introduce Transformer-NFN, an NFN that is equivariant under this
group action. Additionally, we release a dataset of more than 125,000 Transform-
ers model checkpoints trained on two datasets with two different tasks, providing
a benchmark for evaluating Transformer-NFN and encouraging further research
on transformer training and performance.

1 INTRODUCTION

Deep neural networks (DNNs) have become highly flexible and adaptable modeling tools, widely
employed in domains such as natural language processing (Rumelhart et al., 1986; Hochreiter &
Schmidhuber, 1997; Vaswani et al., 2017; Devlin et al., 2019), computer vision (He et al., 2015;
Szegedy et al., 2015; Krizhevsky et al., 2012), and natural science (Raissi et al., 2019; Jumper et al.,
2021). Increasing attention is being given to constructing specialized neural networks that treat the
weights, gradients, or sparsity patterns of DNNs as data inputs. These specialized networks are
referred to as neural functional networks (NFNs) (Zhou et al., 2024b). NFNs have proven useful
in various applications, such as designing learnable optimizers for neural network training (Bengio
et al., 2013; Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), extracting
information from implicit representations of data (Stanley, 2007; Mildenhall et al., 2021; Runarsson
& Jonsson, 2000), performing targeted weight editing (Sinitsin et al., 2020; De Cao et al., 2021;
Mitchell et al., 2021), evaluating policies (Harb et al., 2020), and applying Bayesian inference with
neural networks as evidence (Sokota et al., 2021).

The construction of NFNs presents significant challenges due to the complexity and high dimen-
sionality of their structures. Earlier approaches sought to address this by constraining the training
process, thereby restricting the weight space (Dupont et al., 2021; Bauer et al., 2023; De Luigi et al.,
2023). More recently, research has shifted towards the development of permutation-equivariant
NFENs, capable of operating on neural network weights without such constraints (Navon et al., 2023;
Zhou et al., 2024b; Kofinas et al., 2024; Zhou et al., 2024¢c). These advancements have resulted in
NFNs that exhibit equivariance to weight permutations, which correspond to neuron rearrangements
within hidden layers. Additionally, NFNs that are equivariant to both permutations and operations
such as scaling or sign-flipping have been proposed. These include graph-based message-passing
methods as described in (Kalogeropoulos et al., 2024) and parameter sharing techniques in (Tran
et al., 2024). However, most of the recent neural functional networks are designed for Multilayer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs).
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Transformers have achieved remarkable success in the field of natural language processing (NLP)
(Vaswani, 2017; Bahdanau, 2014), powering numerous large-scale language models such as GPT-
2, GPT-3, GPT-4, AlbertAGPT, Claude, BERT, XLLNet, RoBERTa, and ChatGPT. These models
highlight the transformer architecture’s capacity to perform a broad range of NLP-related tasks and
its applicability to real-world scenarios. The influence of Transformers extends beyond NLP, finding
applications in areas such as computer vision through Vision Transformers, reinforcement learning
(Parisotto et al., 2020; Chen et al., 2021), audio processing (Radford et al., 2023), multi-modal data
integration, and robotics (Monastirsky et al., 2022). Despite the significance of Transformers, no
systematic development of NFNs for Transformers has been realized to date. Addressing the design
principle of NFNs for Transformers, as well as constructing equivariant NFNs capable of processing
transformer models, has thus emerged as a critical research problem.

1.1 BACKGROUND

Self-attention is the core component of a transformer block (Cho et al., 2014; Lin et al., 2017; Parikh
et al., 2016). Self-attention learns to align tokens within an input sequence by assessing the relative
importance of each token in relation to all other tokens. It then transforms each token into a weighted
average of the feature representations of other tokens, with the weights determined by importance
scores between token pairs. These importance scores allow each token to attend to others in the
sequence, effectively capturing contextual representations (Bahdanau et al., 2015; Kim et al., 2017;
Vaswani, 2017).

Self-attention. Let X = [Xi,...,X7]" € REXD be an input sequence of L tokens with D
features. Each token is a vector X; € RP. The self-attention, denoted by Head, transforms X into
the output sequence Head(X) € RE*Pv defined as

K)N\T
Head(X;W(Q),W(K),W(V)) = softmax ((XW(Q))(XW( ) ) xw™

, 1
VDr )

where the parameters W (@), W(K) ¢ RP*Px and W) € RP*P are called the query, key and
value matrices. Here, Dy, and D, are given positive integers.

Multihead attention. To jointly attend to information from different representation subspaces at
different positions, a multihead attention is used. Let i be a positive integer which represents the
number of head. The multihead attention transforms the input sequence X € RZ*P to an output
sequence in RL*P defined by:

MultiHead (X; WO, [W(@d) ), WW’“}L)

h
_ <@ Head (X; W(@0, W, WW))) WO, @)
i=1
where each head is a self-attention defined in equation 1, and € is the concatenation operator. Here,
the matrices W (@) W) ¢ RPxDr (Vi) ¢ RPXDv and W(O) ¢ RMP»*D are learnable
from input data for some postive integers Dy, and D,,.

1.2 CONTRIBUTION

This paper provides a systematic study on the development of a neural functional network (NFN)
for transformer architectures. To achieve this, we present three essential components for the study:
(1) a design principle of NFNs for Transformers that incorporates the maximal symmetric group
for the multi-head attention module, (2) an equivariant NFN for Transformers, which we will
call Transformer-NFN, and (3) a benchmark dataset for testing the applicability and efficiency of
Transformer-NFN. In particular, our contributions are four-fold:

1. We determine the maximal symmetric group of the weights in a multi-head attention module,
establishing the necessary and sufficient conditions under which two sets of hyperparameters
for a multi-head attention module define the same function.

2. We formally define the weight space of a transformer architecture, along with a group action
on this weight space. In conjunction with the maximal symmetric group of the weights in
multi-head attention modules, we characterize the design principles for NFNs in transformer
architectures.
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3. We introduce Transformer-NFN, an NFN for transformer architectures that is equivariant un-
der the specified group action. The main building block of Transformer-NFN is an equivariant
polynomial layer derived from a parameter-sharing strategy.

4. We release Small Transformer Zoo dataset, which consists of more than 125,000 Transformers
model checkpoints trained on two different tasks: digit image classification on MNIST and
text topic classificaction on AGNews. To our knowledge, this the first dataset of its kind. This
dataset serves as a benchmark for testing the applicability and efficiency of our Transformer-
NFN, while also encouraging further research in this field to gain a deeper understanding of
transformer network training and performance.

We empirically demonstrate that Transformer-NFN consistently outperforms other baseline models
on our constructed datasets. Through comprehensive ablation studies, we emphasize Transformer-
NFN’s ability to effectively capture information within the transformer block, establishing it as a
robust predictor of model generalization.

Organization. Following a review of related works in Section 2, we derive the maximal symmetric
group of multihead attention in Section 3. In Section 4, we construct the weight space of a stan-
dard transformer block and define a corresponding group action. Section 5 introduces a family of
equivariant NFNs for Transformers, referred to as Transformer-NFNs. We then present the setting
and details of the Small Transformer Zoo dataset in Section 6. Finally, in Section 7, we evaluate the
applicability and efficiency of Transformer-NFNs on this dataset.

2 RELATED WORK

Symmetries of weight spaces. The exploration of symmetries within the weight spaces of neu-
ral networks, which relates to assessing the functional equivalence of these networks, is a well-
established field of study (Allen-Zhu et al., 2019; Du et al., 2019; Frankle & Carbin, 2018; Belkin
etal., 2019; Novak et al., 2018). This topic was first introduced by Hecht-Nielsen in (Hecht-Nielsen,
1990). Following this, numerous studies have yielded insights for various network architectures, as
detailed in (Chen et al., 1993; Fefferman & Markel, 1993; Kurkova & Kainen, 1994; Albertini &
Sontag, 1993b;a; Bui Thi Mai & Lampert, 2020).

Neural functional networks. Recent studies have aimed to develop representations for trained clas-
sifiers to evaluate their generalization performance and understand neural network behavior (Baker
etal., 2017; Eilertsen et al., 2020; Unterthiner et al., 2020; Schiirholt et al., 2021; 2022a;b). Notably,
low-dimensional encodings for Implicit Neural Representations (INRs) have been created for vari-
ous downstream tasks (Dupont et al., 2022; De Luigi et al., 2023). Schiirholt et al. (2021) proposed
neuron permutation augmentations, and other research has focused on encoding and decoding neu-
ral network parameters for reconstruction and generative purposes (Peebles et al., 2022; Ashkenazi
et al., 2022; Knyazev et al., 2021; Erkog et al., 2023).

Equivariant NFNs for MLPs and CNNs. Recent advancements have made considerable strides
in addressing the limitations of permutation equivariant neural networks through the introduction of
permutation equivariant layers. These layers employ intricate weight-sharing patterns (Navon et al.,
2023; Zhou et al., 2024b; Kofinas et al., 2024; Zhou et al., 2024c¢), as well as set-based (Andreis et al.,
2023) and graph-based structures of the network’s weights (Lim et al., 2023; Kofinas et al., 2024;
Zhou et al., 2024a), to maintain equivariance. Moreover, monomial equivariant NFNs, which are
equivariant to both permutations and scaling, have been proposed in (Kalogeropoulos et al., 2024)
utilizing a graph-based message-passing mechanism and in (Tran et al., 2024) through a parameter
sharing mechanism.

3 MAXIMAL SYMMETRIC GROUP OF A MULTI-HEAD ATTENTION

As the first step in characterizing a principal design of NFNs for Transformers, we need to decide
when two tuples of matrices with appropriate sizes, say ({W(Qvi), WDy (Vi) }h:1 , W(O)) and

—(Qi) ==(K,i) (V)" = .
({W(Q’ ), W(K’ ), W )} , W(O)), define the same Multihead map. We provide a complete
i=1
answer for this step in this section, thus characterizing the maximal symmetric group of the weights
of Multihead.
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Let us consider the MultiHead map with h heads defined in Equation (2). We can rewrite
MultiHead as:

. . . h
MultiHead (X; W), {W(Q’l), W (), WW)} )
i=1
h
_ (@ Head (X; W(Q»“,W“»“,W(V@)) W)
=1

h
= Head (X; WD) (i) W(W)) W00
i=1

h @) . (E) T 4 ,
= softmax (X- (W W) ) .XT> X - (Ww,z) . W(az)),
i=1

VDy,

where W(©) = (W(O’l),...,W(O’h)) with each W (9% ¢ RP+*P_ Here, the matrices

(W@). (W(K))T/\/Dk and W (V") . W (O:9) have the same size D x D. Based on this observa-

tion, we define for each positive integer h and each sequence of matrices {4;, B;}_, in RP*D a
map

F(’{AZaBz}?:l) : I—IRZXD — |—|Rl><D’
1>0 1>0
defined by

h
F(X;{A;, BiYl_)) =) softmax (X - A; - X) - X - B;,
i=1
for each X € RY*P 1t is noted that, for each integer [ > 0, the image of R‘*D yia F is contained in

R*Pv and F can be viewed as a generalization of MultiHead. With this setting at hand, we proved
that:

Theorem 3.1 (Independence of heads in multi-head attention). Let D be a positive integer. Assume

that for a positive integer h, matrices Ay, Aa, ..., Ay € RP*P and By, Bo, ..., B, € RP*P we
have
F (X {4, BYL ) =0, ©
for all positive integers L and X € R¥*P_ Then, if A1, Ay, ..., Ay, are pairwise distinct, then
Bi=...=B,=0.

Remark 1. Roughly speaking, the above theorem says that, in the multi-head attention, each indi-
vidual head plays its own unique role.

Based on the above theorem, we characterize the maximal symmetric group of the weights of
MultiHead in the following theorem.

Theorem 3.2 (Maximal symmetric group of multi-head attentions). Let h, D, Dy, D,, be positive in-
tegers. Let (W(Q’i), W(K’i),W(V’i),W(O’i)) and (W(Q’Z),W(K’l),w(v’z),W(O’l)) be arbitrary

elements of RP* Pk x RPXDPk 5 RPXDv 5 RPvXD with j = 1,... h. Assume that
(a) max(Dy, Dy,) < D,

), and W(K’i) are of full rank,

(b) the matrices W (@ (K1), W(Q7i
(c) the matrices W(Q-) . (I/V(K’i))—r withi = 1,..., h are pairwise distinct,

—(Q.1)  [==(K,i)\ "
(d) the matrices W(Q’ ). (W(K’ )> withi = 1,..., h are pairwise distinct.

Then the following are equivalent:
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1. For every positive integer L and every X € R¥*P we always have

MultiHead (X; {WW), WD (Vi) py(0:) }h )
i=1

— MultiHead (X; {W(Q”’, WD v, W(O’“}A 1) . &)
2. There exist matrices M) € GLp, (R) and N € GLp,(R) for eachi = 1,...,h, as
well as a permutation T € Sy, such that

(W(Q’T(i)) 7 W(K’T(i)) : W(Vﬂ'(i)) : W(Oﬂ'(i)))

— (W@,i) (MY W) (@)= (Vi) NG (N @)= W(Ow‘)) )

Remark 2 (Necessity of the assumptions (a), (b), (c), and (d)). The four assumptions in Theorem 3.2
are necessary for the implication (1.) = (2.). Indeed, the assumptions (c) and (d) are needed to
utilize Theorem 3.1. In addition, it follows from Theorem 3.1 and item (1.) that

) ) T
W@ . (W(K’i))T _ W(Q,T(z)) ) (W(K,T(z)) — A, and
W Vi) Ly (0.0) _ W(Vﬁ(i)) 'W(O;T(i)) - B
for some matrices A;, B; € RP*P. At this point, the assumptions (a) and (b) are necessary to
utilize the rank decomposition of A; and B; to obtain the symmetries of the factors (Piziak & Odell,
1999). It worth noting that these assumptions are generically satisfied in practical implementations
since the parameters of MultiHead are randomly initialized with dimensions Dy, < D and D, < D.

Remark 3 (Maximal symmetric group of multi-head attentions). Theorem 3.2 suggests that a multi-
head attention in practice is characterized by the products W (@) . (T (5:9)) " and W) L (00)

at each head. As a consequence, we can consider the group Sy, x GLp, (R)" x GLp, (R)" to be the
maximal symmetric group of the MultiHead map.

4  WEIGHT SPACE OF A TRANSFORMER BLOCK AND GROUP ACTION

In this section, we construct the weight space of a standard transformer block and define a group
action on it. Let us first recall necessary notations from permutation matrices before defining the
weight space in Section 4.2 and the group action in Section 4.3.

4.1 PERMUTATION MATRICES

Definition 4.1. Let n be a positive integer. A matrix of size n X n is called a permutation matrix it
it has exactly one entry equal to 1 in each row and each column, and zeros elsewhere. We denote by
‘P,, the set of such all permutation matrices.

Remark 4 (Permutation matrix vs. permutation). For every permutation matrix P € P,,, there exists
a unique permutation 7 € S,, such that P is obtained by permuting the n columns of the identity
matrix [,, according to 7. In this case, we write P := P, and call it the permutation matrix corre-
sponding to 7. Here, S,, is the group of all permutations of the set {1,2,...,n}. In particular, for

permutation matrices P, € P, and P, € P,,, we have
-
Pr-x= (xﬂ_1(1)7x7r_1(2)7'"7x7r_1(n)) ) (6)

and
(Pr-A-Po)y = An-1(i)o(j)s @)

for all vector x € R™ and matrix A € R™»*™,

4.2 WEIGHT SPACE

A standard transformer block, which will be denoted by Attn from now on, contains a multi-head
attention and a two-linear-layer ReLU MLP as well as a layer normalization. Formally, Attn trans-
forms an input sequence X € RE* P to an output sequence Attn(X) € REXP defined as follows:

Attn(X) = LayerNorm (ReLU (X W 41y b<A>) W 41 b<3>) . ®

where
X = LayerNorm (MultiHead (X; (W@ () py (Vi) W<O’i>}§;1)) . )
with 17, = [1,...,1]T € RE*L, This transformer block is parametrized by the following matrices:
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o (W@D WD v o h

inside the multi-head attention, and
« weights (W) W (B)) ¢ RP*Pa x RPaxD and biases (b(4),b(B)) € R1*Pa x RI*P
inside the two-linear-layers ReLU MLP.

c (RDXDk % RDXDk X RDXDU % RDWXD)

The weight space of this transformer block, say U/, is the vector space:
U= (RDka « RPXDk o RDXDu RDUXD)h % (RDXDA % RDAXD) « (RlxDA « RlxD).
(10)
We write each element U € I/ in the form
U = (w199, w50, ), w©9)

Y

To emphasize the weights of each Attn map, we will write Attn(X; U) instead of Attn(X). In
particular, each element U € U will define a map Attn(-;U): REXP — REXP which maps a
sequence X € RE*P 10 a sequence Attn(X;U) € REXP defined by equation 8 and equation 9. In
the next section, we will find a sufficient condition for a pair U and U’ in I such that Attn(;U) =
Attn(-; U").

4.3 GROUP ACTION ON WEIGHT SPACE
Let us consider the weight space U of a standard transformer block defined in Equation (10) and
Equation (11). We consider the symmetries of ¢/ which arise from the following two sources:
* the maximal symmetric group of the multi-head attention, which are characterized in The-
orem 3.2;
* the permutation symmetries represented by permutation matrices, which arise from the
unordered structure of neurons in the two-layer ReLU MLP.
Based on these observations, we consider the group
Gu = S x GLp, (R)" x GLp, (R)" x Pp x Pp,. (12)

This group will serve as the symmetric group of the standard attention block. Each element g € G,
has the form

g= (T, (M;)i=1,....h, (Ni)izl,...,h>P7ro>P7rA)> (13)

where 7 € Sp, 1o € Sp, ma € Sp, are permutations and M;, N; are invertible matrices of
appropriate sizes. The action of G;; on U is defined formally as follows:

Definition 4.2 (Group action). With notation as above, the action of G;; on U is defined to be a
map Gy X U — U which maps an element (g,U) € Gy x U with U and g given in equation 11
and equation 13 to the element

o7 = (1@, L1090, [0, w1 ©0)

([QW](A), [gW](B)) : ([gb}m% [gb](B))>, (14)

where

[gW] (@D — )@ . ( Mw‘)))T WU = (] @) ( M(r(i))) -

[gW] Vo) = W] V@) . N@), [gW](©) = (N(m‘)))‘l W) . p
W] = P W)W Pr W] =Pt (W),
[gb](A) = [b](A) ! PTI'A7 [gb](B) = [b](B)

We conclude the construction of the group action on I/ in the following theorem which results in a
design principle for transformer blocks.



Under review as a conference paper at ICLR 2025

Theorem 4.3 (Invariance of Attn under the action of G;). With notations as above, we have
Attn(X; gU) = Attn(X;U) (15)
forallU e, g€ G, and X € RLXD,

Remark 5 (Other types of symmetries). The group G, defined above does not cover all symme-
tries of the weight space /. Indeed, there are symmetries of scaling type arising from the internal
architecture of the ReLU MLP (see (Godfrey et al., 2022; Tran et al., 2024)). In addition, layer
normalization also offers additional scaling and sign-flipping symmetries for I/ (see Appendix B).
We leave the problem of designing the maximal symmetric group of a transformer block for future
study.

5 EQUIVARIANT POLYNOMIAL NFNS FOR TRANSFORMERS

In this section, we introduce a family of NFNs specifically designed for Transformers, referred to as
Transformer-NFNs, which are equivariant to the group Gy as described in equation 12. The main
building blocks of Transformer-NFNs consist of G;,-equivariant and G;,-invariant polynomial layers.
We will outline the construction of a class of G -invariant polynomial layers below. The detailed
construction of the Gy-equivariant polynomial layers, which follows a similar approach, will be
thoroughly derived in Appendix D.

In concrete, we define a polynomial map I: &/ — RP " with maps each element U € U to the vector
I(U) € RP" of the form

h D D h D D
Z Z PQK )P [WW];%K’S) + Z Z Z (I>(V078):p7q ’ [WW]z(v‘?/qo’s)
s=1 1 s=1p=1gq=1
" b oo b b
+ZZZ¢ Q,8):p,q z(v?zs)"_zzzq)(l(s )ipsq }z(){;’S)
=1p=1g=1 s=1p=1q=1
h D D, h D, D
DD D wma WINE DD D 0.0 WIS
s=1p=1qg=1 s=1p=1g=1
D Da Dy D
+ Z Z (I)(A)rzxq ) [W]z(;.éq) + Z Z (p(B):zxq ’ [W]giz)
p=1q=1 p=1qg=1
Dy
Y Play b >+Zq>(3 b)) + @y, (16)

where
.
WWJ@E) i (W)@ (W] ) and - [WW]O) o= W] WO, 17)

and the coefficients ® _s are matrices of size D’ x 1.

Remark 6 (I(U) as a quadratic polynomial). Intuitively speaking, I(U) is a linear combination
of all entries of the matrices [W](@-*), [W]Us) (] (V-5) | (W](©-5) (W], [W]B), [5](4), and
[b](B) in U, as well as all entries of the additional matrices [J/WW](@%) and [WTW](VO:%) defined
in Equation (17). Since the entries of the matrices [WW](Q¥:%) and [WW](V©O%) are polynomials
of degree 2, the map I(U) is indeed a quadratic polynomial in the entries of U. These additional
quadratic terms help us incorporate more relations between weights inside the input multi-head
attention block, thus allowing Transformer-NFN to maintain its expressivity.

The above formula for I(U) is irredundant in the following sense:

Proposition 5.1. With notation as above, if [(U) = 0 for allU € U, then ®_ = 0 for all coefficients
d_.

To make I to be Gy-invariant, the parameters ®_ must satisfy a system of constraints (usually
called parameter sharing), which are induced from the condition I(gU) = I(U) for all g € G4 and
U € U. We show in details what are these constraints and how to derive the concrete formula of 1
in Appendix E. The formula of [ is then determined by
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D D h h
I(U) = ZZ@(QK'):M . (Z (WW1(RK) ) I ZZ(I)(VO (Z (WWVOs >

p=1 p=1q=1
D Dy
B
DD e W +ZZ¢><B e WIS
p=1g¢=1 p=1q=1
A

In the above formula, the bullet e indicates that the value of the corresponding coefficient is inde-
pendent of the index at the bullet.

Theorem 5.2. With notation as above, the polynomial map I: U — RP ' defined by Equation (18)
is Gy-invariant. Moreover, if a map given in Equation (16) is Gy-invariant, then it has the form
given in Equation (18).

The concrete formula for the polynomial G;,-equivariant layer is presented in detail in Appendix D.

6 THE SMALL TRANSFORMER Z0OO DATASET

Large-scale empirical studies have produced datasets of trained classification models with varied
hyperparameters (Eilertsen et al., 2020; Unterthiner et al., 2021), enabling data-driven approaches
to modeling generalization. However, a dataset of Transformer-based classification models is ab-
sent. Motivated by this shortage, we introduce the Small Transformer Zoo dataset to experimentally
demonstrate the efficacy of our proposed method. This dataset contains the weights of a fixed Trans-
former architecture trained on two distinct datasets, spanning both vision and language tasks. Each
entry in the dataset includes a checkpoint weight along with its corresponding accuracy metrics and
hyperparameter configurations.

General settings. We focus on two prevalent deep learning tasks: digit image classification using
the MNIST dataset (LeCun & Cortes, 2005) for vision, and text topic classification using AGNews
(Zhang et al., 2015) for natural language processing. This selection covers two primary data modal-
ities in deep learning—image and text—while addressing classification tasks, which are among the
most common and fundamental in the field. Our model architecture contains three components: an
embedding layer, an encoder, and a classifier. The embedding layer processes raw input data to
produce initial token embeddings, which the encoder then transforms through self-attention mech-
anisms to capture contextual relationships. Finally, the classifier generates the classification output
based on these enriched embeddings. While we adapt the embedding and classifier components to
each specific task, we maintain a consistent encoder architecture across both tasks, consisting of two
stacked two-head transformer blocks as defined in Equation (8).

Our resulting datasets, named MNIST-Transformers and AGNews-Transformers, consist of 62756
and 63796 model checkpoints, respectively. These models were generated by varying key hyper-
parameters such as the optimizer, learning rate, weight regularization, weight initialization, and
dropout, as detailed in Appendix F. By making these datasets available, we aim to facilitate and
inspire further research into the inner workings and behavior of Transformer models.

7 EXPERIMENTAL RESULTS

We empirically evaluate the performance of the proposed Transformer-NFN model on two datasets:
MNIST-Transformers and AGNews-Transformers. Additionally, we conduct ablation studies to ex-
amine the contribution of each component within the Transformer architecture in predicting network
generalization, and investigate the impact of varying the Transformer-NFN dimension and the num-
ber of layers on the overall performance. Our analysis yields three key findings: (1) Transformer-
NFN, with its enhanced layers for processing transformer block parameters, outperforms existing
baselines in both vision and NLP Transformers datasets, maintains consistent performance across
different accuracy thresholds of the data (2) the information embedded in the weights of Trans-
former blocks provides a strong predictor for the performance of transformer model, and (3) good
performance for Transformer-NFN can be obtained with a compact setting.
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Table 1: Performance measured by Kendall’s 7 of all models on MNIST-Transformers dataset. Un-
certainties indicate standard error over 5 runs.

Accuracy threshold
No threshold 20% 40% 60% 80%
MLP 0.866 +0.002  0.873+£0.001  0.874+0.003  0.87440.006  0.873 £ 0.007

STATNN (Unterthiner et al., 2020) ~ 0.881 £ 0.001 0.872 £ 0.001 0.868 £ 0.001 0.86 £ 0.001 0.856 £ 0.001
XGBoost (Chen & Guestrin, 2016)  0.860 4 0.002 0.839 £ 0.004 0.869 £ 0.003 0.846 £ 0.001 0.884 £ 0.001

LightGBM (Ke et al., 2017) 0.858 £0.002  0.835 £ 0.001 0.847 4 0.001 0.822 £ 0.001 0.830 £ 0.001
Random Forest (Breiman, 2001) 0.772 £ 0.002 0.758 £ 0.004 0.769 £ 0.001 0.752 £ 0.001 0.759 £ 0.001
Transformer-NFN (ours) 0.905 +0.002 0.899 +0.001 0.895+0.001 0.895+0.002 0.888 + 0.002

Table 2: Performance measured by Kendall’s 7 of all models on AGNews-Transformers dataset.
Uncertainties indicate standard error over 5 runs.

Accuracy threshold
No threshold 20% 40% 60% 80%
MLP 0.879 4+ 0.006  0.875 £ 0.001 0.8414+0.012  0.842£0.001 0.862 =+ 0.006

STATNN (Unterthiner et al., 2020) ~ 0.841 £ 0.002 0.839 £ 0.003 0.812 £0.003 0.813 £0.001 0.812 £ 0.001
XGBoost (Chen & Guestrin, 2016)  0.859 & 0.001 0.852 £ 0.002 0.872 £ 0.002 0.874 £ 0.001 0.872 £ 0.001

LightGBM (Ke et al., 2017) 0.835 4 0.001 0.845 £ 0.001 0.837 £ 0.001 0.835 £ 0.001 0.820 £ 0.001
Random Forest (Breiman, 2001) 0.774 £+ 0.003 0.801 £ 0.001 0.797 £ 0.001 0.798 £ 0.002 0.773 £ 0.001
Transformer-NFN (ours) 0.910 £0.001 0.908 £0.001 0.897+0.001 0.896 +£0.001 0.890 4+ 0.001

We use Kendall’s 7 rank correlation (Kendall, 1938), ranging from [—1, 1], as the evaluation metric
to assess how closely predicted accuracy rankings align with ground truth accuracy rankings. A
value near 1 indicates strong agreement, as shown in the scatterplot in Figure 2 (in Appendix G).
All results in this section are averaged over 5 runs with different random seeds, with details on
hyperparameters and training settings provided in Appendix G.

7.1 PREDICTING VISION TRANSFORMERS GENERALIZATION FROM PRETRAINED WEIGHTS

Experiment Setup. In this experiment, we focus on predicting the test accuracy of pretrained
Vision Transformer models using only their weights, without access to the test set. To perform
this task, we utilize our MNIST-Transformers dataset. We evaluate our model against 5 models:
MLP, STATNN (Unterthiner et al., 2021), XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), and Random Forest (Breiman, 2001). As shown in Figure 1 (in Appendix G), the accuracy
distribution of the MNIST-Transformers dataset is highly skewed (notice the log scale on the y-axis).
Therefore, we evaluate each model’s prediction performance not only on the entire dataset but also
on four smaller subsets, each filtered by accuracy thresholds of 20%, 40%, 60%, and 80%. As a
significant portion of pretrained models in the dataset exhibit higher accuracy, achieving a strong
Kendall’s 7 correlation becomes increasingly challenging as the accuracy thresholds increase.

Results. Table 1 illustrates the results of all models when predicting generalization of Vision Trans-
former networks trained on MNIST-Transformer dataset. As expected, Kendall’s 7 generally de-
creases as the accuracy threshold increases. In addition, our Transformer-NFN consistently outper-
forms all four baseline models across all dataset settings with performance gap ranging from 0.004
to 0.026, demonstrating the effectiveness of our model’s design in capturing the information within
each transformer block.

7.2 PREDICTING TEXT CLASSIFICATION TRANSFORMERS GENERALIZATION

Experiment Setup. In this experiment, we utilize the AGNews-Transformers dataset to predict
the performance of pretrained transformer models in text classification. The goal is to evaluate the
effectiveness of Transformer-NFN in predicting the performance of pretrained models specifically
trained on language tasks. Similar to Experiment 7.1, we assess our model’s capabilities across dif-
ferent dataset configurations by using five subsets: the entire dataset without any accuracy threshold,
and four subsets with accuracy thresholds of 20%, 40%, 60%, and 80%, respectively.

Results. Table 2 shows that our model consistently outperforms all baseline models across all
text classification dataset configurations. Compared to the MNIST-Transformers dataset, the per-
formance improvement in this experiment is even more significant, with Kendall’s 7 gaps ranging
from 0.018 to 0.033. Since language tasks inherently involve more complex syntactic structures,
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Table 3: Ablation study the important of each component of the input networks on predicting gen-
eralization of the input network, the metric being used is Kendall’s 7.

No. of MNIST- AGNews-
Components
components Transformers Transformers

Encoder 0.902 +0.001 0.909 + 0.001

1 Embedding 0.424 +0.002 -
Classifier 0.847 4+ 0.001 0.795 4+ 0.008
Embedding + Classifier 0.857 +0.003 -

2 Encoder + Classifier 0.904 £ 0.001 0.910 £0.001
Encoder + Embedding 0.903 £ 0.001 -

3 Encoder + Embedding + Classifier 0.905 + 0.002 -

the transformer encoder can capture richer information in its weights, enabling Transformer-NFN to
more effectively predict performance in NLP tasks than in vision tasks. Figure 2 (in Appendix G)
highlights our model’s superior performance compared to other baselines. Unlike other models
that struggle with predicting generalization in low accuracy networks, Transformer-NFN effectively
captures weight feature information, demonstrating consistent superior performance.

7.3 IMPORTANCE OF ENCODER IN PREDICTING THE GENERALIZATION

A interesting question arises is how much information about the network generalization ability
is embedded in each component of the transformer model. To investigate this, we restrict our
Transformer-NFNs to access only certain subsets of the Transformer’s components and train the
model on MNIST-Transformers dataset and AGNews-Transformers dataset. Our goal is to deter-
mine the importance of each component, both individually and in combination, for predicting gen-
eralization of the input network.

Table 3 shows that, for both the MNIST-Transformers and AGNews-Transformers datasets, the
transformer blocks alone provide a strong prediction for the performance. The classifier is the
second most important, followed by the embedding. Even with only access to the transformer
blocks weights, our model achieves a Kendall’s 7 score almost equal to when all components are
used: 0.902 compared to 0.905 for MNIST-Transformers, and 0.909 compared to 0.91 for AGNews-
Transformers.

7.4 ABALATION STUDY ON VARYING THE DIMENSION AND NUMBER OF LAYERS

In this section, we conduct an ablation study to explore the impact of varying the hidden dimension
and the number of equivariant layers in Transformer-NFN. We evaluate different configurations
of hidden dimensions and layer counts on the AGNews-Transformer dataset, with dimensions €
[3,5, 10, 15], and number of layer € [1,2]. These configurations allow us to assess how changes in
model size affect performance and efficiency.

Table 5 (in Appendix G) demonstrates that strong performance can be achieved with a relatively
small dimension and few parameters. For example, with dimension of 15 and a single layer, the
model reaches a Kendall’s 7 score of 0.913, matching the best performance across all settings. These
results suggest that good performance for our Transformer-NFN can be obtained with a compact
setting.

8 CONCLUSION

In this work, we made significant contributions to the understanding and application of NFNs in
transformer architectures. We determined the maximal symmetric group of the weights in a multi-
head attention module. We also formally defined the weight space of a transformer architecture
and introduced a group action on this weight space, thereby characterizing the design principles for
NFNs. Additionally, we presented Transformer-NFN, an NFN designed for transformer architec-
tures that is equivariant under the specified group action. Finally, we released a dataset of more than
125,000 transformers model checkpoints trained on two datasets with two different tasks, mark-
ing a significant resource for benchmarking the applicability and efficiency of Transformer-NFN
and promoting further research to enhance our understanding of transformer network training and
performance.
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A MAXIMAL SYMMETRIC GROUP OF MultiHead

This section aims to provide a complete answer to the question of when two sets of parameters of
a multi-head attention mechanism will define the same function. The answer to this question will
serve as the core of the design principle of NFNs for Transformers. We recall the formulation of
Head and MultiHead attention maps in Section A.1. Then, the maximal symmetric group of Head
is derived in Section A.2.

A.1 MULTI-HEAD ATTENTION

Let D be a positive integer. Recall the notion of the parameterized map Head as follows: For a
positive integer L and X € RE*P we have

@) . XW(K))T
W@ ) W) (XW) - ( . V)
Head (X,W WE) W ) — softmax ( i (XW ) ,

where W (@) W (K) ¢ RP*DPx and W (V) € RP*Pv By definition, we have
Head <7W(Q),W(K)’W(V)> . URZXD N |_|1Rl><D,,7
1>0 1>0

and for all [ > 0, the image of R is contained in R'*P». By combining (W(@) -
(W(K))T /v Dy, € RP*P ' we can rewrite the map Head as follows

@)Y . (W)
@ wE) W) _ . NUSORUSSH R V)
Head (X, W) WA W ) = softmax (X N X (XW ) ,

By this observation, we define a class of parameterized maps as follows: For X € RL*P we have
f(X; A) = softmax (XAXT) - X,

where A € RP*P_ Similarly, for the MultiHead map, we have

. . P
MultiHead <X; W), {W(Q’”, WD, W(V@} )
i=1

- (é Head (X; W(Q’i),W(K’i),W(V7i)>> W

i=1
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h
= 3" Head (X3 W@, WDy (9

=1
h (@) . (K. T 4 ,

= Zsoftmax <(XW )\/l()i(W ) > X - (W(Vﬂ) . W(O,z)) 7
i=1 k

where  is a positive integer, W(©) = (W(O:l), RN W(O:h)) with each W (9 ¢ RP»*P_ Con-
sidering W (V%) . W(9:9) a5 a matrix B; € RP*P, we define a new class of parameterized maps as
follows: For X € RE*P | we have

h
h
F (X {AL B ) = D0 F(XGA) - B,
i=1
where  is a positive integer and A;, B; € RP*P_ Note that,

rank ((W(Q)) : (W(K))T /@) < min(D, D) < D
rank (WW) : W<0ﬂ’>) < min(D, Dy) < D

So, in general, the new class of F' maps contains the class of MultiHead maps. Note that, F' simply
is a weighted summation of some f maps and is linear with respect to {B; }?_, .

Remark 7. We can see, in f, the matrix A plays the role as a core matrix that defines f. Similarly,
in F, each A; defines each f;, and B; is the weight of each component contributes to F'.

A.2 MAXIMAL SYMMETRIC GROUP OF MULTI-HEAD ATTENTION

In this section, we present a theoretical result that shows the following: Roughly speaking, in the
multi-head scenario, each individual head plays its own unique role. The main results are Theo-
rems A.l (which corresponds to Theorem 3.1 in the main text) on the unique role of each head and
Theorem A.7 (which corresponds to Theorem 3.2 in the main text) on the maximal symmetric group
of multi-head attention.

Theorem A.l. Let D be a positive integer. Assume that for a positive integer h, matrices
A, Ao, . Ay € RPXP and By, Bs, ..., By, € RPXP we have

h
F (X3 {40 B}, ) = Y F(X3 A) - Bi =0 19)
i=1
for all positive integers L and X € R¥*P_ Then, if A1, Ay, ..., Ay, are pairwise distinct, then
B =..=B,=0.

Proof. From Equation (19), we have
h

Z softmax (XA;X ") - X -B; =0 (20)

i=1
Consider L > 1. We write X = (2,9,7,...,y)! € REXP where z = (21,...,2p) and y =
(y1,--.,yp) in RP (Soin X, y appears L — 1 times). We will consider the entry in the first row
and first column of both sides of Equation (20). Let by, bs, ..., b, € RP*! be the first column of
matrices By, By, ..., By. From Equation (20), we have

h zA;z zA;y "
et Le®™ Y
Z (eiAﬂT —|—L€’CA11?!T - T+ eaquzﬂfT —|—L€xAin ~y> -bi =0 (21)
=1

By substituting x = y = (1,0,...,0) € RP to Equation (21), we have the sum of all first entries
of by, ..., by is equal to 0. Similarly, for every j = 1,..., D, the sum of j entries of b, ..., by, is
equal to 0. It shows that

by +bs+...+b,=0. (22)

19



Under review as a conference paper at ICLR 2025

From Equation (21), we have

I
.M:

=3 <emlrfxiimiy7 Tt emAﬂLfiAZ;AwT y) b, (23)
— é <szz: Iézif‘z: E AﬂLTeiAiLim o W x)) “b (24)
— il <a; + ezAﬂLTeiA;;AM (y - x)) b (25)
= i b + i erAixIT/ejrAZ’e;Ain (y—=x)-b; (26)

=1 =1
- (22 bz-) +y-a)- (i emfffimiw : b:-) )
—(y—2)- (22 emifff;y;&w : bz—> (28)
—(y-a)- (fj e iy m) 29)

i=1
:(y_x)'<§;M'bi> (30)

By let z = = — y, from the above equations, we have

y L b, | = 3
A ZeIAiZT_’_L-i —07 (1)

i=1

or
i 1
z (Z I I b) =0, (32)
i=1
for all z = (z1,...,zp) and z = (21,...,2zp) in RP. Now, each x4;z" can be viewed as a
polynomial in 2D indeterminates x1,...,xp and 21, ..., z2p as follows
D D
Az = Z Z(Ai)%q Tpzg. (33)
p=1q=1
Since A, ..., Aj, are pairwise distinct, so A,z ",..., 2 Az " are pairwise distinct polynomials.
By Lemma A3, there exists . € R” and a non-empty open set V € RP, such that forall z € V, we
have uA;2", ..., uAyz" are pairwise distinct real numbers. Obviously 0 ¢ V. Now fix anv € V

andlet z =t - v fort € R. Denote ud,;v' = s;, from Equation (33), we have

h
1

i=1
forallt € R, or

h
1

i=1
forallt € R\ {0}. By continuity, this still holds for ¢ = 0. So we have

h
1

i=1
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for all t € R. Now, consider the set

1 1 1
S = R : teR}. 37
{(et_slw,et_sz”, ,et,sh+L> eR': te } 37)

From Equation (36), we have the linear span of S, i.e. span(S), satisfies that: For all s =

(s1,82,...,5n) € span(S), we have
h
v- (Z S5 - bl-) =0. (38)
i=1

In other words, v and 2?21 s; - b; are orthogonal to each other as two vectors in RP. Since
S$1,...,8, € R are pairwise distinct, by Lemma A.4, there exist £1,...,t, € R such that their
h corresponding vectors in S form a basis of R”. This implies span(S) = R". We have the set

span ({b1,...,bp}) = {ZS’ b; : (s1,. ..,sh)GRh} (39)

{Z $;-b;: s=(s1,...,8n) € span(S)} . (40)

By the previous observation, it implies that v is orthogonal to every vectors in span ({by,...,bp}).
In other words, the orthogonal complement of span ({b1,...,b,}), which is denoted by

span ({b1, ..., bh})L, contains v. This holds for every vectors v in the non-empty open set V,
SO

V C span ({b1,....bu )" (41)
Since span ({by,...,b,})" is a linear subspace of R that contains a non-empty open set of R?,
so by Lemma A 2, we have span ({by,...,b,})" = RP. This implies span ({by,...,b,}) = 0,

which means b; = ... = b;, = 0. So the first column of By, ..., By are all equal to 0, and a similar
proof is applied for every other columns of By,...,By. So By = ... = B, = 0. O

Lemma A.2. Let D be a positive integer, and V is a non-empty open set of RP with the usual
topology. If U is a linear subspace of RP that contains V, then U = RP.

Proof. Since V is non-empty, let z € V. Since V is open, there exists 7 > 0 such that the closed
ball

Bo(z)={yeRP: |z —y|<r}tCV. 42)

Then for all y € RP that iy # 0, we have
:c(x+r y)H T, (43)
[yl

which means
Since xisalsoin V C U,and U is a linear subspace, then y € U. So, for y € RP that y # 0, we
have y € U, and clearly 0 € U, soU =RP, OJ
Remark 8. Lemma A.2 still holds if we replace R” by a normed vector space.
Lemma A.3. Let n,h be two positive integers, and f1,...,fn € Rlz1,...,x,] be h pairwise
distinct real polynomials in n variables. Then there exists a non-empty open subset U of R™ such
that f1(x), ..., fn(x) are pairwise distinct for all x € U.

Proof. Consider the polynomial

f= T (fi—1f) e, .. . (45)
1<i<j<h
Since f1, ..., fn are pairwise distinct, then f; — f; is non-zero for all 1 < i < 7 < h. Itis well-

known that the real polynomial ring is an integral domain, so f is non-zero. There exists a € R™
such that f(a) # 0. Since R is Hausdorff, we can choose a open set V' of R that contains a and does
not contain 0. Let U = f~!(V), and since f is continuous, U is open. We have f(x) # 0 for all
x € U, which means fi(x),..., fn(z) are pairwise distinct for all z € U O
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Lemma A.4. Let h be a positive integer, and h distinct real numbers s1, . .., Sy. Then there exists
h real numbers ty, . .., t, and a positive integer L such that the matrix
A= Rhxh h _ 1 46
= (aij)1<icnagi<h € » where ai = o (46)
is full rank. In other words, there exists h real numbers t1, . .., t, and a positive integer L such that
h vectors
1 1 1 h
(eti'Sl + L7 eti-s2 +L""’eti-5h+L> €R (47
fori=1,..., h, form a basis of R".
Proof. We first have an observations. Let tq,...,t; be fixed and = be a variable. Consider the
matrix
1
A(z) = (aij)i<icha<icn, Where ayj = o — (48)

Then the determinant of A(x), denoted by det(A(x)) can be viewed as a real rational function, i.e.
a function that can be written as the ratio of two real polynomials. So, in the case that this rational
function is zero, det(A(z)) = 0 for all 2 € R, and in the case that this rational function is non-zero,
there are a finite number of 2 € R such that det(A(z)) = 0 or det(A(z)) is not defined. In other
words, A(x) is not full rank for all x, or for only a finite number of x. So, in Lemma A4, if there
exists h real numbers ¢4, ..., t; and a real number L that makes A becomes full rank, then L can be
made to be a positive integer.

Back to the problem, we will prove by mathematical induction. We will show that for every h, it
is possible to choose t1,...,t, and L to make det(A) becomes non-zero. For h = 1, then the
matrix A is full rank since its single entry is always positive for ¢ = L = 1. Assume that the result
holds for a positive integer h — 1, we will show it holds for h. For j = 1,...,h, let B; is the
(h — 1) x (h — 1) matrix obtained by removing the first row and the j® column of matrix A. By
computing the determinant of A via the Laplace expansion along the first row, we have

h h
j=1 j=1

Denote ¢; = (—1)'17 - det(B;), and note that ¢; depends on the choice of ¢o, . . ., t5. Without loss
of generality, assume s; # 0. Since so,..., s, are h — 1 pairwise distinct real numbers, by the
induction hypothesis, there exists ¢, . . ., 5 such that ¢y is non-zero for at least one L € R. So with
this choice of o, . .., t;, there exists o € R such that

¢y 1s non-zero for all L < a. (50)
Since s1, ..., sp, are pairwise distinct and s; # 0, we can choose t = t; € R such that:

1. et > 1 — a; and,

2. |efrst —etisi| > 3; forall (z,7) # (1,1).
With this choice of ¢1, let A = [-1 — ef1511 — ef1"$1]. Then for L € A

1. We have e'1%1 + [ € [—1,1].
2. For (i,7) # (1,1), since |ef151 — eti'Si| > 3, then % + L ¢ [—1,1].

3. Wehave L1 —elt1 <1 —(1—a)=q.

We show that with this choice of ¢y, o, ..., 5, there exists L € R such that det(A) is non-zero.
Assume the contrary that
h
1
SR AL eb

Jj=1
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for all L € R. This implies that

1 ‘ 1
g A B Dl ey S (52)
=2
SO
1 h 1 h
etlllerL’ . |Cl| = Zrl.sj +L Cj Z et1s; JrL’ |Cj| (53)
=2 =2
Considering cq, ..., ¢y, as functions in L, we have these functions are well-defined on the closed
interval A, since they are determinants of matrices where their entries are
1
4
I (54)
for1 < i < hand 1 < j < h, and these entries are defined on A by the choice of ¢, ..., .
Moreover, ¢, . .., c, are contmuous on A. Since a continuous function on a compact set is bounded,
so there exists 51 > ( such that
le1ls ..y ]en] < 61, forall L € A. (55)

Moreover, since L € A implies L < «, then |¢1| > 0 for all L < «, which means there exists
do > 0 such that

|c1] > 2, forall L € A. (56)
Similarly, for 1 < j < h,
1
_ 57
T (57)
considered as functions in L, is well-defined and continuous on A, so there exist 3 > 0 such that
1 1
M’7 5 m <63 fOrallLeA (58)
From Equation (53), since we have Equations (55), (56), (58), then for all L € A\ {—ef1 51},
1
o || < -0 (59)

As L — —et1'51, the LHS of Equation (59) goes to oo, but the RHS is a constant, which is a
contradiction. So with the choice of ¢1,...,t, there exists L € R such that det(A) # 0. The
result holds for h. By mathematical induction, it holds for every positive integers h. The proof is

done. O
Remark 9. If we fix a positive integer L, there might not exist ¢4, . .., ¢;, satisfy the condition. For
instance, if h > 4, and s1 + s2 = s3 + s4 = 0, then the matrix A is not full rank for all ¢4, ..., t.

‘We have two direct corollaries of Theorem A.1.

Corollary A.5. Let D be a positive integer. Assume that, for two positive integers h, I/, collections
(AN, {AND B}, {BIY.| of matrices in RP*P, we have

F (X {Au B}, ) = F (X34 BIYL) (60)
for all positive integers L and X € RE*P_ Then, for all A € RP*P | we have

Z B; = Z B! (61)

i: Aj=A i A=

Proof. From Equation (60), we have

> f(XAXT)-X- Bi— > Bi| =0 (62)
AERDXD i A=A i A=A
then the result is directly from Corollary A.S. O
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Corollary A.6. Let D, Dy, D, and h,h' be positive integers. For 1 <i < hand1 < j <k, let
(W(Q’i), W(K’i), ]/V(VJ)7 W(O,i)) (63)
(W(Q’j),W(K’j),W(V’j),W(O’j» (64)

be elements of RP*Pr 5 RP* Dk 5 RPXDv 5 RPvXD - Assume that, the two corresponding Multi-
Head'’s are identical, i.e.

. ) . N\ h
MultiHead <X; {W(Q’”, W) (V) (09 } | )

=1
- N N N . h’
— MultiHead (X; { (W(Q’”, W) v W(O’”)} > . (65)
j=1
for all positive integers L and X € RE¥*P . Then, for all A € RP*P | we have
Z WV (04 — Z W(V,j) _W(OJ). (66)
i W(Q,i).(W(K,i))T:A j W@'j)-(W(K’j))T:A

We characterize the symmetries of the weights of MultiHead in the following theorem.

Theorem A.7. Let h, D, Dy, D, be positive integers. Let (W(Q’i), WD Vi) W(O’i)) and

(W(Q’i) , W(K’i) , W(V’i) , W(O’i)) be arbitrary elements of RP*Pr x RP* Dk 5 RPX Doy RPoxD

withi=1,...,h. Assume that
(@) max(Dy, D,) < D,

), and W(K’i) are of full rank,

(b) the matrices W (@) W (K0 W(Q’i
(c) the matrices W (@) . (W(K’i))—r withi =1, ..., h are pairwise distinct,

—(Q.1)  [==(K,i)\ "
(d) the matrices W(Q’ ) (W(K’Z)> withi = 1,..., h are pairwise distinct.

Then the following are equivalent:
1. For every positive integer L and every X € RY*P we always have

. . . Y h
MultiHead (X; {W(Q”), WD (Vi) (0:) } )

i=1

—(Q,i) —=(K,i) —=(V,i) —(0,i))"
= MultiHead (X; {W(Q’ ), W(K7 ), WW’ )’ W )}‘ 1) .

2. There exist matrices M) € GLp, (R) and N € GLp, (R) for eachi = 1,...,h, as
well as a permutation T € Sy, such that

(W(Qﬁ(i)) : W(K’T(i)), W(Vﬂ') 7 W(O’T(i)))

_ (W(Q,z') A(MOYT W ED (=1 (Vi) NG (N@D)-L W(o,w) .

Proof. The implication (2.) = (1.) is clear. Let us consider the implication (1.) = (2.). For each
s=1,...,h, weset

A6 — (@) . (W(K,s))T’ T _ @ (W(K7S))T7
B — W (Vss) L (0ss) B v ~W(O’s),
which are matrices in R”*P. By applying Corollary A.6 for A = A®), we see that
B = Y BY. (67)
AV =A
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. . =)
However, since the matrices A

with j = 1,..., h are pairwise distinct, there exist a unique index
js € {1,..., h} such that A9 — A The correspondence s — j is a permutation of {1, ..., h}.
Therefore, we can write j; = 7(s) for some 7 € Sp,. Hence, Z(T(S)) = A®) and thus equation 67
becomes

E(T(S)) — B,
The theorem is then followed by the rank factorization of the matrices A®) and B®) (Piziak &
Odell, 1999). O

B MATRIX GROUP PRESERVED BY LayerNorm

In our setting, layer normalization is a row-wise operator. In particular, for a row vector x =
(x1,...,2p) € RP, the standard layer normalization of x, denoted by LayerNorm(z), is deter-
mined as

r—2T-1p

LayerNorm(z) = VD (68)

lo —z-1pll2’
where T = %(xl + ...+ xp) is the mean of the coordinates of x and 1 is a row vector in RP
whose coordinates are all equal to 1. Geometrically, we can view LayerNorm as the composition

LayerNorm = 7 o p, (69)

of two transformations 7 and p on R? defined belows.

» The perpendicular projection map p: RP — (1 D)l which maps x — x — Z - 1 for each
row vector z € RP. Here, the hyperplane (1) is the orthogonal complement of (1)
in R with respect to the standard dot product. It is noted that p is a linear map with the
kernel Ker(p) = (1p), which is the one-dimensional vector subspace of R” generated by
the row vector 1.

* The scaling map 7: R” \ {0} — R” which maps z +— \/Eﬁ The image of T is the

sphere centered at the origin of radius v/D.

It is noted that, the LayerNorm operator is not defined on the whole RP. Indeed, since T is not
defined at the origin, it is necesarily that p(z) # 0. This means that 2 should not lie in the kernel of
p. Therefore, the LayerNorm operator actually defines a map from the set R” \ (1p) to RP.

Under the view of the LayerNorm as a composition above, it is natural to ask which matrix (or
linear map represented by this matrix) will commute with both the projection p and the scaling 7.
The following theorem gives a complete answer to this question.

Theorem B.1. Let D be a positive integer. Let p and T be the projection and scaling map defined
above. The following are equivalent for an arbitrary matrix M € GLp(R):

1. M commutes with p and 7, i.e. p(xM) = p(x)M and 7(xM) = 7(x) M for all row vector
r € RD.

2. M is an orthogonal matrix such that its row sums and column sums are all equal.
Proof. One can direct verify (2.) implies (1.). To show (1.) implies (2.), letz = (z1,...,2p) € RY
and M = (mi;)1<ij<p € RP*P. From p(xM) = p(x) M, we have
fomClD:(:E*f‘lD)M, (70)
which means
M -1p=7Z-1p- M. (71)
So
D

D D D D D
Z T+ Zmij -1p = (Z%)(Zmﬂ, Zmi% ey ZmiD>~ (72)
Jj=1 i=1 i=1 i=1 i=1

i=1
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It implies that

The above equation holds for all feasible z (as p and 7 are not defined on the whole R?). But since
the set of feasible z is dense in R?, by continuity, the equation holds for all z € R?. Tt implies row
sums and column sums of M are all equal.

In addition, since 7(xM) = 7(x)M, we have ||z M]||2 = ||z||2. By the same argument, it holds for
all z € R?. Hence, M is orthogonal. O

Remark 10 (generalized doubly stochastic matrix). A matrix whose row sums and column sums
are all equal to one is called a generalized doubly stochastic matrix. Smoktunowicz et al. (2019)
characterized all orthogonal generalized doubly stochastic matrices. In particular, let O(D) is the
set of D x D orthogonal matrices, and U, is the subset of O(D) consists of all orthogonal matrices

with the first column is (1/v/D)-(1p) T, then every orthogonal generalized doubly stochastic matrix

can be writen in the form
1 07
0 X (74)

for some (D — 1) x (D — 1) orthogonal matrix X.

There are invertible matrices that do not permute ¢ and 7, but still have nice behavior with
LayerNorm, as we see in the following theorem.

Theorem B.2. Let D be a positive integer. Then for arbitrary permutation matrix P € Pp and real
number \ # 0, we have
LayerNorm(AzP) = sign(\) LayerNorm(z) P, (75)

for every row vector x € RP.

Proof. We have

LayerNorm(AzP) = 7 o p(AzP) (76)
=7(\eP — XzP - 1p) (77)

=7(AtP - Az -1p - P) =sign(A\)7(z —Z-1p)P (78)

= sign(\) LayerNorm(z) P (79)

We finish the proof. O

C WEIGHT SPACE AND GROUP ACTION ON WEIGHT SPACE

In this section, we recall the weight space of a transformer block and the group action on it. Then,
we prove Theorem C.5 (which corresponds to Theorem 4.3 in the main text).

C.1 WEIGHT SPACE

Recall that a standard transformer block, which is denoted by Attn, is defined as follows: for each
X € RLXD | we have

Attn(X) = LayerNorm (ReLU(X WA L1 )W 1, b<B>) . (80)
where
X = LayerNorm (MultiHead(X; (W@ KD (Vi) g0y )) . 81)
with 1 = [1,...,1]T € REX1,
The weight space U of the above transformer block is the vector space:

u — (RDXD}C X RDXDk X RDXDv x RDUXD)h x (RDXDA x RDAXD) x (RIXDA x RlXD).

(82)
An element U € U is of the form
_ @) 1D V)71 (04 ) (B (4) [51(B)
U= (w1 @9, een, o, i) (e, w1 ) (6. 1) ).
(83)

To emphasize the weights of Attn, we will write Attn(X; U) instead of Attn(X).
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C.2 GROUP ACTION ON WEIGHT SPACE

Consider the weight space U defined in Equation (82) and Equation (83), set

Gu = Si x GLp, (R)" x GLp, (R)" x Pp x Pp,,. (84)
Each element g € G;; has the form
9= (7 (M1, (V)i Pros P ) (85)

where 7, T, T4 are permutations and M;, N; are invertible matrices of appropriate sizes.

Definition C.1 (Group action on G;;). The action of G;; on U is defined to be a map Gy x U — U
which maps an element (g, U) € Gy x U with U and g given in Equation (83) and Equation (85) to
the element

i=1,...,h

([gW](A)7 [gW}(B)) : ([gb](A), [gb](B))) (87)

o = (W)@, w10, [gw 70, [g 09 56)

where

(W@ = ()@ ( M(T(i))>T’

[gW] KA = (W] m () . ( M(r(i)))‘17

[gW] VD = (W) (Vr@) . NT@)
. ) -1 .
[gW](©) = <N<r<z>>) W) . p,
[gW](A) = p1. [W](A) - Py,

TO
[gW]®) = Pl (W)@
[gb](A) [b](A) P,
gb)®) = (5] ®

In addition to the above definition, we will also need the following ones for the construction of the
equivariant and invariant maps later.

Definition C.2. With notations as above, for eachi = 1,..., h, we denote:
WWJ@ED = ] (w)(0) Toand WO = )0 ] ©D. (8)
Remark 11. The terms [WW](QK:%) and [WTW](V O are equivariant under the action of g, since
g gW) ) = (gw )@ g #0)
_ ([W]@,r(i)) _ (Mm))T) . ([W]uw(i)) . (Mru))—l)T

_ (w)@r). ({W]mm)))T

— [WW]@KT@),
and

[gWgW]VOD = [gW] V) [0
([ W) <r<z>)> . ((Mum))fl W)@ () .pﬂo)
= W]V @) O p
= wwVor) . p

Therefore, we can intuitively say that these terms are compatible under the action of Gy,.
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Proposition C.3. With notations as above, we have
K,i K,r(z
lgWgW iS5 = (ww]ig e,

VO, VO, (i
[QWQW]E‘,k )= [WW]ﬁ»,Wo(zf) Y,

: . A\ T
W1 = |wy@r) . (o) ] 7
L .k
1

K,i [ T(1 T(1 n
(W5 = ] Uero) . (aree) }

3.k
Vi [ (% T(¢
gD = W)V v ))L )
[gW](©OD) = _(Nuu)))’l . [W}(o,fm)}
L j,ﬂ'()(k)
(4) _ (4)
Wik = Wlio Gy maty
B B
WY = W10
A A
(9]} = [b]su)(k)’
B B
901" = 7.
Sor all appropriate indices j and k.
Proof. This proposition follows immediately from the definition of the group action on U. O

Lemma C.4. Let n be a positive integer. The following are equivalent for a matrix M € GL,,(R):

1. ReLU(z - M) = ReLU(z) - M for all row vector x € R™.

2. M is a monomial matrix whose nonzero entries are positive numbers.

Proof. See (Godfrey et al., 2022). O]

Theorem C.5 (Invariance of Attn under the action of G;;). With notations as above, we have
Attn(X; gU) = Attn(X;U) (89)
forallU €U, g € G, and X € REXP,

Proof. According to Equation (80) and Equation (81), we have

Attn(X; gU) (90)
= LayerNorm (ReLU(X - [gW ] + 17 - [g) ™) - [gW]®) + 11 - [gb]®)) 91)
= LayerNorm (ReLU(X - P! - [W| WP, + 1 - )|V Py, ) - PoL- WP 41, - [0]P)
92)
= LayerNorm (ReLU(X P, W] + 1, )] P, P WP 41, 0] ) (93)
= LayerNorm ( ReLU(X P, [W]™) 4+ 1, [/ [W]E) + 1, [b]P)). (94)

In the above equalities, Equation (92) following from the definition of the group action of G;; on

U, while Equation (93) follows from Lemma C.4. In addition, we proceed the term X P,:Ol inside
Equation (94) as:

xp;! (95)
= LayerNorm ( MultiHead(X; {[gW](@"), [qW]FD [qw] VD) [gW](©-D}2_ 1)) . Pt (96)

h
= LayerNorm (Z Head(X; {[gW] @), [gW ], [gW]Wv“}?_l)[gW](Oﬂ')) N (7))
=1
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h
— LayerNorm (Z Head (X; (W) @7 [ m@), [W]va(i))}g;l) [W](O’T(i))> (98)

i=1
— LayerNorm (Zh: Head (X; (W)@, W), [W]W’“}?:l) [W](O’“) 9)
i=1
= X. (100)
In the above equalities, we used the notations
W(ny(i)) = [W]@7®) . (prONT,
W(K,T(i)) _ [W](K,T(i)) . (M(Q,r(i)))—l
W(V,T(i)) _ [W](V,-r(i)) MV,
W(O,T(i)) _ (M(V,r(i)))—l . [W](O,T(i)).

In the above equalities, Equation (98) follows from Theorem A.1 and Corollary B.2. In addition,
Equation (99) obtained by permuting terms in the sum by 7. From Equation (94) and Equation (100),
we see that

Attn(X; gU) = Attn(X;U),
for all X, g and U. The theorem is then proved. O

D AN EQUIVARIANT POLYNOMIAL LAYER

We now proceed to construct a Gy/-equivariant polynomial layer, denoted as E. These layers serve
as the fundamental building blocks for our Transformer-NFNs. Our method is based on parameter
sharing mechanism.

D.1 A GENERAL FORM WITH UNKNOWN COEFFICIENTS

We want to build a map F: U — U such that E is Gy-equivariant. We select E(U) to be a linear
combination of entries of the matrices [W](@%), [W]U) [W](V-9) [(W]©5) (W], [W]B),
(5], [b] () as well as the matrices [WW](QF:9) and [WIW](VO#) e

)

E(U) = (([E(W)] @3 [ B [BW) VD [EW)) (O,i))

i=1,...,h
(. 1)) (G (E0)) ). (101)
where
- h D D (
;Z Q,1):5,k (QK,s) (Q.1):,k (VO,s)
[ Jik Z Z Z (I)(QK s): p7q WW P»q + Z Z Z (I)(VO 5):p,q WW]P#J
s=1p=1q=1 s=1p=1q=1
D Dy (Q) k h D Dy ik
©):J, ,s 2):7, Ks)
+ZZZ G WVISE + 303> @@y W,
s= 1p 1q 1 s=1p=1qg=1
h D, D
(Q,1):4, (Vs 18):5,k O ,S)
+X:X:X:(DVS)WJ +ZZ (I)OS)pq P(I
s=1p=1q=1 s=1p=1q=1
D Da Das D
(OX (A) l)Jk (B)
S IDIL I VAl L PR B BE el
p= 1q 1 p=1g=1
+Z<1> DK <A>+Z¢<Q PEB)D) 4 @@k (102)
q=1
) _ A ( (K,i):
Kz K.,i):j,k (QKS) K,i):j,k (VO,s)
[ ZZZ(I)(QKS p,q WW +ZZZ(I) VO,s):p,q WW]P#I
s=1p=1q=1 s=1p=1gq=1
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h D Dy Ki k h D Dy (K L
DR HIUEHLEEED D H I
s=1p=1qg= =1p=1g=1

D,

h h D, D
+ZZZ (5;));,(1 Vs) Z_:Z_:Z_: U5k (O,s)

(OS)pq Pq
s=1p=1gqg=1
D D D
3 A 303 el
(A):p,q qu (B) D,q p,q
p= 1q 1 p=1q=1
+Z<I>’“ el <A>+Z<1>< [b)B) + @Dk, (103)
h D D
(Vz) (V,i):4,k (QKs) (Vyi):g,k (VO,s
=220 2@kt VW] +ZZZ‘onS>p,q WWI>
s=1p=1q=1 s=1p=1qg=1
h D Dy D Dy
o (Voi)dsk (V,i):3, Ks)
+2.2. 2 Qv +ZZZ‘1’K3>M Iy
s=1p=1qg=1 s=1p=1q=1
h D D, h D, D
(V1) jk? (Vg V’L)jk? (OVS)
+ZZ q)VS)zxq qu +ZZZ(DOS)%Q Psq
s=1p=1¢q=1 s=1p=1¢g=1
(Vl)Jk (V3) Jk B)
+ZZ%M +ZZ®<B>M Iy
p=1qg=1 p=1gqg=1
Da D
Vii):4,k V,i):5,k i):j
+>° ‘PEAJLJ LIRESY @EB)’}; [0](B) 4 @(V:)idik, (104)
q—l

qg=1

h
,z) (0,i):4,k QK s) (0,i):4, (VO,s)
[E( Z Z‘I’@Ks o WIS +ZZZ@(V03)PQWW]IMI
s=1p=1q= s=1p=1¢q=1

1
h D Dy (O D Dy O k
D B RIATGTEES 3 9 SETATTTS
s=1p= 1q 1 s=1p=1qg=1

h D, h D, D
F S w O PRI
s=1p=1g=1 =1p=1g=1

A

+Z::_

2 (0,0 A &
0,i):5,k W) (0:0):7.k 7771 (B)
(I)(A)Pq +ZZ@B)PQ I5.d
p=1q=1 p=1q=1
Dy D
(0,7) k: 0,1):5,k i):q
*Z‘%)qj BN + 3 @ 0l + @O0k, (105)

q=1

D
h
(A) Z Z‘I’gg)stk " Ww Z()%K g)+ZZZ¢)(vojsk)p,q WW]Z%O 8)
s=1p=1q=1 s=1p=1q=1
h D Dy D Dy
1590 B ILITTHTSTERD 39 3 BRI
s=1p= 1q 1 s=1p=1gqg=1

h D, h D, D
(A):4,k (v s) (A):5, o ,s)
+ZZ (I)VS)pq +ZZZ(I)09)P'I Pq
s=1p=1q=1 s=1p=1q=1
D Dy " Da D
Ajk (A) (A)jk B)
+ Z Z (I)(A) g2 q P7q + Z Z (I)(B) p7q qu
p=1q=1 p=1q=1
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Da
+ ol (A)+Z<I>A)Jk[b](’3)+<b(‘4“k (106)
q=1 g=1
h D D
BV ZZZ‘PESES’“ pa VW) (QK”+ZZZ@(5H!§ pa VWIS
s=1p=1gq s=1p=1qg=1
h D Dy h D Dy
DD D ST + 30D e WIS
s=1p=1q=1 s=1p=1q=1
h D D, (B) h D, D
B):j.k (Ve (o,s)
+z;z; 1¢(Vs)p,q D.q +2221‘1’08>p,q P.q
s=1p=1gqg= s=1p=1g
( Das D
B) Jk (B)
+ (I)(A)pq +ZZ(I) p,q
p= 1q 1 p=1g=1
h D D
A A):k s A):k ,S
EORY =323 @ékam[WW i >+ZZZ@EV>O WIS
s=1p=1q= s=1p=1¢q=1
h D Dy D Dy A)
Q) k (Kv )
+lelzlq)(625 ):p,q P’q +212121¢K8)p,q P’qs
s= s=1p=1lgq
h D D, (A) h D, D A)
A):k (Vs k (O7s)
+2§;§;¢(V,S):pq +§:1§:1§:1 OS)p,q Pq
s=1p=1q= s=1p=14q
A ()
A)ck W)
22D FarpalW +ZZ%>M
p=1qg=1 p=1qg=1
Dy
A) B) (A):k
+ D BB + Z D)l + (108)
q=1

h D D
EOR” =323 20k g WWI + Z Z Z B ey VW0

s=1p=1q=1 s=1p=1q=1
h D Dy (B):h D Dy Bk
,s Ks)
159 9 STMMIGCERS 95 ) Sr T MIULIs
s=1p=1q=1 s=1p=1gq=1
h D D, h D, D
(B):k (vS) Os)
+ZZ (I)(VS)pq +ZZZ O?)Fq
s=1p=1q=1 s=1p=1q=1
D D D D
DR IANIITES BN
(A):p, q (B) p,q p,q
p=1q=1 p=1 g=1
Dy D
(B):krp1(A (B):k1(B B):k
+ D Py I 4D @, I + @, (109)
q=1 g=1

and the constants ®_s are parameters.

In the following subsections, we will determine the constraints on the coefficients ®_ such that
E(gU) =gE(U) forallU € U and g € Gy.
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D.2 AUXILIARY LEMMAS

We will need the following auxiliary lemmas in order to determine the constraints of the coefficients
of F later.

Lemma D.1. Assume that E: U — U is a function defined as in Equation (101) for some coefficients
O”. IfE(U) =0forallU € U, then all coefficients are equal to zero.

Proof. We view the entries of U as indeterminates over R. Under this view, since E(U) = 0
for all U € U, we can view E(U) as a zero polynomial. Moreover, the set including all entries

of the matrices [W](@-), [W]Us) [W](Vs), [W)(©@9) | [W](A), [W]B), 5], [b]B) as well as
the matrices [IWW](@%:5) and [WW](VO+%) is a linear independent set over R. Therefore, the
coefficients of I, which are ®_, must be equal to zero. O

Lemma D.2. Let h and D be positive integers. Let fs(l)7 fs(2) : RPXD 5 R be R-linear functions
foreach s =1, ... h. Assume that there exists a constant A\ € R such that

Eh:fsﬂ) (M(S)) + 1@ <(M(S))_1) = (110)
s=1

forall (MM, ..., M®™) € GLp(R)". Then
0 0) = £ () = A=
foralls=1,... hand M € GLp(R).

Proof. Fix an arbitrary element (M W .M (h)) of GL D(R)h. Then for arbitrary nonzero num-

bers Ay, ..., Ap, the tuple (A M), ... X\, M ™) is also an element of GLp (R)". Since 0@
are linear, it follows from Equation (110) that

i&fﬁ” (M(S)> + /\i . f£2) ((M(s))1> =\ (111)
s=1 s

Consider the function

h h B
P(ty, ... ty) = (Htl> : (Ztsﬁg” (M<S>) + tl - f@ ((M(S>) 1) - A) (112)
i=1 s=1 s

as a polynomial in the variables t1, . . . , t;, with coefficients in R. Then, according to Equation (111),
we have P(\q, ..., \,) = 0 for every nonzero numbers Aq, .. ., Ap. This happens only when P is a
zero polynomial. Thus all coefficients of P must be equal to zero. In particular, we have A = 0 and

SO = £ (M) ™) = 0foralls = 1. handall (M), M®) € GLp(R)",
The lemma is then proved. O

Corollary D.3. Let h and D be a positive integers. Let fs(l), 5(2) , ggl), g§2) — R be linear

Sfunctions for each s = 1, ..., h. Assume that there are constants \1, A2 € R such that:

ifsfm (M(s)) + f2 ((M<s>>—1> + A= iggn (M(s>) + g ((M(S))-1> i

(113)

. RDXD

forall (M), ..., M®M) € GLp(R)". Then (M) = g{" (M) and £ (M) = ¢ (M) and
A =X foralls=1,...,hand M € GLp(R).

Proof. Apply Lemma D.2 with fﬁl) is replace by fs(l) — ggl), fs(2) is replace by f&@ — 9(22), and A
is replaced by Ao — Aq. O
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D.3 FINDING THE CONSTRAINTS FOR THE UNKNOWN COEFFICIENTS

In the following, we will find necessary and sufficient conditions for the coefficients ®_ such that
E(gU) = gE(U)forallU € U and g € Gy;. We follow the parameter-sharing strategy. In particular,
we first determine the entries of £(gU) and gFE(U). Then, we compare the corresponding entries to
determine the exact constraints on the coefficients.

D.3.1 COMPUTING E(gU)
Following Equation (86), we have

E(gU)=(([E(gW)}(Q’“»[E(gW)](K’“,[E(gW)](V’“[ W D)imrs

([BE@W)]Y, [EW)P), ([E(gb)] Y, [E(gb)](B))) ; (114)
where
h
1) (Q,1):4,k ,S
[E( Y S S aI awaw2
s= lp 1q 1
PSS BEDI wawo
s= 1p 1g=1
D Dy ( D Dy )
Qi)iik [ p11(Q.9) Qi) k g1 (Ks)
+222 Qs)pq P,q +222®(K5)pq }p,q
s p=1g= s p=1lgq
D D, ) h D, D (@)
2 k V,s 7 k: O,s
+ZZZ%S>§W WG + 22D D G la WG
s=1p=1qg=1 s= lp 1g=1
D Dg
(B)
22D 2 W +ZZ@<B>M ¥
p= 1q 1 p=1g=1
z(p(Q ,4):3,k (A +Z@(g)121]7 B)+¢(Q Z) ; (115)

(g5 = Z Z Z Pl a9 IV

s=1p=1q=1
h D D y
(K,i):5,k VO,s
LD IPIPIL TR
s=1p=1q=1
D Dk D Dk
+ZZZ‘I’ESZL’2 (QS)+ZZZ@(§32'§ W
s= 1p 1g=1 s=1p=1gq=1
NS (K0 < (K.i)
K?,jk (Vs Kz]k (’s)
19 W WG TANGIENS 9 9 B LU
s= 1p 1q 1 s= 1p 1qg=1
(K59) Jk (A) (Kz)Jk (B)
+ZZ¢<A)M m*ZZ‘I’w)pq Wl
p= 1q 1 p=1g=1
D . .
+Z®(K1 ]k ]SIA)+Z¢Eg§zl)1j’k[gb]¢(13)+(I)(K7z)]7k7 (116)
qg=1
h D D
Vz V,i):j,k
BT = D230 > gty oW aWIG
s=1p=1q=1
h D D
(V,i):5,k ,8
YYD RO laW W)
s=1p=1g=1
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h D Dy W, N
+ZZZ@(Q2]pq
s=1p= 1(1 1
h D,
19 9 SLIETANT
s=1p=1gq=1
D Dy
- Z Z (I)EZ)I)quk
p=1qg=1
Da

+Z®(Vz Jk

(A)+Z<I>

h D Dy
Q,s (VZ)Jk K,s
)+ZZZ®KS)P¢I }z(iq)
s=1p=1qg=1
h D, D
Vs (Vy3):4, O,s
DI IPIL 1Ly g
s=1p=1¢q=1
Da D
(Vz)ak (B)
b DD 5y WG
p=1qg=1
p]\B) + @(Vk - (117)

h D D
O,i 0,i):5,k s
E@WILY = 32302 G laW aWI5

s=1p=1q=1
h D D
ZZZ‘I’(%)S]'“ lgW W0
) :_ Dq_D o. 3 D Dy ©, .
+ZZZ EQ;)Jpq 1(7?15)—’—222@(1(?)]13(] Wi
s=1 1g=1 s=1p=1q=1
h D D, h D, D
*2 2 2® VormaldWIRG + 3237 D @0 WIS
s=1 1g=1 s= 1p 1g=1
D Dag
ZZ Eg)lquk +qu)gg)l;7qk ;E;)
p=1g=1 p=1qg=1
iq)(o i):5,k (A Jrz@(o )i,k B)+q)(0 i):j (118)
h D ;:
BWILY =333 VarpaloW oWy
h D D
DD UG g laW W
s=1p=1q=1
h D Dy ik D Dy Ak
+ZZZ¢EQ); )p,q Y QS)—’—ZZZ@(KSJ)pqg }1(7%8)
s=1p=1q=1 s=1p=1gqg=1
h D D, h D,
DB HRLEHTGEES SRS
s=1p=1gqg=1 s=1p=1q=1
D Dy Da D
20D STLlaWID + 30D ey
p= 1q 1 p=1g=1
+Z<1> gb](A)+Z<I> gb]B) + @A)k, (119)

h D D
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R () w g o)
A ’n’Ak Qé) A 7|'A
EDIPIPI Tl +ZZZ i |
s=1p=1g=1 s=1p=1g=1
h D D, h D, D
(A):WA(k) (A) m(k)
+Z (P(VS)pq JrZZZ(P(OS ):p,q
s=1 :1q=1 s=1p=1q=1
Da D
(A):m A)7r (k) B
+Z ARG + 303 et
p= 1 p=1q=1

(A):q

YE®) = [E(b)]?f”

SHWHY Pgxrna VWG

s= lp lq 1
h
IS aE, W
s=1p=1q=1
h D Dy B)k D Dy
+ZZZ EQS p,q +ZZZ (Ks p,q
s=1p=1q9=1 s=1p=1qg=1
h D D, h D,
1595 ) SLMIIVERS 95 ) LT MR LY
s=1p=1gqg=1 s= 1p 1g=1
D Da .
+ZZ¢E§))pq +ZZ¢(B)INI g‘?
p=1qg=1 p=1q=1

Dy
+ Y +Z<I>(B b\P) 4 BBk,
qg=1

D.3.3 COEFFICIENTS COMPARISON IN THE EQUATION E(gU) = gE(U)
Since E(gU) = gE(U), we must have:

[E(gW)](@D = [gBE(W)]@),
[E(gW)]50 = [gE(W)]H),
[E(gW)] V) = [gE(W)]VD,
[E(gW)](© = [gE(W)])©"),

(K7S)
p,q

(O,S)
Wl

1g=
D
- (A):ma( (A) (A) mal( (B) (A):ma(k)
+ § > + Z o +@

Ks)
pq

(0,s)
Pq

(149)

(150)

(151)

(152)

(153)
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[E(gW)] W) = [gE(W)]“)
[E(gW)]®) = [gE(W)]P),
[E(gb)]“Y = [gE(b)]“Y

and these equalities hold foralli =1,...,h, U € U and g € Gy,.

In the following, we will solve these equalities, one by one, to find the constraints of the parameters
s of E(U).

Case 1. Solve the equation [F(gWV)](@%) = [¢E(W)](@%).  For every j, k, we have
B3 = eBW));

or equivalently,

Z Z Z (I)ggK T71(s))p, q[WW]I(’%KS)

s=1p=1q=1
h D D o
Q,%):4,k (VO,s)
+;;;(I)wo,r*l(s)):pm;l(q)[WW}M
h D Dy .
30303 0(g2, 1190 (140) ]
s=1p=1q=1 p,q
D Dy 4 o
S e, [ ()
s=1p=1qg=1 p.q
h D D,
,i):9,k s s
LD P BP DLtk (LA RG]
s=lp=lg=1 ’ pa
. D .
(s) . (0,s)
109 3) LTI 1) BT
s=1p=1gq=1 p.q
D Djx Qui: Dy D (@)
0):j.k WA Dk B
+ Z Z (I) (A): T (p),‘n'zl(q) p,q + Z Z (P(B) ﬂzl(p ]p,q
p= 1q 1 p=1q=1
o' o (Qy)
Q,1):5,k (A) Q,1):3,k11(B) (Q,i):4,k
+Z (Ayerz ) +21(I)<B>:q [blg ™ + @
q:
- S EOr - (ar) sy

Observe that the right hand side of the above equation is just a linear function on M (7)), By
applying Corollary D.3, we see that all terms of the left hand side are equal to zero, except those
containing M ("(9)) will be identically equal to the right hand side, i.e.

h
(QK,s)
Z Z cI)(QI( T 1 (8)):p, q[WW]ZLq
1p=1

h D D
(Q.1):5,k (VO,s)
+ Z Z Z ®(VO,T*1(S))1p,ﬂ51(q) [WW}P,Q

s=1p=1q9=1

h D
£ S elg A, [ ()]

s—=1 =1q=
s;éT(i) p=rd

Dy,
1 p,q
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PSS [ (o)
s=1p=1q=1 pa
h D D, 0
Q,4):3, (Vis) . n(s)
+ lelzlq)(\/r—l(s»p,q {[W] N L;,q
s=1p=1gq=
h D, D @, k -1
i)id, <s>) W(©9)
+;;;®(of 1(s)):pm5t (q) {(N W L,q
D D4 o Da D
i):5,k (B)
+ZZ@(A) 5 (p),wgl(q) ”’q +ZZ (B) Wy
p=1g=1 p=lg=1
R (@) Q)
Q,1):5.k (A) Q,1):5,k 171 (B) (Q,1):5,k
+ D@ Y + D e T R + @@
q=1 q=1
—0, (155)

and

Dy
S ()] =monng - (ue) a
=1 ’

p=1q=1 D,q
We choose g to be the identity of G, (i.e. 7, 1o, ma, M () and N are all identities) in Equa-
tion (155), then substituting the obtained result into Equation (102), we obtain a more compact
formula for [E(W)]ﬁl) as follows:

Dy

D
[E(Wﬂfi”’zzz WD, (157)
=

Then by substituting this compact formula of [E(W)](Q Y to Equation (156), we obtain the first
constraints:

O 1 (Quik T
1), (Q.7(%)) . (r(4))
p=lg=1 P.q
S~ (3% Q7)) (r(i))
Q,7(i ,7(7 T(1
_Z<ZZ (Q,7(4)) ]1531 ())> 'Mk,l >
I=1 \p=1lg=1
or equivalently,
ot Qs T
e J (Q.) | (i)
Z Z (Q,7(1)) [ W] (M ) }
p=1g=1 D,q
Dy, D Dy
1):9,0 i i
-2 (ZZ QoW )> M), (158)
=1 p=1qg=1

We view the left hand side of Equation (158) as a sum of linear functions on the g-th rows of M ()
with ¢ = 1, ..., Dy, while the right hand side is just a linear function on the k-th row of M (). The

by applying Corollary D.3, we see that all of the coefficients @Eg :8; Ik of the left side are equal

to zero, except those with the indices k = ¢. Therefore, we can reduce the formula for [E(W)](@9)
and the constraint further as follows:
D

Qi Q,1):5,k Q,i
EWLEY =3 oy WL (159)
p=1
To find the constraints for the coefficients, we observe that, the left hand side of Equation (158)
depends on 7, while the right hand side is not. Therefore, by varying 7, the left hand side does not
change. As a consequence, we must have

@)k _ (@)
@r@)pk = (Qi)pk (160)
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for all ¢, 7, p, k and 7.
Next, by substituting Equation (159) and Equation (160) to Equation (156), we obtain:
D D, D, [ D
> oigst (S0 ) -3 (Soldsmd? ) oo
p=1 1=1 1=1 \p=1
By comparing the corresponding coefficients both sides, we finally obtain the constraints

@)k _ (@)l
L Qirymk = P(Qui)p (162)

for all ¢, 5, p, k,l and 7.
One can verify directly that [E (W)];I,gl) defined in the form

D
BT =D 8@, (163)
p=1
with the constraints
(D(Q;i):jJV — @(Qv"'(i)):j;k/ (164)

(Q,8):p;k (Q,7(3))p,k"?
for all i, 7, p, k, k', T, satisfies the constraint in Equation (156).

Case 2. Solve the equation [E(gV)]/%) = [¢E(W)](59), By using the same argument, we also

obtain [E (W)]glzl) in the form

D
K., K.,i):j,k K,i
EWLY = oG W (165)
p=1
with the constraints
(K,i):9,k 5 (K,7(3)):4,k
K imk = P (i) ke (166)

for all ¢, j, p, k, k', T.

Case 3. Solve the equation [E(gIV)](V:) = [gE(W)](V:). By using the same argument, we also

obtain [E(W)]%l) in the form

D

Vi V,i):7,k Vi
[EW)]5" =Y el Wi, (167)
p=1
with the constraints
(Vii):gk 2 (Vir(4)):5,k"
cI)(V,i):;,k: - (I)(V,T(i)):;]n,k” (168)

forall ¢, j, p, k, k', T.

Case 4. Solve the equation [E(gW)](©9) = [¢E(W)](©). Since
0,i 0,i
B3 = B,
it follows from Equation (105) that

D
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/ 21 (p(QK,T*l(s)):p,q [WW]ZLQ
q:

h D D
(0,i):4,k (VO,s)
+ Z Z Z <I>(V077,1(S))W51(q) wwit,

s=1p=1q=1

M:r
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1
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D Dy
* Zl Zl Zl G ) [[W](Q7S> : (M(S))T} -
@ pD qu y ’
+§;§:§:¢2?ﬂianFWTK@'<M“0 ]
° : 1; 1DU p,q
* Z; Zl z; AR {[W}(V’s) : N(S)L)q
h pDv qD o 3
+2.0.0 @EZ;?;J;@DWI@ KN(S)) ' [W](O’S)}
s=1 pfl q=1 -
Da
+ Z Z cb(o l;i E st oW D+ Z Z @Eg;) ik e
p=1g=1 1 a1
+§q>8;3k b)) +Z¢(g)zéjk pI(B) 4 0Nk
SIECOE (O,(1)
=1 ((N ) )j,l EWirowm (169)

The right hand side of the above equation is just a linear function on (N (T(i)))_l. Therefore,
it follows from Corollary D.3 that all terms of the left hand side are equal to zero, except those

containing (N (T(i))) ~! will be identically equal to the right hand side, i.e.

h D D ( y
0,1):j,k (QKs)
PIPBP I LTI L
s=1p=1¢qg=1
h D D ( )
0,i):5,k (VO,s)
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s=1p=1q=1
h D Dy (0.4) T
8)igk (Q.s) . (s)
2SS B (7190 (09)
s=1p=1qg=1 p.q
L D Dy 0 .
i):5,k (K,s) . (s)
DD D R g [[W] (M ) ]
s=1p=1gqg=1 p,q
h D D, (0.4):
0,1):5,k (V,s) . ar(s)
EDIDI) DL Ire LG R Lq
s=1p=1gq=1 ’
D,

D
(0.0):4.k ®) L 09
Z <I)(O.ﬁ'*l(s)):p,ﬂ'al(fl) [(N ) [W] :|p q

s#£T(1)
A (04) ol
0,i):5,k 0,1) ]k: (B)
LD DD rRI Lg +ZZ (B VI
p=1g=1 p=1g=1

D D

(0,i):5,k (A) (0,i):4,k 117(B) (0,0):4.k

+ Zl(I)(A):T"Xl(q) [b]q + Zlq)(B):q [b}q + q) J
q= q=

0. (170)

50



Under review as a conference paper at ICLR 2025

By choosing g to be the identity element of G;; in Equation (170), and substituting the obtained

result to Equation (184), we obtain a shorter formula for [E(W)]((,)C ") as follow:

(O i) (O i):9,k ((oX
[E( ZZ Ol)pq Pq)' (71
p=1qg=1
Thus, the constraint becomes

St ) o
% p7rO

p=1q=1 p,q
o n) (0.7()
(v ™) w2z,
=1 Jil
or equivalently,
- (0,7 (8)):4,m0 (k) @) . (0,9)
S rarets [(v0) " wes)]
p=1qg=1 p,q

B Z ((N(Z ) 1) L IEOOLEY. (172)

Observe that, the left hand side of Equatlon (172) is just a linear function on the j-th row of
(N (i)) _1, while the left hand side is a sum of linear combination of p-th rows of (N (i))_l with

p=1,...,D,. Therefore, only coefficients of [E(W)}(Ok ) with p = j are nonzero, i.e
D
0,i 0,i):4,k 0,i
EW)GY =Y a0 g, (173)

q=1

In addition, since the right hand side of Equation (172) is independent of 7 and o, the left hand
side must remain unchange if we vary 7 and 7. As a consequence, we have

(O,7(i)):dmo (k) _ §(0y):4,k

(©Oir(i)imola) ~ L0y (174)
for all 4,7,k,q,7 and mpo. Next, by substituting Equation (173) and Equation (174) to Equa-
tion (172), we obtain

D

©r@)dmo®) | (@)~ ppr1©0)
> oot {(N ) (W] ]
q=1 Jq
& )\ > . ik 171040
- ((Nm) ) (Z‘bom,q @ )
=1 q=1
or equivalently,
oty $(0.7(0) ! (0,0)
7(i)):4,mo (4) . i’
S aGTame (vo) ) o
q=11=1 Jhl
(0,0):l,k A 1 0.i
> Sagnr (Vo)) g, a7
q=11=1 Jil
By comparing corresponding coefficients both sides, we have
(0,7(i)):4,mo(k) _ 5(0,):1l,k
(©Or(i)imola) — PO’ (176)

Finally, one can verify directly that [E(W)]ﬁl) defined as [E(W)](?f ") with p = j are nonzero, i.e

D
(0,8) _ (0,i):4,k (0,%)
BT =Y @i Wi, 177)
q=1
with the constraints
(0,8):5,k _ &(0,7(2)):5",mo (k)
C0.9)5.0 = 20" w0 a) (178)

satisfy the constraint in Equation (172) for all 4, 7, ', k, g and 7, mo.
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Case 5. Solve the equation [E(gWW)](4) = [¢E(W)]Y).  Since [E(gW)]g‘;? = [gE(W)]ﬁ), we
have
- (A):j,k
Js (QK,s)
> Z Z%Krl N VWG
s=1p=1q=1
h )
k VO,s
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£ DS B, W19 (1)
s=1p=1gq=1 p,q
h D Dy .
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h D D, W
3k (Vis) . ar(s)
+ZZZ¢(VT 15))pq[[W] N Lq
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h D, D ik .
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SRS EI L |(v9) e
s=1p=1q=1 p.q
VA () (
A):gk A):g.k wi®
+ZZ© 7'ro (p),TrA (q) pq +ZZ(D(B ‘n'A (p)’q ]pq
p=1g=1 p=1q=1
Da ( y D y
A jk (A jk? (B) (A):5,k
AR Sy TR
=1 q:l
h D D o) )
T ,ma(k K
P IPIPI T
s=1p=1gqg=1
h D D Arero o
™ ™ VO,s
EDIDIP IR LAV
s=1p=1q=1
hDD"()() (k) OV £ (Ao (i) a ()
A)mo(d),malk ) (A):mo (4),ma(k (K,s)
+ Z Z (st):P,q ’ + Z Z Z (I) (K,s):p,q [W}p,q
s=1p=1gq=1 s=1p=1q=1
AR g (Ao () QA R (4) )
A)imo(5),mal (Vs A):mo(§),malk (0,s)
+ZZZ¢(V78):IJ,<1 P7q +ZZZ (Ob)p7q [W]p,q
s=1p=1q=1 s=1p=1q=1
VA 1 (Ao () ma (k) AR g (A0 () ma (K
o (5),ma(k) A by Ny B
+Z q)(A):pflj ! ( )+ZZ¢(B pzj Al [W]z(a,q)
p=1qg=1 p=1q=1
D4
+Z(I)Eg§ Z;O(] 7"A(k) (A +Z(I)(A) ﬁO(J)’WA(k)[bL(IB)—l—q)(A)mo(j)’ﬂA(k). (179)
qg=1

We observe that the left hand side is a sum of linear functions on the matrices M (5), (M (5)) -1

and (N(S))_l,

b N(S)?

while the right hand side is independent of these matrices. Therefore, according to

Corollary D.3, the terms containing these matrices in the left hand side must be equal to zero. For
the remaining terms, we can use Lemma D.1 to compare the corresponding ones with those in the

right hand side and obtain the constraints:
(I)(A) g5k

(QK,7=1(s))msq —

(A):g,k

(VO,7=1(s))pr5 (@)

(A):mo(5).ma

(Q:5):p,q

(A)mo (5),ma (k)
(QK,s):p,q ’
(A):mo (j),ma (k)
(VO,s):p,q )

" _g
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(A)mo().malk) _ g

(K,s):p,q
(A)mo(5)ma(k) _
(I)(VS) P,q =0,
(A)mo(4),malk) _
(0,s):p,q -
(A):5,k _ HA)mo()ma(k)
(A):Tl'gl(p),ﬂ'gl(q) (A):p,q ’
HA)Gk _ pA)mo()ma(k)
(B):m; ' (p).q (B):p,q )
(A):5,k (A):mo (5),ma (k)
(A): ﬂgl(q) (A):q )
(A):g,k (A):mo(4), 7"A(k)
g = PB)g
ATk — H(A)mo(d )JrA(k).
Therefore,
(A):5.k _ (Ao (5),ma(k)
QKs)pa = Q@K TN ma
(A):4,k _ (Ao (i),ma(k)
v6,5)m.0 = VO wmola)
(A _
(I)(Q s)ip,q 0,
(A):5,k
(P(K 5):p,q =0,
(A)gk
(I)(V 5):p,q =0,
(Al _
(O,s):p,q 0,

Ak _ g (A)mo()malk)
C(a)pg = P(a)ymo(p)mala)
QWA _ g(Armolnath)

(B):p,q B):ma(p),q )
st - iz
L
ATk — H(A)mo(d),mak)

One can verify directly that [E (W)] (.A) defined by

h
k s
N = ZZZ@ (kg VWIS
s=1p=1q=1
(A):g,k VO,s
+ ZZ Z D6 g W W™
s=1p=1q=1
D Dy Dy D
(A):4, k (A) (B)
+ZZ@ p,q +ZZ®B)p,q
p=1g=1 p=1g=1
Da
+ Z DTN + Z Bl PE P + Wk (180)
with the constraints
HA):sk — Ao (5),ma(k)
(QK,s):p,q (QK,7(s))pq
(A):4,k _ §A)rmo(5),ma(k)
W 0,5)pa = LVOr () wimola)
(A):gk _ g (A)mo(5),ma(k)
L Caypg = B(a)mo(p)mala)
s - sl
D,q ma(p),q ’
(A)gk _ g (A)mo(d),ma(k)
layg = PAimate)
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(P(A)Jk —

(B):q
P(A):k

forall 7,5, k, k' ,s,s",p,p',q,q', 70, ™4 satisfies the condition [E(gW)]

Case 6: Solve the equation [E(gTV)](5)
5, we also see that:

h

= [gEW)P.

Ao malk)

(B):q

_ pAmoli)malk).

2 =lgEW)Y.

By using the similar argument as Case

] k - Z Z Z (I)Engsk ):p,q W];%K,S)

s=1p=1q=1
h

+ZZZ¢vo”f

s=1p=1qg=1
D Da

P vl

WW} (VO,s)

p,q

Dy D
B):j,k
20D eV

p=1qg=1 p=1qg=1
Dy D
B):j.k B):j,k q
+ 3 ORI + 3 e IRl + @k 181)
q=1 =1
with the constraints
(Byik g (B)ma(i)k
QK 90 = PQK7(9)pa
(B):4,k _ &B)ma(d),k
0,50 = P07 (3)pmo (@)
(Bysik _ o (B)ma(i)k
P (a)pg = P(A)imo(p)mala)
BBk _ g(B)maGi)k
(B):p,g — T (B)ima(p),q
BBk _ p(B)mali)k
(A)q (A)ima(2)
(Byik _ o (B)ma(i)k
PB)g = P(B)g
PB)dk — p(B)ma(h) ke

forall j,k,s,p,q, T, o, T a, satisfies the constraint [F (gW)]( ) = [gE(W)}ﬁ)

Case 7. Solve the equation [E(gb)](Y) = [gE(b)]().

also see that [E(b)](A) defined by

By using the same argument as Case 5, we

Z Z Z Bln g W W)

s=1p=1q=1
h D D )
A):k VO,s
+ Z Z Z (I)(VO,S):p,q[WW]l(),q )
s=1p=1q=1
D Dy (4) Da D (A):
E o 4 Bk [py7)(B)
( ) , ;
222 Wma Wl + 222 ¥y WG
p= 1q 1 p=1q=1
+ Z g + Z By alb]S”) + %, (182)
with the constraints
(A):k _ pA)rma(k)
®QKspa = PQKT()wa
eME  _ Mmalk)
(VO,s):p,q (VO,7(s)):p,mo(q)
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o, -
o, -
o~
ot -

Ak

forall j, k, s,p,q, T, o, T 4, satisfies the constraint [E (gW)](A)

Case 8. Solve the equation [E(gb)](?) = [¢E()](P).

we see that [E(b)](B) defined by

¢(A ima(k)

(A):mo(p),malq)
(A):ma(k)

L0

_ plAmalk)

(A):malq)

(A)ma (k)
P (B).q

_ pAymalk)

[gEW)]\).

By using the same argument as in Case 5,

e (B)k (QK.5)
ZZZ@QKS)quW]pyq
s= 1p 1q 1
S, s
(vo s)pq p.q
s=1p=1q=1
D Dy ) Dy D ( )
(B (1)) BYE (py/)(5)
+ D WIS+ e (W
p= lq 1 p=1g=1
(B) A) (B)k (B) (B):k
+Z‘I’(A>q +Z‘b(3 g + O, (183)
with the constraints
(Byk o (B)k
QoK .s)pa = P(QK () pa
Bk _ o (B)k
V0,50 = PO, (s))pm0 (@)
Bk _ g (B)k
L (aypg = (Ao m)male)
(B)k g (B)k
C(B)pg = P(B)malr)a
(B)k _ o (B)k
P(ayg = P(A)emaa)
(B):k 4 (B):k
P () = 2B
P(B)k — Bk

forall j,k,s,p,q, T, ma, 7o, satisfies the constraint [F (gW)](A)

[gEW))$).

D.4 FINAL FORMULA FOR THE EQUIVARIANT POLYNOMIAL LAYER

We gather the results of the computations of the equivariant layer in the previous section here for

further implementation.
Theorem D.4. The map E: U — U with

is Gy -equivariant.

Here, the components of E(U) are given below.

1. [E(W)]@) is defined as

[BEW))(%" =

(184)

z)jk
Q,1):p;k

(Q,i)
ch ’

D
=Y @ 3!
p=1
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with the constraints
(@, )Jk _ (@7 (2)):5,K
Qi = Qi
2. [E(W)])¥D is defined as
i) _ z i) ( )
K i (K,1):7, k K,i
[ Z (P(K 1) D,k 7k ’
p=1
with the constraints
CI)(K,i):j,k o (I)(K,T(i)):j,k’

(K,i):p,k — ~(K,7(3)):p,k"
3. [E(W))V9 is defined by
D
Vi Vi), k Vi
[E(W)]g,k ) = Z ‘I)EVJ;;;,k[W];(,,k )a
p=1
with the constraints
eVii)ak _ (V,7(4)):5,k"
(V,i):p,k (V,7(3)):p,k"?
4. [E(W))OD is defined by
) _ - i) i)
;l (0,4):4,k O 7
[ Jik Z (I) (0,4):4, q Jq
qg=1
with the constraints
(I)(Ofi):jvk — (O,T(i)):j/,ﬂ’o(k)
(0,i):4,q (0,7(3)):3" 7m0 (a)
5. [E(W)]X is defined by
(A) (A):j,k K,s
ZZZ%I&W (Wwigs
s=1p=1q=1
h
+2 Z Z D5 WIS
s=1p=1qg=1
(4) A S 1 (A):
Js k 7 k )
+ZZ(I)(A)pq +ZZ(I) p,q
p=1g=1 p=1q=1
D
A): A)ijk .
ST 3 A e
qg=1
with the constraints
Ak _ Armo(),ma(k)
(QK,s):p,q (QK,7(s)):p,q
(A):5.k _ &Aoo (d),malk)
0,50 = VO, (s))pimola)
(Al _ §(A)mo(5),ma(k)
(W) = P(A)imo(p)male)’
(A)gk _ & (A)mo(j),malk)
CBypg = PBimatrra
(Al _ 5 (A)mo(j),ma(k)
Qg = ymal
(A):g.k (A):mo(d),ma(k)
)y = Pp)g :
PA)dk — p(A)mo(d),malk)
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6. [E(W)]B) is defined by

TS 3 9 DL

slplql

[WW]{@K)

1590 WCTEMUCIES

s=1p=1q=1
D Da

p=1g=1

Da
Z A)q

with the constraints
(I)(B) gk
(QK,s):p,q
(B):4,k
@(VO s):p
(B):4, k
‘I)(A) P,q

(B):g.k __
P B)pg =

(p(B)) :7, k

B)jk

+ZZ©(A pq

Dy D

A (B) k B
( )+ZZ¢(B) ;w I(J,q)
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q=1

— (P(B) ma(g).k

(QK,7(s)):p:q
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(VO,7(s))p,mo(q)
‘I)(B) ‘ﬂ'A(J) k
(A):mo(p),malq)
(B):ma(j),k
(B)ma(p).q
(B):ma(j),k
(A):ma(q)

BYIk _ g(Byma(i)h

(B):q

Bk —

7. [E(b)]“) is defined by

(B):q
PB)ma(d) k.

D D
B =303 (gt WWET

h D D ik
+222 2 2o

with the constraints
Ak
(QK,s):p,q
(A):k
0,5
(A):k
(I)(A ):p,q
q)(A) &

(B)pa —

Ak
?(B)q

Pp(A):k

8. [E(b))B) is defined by
[E( (B)

>

D

s=1p=1qg=1
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h
(B):k VO,s
+ Z Z Z q>(VO DE p,q WW]Z(M] )
s=1p=1q=1
D Da ( Dy D
B) (B)
+ZZ(I)(A)p,q +ZZ(I) p,q
p=1qg=1 p=1qg=1
( ) = (B)
B)ik bl B):kp1(B) | g(B)ik
Z‘D 2 Py g 0y + @,
q=1
with the constraints
(B):k _ &(B)k
CQK,s)pa = V@K 7(5)ma
(B):k _ &(B)k
(I)(VO $):p,q (b(VO 7(s)):p,mo(q)
Bk _ H(B)k
(A)p,g — ~(A)ymo(p),male)
(B):k  _ x(B):k
(I)(B):p q ‘I)(B) 1 (p),q
(I)(B): (B):k
(A):q (A):ma(q)
(B):k (B):k
Cipyg = Lmyg
PB)k — Bk

fOr all .j’ jlv kv k/a 5, S/ap7pl7Qa q/ and T, TO; TA-

E AN INVARIANT POLYNOMIAL LAYER

In this section, we will construct a map [: U — RP " such that I is equivariant with respect to Gy,
ie.
I(gU) =1(U), (185)

forallU € U and g € Gyy.
E.1 A GENERAL FORM WITH UNKNOWN COEFFICIENTS

We select I(U) to be a linear combination of entries of the matrices [WW](@»), [W](5:9) [W](V2#),
(W) (W], [W]B), 5], [](B) as well as the matrices [WW](@K) and [WW]VO5) ie

h D D
U) = Z Z Z P(QK,5):pq [WW];%K’S)

s—lp—lq—l
h
+ZZZ¢>V05)M W0
s=1p=1q=1
h D Dy h D Dg
DD Qe WIEZT + DD 0D Rrsypa WY
s=1p=1gq=1 s=1p=1gqg=1
h D D, h D, D
DD D wima WG DD 20,00 WIS
s=1p=1gq=1 s=1p=1g¢g=1
D Dy Dasa D
+ZZ¢(A):M +ZZ¢ )ipya pi)
p=1g¢=1 p=1g=1
Da
) Playg - 01 >+Z<I><B b + @, (186)
qg=1

where the coefficients ®_s are matrices of size D’ x 1.

In the following, we will determine constraints on the coefficients such that I will be Gy,-invariant
under these constraints.
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E.2 CoOMPUTE I(gU)

By using the same arguments in the computation of E(gU ), we have

h D D
IgW) =" B(qrr 1 (s)pa WIS

s=1p=1q=1
h D D
VO,s
+ ZZZ(P(VOJ—l(S)):p’ﬂ_al(q) [WW];’q )
s=1p=1gq=1
h D Dy ]
EDID D)L TR [[W]w () }
et P.q
h D Dy B
+ZZZ¢(K’7—_1(S)):[)7(I |:[W](K,s) . (M(s)) ]
e D,q
h D D,
+2.2.D P (w)ma {[W} (Vs N<s>]
s=lp=lg=1 pyq
h D, D B
+2 2.2 200wt {(N(s)) ' [W](O’S)}
e e P.q
O & Da D
(A) (B)
- Z Z (P(A):”;(P)WZI(Q) Wlpg + Z Z (I)(B):wgl(p),q[W]p,q
p=1gqg=1 o ot
Da b
A B
=1 =

E.3 COMPARE I(gU) AND I(U)

According to Lemma D.1, in order to have I(gU) = I(U), the corresponding coefficients of I(gU)
and I(U) must be equal. As a consequence, we have

PQrr1())pg = PQK.s)pg
Lo rs)mast@) = PVOswa
(@ r1(s)):pig = 0
Pk r-1(s))pq = 0
Pvr—1(s))pg = 0
2 0,m-1(s))p,m5t @) = O
L ayms )y (@) = PA)wa
C(Byng (0 = 2B
Pyt = Py
P(B):g = P(B):q
O = Py,
or equivalently,
P@r.s)pa = PQKT(s)pq
Qw050 = PVOr(9)pmole)

P(Q,5):pq = 0
P(K,s)pqg =0
(I)(V,s):p,q =0
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P0,5):pq =0
P(a)pg = PA)mo(p)mal)
P(B)p.q = P(B)iralp)g
P4y = Playmate)
P(B):g = P(B)q
B, = @,

E.4 FINAL FORMULA FOR THE INVARIANT POLYNOMIAL LAYER
We summarize the above computation here for implementation.

Theorem E.1. The map I: U — RP / defined by

Z Z P(QK.5)pq - WW](QK °

»
Il
—
iS]
Il
—
Q
Il
L ,_.

+ (p(VO,s):p,q ! [WW]]()‘:]OS)
D Dj Da D
A B
2.0 P WEE + DD 2y W)
p=1q=1 p=1q=1
Da
+ Dy B )+Z<I>( 0] + @, (188)
q=1

with the constraints

PQK,s)pa = LQKT(9)pa
Pwo,s)pa = PVOr(s) ol
P(A)ypg = P(A)imo(p),mala)

P(B)p,g = P(B)malp)g
P(a):q = Pa)ima(q)

(I)(B)=q = (I)(B)nz
B, =D,

is Gy -equivariant.

F ADDITIONAL DATASET DETAILS

To create a wide range of transformer model, we opt to vary six hyperparameters in our experiments:
train fraction, optimizer (SGD, SGDm, Adam, or RMSprop), learning rate, L2 regularization coeffi-
cient, weight initialization standard deviation, and dropout probability. The train fraction determines
the proportion of the original training dataset used, while the optimizer dictates the algorithm for
parameter updates. Learning rate, L2 regularization, and weight initialization standard deviation
control various aspects of the training process, and dropout probability helps in preventing overfit-
ting.

We select a range of typical values for each hyperparameter independently, then generate all pos-
sible combinations to form our set of hyperparameter configurations. During our preliminary ex-
periments, we observed that the optimal range of hyperparameters varies significantly between op-
timizer types. Consequently, we divided our settings into two categories: Adam-RMSprop and
SGD-SGDm. Table 4 provides a detailed overview of our hyperparameter configurations. Overall,
there are 8000 configurations for each category, resulting in 16000 configurations in total. These
configurations are consistently applied across both tasks to ensure comparability. All models are
trained for 100 epochs, with checkpoints and accuracy measurements recorded at epochs 50, 75,
100, and at the epoch with the best accuracy. During the process, we eliminate any runs that crash.
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Figure 1: Accuracy histogram of MNIST task and AGNews task in the Small Transformer Zoo. The
number of samples is showed in log scale for improved visibility.

Table 4: Hyperparameter configurations of the Small Transformer Zoo Dataset

Hyperparameter SGD-SGDm Adam-RMSprop
Train Fraction [1.0,0.9,0.8,0.7] [1.0,0.9,0.8,0.7]
Dropout [0.2,0.15, 0.1, 0.05, 0] [0.2,0.15, 0.1, 0.05, 0]
Learning Rate [1e-3, 3e-3, 5e-3, 7e-3, [3e-4, S5e-4, 1e-3, 3e-3,

le-2, 3e-2, Se-2, 7e-2] 5e-3, le-2, 3e-2, Se-2]
Weight Init Standard Deviation  [0.1, 0.15, 0.2, 0.25, 0.3] [0.1,0.2,0.3,0.4, 0.5]
L2 Regularization [1e-8, 1e-7, 1e-6, 1e-4, 1e-2] [le-8, le-7, 1e-6, le-4, 1e-2]

MNIST-Transformers. The MNIST dataset (LeCun & Cortes, 2005) is a widely-used benchmark
in computer vision, consisting of 28 x 28 pixel grayscale images of handwritten digits (0-9). For
this vision task, the model objective is to perform digit classification. The embedding component
first applies a 2D convolution to encode image patches and then adds a fixed positional encoding
to provide spatial information. The encoder, comprising two stacked transformer blocks, processes
these embeddings to capture complex relationships between different parts of the image. The clas-
sifier applies global average pooling to the encoder’s output and then passes it through two fully
connected layers with a ReLU activation in between, finally outputting probabilities for ten classes
corresponding to the digits 0-9. Using our hyperparameter configurations, we generate a total of
62756 model samples for the MNIST task, including 15689 checkpoints at epochs 50, 75, 100, and
the best-performing epoch, each trained with a distinct combination of hyperparameters. The accu-
racy distribution for MNIST in Figure 1 displays a strong concentration in the 80% to 100% range
while remaining models distribute almost uniformly across lower accuracies, with a slight increase
around 10%.

AGNews-Transformers. The AG’s News Topic Classification Dataset (Zhang et al., 2015) is a
collection of news articles from the AG’s corpus of news articles on the web, categorized into four
classes: World, Sports, Business, and Sci/Tech. We take the description of the articles input and
train models to predict its corresponding topic. Our transformer-based model is adapted for this
task as follows: The embedding component uses a pre-trained Word2Vec model to map each token
to an embedding vector. These embeddings are combined with fixed positional encodings to retain
sequential information. The encoder, consisting of two stacked transformer blocks, processes these
embeddings to capture contextual relationships within the text. The classifier applies global average
pooling to the encoder’s output, then passes it through two fully connected layers with a ReLU ac-
tivation in between, finally outputting probabilities for the four categories. Our experiments on this
task yield a diverse set of 63796 model checkpoints, derived from 15949 unique model configura-
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Table 5: Ablation study on varying the hidden dimension and number of layers in Transformer-NFN,
trained on the AGNews-Transformers dataset. Dimensions of all equivariant layers are indicated
inside square brackets.

Transformer-NFN

dimensions B3] [5] [10] [15] [3,3] [5,5] [10, 10] [15,15]
Kendall’s 7 0.907 +£0.002  0.909 £0.002 0.909+0.001 0.913 £0.001 0.905+0.003 0.9114+0.002 0.913 £0.001 0.913 = 0.002
Num. params 0.491M 0.840M 1.793M 2.85™ 1.901IM 4.75T™M 17.45TM 38.101M

Table 6: Number of parameters for all models

Model MNIST AGNews
Transformer-NFN  1.812M  1.804M
MLP 0.933M  0.896M
STATNN 0.203M  0.168M

tions. These checkpoints are collected at four key points during training: epochs 50, 75, 100, and at
the epoch of peak performance. The accuracy distribution for AGNews in Figure 1 shows a notable
concentration in the 50% to 90% range, with a peak around 80% while also exhibiting a smaller
cluster of models around 25%.

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 GENERAL DETAILS

Training details The models were trained for a total of 50 epochs, using a batch size of 16. We
employed the Adam optimizer with a maximum learning rate of 102, A linear warmup strategy
was applied to the learning rate, spanning the initial 10 epochs for gradual warmup. We utilize
Binary Cross Entropy for the loss function.

Number of parameters Table 6 summarizes the total parameter count for all models. The archi-
tectural details and hyperparameter configurations for each model are provided in G.2 and G.3.
Importantly, we optimized the baseline models to their best configurations, and further increasing
the number of parameters would likely result in overfitting.

G.2 ARCHIECTURE AND HYPERPARAMETERS OF TRANSFORMER-NFN

The Transformer-NFN model is composed of three main components designed to handle the input
weights of a transformer network. For the embedding and classifier components, both of which
are MLP-based, we employ a standard MLP with ReL U activation to process individual component.
The transformer block itself is handled by an invariant architecture, incorporating several equivariant
polynomial layers of Transformer-NFN. These layers utilize ReL.U activation, which specifically
operates on the two MLP components within the transformer block. Following this, the output is
passed through an invariant polynomial layer of Transformer-NFN. The outputs of each of these
components are represented as vectors, which are concatenated and passed through a final MLP
head with Sigmoid activation for prediction.

In our experimental setup, the embedding component is modeled using a single-layer MLP with 10
hidden neurons, while the classifier component is a two-layer MLP, each layer containing 10 hidden
neurons. For the invariant architecture of Transformer-NFN, we apply an equivariant polynomial
layer of Transformer-NFN with 10 hidden channels to process the weights, followed by an invari-
ant polynomial layer of Transformer-NFN and an MLP that outputs a 10-dimensional vector. The
resulting vectors from these components are concatenated and passed through a single classification
head to generate the final prediction.

G.3 ARCHITECTURE AND HYPERPARAMETERS FOR OTHER BASELINES
Here we describe the architecture of all baselines:
e MLP In the MLP model, the weights of all components are first flattened and processed

through a separate MLP for each component. Specifically, the MLP handling the trans-
former block and embedding components consists of a single layer with 50 hidden neurons,
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Figure 2: Visualization of all models on test set of AGNews-Transformers dataset.

while the classifier component is modeled using a two-layer MLP, each layer containing 50
neurons. The outputs from all components are concatenated and passed through a final
MLP to produce the prediction.

STATNN (Unterthiner et al., 2021) For the STATNN model, we adapt the original approach
to work with the transformer block. In this case, we compute statistical features from the
weights of the query, key, value, output, as well as the weights and biases of the two linear
layers. These features are concatenated and passed through a single-layer MLP with 256
hidden neurons. The classifier component uses the original STATNN model to extract
features, which are then processed through an MLP with 256 hidden neurons. For the
embedding component, a single-layer MLP with 64 hidden neurons is employed. The
outputs from all components are concatenated and passed through a single-layer MLP for
the final prediction.

XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), Random Forest
(Breiman, 2001): We flattened the weights of all components and directly employed popu-
lar gradient boosting libraries for regression. The hyperparameters for all three tree-based
models were set to a maximum depth of 10, a minimum child weight of 50, and a maximum
of 256 leaves.

H IMPLEMENTATION OF EQUIVARIANT AND INVARIANT LAYERS

We present the multi-channel implementations of the G;/-equivariant map E: Y% — 1/ and the
Gy-invariant map I: % — Re*P". We summarize the Equivariant and Invariant Layers with the
bullet notation e and adopt einops-like pseudocode to maintain consistency and standardization in

transformer weight space manipulations.

To facilitate understanding of the implementation, we summarize the key dimensions involved in

Table 7 and define the shapes of the input terms in Table 8.

H.1 SUMMARY OF EQUIVARIANT AND INVARIANT LAYERS

We summarize our derived Equivariant and Invariant Layers from Appendix D and Appendix E.
We use the bullet notation e to simlify the notation, making it easier to implementation. Roughly
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Table 7: Summary of key dimensions involved in the implementation

Symbol Description

d Number of input channels for the equivariant and invariant layer

e Number of output channels for the equivariant and invariant layer

D Embedding dimension of the input and output sequences of the transformer block
Dy = D, Embedding dimension for key and query vectors in the transformer block

D, Embedding dimension for value vectors in the transformer block

Dy Embedding dimension for the linear projection step in the transformer block

h Number of attention heads in the transformer block

b Batch size

D’ Embedding dimension of the invariant layer’s output

speaking, the bullet stands for “’the parameter is unchanged when the bullet varies across all possible

Table 8: Shapes of input terms used in the implementation

Term Shape
(W5 [b.d, h, D, D,]
[W](K 9 [bv da haDaDk]
)" [b,d, h, D, D,
Wiss”  [b.d.h, Dy, D]
WWs2 [b,d, h, D, D]
Wwip??  [b,d,h,D,D]
[W]gq [bv dv Dv DA]
[b] [b,d, D 4]
[W]g,q [b7 d7 DA7D]
[b]2 b, d, D]

index values”.

H.1.1

EQUIVARIANT LAYERS WITH BULLET NOTATION

(Q1) _ &/(Q:0):j,0 Q1)
[E(W)]],k - (I)(Q:o):p,o [W}( ’

(K:i K:.):",. 3
[E(W)]j,k ) = (I)EK;.);;,. ’ [W]I(O{fl )’

Vi V.e):j,e 4
[E(W)]§,k ) = q)EV:ogzin,o ) [W]Z():] )’

D
EW)SY = (e0) - > W + (2Gen), - v,

A D D A h
=230l (S

p=1qg=1 s=1
D D A h
33 (040, ()
p=1q=1 s=1
D h
TN (z v S>)
=1 s=1
pD 24 A): 24 A A
+§:1§:1 (2(4es), w z( res), s
p=1gq= q=1
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D Dy (B) Dy D
B):k A B
LD IPILIARRILT VDI L
p=1qg=1 p=1q=1
2 o (®) (
(B W0 B) ki B B)ik
+2_ 2] Z‘I’ J B

H.1.2 INVARIANT LAYERS WITH BULLET NOTATION

D D h
= Z Z (QK,s):p,q <Z[WW]§31K7S)>
b

s=1
h h
15 3 TN (z[www)
s=1p=1q=1 s=1
D Da
2.2 e (A)+ZZ‘I’B> o VI
p=1qg=1 p=1qg=1

Dy D
+ Z‘I’(A):. : [bL(IA) + Z ®(p).q - [b]z(IB) + &

H.2 EQUIVARIANT LAYERS PSEUDOCODE
H.2.1 [B(W))'S" PseubocopE
From the formula:
EW)SY = 2@ WY
We define the pseudocode for each term:
For ®{2°%)7¢ . [[17)(@4)  with (W42 of shape [b, d, h, D, D] and 3227 of shape [e, d, D, D]

(Q:e):p,® p.q (Qo)po
Corresponding pseudocode: einsum(bdhpk, edjp — behjk)

H.2.2 [B(W))') PsEupocopE

From the formula:
K:i K:e):j,0 R
BV = ooy - WD

We define the pseudocode for each term:

i : i K:e):7,
For <I>EK .; e [W]gfl ), with [W}gfl ) of shape [b, d, h, D, Dy] and ‘I)EK .; ; . of shape [e,d, D, D]

Corresponding pseudocode: einsum(bdhpk, edjp — behjk)

H.2.3 [B(W)]'}" PseubocopE
From the formula:
Vi V:e):j, K
[E(W)]§k ) = (I)gv -; ;, : [W];(X; )
We define the pseudocode for each term:
For <I>EV .; e [W]z()f/q:i), with [W]I()Yq:i) of shape [b,d, h, D, D, and <I>EV .; e Of shape [e, d, D, D]
Corresponding pseudocode: einsum(bdhpk, edjp — behjk)
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H.2.4  [B(W))'9" PseubocopE

From the formula:
D
(0:3) (O:0):0,0 (0:7) (O:0):0,0 (0:3)
[EW));:" = (q’(o:.);.,.)1 WY+ (‘D(O:-):-,o)2 W5
k=1

We define the pseudocode for each term:

D
O:e):0,0 O:1 . O:1 O:e):00
For (@50;.3;.,.)1 . Z[W]gk )’ with [W]gk ) of shape [b,d, h, D,,, D] and ((I)EOw%:-,-)l of shape [e, d]
k=1
Corresponding pseudocode: einsum(bdhjk, ed — behj) .unsqueeze(—1)

O:e):0,0 O:1 . O:i O:e):00
For ((I)EO:°§¢';'>2 . [W]gk " with [W};k” of shape [b,d, h, D,,, D] and (¢§o:.§;.,.)2 of shape [e, d]

Corresponding pseudocode: einsum(bdhjk, ed — behjk)

H.2.5 [E(W)]\}) PsEubOCODE

From the formula:

D D h
A A):e,0 ,8
B =S S e (Z[www >)

p=1q=1 s=1
SRS (A) u
A):e,e VO,s
+ Z Z ((P(VO o):p,o) 1 (Z[Ww]z(;,q )>
p=1q=1 s=1
> () 0 (VOs)
A):e0 VO,s
+Z ((p(VO .)po)2 (Z[Ww]p,] )
p=1 s=1
I () (4) @
A):e0 A A):e0 A
+ Z (q)(A) . o) 1 [W}Z(Lq) + Z (q)(A) ) 0)2 [ ]j’q
p=1g=1 q=1
D
(A):e,0 (A) (A):e,0 (A)
+Z; ((I)(A) , >3 Wi, i + (‘I’(A) , ) W1k
p=
SN~ () (o) B
A):e0 B A):ee B
+ Z ((I)(B)”»Q)l [W]Z(%q) + Z ((I)(B):O,Q)Q [W]k,q
p=1qg=1 q=1
Da
A):e,0 A):e,e A
=3 (BUt) B+ (8t b
q=1
C (4)
A):e,0 B A):e,0
+ D P B + o
g=1
We define the pseudocode for each term:
h
(A):e,@ K,s . K,s (A):e,0
For @ (1. * D_IWWILES, with (WWIEE) of shape [b, d, h, D, D] and @375
s=1

of shape [e, d, D, D]
Corresponding pseudocode: einsum(bdhpq, edpq — be).unsqueeze(—1).unsqueeze(—1)

h
A):e,0 s : s
For (@gvgﬁ.):py.)l SO, with [WW]YC) of shape [b,d, h, D, D] and

(@Eé)o:t’:)zp’.) . of shape [e, d, D]
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Corresponding pseudocode: einsum(bdhpgq, edp — be).unsqueeze(—1).unsqueeze(—1)

h
For (@Eég‘;‘):py.)Q S wwe), with (W2 of shape [b, d, . D, D] and

s=

A):e,e
(@EV)O Ve )2 of shape [e, d, D]

Corresponding pseudocode: einsum(bdhpj, edp — bej).unsqueeze(—1)

For (@Eﬁ;::)l . [W}Z(,‘z), with [W}(A) of shape [b, d, D, D 4] and (@EAg v :) of shape [e, d|

Corresponding pseudocode: einsum(bdpg, ed — be).unsqueeze(—1).unsqueeze(—1)

For (@Efg:;:)? W1, with (W) of shape [b,d, D, D 4] and ( E A;::) of shape [e, d]

72,97

Corresponding pseudocode: einsum(bdjq, ed — bej).unsqueeze(—1)

A):ee A . A A):e.e
For ((I)EA) - .> . ]1(, k), with [W];k) of shape [b, d, D, D 4] and ((I)EAg . .) of shape [e, d]

Corresponding pseudocode: e insum(bdpk, ed — bek).unsqueeze(—2)

For ( P ') ];‘L}C), with [W}( of shape [b, d, D, D 4] and (@EAg v :) of shape [e, d]
Correspondmg pseudocode: einsum(bdjk, ed — bejk)
. A):e.e
For (@(3)7s) - (WIS, with (W15 of shape [b,d, D, D] and (®(3)7%) of shape [e,d, D]
Corresponding pseudocode: einsum(bdpq, edq — be).unsqueeze(—1).unsqueeze(—1)
A):ee B . B A):e,0
For ((I)EB) o,q> . ]56 q), with [W],(C7q) of shape [b, d, D 4, D] and ((I)EB;:-;q)Q of shape [e, d, D]

Corresponding pseudocode: einsum(bdkq, edq — bek).unsqueeze(—2)
For ( A ..> (A>, with [b]gA) of shape [b,d, D 4] and (@EQ;:»-% of shape [e, d]
Corresponding pseudocode: einsum(bdg, ed — be).unsqueeze(—1).unsqueeze(—1)

For (@Ei;:"% 014, with [6]Y of shape [b, d, D 4] and ( EAg v ')2 of shape [e, d]

Corresponding pseudocode: einsum(bdk, ed — bek).unsqueeze(—2)

For @Eg)) o [b]((IB), with [b]((]B) of shape [b, d, D] and @EA; *® of shape [e, d, D]
Corresponding pseudocode: einsum(bdg, edq — be).unsqueeze(—1).unsqueeze(—1)
For ®(4):** with shape [¢]
Corresponding pseudocode: einsum(e — e).unsqueeze(0).unsqueeze(—1).unsqueeze(—1)

H.2.6 [E(b)]ECA) PSEUDOCODE

From the formula:
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h
(QK ®):p,q <Z1 WW QK S)>
h
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D
-3 (8(02), 50 + (o(31),

D
B A
Z ()15 + 2

We define the pseudocode for each term:

(QK (QK,®):p,q
s=1

of shape [e, d, D, D]
Corresponding pseudocode: e insum(bdhpg, edpg — be) .unsqueeze(—1)

h
For ()", - (Z[WW];quKvs)> , with [WWI](@K5) of shape [b,d, h, D, D] and ')

For <I>( )i

h
Vlrayipe (Z[WW]Z(,‘)/QO’S)> , with [WW1](V.0*) of shape [b, d, h, D, D] and @11

(VO,0):p,e
s=1

of shape [e, d, D]
Corresponding pseudocode: einsum(bdhpg, edp — be) .unsqueeze(—1)

For (6(17.) - (W1, with (W] of shape [b,d. D, Da] and (#(1)7,) of shape [e.d]

Corresponding pseudocode: einsum(bdpg, ed — be) .unsqueeze(—1)

For ((b(A . .) W)W with [W]Z()Ak) of shape [b,d, D, D 4] and (¢E’2;§:7.)2 of shape [e, d]

p,k?

Corresponding pseudocode: e insum(bdpk, ed — bek)

A):e A):e
For (CI)EBg . q) . [W]z(ﬁ])’ with [W]gfq) of shape [b, d, D 4, D] and (@ng . q) of shape [e, d, D]

Corresponding pseudocode: e insum(bdpg, edqg — be) .unsqueeze(—1)

A):e B . B A):e
For <<I>EB§:W>2 W12, with W) of shape [b, d, D, D] and (@EB;W){Z of shape [e, d, D]

Corresponding pseudocode: einsum(bdkq, edq — bek)

For ((I)Eﬁ% ) [b]((lA), with [b]f]A) of shape [b,d, D 4] and (<I>§A§ )1 of shape e, d]

Corresponding pseudocode: einsum(bdg, ed — be) .unsqueeze(—1)

For (@E’:g ) [b];A), with [b]( ) of shape [b,d, D 4] and (@g’:; k) of shape e, d|

Corresponding pseudocode: einsum(bdk, ed — bek)
. A):e
For @EB; [b]gB), with [b]((IB) of shape [b, d, D] and @EBg:q of shape [e, d, D]
Corresponding pseudocode: einsum(bdg, edq — be) .unsqueeze(—1)
For ®4):*of shape [e],
Corresponding pseudocode: einsum(e — e) .unsqueeze(0).unsqueeze(—1)

H.2.7 [E(W)];i) PSEUDOCODE

From the formula:

D D h
jk —ZZZ(I)%K-)IW(WWP%KS))
p=1qg=1s=1
DI (wwiie)
p=1qg=1 s=1
D Da D A
+303 (@), W + X (o300), Y
p=1g=1 p=1
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Dy D D
+3.3 (8(325), 5 + 3 (e), Y
p=1g=1 —l

D4
£ (2) b+ (20 Bl
q=1

D

B):e .k ‘e

3 BB 4 o
q=1

We define the pseudocode for each term:

B):e .k s . s B):e k
For (I)EQ)KJ)ZPJI ' [WW}L%K’ )’ with [WW];SSIK’ ) of Shape [b7 d? h’ D’ D} and (I)EQ)K,O):PJI
of shape [e,d, D, D, D]
Corresponding pseudocode: einsum(bdhpq, edkpqg — bek) .unsqueeze(—2)

B):e .k s . s B):ek
For (/5% - [WWIVO) with [WW]SY,2) of shape [b, d, h, D, D] and ®{ %5 |
of shape [e, d, D, D]
Corresponding pseudocode: einsum(bdhpg, edkp — bek) .unsqueeze(—2)

B):ek . B):ek
For ((I)EA;:%'>1 - [W]l(ﬁl), with [W]z(og) of shape [b,d, D, D 4] and (Cl)gA;:.y.)l of shape [e, d, D]

Corresponding pseudocode: e insum(bdpg, edk — bek) .unsqueeze(—2)

B):e k A . A B):e k
For (cIJE A;)z W1, with (W) of shape [b,d, D, D 4] and (cbg A;)Q of shape [e, d, D]

Corresponding pseudocode: einsum(bdpj, edk — bejk)
For (¢<B>:~k)1 ([W]B), with [W]B) of shape [b,d, D, D] and (¢<B>:~k)1 of shape [e, d, D, D]

(B):e,q P, P,q (B):e,q

Corresponding pseudocode: e insum(bdpg, edkq — bek) .unsqueeze(—2)

B):e k B . B B):ek
For (@EBgt.qu . [W]E-,q), with [W};q) of shape [b,d, D4, D] and (@EBgt.qu of shape [e, d, D, D]

Corresponding pseudocode: einsum(bdjq, edkq — bejk)

B):e.k . B):e.k
For (cIJE i )1 S [B(Y, with 1)) of shape [b, d, D4] and (<1>§ i )1 of shape [e, d, D]

Corresponding pseudocode: einsum(bdgq, edk — bek) .unsqueeze(—2)

B):e k A . A B):e.k
For ((I)EA;:. )2 . [b]g ), with [b]; ) of shape [b,d, D 4] and (@EAL )2 of shape [e, d, D]

Corresponding pseudocode: e insum(bdj, edk — bejk)
B):e .k . B):ek
For @70 * - [5](7), with [b]{®) of shape [b, d, D] and ®{3)"*" of shape [e, d, D, D]
Corresponding pseudocode: einsum(bdg, edkq — bek) .unsqueeze(—2)
For &(5):*kof shape [e, D,
Corresponding pseudocode: einsum(ek — ek) .unsqueeze(0)

H.2.8 [E(b)],(fB) PSEUDOCODE

From the formula:

S
=
§c

I
NE
NE
M:

(B):k K,s
ey (VWIS

hS]
Il
[
Q
Il
—
')
Il
[

i
Mo
NE
M:‘

(B):k VO,s
(I)(VO,.):p7o ([WW]Z()7q ))

p=1qg=1s=1
A 4 (B) A= o (B)
B):k A B):k B
#2200 e W + DD e VI
p=1g=1 p=1g=1
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We define the pseudocode for each term:

B):k s s B):k
For CIDE ) Yo [WW]](SIK ), with [WW];%K ) of shape [b, d, h, D, D] and 35

(QK,®):p,q
of shape le,d, D, D, D]
Corresponding pseudocode: einsum(bdhpq, edkpg — bek)
For @Eﬁé’f.):p’. [WWVO)  with [WW(O) of shape [b, d, h, D, D] and @ggg’;):p,
of shape [e, d, D, D]
Corresponding pseudocode: e insum(bdhpg, edkp — bek)

For @)% - (W], with [W](4) of shape [b, d, D, D] and ®(3)'L | of shape [e, d, D]

Corresponding pseudocode: einsum(bdpg, edk — bek)

B):k B):k
For (I)EBg . [W];f? with [W]gf]) of shape [b, d, D 4, D] and @EB;:”I of shape [e, d, D, D]

Corresponding pseudocode: e insum(bdpg, edkq — bek)

For <I>EB§ » [b]((lA), with [b]gA) of shape [b, d, D 4] and (I)EA; of shape [e, d, D]

[b,
Corresponding pseudocode: e insum(bdg, edk — bek)
B):k B

For (I)EBirq . [b](B) with [b]gB) of shape [b, d, D] and (I)EB; of shape [e, d, D, D]
Corresponding pseudocode: einsum(bdg, edkq — bek)

For ®®)*of shape [e, D],
Corresponding pseudocode: einsum(ek — ek) .unsqueeze(0)

H.3 INVARIANT LAYERS PSEUDOCODE

From the formula:

D D h
I(U) = Z Z QK. 0)pa (Z[WW]&%K’SO

p=1qg=1 s=1
D D h
S o (z[www@)

p=1qg=1 s=1
D Da Da D

DD Playen W+ Py WIE
p=1q=1 p=1q=1
Dy

+Z‘I)(A: (A)+Z<I> b)P) + @,
qg=1

We define the pseudocode for each term:
For (g x.e)p.q - [WW]SEE) | with [WW]{2K) of shape [b, d, h, D, D] and ®(qx,e):p.q
of shape [e,d, D, D, D']
Corresponding pseudocode: einsum(bdhpq, edpgk — bek)
For @ (10.e)p.e - [WW]LO), with [WW]Y.C) of shape [b, d, h, D, D] and @ (10, e):p,e
of shape [e,d, D, D']
Corresponding pseudocode: einsum(bdhpq, edpk — bek)
For @ (4).e.e - [W]$4), with [W]$4) of shape [b,d, D, Da] and ®(4).4,4 of shape [e,d, D]
Corresponding pseudocode: einsum(bdpq, edk — bek)
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For ® (p).e 4 - [W]\5), with [W]?) of shape [b,d, D4, D] and ®p).4 4 of shape [e,d, D, D]

Pyq
Corresponding pseudocode: e insum(bdpg, edgk — bek)
For @ ()., - [b]((lA), with [b]flA) of shape [b,d, D 4] and ®4)., of shape [e,d, D']
Corresponding pseudocode: einsum(bdg, edk — bek)

For ®(py.q - [b]((IB), with [b]((IB) of shape [b, d, D] and ® ., of shape [e,d, D, D']

Corresponding pseudocode: einsum(bdg, edgk — bek)
For @ 0f shape [e, D'],
Corresponding pseudocode: einsum(ek — ek) .unsqueeze(0)

I EXPERIMENT ON AUGMENTED AGNEWS-TRANSFORMERS DATASET

Experiment Setup In this experiment, we evaluate the performance of Transformer-NFN on the
AGNews-Transformers dataset augmented using the group action G;,. We perform a 2-fold augmen-
tation for both the train and test sets. The original weights are retained, and additional weights are
constructed by applying permutations and scaling transformations to transformer modules. The
elements in M and N (see Section 4.3) are uniformly sampled across [—1,1], [-10,10], and
[—100, 100].

Results The results for all models are presented in Table 9. The findings demonstrate that
Transformer-NFN maintains stable Kendall’s 7 across different ranges of scale operators. Notably,
as the weights are augmented, the performance of Transformer-NFN improves, whereas the per-
formance of other baseline methods declines significantly. This performance disparity results in
a widening gap between Transformer-NFN and the second-best model, increasing from 0.031 to
0.082.

Table 9: Performance measured by Kendall’s 7 of all models on augmented AGNews-Transformers
dataset using the group action G;,. Uncertainties indicate standard error over 5 runs.

Original [-1,1] [—10, 10] [—100, 100]

XGBoost 0.859 £+ 0.001 0.799 + 0.003 0.800 £+ 0.001 0.802 + 0.003
LightGBM 0.835 £ 0.001 0.785 £ 0.003 0.784 £ 0.003 0.786 £ 0.004
Random Forest 0.774 +0.003 0.714 +0.001 0.715 4+ 0.002 0.716 + 0.002
MLP 0.879 4+ 0.006 0.830 + 0.002 0.833 £+ 0.002 0.833 £ 0.005
STATNN 0.841 + 0.002 0.793 £ 0.003 0.791 £ 0.003 0.771 £0.013
Transformer-NFN  0.910 + 0.001 0.912+0.001 0.912+0.002 0.913 +0.001
Gap 0.031 0.082 0.079 0.080

The general decline observed in baseline models highlights their lack of symmetry. In contrast,
Transformer-NFN’s equivariance to G;, ensures stability and even slight performance improvements
under augmentation. This underscores the importance of defining the maximal symmetric group, to
which Transformer-NFN is equivariant, in overcoming the limitations of baseline methods.

J COMPUTATION COMPLEXITY OF EQUIVARIANT AND INVARIANT LAYERS

The computational complexity of the Transformer-NFN is derived from its invariant and equivariant
layers as outlined in their pseudocode (Appendix H.2, H.3):

« Equivariant Layer Complexity: O(d - e - h - D* - max(Dy, Dy, D))
¢ Invariant Layer Complexity: O(d-e- D’ - D -max(D - h, D))

Where the parameters follow our notation in Table 7.

The Transformer-NFN implementation leverages optimized tensor contraction operations (e.g.,
einsum), enabling efficient and highly parallelizable computations on modern GPUs. This ensures
computational practicality while delivering significant performance improvements.
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