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Abstract

Recent work has aimed to improve LLM gen-001
erations by filtering out hallucinations, thereby002
improving the precision of the information003
in responses. Correctness of a long-form re-004
sponse, however, also depends on the recall of005
multiple pieces of information relevant to the006
question. In this paper, we introduce Atomic007
Self-Consistency (ASC), a technique for improv-008
ing the recall of relevant information in an LLM009
response. ASC follows recent work, Univer-010
sal Self-Consistency (USC) in using multiple011
stochastic samples from an LLM to improve012
the long-form response. Unlike USC which only013
focuses on selecting the best single generation,014
ASC picks authentic subparts from the samples015
and merges them into a superior composite an-016
swer. Through extensive experiments and abla-017
tions, we show that merging relevant subparts018
of multiple samples performs significantly bet-019
ter than picking a single sample. ASC demon-020
strates significant gains over USC on multiple021
factoids and open-ended QA datasets - ASQA,022
QAMPARI, QUEST, ELI5 with ChatGPT and023
Llama3. Our analysis also reveals untapped024
potential for enhancing long-form generations025
using approach of merging multiple samples.026

1 Introduction027

Large language models (LLM) with their ability to028

perform mathematical reasoning (Wei et al., 2022),029

planning (Ahn et al., 2022), and generating human-030

like text (Bubeck et al., 2023) have become an inte-031

gral component of many AI systems. Long-form032

question answering (LFQA) is an important bench-033

mark task whose performance reflects the reliability034

of these AI systems at providing comprehensive035

and accurate responses to user queries.036

In LFQA, each response comprises multiple037

pieces of information, described in the literature038

as atomic facts (Min et al., 2023), that collectively039

contribute to the overall correctness of the answer.040

Despite various improvements, LLMs are still very041

Q:What are the main causes of climate change?

A1: The primary causes of climate change include human 
activities like burning fossil fuels, deforestation, 
and industrial processes. 

A2: The primary causes of climate change include 
human activities like burning fossil fuels, deforestation, 
and industrial processes. Natural factors such as volcanic 
eruptions and changes in solar radiation also contribute.

Figure 1: A1: A precise answer. A2: An answer with
higher recall of atomic facts relevant to the question Q.

prone to producing hallucinatory content such as in- 042

correct atomic facts, especially when the responses 043

are longer (Ren et al., 2023). Recent works on 044

mitigating hallucinations have primarily involved 045

the removal of inaccurate atomic facts from the 046

generated content. While these methods produce 047

responses with high precision over atomic facts, 048

the correctness of the response also depends on the 049

inclusion of all information relevant to the ques- 050

tion, i.e., the recall of atomic facts relevant to the 051

question. E.g. In Fig. 1, A1 is a precise response. 052

A2 is a more complete high recall response to Q. 053

On the other hand, in QA with closed-form an- 054

swers (such as a math problem with a numeric 055

answer), remarkable improvements in response 056

quality have been achieved by stochastically sam- 057

pling multiple model responses and then using con- 058

sistency criteria to select one as the final answer 059

(Wang et al., 2022). Recently, similar efforts were 060

extended to long-form generation. Universal Self 061

Consistency (USC) (Chen et al., 2023), is one such 062

example which uses LLMs to determine consis- 063

tency between model responses. The output of 064

USC is the single most consistent generation among 065

multiple candidate samples from the model. 066

However, picking a single final answer among 067

the candidate generations might miss out on rel- 068

evant atomic facts from other candidates and not 069

optimize the recall of information. Further, it is 070

still prone to some atomic hallucinations within 071

the final selected candidate. To overcome these 072

challenges, we propose a simple approach called 073
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Figure 2: Best possible recall (oracle performance) with
increasing number of samples on ASQA(ChatGPT).
Merging subparts from multiple samples has a much
higher ceiling. ASC beats USC, Direct; almost matches
the ceiling performance of picking one best sample.

Atomic Self-Consistency (ASC), which combines074

authentic atomic facts from multiple candidate re-075

sponses to generate a superior composite response.076

To motivate the readers on the potential benefits077

of this approach, Fig. 2 shows the oracle perfor-078

mance (best possible performance) of picking one079

single generation vs merging subparts of multiple080

generations on the ASQA dataset (details in §4.7).081

Merging answers from multiple samples have sig-082

nificant performance potential over picking a single083

answer. USC would not be able to capture this po-084

tential. Fig. 2 also shows the performance of ASC085

and other baselines. ASC matches the ceiling per-086

formance possible of picking the best sample.087

Key Contributions 1. We introduce a simple088

and efficient method, ASC, that: (i) clusters atomic089

parts of multiple candidate generations, (ii) uses a090

consistency-based criterion to pick the best clusters091

relevant to the question, and (iii) finally combines092

them all into a single superior answer. ASC oper-093

ates in black box mode and does not require access094

to LLM weights or logits. 2. We systematically095

establish the superiority of combining multiple gen-096

erations over picking a single generation. 3. We097

extensively evaluate and show significant perfor-098

mance improvements of ASC over USC and other099

hallucination reduction baselines on four diverse100

long-form QA tasks—ASQA, QAMPARI, QUEST101

and ELI5. We justify the benefits of ASC through102

rigorous ablations. 4. We show strong empirical103

evidence for minimizing the number of stochastic104

samples required by ASC. 5. Finally, our analysis105

reveals untapped potential for enhancing LLMs by106

merging multiple generations into a superior com-107

posite output. This insight underscores a promising108

avenue for advancing LLM performance further.109

2 Related Work 110

We discuss key methodologies that are used to iden- 111

tify hallucinations and alleviate hallucinations. We 112

further talk about the importance of consistency 113

as a measure for correctness and finally talk about 114

how this is used to improve LLM response. 115

Detecting and alleviating hallucination: 116

FactScore (Min et al., 2023) proposed a mecha- 117

nism to identify atomic facts using an LLM and 118

then individually check each fact’s correctness 119

using a retrieval-based solution. CoVe (Dhuliawala 120

et al., 2023) used the LLM to generate multiple 121

verification questions over a candidate generation 122

and prompted an LLM to answer them. Answers 123

to these verifying questions were used to draft a 124

high-precision response. Agrawal et al. (2023) 125

used indirect prompts to verify individual units in 126

list-style answers. 127

Consistency as a measure for correctness: Con- 128

sistency between model responses resulted in per- 129

formance leaps in mathword problems, code gen- 130

eration, etc (Xiong et al., 2022; Shi et al., 2022). 131

SelfCheckGPT (Manakul et al., 2023) is another 132

work very relevant to ASC which detects hallucina- 133

tion in model responses. It verifies the correctness 134

of individual sentences in a generation by measur- 135

ing their agreement with multiple other stochas- 136

tic samples by the LLM. It showed the benefit of 137

consistency-based measures to identify sentence- 138

level hallucination, within long-form generations. 139

HaLo (Elaraby et al., 2023) also used consistency- 140

based measures to identify sentence-level halluci- 141

nations in a generated text. It also explored tech- 142

niques like knowledge injection and distillation. 143

Using stochastic samples to improve LLM 144

response: USC (Chen et al., 2023) uses the 145

consistency-based measure to pick the most consis- 146

tent individual response among stochastically gen- 147

erated sample responses. It feeds in all responses 148

to the LLM and asks to output the most consistent 149

response. Similar to USC, Ren et al. (2023) pick 150

one best answer from a list of candidates by a hy- 151

brid mechanism which contains a score from the 152

samples posed as a multiple choice question and a 153

score based on self evaluation from the same LLM. 154

Despite remarkable improvements, these meth- 155

ods are confined to either filtering atomic facts from 156

a response or picking a single final answer from 157

multiple samples. Our research on the other hand, 158

focuses on combining subparts of multiple stochas- 159

tic samples to produce higher quality generations. 160
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Figure 3: Overall Pipeline proposed. Generated samples are split into smaller parts and clustered. Clusters are
then filtered by a consistency based criterion (higher strength clusters are selected while lower strength clusters are
removed). Selected cluster representatives are then summarized by an LLM to generate a final answer.

3 Methodology161

Given a question q, our task is to use an LLM L162

to produce an answer which answers the question163

both accurately (i.e., with high precision) and com-164

prehensively (i.e., with high recall). We describe165

the specific metrics used to measure this for each166

dataset in §4. Let a1, a2, .., am be m independent167

samples directly generated by L when query q is168

fed to it in a prompt P . This work merges consis-169

tent subparts from the multiple samples to produce170

a final answer aASC in a four-step process. 1. Split:171

Split each generation into its constituent atomic172

facts. 2. Cluster: Grouping atomic facts for ef-173

ficiency 3. Filter: Selecting the most consistent174

clusters. 4. Summarize: Combine the selected175

cluster representatives to generate a final answer.176

3.1 Splitting Generations for Atomic Facts177

Since atomic facts can be verified for their truth,178

the first step in our approach is to break down can-179

didate generations into atomic facts. A candidate180

generation to a question might comprise multiple181

sentences and multiple atomic facts within each182

sentence. Min et al. (2023) used an InstructGPT183

model to break down a long-form generation into184

its atomic facts. While we believe that use of such185

neural models can produce better quality atomic186

facts, it is extremely expensive in our setting as this187

needs to be performed for m different generations188

per question. Hence, following Arslan et al. (2020);189

Manakul et al. (2023); Liu et al. (2023), we used190

individual sentences within a candidate generation191

as its atomic facts. We used sentence tokenization192

models (Bird et al., 2009) to split the generation193

into its constituent sentences (atomic facts).194

3.2 Clustering Atomic Facts 195

Each of the m generations typically contains mul- 196

tiple individual sentences/atomic facts, say k on 197

average. Each of these units needs to be verified 198

for relevance and truthfulness before inclusion in 199

the final answer. However, evaluating each atomic 200

unit either by external sources like retrieval or by 201

prompting L would require m ∗ k steps and prove 202

very expensive. Note that multiple of these atomic 203

units share content because they were generated 204

addressing the same question. We hence perform 205

a round of clustering to collect atomic facts con- 206

veying the same meaning. Despite being cubic in 207

computational complexity, we found agglomerative 208

clustering (Pedregosa et al., 2011) of sentence em- 209

beddings obtained from SimCSE (Gao et al., 2021) 210

has less overhead and is much faster compared to 211

using retrieval/LLM calls to filter them. 212

Given the clusters, verifying only the representa- 213

tives of each cluster would contribute to substantial 214

savings in compute and time. We chose the longest 215

sentence in each cluster as its representative. 216

3.3 Filtering Clusters 217

The objective now is to identify and eliminate inac- 218

curate atomic facts, ensuring that only valid and re- 219

liable atomic facts are retained for the final answer 220

generation in the subsequent steps. Multiple meth- 221

ods have been used in the literature to verify facts, 222

e.g., retrieval-based verification Min et al. (2023) 223

and self-evaluation Manakul et al. (2023). These 224

methods are still expensive to perform even if it’s 225

just cluster representatives that we evaluate. Con- 226

sistency between model responses when used as a 227

metric resulted in significant gains in reasoning. In 228
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our case, a measure of consistency is readily avail-229

able in the form of the clusters’ strengths. Hence,230

we use the individual cluster strengths to pick the231

most consistent of them. Specifically, all clusters232

having count below a fixed threshold Θ (tuned on233

a validation set) are filtered and the consistent clus-234

ters’ representatives are selected {c1, c2, c3, ..cz}.235

We also experimented with self evaluation in our236

preliminary analysis but found consistency-based237

measures worked better. We also compare with238

retrieval-based method to filter clusters in the §4.239

3.4 Summarizing Selected Clusters240

The representatives {c1, c2, c3, ...cz} are fed into241

the same LLM L with a summarizing prompt242

Pcombine(mentioned in §A) to produce the final an-243

swer aASC. Note that the number of representatives244

z < m (most times) and hence is much easier to245

process by L compared to USC (feeds m inputs).246

This call to the LLM not only summarizes the247

selected cluster representatives but also filters any248

slack/filler sentences that were selected by the con-249

sistency metric. Overall pipeline is shown in Fig. 3.250

251

Adapting ASC to list style datasets: We also ex-252

tend the ASC methodology to list style datasets.253

Here, for a given question, the answer produced is254

typically a list of entities. Following Agrawal et al.255

(2023), we directly used each item in the list as an256

atomic fact. We used surface-form based cluster-257

ing where two atomic units are placed in the same258

cluster if their normalized edit distance is below259

a threshold. Θ threshold (tuned on validation set)260

based filtering is applied to select consistent clus-261

ters. The first item in each cluster is considered its262

representative. The final answer is just the list of263

selected cluster representatives [c1, c2, c3, ...cz].264

4 Experiments265

ASQA (Stelmakh et al., 2022): A long-form factoid266

dataset comprising ambiguous questions. Follow-267

ing Gao et al. (2023), performance on this dataset268

is evaluated by 1. ‘Str_EM’: checking if reference269

short answers have an exact match in the LLM270

generated answer, 2. ‘QA-F1’: Does an external271

QA model identify these short answers from ref-272

erence disambiguating questions. Str_EM is very273

closely related to the recall of atomic facts rele-274

vant to the question. Additionally, we also present275

the ‘Mauve’ score which compares the fluency and276

style of the model generated text to the reference277

answer. QAMPARI (Rubin et al., 2022): QAM- 278

PARI is a list-style factoid QA dataset constructed 279

from Wikipedia knowledge graphs and tables with 280

the questions paraphrased by humans. QUEST 281

(Malaviya et al., 2023): QUEST is another list- 282

style dataset constructed using Wiki category lists. 283

‘Precision’, ‘Recall’, ‘F1’, ‘Recall-5(100 if atleast 284

5 correct entities are present)’ are used to evaluate 285

QAMPARI and QUEST. ELI5 (Fan et al., 2019): 286

A long-form QA dataset containing how/why/what 287

questions from Reddit. We use ‘Claims_Nli’ of 288

golden subclaims following Gao et al. (2023). De- 289

tails on datasets and metrics in §A.2.1. 290

4.1 Methods 291

We compare the following methods. The first two 292

are strong hallucination reduction methods. The 293

later ones include stochastic sampling methods. 294

ACF (adapted from SelfCheckGPT, (Manakul et al., 295

2023)): Abbreviated from Atomic Consistency- 296

based Filter. Only one generation (very first seed) 297

out of the m is used. We use cluster strengths from 298

the m generations to filter out facts from the one 299

generation. Selected facts are combined as men- 300

tioned in §3.4. 301

FCF (adapted from FActScore, (Min et al., 2023)): 302

Abbreviated from Factual Correctness based Filter. 303

Uses FactScore (Min et al., 2023) filter to throw 304

out facts from the one generation similar to ACF. 305

Leftover facts are combined as mentioned in §3.4. 306

Direct: Direct generation from the LLM. Results 307

are averaged over five different seeds. 308

USC-LLM: This is the original formulation which 309

used a list of samples as input to the LLM and 310

found the most consistent response. We reduced 311

the input list when it did not fit the context win- 312

dow. We observed that this method picks the first 313

response a majority of the time possibly because of 314

LLM’s longer list problems (Qin et al., 2023). 315

USC: Consistency based method proposed in Chen 316

et al. (2023). To overcome LLM list problems in 317

USC-LLM, we use the same clustering pipeline as 318

mentioned for ASC. Each of the m generations is 319

given a score equal to the sum of the strengths of 320

all clusters it contributes to. The highest scoring 321

generation is selected as the final answer. 322

ASC: The method that we propose in this work. 323

Splits multiple samples into smaller parts, and clus- 324

ters them. The best clusters (picked by consistency 325

score) are summarised using an LLM. 326

ASC-F: Similar to ASC but uses FActScore to pick 327

the relevant clusters instead of the cluster strength 328
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ASQA ELI5
#Clusters length Mauve Str_EM QA-F1 #Clus. length Mauve Claims_Nli

ChatGPT

Direct

-

56.29 44.64 37.13 29.33

-

104.35 24.57 18.66
ACF 42.99 53.66 36.16 28.98 84.11 20.73 18.2
FCF 45 52.68 36.84 29.64 94.75 27.97 18.7
USC-LLM 56.72 44.88 37.91 29.71 104.13 21.11 18.76
USC 64.52 40.19 39.05 30.88 97.36 24.09 17.4
ASC-F (Ours) 30.74 106.7 41.25 44.96 31.91 56.83 172.66 22.68 22.16
ASC (Ours) 15.7 101.17 47.01 44.1 32.22 16.68 163.58 21.29 21.43

Llama3-70b

Direct

-

40.68 62.31 35.46 28.67

-

95.76 26.77 18.09
ACF 34.67 54.01 35.65 29.48 83.1 29 19.73
FCF 34.73 59.37 35.71 29.41 82.21 25.32 19.53
USC 55.26 47.33 38.29 30.11 128.55 21.14 21.97
ASC-F 11.94 71.41 69.25 41.89 31.19 51.86 167.11 22.91 23.63
ASC 7.57 66.88 71.16 40.97 30.61 28.17 164.91 21.06 23.73

Table 1: ASQA, ELI5 results. ASC does the very well on QA-F1 and demonstrates strong Str_EM. ASC-F picks
a large number of clusters and also does well. ASC also demonstrates strong Mauve. ASC, ASC-F achieve best
Claims_Nli score on ELI5. Results justify that merging of samples is better than picking one sample.

QAMPARI QUEST
Method #Pred Prec Rec Rec-5 F1 F1-5 #Pred Prec Rec Rec-5 F1 F1-5

ChatGPT

Direct 5.2 21.35 13.82 23.47 15.35 21.83 5.56 12.05 6.76 12.91 7.45 11.6
ACF 3.61 24.16 12.5 21.96 15.04 22.18 3.07 14.71 5.65 10.67 7.06 11.53
FCF 4.41 22.59 13.29 23.16 15.33 22.16 3.61 13.55 5.91 11.03 7.01 11.27
USC-LLM 4.95 20.88 13.39 22.91 14.94 21.33 5.10 11.86 6.18 11.92 7.08 11.16
USC 8.97 20.7 19.21 31.28 18.07 24.2 7.83 11.98 8.43 15.19 8.23 12.21
ASC-F 40.83 13.42 29.81 45.04 15.7 18.82 39.9 7.94 17.31 30.73 8.47 10.84
ASC 7.09 22.98 20.5 33.04 19.46 26.21 8.44 12.47 10.41 19.15 9.75 14.09

Llama3-70b

Direct 4.65 25.84 14.57 25.29 16.85 23.94 4.62 13.16 5.95 11.28 7.07 11.21
ACF 3.43 25.04 11.99 21.12 14.86 21.55 3 13.88 4.91 9.3 6.34 10.33
FCF 4 26.71 13.79 23.82 16.47 23.5 3.08 15.5 5.32 10.07 6.8 11.15
USC 7.23 23.93 18.35 30.16 18.79 25.07 7.65 12.97 8.01 14.65 8.27 12.37
ASC-F 24.65 17.8 26.72 41.72 18.28 22.24 30.82 8.97 13.82 25.77 8.64 11.37
ASC 9.61 22.94 22.09 35.86 20.16 26.02 11.75 11.04 10.24 19.21 8.94 12.6

Table 2: ASC outperforms Direct, USC and ASC-F. ASC-F picks a large number of clusters and does worse on P, F1,
F1-5. Results justify that consistency-based cluster selection does better than retrieval-based cluster selection.

in §3.3. We use 5 retrieved passages and Instruct-329

GPT from FactScore to verify the correctness of330

each cluster. ASC-F doesn’t use any consistency331

measures despite sharing the name.332

4.2 Model Details and Setup333

We use m = 50 for generations. The same set of334

generations are used by ASC, ASC-F, USC. Direct335

is the average of five seeds among the 50. ACF, FCF336

use only one seed for the answer. ACF uses all 50337

seeds but for building a consistency-based selection338

mechanism. Sentence embeddings for clustering339

were generated using robert-large SimCSE (Gao340

et al., 2021), agglomerative clustering (d = 0.15)341

is used to perform clustering in ASQA, ELI5. More342

details on models/hyperparams/Θ used in §A.1343

4.3 Results344

Table 1 demonstrates results for ASQA. ASC, ASC-F345

do much better than USC in Str_EM (exact match)346

and QA-F1 (QA model performance). This shows 347

that merging parts of multiple answers performs 348

better than picking a single answer. ACF and FCF 349

are more picky in selecting what facts can show up 350

in the final answer and hence have worse Str_EM, 351

QA-F1 even compared to Direct in some cases. 352

The short answers in ACF, FCF help achieve a better 353

Mauve scores. ASC beats Direct, USC, and ASC-F 354

in achieving better Mauve score. Table 1 also 355

shows the eval set results of ELI5. ASC, ASC-F per- 356

form better than all other models yet again demon- 357

strating the strength of merging multiple model 358

responses. Mauve is lower in this case because the 359

reference answers are from Reddit subposts and the 360

style didn’t match the long answers generated by 361

ASC. As will be shown in ablations, ASC offers easy 362

control over Mauve by changing Θ. Fig. 7 shows 363

that Θ can be adjusted to improve ASC’s Mauve 364

score over others while retaining Claims_Nli. 365
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ASQA QAMPARI
Ablation Method #Clusters length Mauve Str_EM QA-F1 #Pred Prec Rec Rec-5 F1 F1-5

1
ASC 15.7 101.17 47.01 44.1 32.22 7.09 22.98 20.5 33.04 19.46 26.21
Random Clusters 15.7 85.31 49.97 42.62 31.75 7.09 11.86 10.08 18.62 9.77 14.05
Random Sentences 15.7 99.45 42.08 41.5 29.36 7.09 22.19 13.8 24.42 15.39 22.1

2
USC

-
64.52 40.19 39.05 30.88 8.97 20.7 19.21 31.28 18.07 24.2

High Token/#Pred 82.93 40.59 37.8 28.79 10.48 17.19 18.3 29.28 16.07 21.01

Table 3: Ablation 1: ASC performs better than randomly picking clusters and randomly picking sentences on ASQA,
QAMPARI. Ablation 2: Larger length or higher #Predictions in response is not critical for better performance.

Table 2 shows test set results for QAMPARI. ASC366

performs the best. ASC-F similar to the previous367

case selects a large number of clusters. It does368

well on recall but significantly drops on precision369

leading to a worse overall performance. This also370

shows that longer answers are not always helpful.371

Since this is a list-style dataset, we also show #Pre-372

dictions (size of the list) which is somewhat equiva-373

lent to #Clusters in the previous case. Note that ASC374

beats USC despite having lower #Predictions with375

ChatGPT. As expected, ACF, FCF have much lower376

#Predictions and have higher precision compared to377

others. ASC relies on consistency to predict a much378

higher #Predictions while also matching/improv-379

ing precision. This strongly justifies the strength380

of consistency-based cluster selection. Specifically,381

it achieves the two goals we had set out in this ex-382

ploration. It removes incorrect atomic facts from383

a sample (increase in precision compared to USC)384

and adds correct atomic facts from other samples385

(increase in recall compared to USC). Table 2 also386

shows test set results for QUEST. The trends are387

very similar to QAMPARI with ASC performing the388

best. Summarizing all the observations from above,389

we conclude that390

1. Merging LLM samples is better than selecting391

one single sample.392

2. Atomic-Consistency is a strong measure to se-393

lect clusters and improve correctness.394

4.4 Ablations395

4.4.1 Ablation 1: Dissecting ASC396

To effectively understand the contribution of dif-397

ferent components of ASC, we analyze the effect398

of each subcomponent. Table 3 shows results399

with ASQA. ASC first clusters individual sentences400

from all 50 generations and merges sentences with401

high cluster strength using an LLM. The Random402

Clusters method follows the same clustering as403

ASC but randomly picks clusters before merging404

them using an LLM. Random Sentences doesn’t405

perform any clustering and randomly picks the sen-406

tences from all generations and summarizes them.407

In both runs, we pick the exact same number of sen- 408

tences that were picked by ASC. Random Clusters 409

drops both Str_Em and QA-F1 but still does bet- 410

ter than Direct, USC in Table 3. This shows the 411

strength of including diverse sentences from multi- 412

ple samples into the answer generation. In the case 413

of ASQA and ELI5, there is less hallucination com- 414

pared to QAMPARI and QUEST. Hence, randomly 415

picking clusters does fairly well better than most 416

other baselines. Random Sentences further drops 417

in metrics while still maintaining a high Str_EM. 418

Table 3 also does the same analysis for QAM- 419

PARI. Here again, we run the two random baselines. 420

Similar to the previous case, ASC does the best. 421

4.4.2 Ablation 2: Longer length answers 422

From Table 2, 1, ASC and ASC-F often have higher 423

length answers and higher #predictions. One might 424

deduce that longer generations tend to give better 425

results on the datasets tested. Hence, we perform 426

an additional experiment which picks the longest 427

length sample (among the 50 samples) for ASQA 428

and pick the sample with the highest #Predictions 429

(among the 50 samples) for QAMPARI as the final 430

answer. Results are shown in Table 3. Despite 431

having a larger length or higher #predictions, USC 432

with a lower length and lower #predictions perform 433

much better. This shows length is not the most 434

important factor for improved performance. 435

4.4.3 Ablation 3: ASC is simple to control 436

with Θ (Sensitivity Analysis) 437

Θ is a parameter which critically affects the perfor- 438

mance of ASC. For Table 2, we used a value of Θ 439

that performed the best on the validation set. Dif- 440

ferent number of selected clusters result in differ- 441

ences in various performance metrics. For example, 442

ASC-F which selects a large number of clusters is 443

more suited to high recall scenarios where preci- 444

sion is less important. Hence, to better understand 445

this effect, we experiment with different values of 446

Θ in this subsection. Fig. 4 shows the effect of 447

varying Θ on ASQA. A lower Θ resulted in se- 448

lecting a large number of clusters and resulted in 449
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improving QA-F1. This also increased the length450

of the final response. Reducing Θ on the other hand451

improved the Mauve fluency score as the shorter452

final answer matched more with the reference an-453

swer. Hence, one might easily adjust Θ to obtain454

an answer aligned with their preference (Mauve or455

QA-F1). From the Fig. 4, ASC can outperform all456

other methods in Mauve(can achieve >65) while457

still retaining a QA-F1 (>31). The best of other458

methods was Mauve (53.66) and QA-F1 (30.99).459

A similar result was seen in ELI5 where increasing460

Θ achieved the highest Mauve §7.461

Fig. 6 in §A shows the effect of varying Θ on462

QAMPARI. The relationship here is more linear.463

Increasing Θ results in fewer clusters with high464

strength (high precision). Reducing Θ results in465

higher recall. ASC-F’s criterion enabled it to select466

a larger number of clusters resulting in higher recall.467

Here again, one can easily change Θ to obtain an468

answer with preferred qualities.469

Figure 4: ASQA. Increasing Θ improves QA-F1, re-
duces Mauve. Adjusting Θ produces a preferred answer.

4.5 Analysis: Can ASC work with fewer470

number of generations? Use Entropy471

Cost of generation using an LLM linearly scales472

with the number of samples. ASC used a large473

number of samples, m = 50 in our earlier exper-474

iments. It might not always be feasible to gener-475

ate this large number of samples due to time and476

budget constraints. In this subsection, we investi-477

gated if we could generate fewer samples and yet478

capture the gains provided by ASC. While we fo-479

cused on QAMPARI for this analysis, we found480

similar trends with other datasets as well. We first481

looked at how the entropy of the clusters (consider-482

ing each cluster to have a probability proportional483

to its strength) changes with increasing number of484

generations. In the beginning (m = 1), all clusters485

have one member and equal probability. Hence, the486

entropy is lower. As and when more samples get487

Figure 5: QAMPARI. Performance starts to stagnate
when clusters’ entropy stagnates.

added, some clusters accumulate higher strength 488

and some others remain low strength. Hence, the 489

entropy increases due to unequal probabilities of 490

clusters. We empirically found that entropy starts 491

to stagnate with higher values of m. To measure 492

the performance of m samples, we scaled the op- 493

timal Θ we found in Table. 2 by m
50 . We found 494

that performance follows a similar trend increasing 495

quickly at the beginning while slowly stagnating. 496

Performance and Entropy curves values with m 497

are shown in Fig. 5. Interestingly, performance 498

starts to stagnate right around when entropy starts 499

to stagnate. Entropy stagnation can thus be used 500

as an indication to stop generating more samples 501

from the LLM and fix m. 502

4.6 Analysis: Clustering 503

Clustering being a core component of ASC, we per- 504

form an extensive quantitative and qualitative anal- 505

ysis over it. Firstly, we try multiple embedding 506

and clustering methods results of which are shown 507

in Table 8 §A.4. Note that the results are consis- 508

tent across different choices fo embedding models 509

and clustering methods thus justifying our earlier 510

choice of embedding models/clustering methods. 511

Quantitative Analysis: Further, for each cluster in 512

all examples, we pass all constituent atomic facts 513

(sentences in our case) to GPT4 and zero-shot ask “ 514

You are given a list of sentences. What percentage 515

of them convey similar meaning?”. We parse a 516

number(%) from this and average it over all clus- 517

ters of all examples and present it as Purity in Table 518

4. Across different embedding and clustering meth- 519

ods, we observe high purity of clusters. 520

Qualitative Analysis: For further qualitative anal- 521

ysis, we demonstrate clustered example question 522

from ASQA in Table 9 of §A.4. As can be seen 523

each cluster contains sentences that convey similar 524

meaning. Eventhough the meaning is similar, they 525

7



Embedding Clustering Purity (%)
SimcseRoberta_Large Agglomerative 97.32
SimcseRoberta_Large KMeans 96.48
GTRt5-xxl Agglomerative 96.23
GTRt5-xxl KMeans 95.04

Table 4: Purity of Different Embeddings and Clustering
Methods. Clustering parameters set to approximately
result in same number of clusters i.e. d=0.15 and K=39.

might contain some slightly different facts (E.g.526

exact number of goals scores in Cluster 3). Some-527

times, we found that sentences conveying similar528

meaning formed more than one cluster - For Ex:529

Cluster 3 and Cluster 5. We left it for the LLM530

summarization step to filter out such repetitions.531

We pick one representative from each cluster and532

sent them to the LLM for summarization.533

4.7 Analysis: Room for improvement534

ASQA QAMPARI
Method #Gen Str_EM QA-F1 Rec Rec-5

Oracle

1 36.32 22.88 13.94 24.24
2 40.64 28.05 18.15 30.46
5 45.65 34.03 24.53 39.02

15 50.97 39.28 32.29 48.78
25 53.1 41.29 35.86 52.76
50 56.09 45.2 40.06 56.90

ASC 50 44.1 32.22 20.50 33.04

Table 5: Oracle results reveal sizable scope for improve-
ment using our approach of merging multiple responses.

To better understand the gains of ASC, we look535

at the best possible performance offered by our536

mechanism of merging multiple sample genera-537

tions. We use the same 50 generations that were538

used to produce the ASC results. Table 5 shows the539

best possible performance (Oracle) with the num-540

ber of generations. Exact procedure for obtaining541

the oracle numbers is described in §A.5.542

The experiment presents interesting observa-543

tions. 1. Using just five generations significantly544

increases the oracle performance. 2. Oracle’s per-545

formance stagnates at a higher number of genera-546

tions. Our observations on ASC performance stag-547

nating after 20 generations are in line with these548

results. 3. ASC only captures 20.50 of the 40.06549

possible recall on QAMPARI and 44.1 of the 56.09550

possible Str_EM on ASQA. Thus while ASC cap-551

tures a fair share of the performance gain offered552

by merging multiple generations, a sizable portion553

of performance gain still remains untapped. Future554

work aims at capturing this potential gain by using555

stronger verification methods involving a combina- 556

tion of ASC with ASC-F and methods in §2. 557

5 Discussion 558

5.1 Hallucination Reduction Methods vs ASC 559

We compared with adaptations of two strong 560

hallucination reduction methods in FCF, ACF - 561

FactScore (Min et al., 2023), Self CheckGPT (Man- 562

akul et al., 2023) respectively. Hallucination reduc- 563

tion methods like Dhuliawala et al. (2023), Ren 564

et al. (2023) operate similarly in terms of remov- 565

ing any hallucinatory facts and retaining correct 566

facts in the generated answer (improved precision). 567

These methods lag in recall as shown in table. 2. In 568

contrast, ASC additionally captures authentic con- 569

tent from other generations which was not included 570

in the original answer. 571

5.2 Stochastic Sampling Methods vs ASC 572

As shown in Fig. 2, merging best subparts of multi- 573

ple generations has significantly higher scope over 574

picking the single best generation. Hence, ASC does 575

better than otehr stochastic sampling methods like 576

Ren et al. (2023), USC. 577

Runtime Analysis: The exact same number of 578

LLM calls are required by ASC (50 generation + 1 579

summarization) and USC (50 generation + 1 con- 580

sistent answer picking). While ASC additionally 581

requires extra compute to perform clustering, this 582

can be done using smaller language models on sen- 583

tences and is less costly. In contrast, Ren et al. 584

(2023) uses (50 + multiple) LLM calls to select the 585

best answer and hence is more expensive. 586

6 Conclusion 587

In this work, we propose ASC, a simple way of 588

merging subparts of multiple answer samples pro- 589

duced by an LLM. Through extensive experiments 590

and ablations, we show the 1. Benefits of merg- 591

ing subparts of multiple answers over picking one 592

single answer. 2. Strength of consistency as a mea- 593

sure for improving correctness. ASC significantly 594

outperforms USC, a strong baseline for generating 595

long-form answers. We show empirical evidence 596

for minimizing the number of samples required by 597

ASC. Finally, our analysis also reveals untapped po- 598

tential for enhancing long-form generations using 599

our approach of merging multiple responses. 600
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7 Limitations601

Smaller language models not tried Some of the602

datasets used in our work are very challenging603

and not suitable for smaller language models. To604

effectively prove the strength of our approach, we605

stuck to ChatGPT, Llama-70b.606

607

Multiple samples still need to be generated608

A general limitation of most stochastic sample609

based methods. These methods rely on generating610

multiple samples and picking the final answer611

among them. However, this might be slightly612

expensive. Speculative Decoding (Li et al., 2024)613

has recently made great strides in reducing the614

amount of compute required to sample from Large615

Language Models. Speculative decoding can be616

used to significantly reduce the compute required617

by ASC and USC.618

619

620

Broader Impact and Discussion of Ethics:621

While our model is not tied to any specific applica-622

tions, it could be used in sensitive contexts such623

as health-care, etc. Any work using our method is624

requested to undertake extensive quality-assurance625

and robustness testing before applying in their626

setting. To the best of our knowledge, the datasets627

used in our work do not contain any sensitive628

information.629

630

License: Refer to the licenses of individual631

training datasets used Stelmakh et al. (2022),632

(Rubin et al., 2022), (Malaviya et al., 2023), (Fan633

et al., 2019) and LLM models used Touvron et al.634

(2023), (Achiam et al., 2023).635

636

Replicability:637

Code and Datasets used will be made publically638

available.639
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A Appendix 772

A.1 Implementation Details 773

For ASC-F, FCF, retrieval, query and document em- 774

beddings were generated using GTR-T5-XXL (Ni 775

et al., 2021) and Wikipedia following (Gao et al., 776

2023). In ASC-F, FCF, each cluster/fact used 5 re- 777

trieved passages for verification. InstructLlama 778

model from Min et al. (2023) was used to verify 779

facts in ASC-F,FCF. A fact was called true if at least 780

1 of the 5 passages supported it. Experiments on 781

all four datasets were performed with both Chat- 782

GPT, Llama-3(70b), Llama-2(70b) (Touvron et al., 783

2023). In all the experiments, the same LLM is 784

used to perform both generation and summariza- 785

tion. Generation and summarization prompts along 786

with other details are presented in §A.1. 787

ASC uses hyperparam Θ tuned over the devel- 788

opment set to maximise F1-5 for QAMPARI and 789

QUEST. For ASQA, ELI5, Θ was chosen such 790

that the number of selected clusters comfortably 791

fit the context window of ChatGPT, Llama3. ACF 792

used the same threshold as ASC in filtering atomic 793

facts. FCF, USC did not require tuning any hyperpa- 794

rameters. Clustering parameters were same for all 795

models that used it. 796

A.2 Runtime Details 797

We followed (Gao et al., 2023) to generate 50 re- 798

sponses from ChatGPT and Llama. We used four 799

48gb A6000 gpus for all experiments. Generating 800

responses using ChatGPT was much faster and only 801

took 3hrs per dataset. Generating the responses 802

with Llama2/3 was much more challenging and 803

took 24 hrs per dataset. 804

As ASC only contains simple clustering steps, it 805

runs fairly fast with an average of 3hrs per dataset 806

with ChatGPT. ASC with Llama includes the final 807

10



summarizarion step which took 15 hrs on average808

over datasets.809

A.2.1 Tasks810

ASC did not use the training set of any of these811

datasets.812

ASQA (Stelmakh et al., 2022): ASQA is a813

long-form factoid dataset comprising ambiguous814

questions. The ambiguous nature of the questions815

requires answers to comprise diverse facts from816

multiple documents. The dataset provides individ-817

ual reference disambiguating short answers for818

each question and also a reference long answer819

combining all short answers. Evaluation was820

done on the eval set (948 examples). Following821

Gao et al. (2023), performance on this dataset is822

evaluated by 1. ‘Str_EM’: checking if reference823

short answers have an exact match in the LLM824

generated answer, 2. ‘QA-F1’: Does an external825

QA model identify these short answers from826

reference disambiguating questions. Str_Em is827

very closely related to the recall of atomic facts828

relevant to the question. Additionally, we also829

present the ‘Mauve’ score which compares the830

fluency and style of the model generated text to the831

reference answer.832

833

QAMPARI (Rubin et al., 2022): QAMPARI is834

a list-style factoid QA dataset constructed from835

Wikipedia knowledge graphs and tables with the836

questions paraphrased by humans. Performance837

over this dataset is evaluated by ‘Precision’,838

‘Recall’ and ‘F1’ between the generated answer839

list and reference answer list. As the reference840

lists are often huge, another measure ‘Recall-5’841

scores the answer 100 if at least 5 correct entities842

are present. Evaluation was done on the test set843

with 1000 examples.844

845

QUEST (Malaviya et al., 2023): QUEST is846

another list-style dataset constructed using Wiki847

category lists. This is a much more challenging848

dataset compared to QAMPARI. Following849

Dhuliawala et al. (2023), we transform each850

category name into a question by prepending851

"Name Some". For Eg. "Name Some Mary Stewart852

novels". Performance over this dataset is evaluated853

by Precision, Recall, F1 and Recall-5. Evaluation854

was done on the test set with 1727 examples.855

856

ELI5 (Fan et al., 2019): This is a long-form QA857

dataset containing how/why/what questions from858

Reddit. Gao et al. (2023) had generated three 859

sub-claims from each golden answer and showed 860

that an answer’s entailment score over these 861

sub-claims provides a more accurate measure of its 862

correctness. We use this same ‘Claim-Recall’ to 863

measure the correctness of a generated answer in 864

this work. Similar to Str_EM in ASQA, this again 865

is very related to the recall of atomic facts relevant 866

for the question. We use the same randomly 867

sampled 1000 questions from the eval set as from 868

Gao et al. (2023). 869

870

We use the test sets for QAMPARI, QUEST and 871

validation sets for ASQA, ELI5. 872

873

Figure 6: QAMPARI. Increasing Θ improves precision,
reduces recall. Adjusting Θ produces preferred answer.

Figure 7: ELI5. Increasing Θ improves QA-F1 and re-
duces Mauve. Adjusting Θ produces preferred answer.

A.3 Results Continued 874

We additionally present results from Llama2 in 875

Tables 6 and 7. The trends are exactly similar to 876

ChatGPT, Llama3 described in the main paper. 877
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ASQA ELI5
#Clusters length Mauve Str_EM QA-F1 #Clus. length Mauve Claims_Nli

Llama2

Direct

-

41.88 68 28.71 23.58

-

84.38 46.59 13.98
ACF 25.78 63.79 28.48 24.73 58.20 38.22 13.70
FCF 28.71 68.22 28.38 24.64 66.96 35.20 14.57
USC 63.7 63.63 33.16 26.42 115.82 35.21 17.70
ASC-F (Ours) 33.57 108.18 62.68 39.26 26.54 83.42 148.30 35.25 18.97
ASC (Ours) 12.68 91.91 70.52 38.82 27.16 14.32 143.07 28.09 19.40

Table 6: ASQA, ELI5 results. ASC does the best on QA-F1 and demonstrates strong Str_EM. ASC-F picks a large
number of clusters and does well on Str_EM. ASC also demonstrates strong Mauve. ASC, ASC-F achieve best
Claims_Nli score on ELI5. Results justify that merging of samples is better than picking one sample.

QAMPARI QUEST
Method #Pred Prec Rec Rec-5 F1 F1-5 #Pred Prec Rec Rec-5 F1 F1-5

Llama2

Direct 4.86 13.5 9.25 16.23 10.22 14.47 5.46 6.74 4.16 7.66 4.42 6.7
ACF 3.17 14.94 7.96 13.84 9.69 13.85 3.48 7.9 3.47 6.34 4.14 6.54
FCF 3.88 14.1 8.93 15.36 10.15 14.22 3.43 8.06 3.78 6.75 4.38 6.77
USC 7.44 14.07 11.61 20.04 11.64 15.99 9.36 7.76 5.4 10.16 5.38 7.96
ASC-F 27.35 10.74 18.44 29.88 11.52 14.4 28.07 5.63 10.64 19.08 5.81 7.67
ASC 6.08 14.51 12.15 20.58 12.15 16.44 6.77 7.42 5.52 9.97 5.3 7.86

Table 7: ASC outperforms Direct, USC and ASC-F. ASC-F picks a large number of clusters and does worse on P, F1,
F1-5. Results justify that consistency-based cluster selection does better than retrieval-based cluster selection.

Figure 8: QUEST. Increasing Θ improves precision,
reduces recall. Adjusting Θ produces preferred answer.

A.4 Clustering Analysis878

In addition to the main results of Table 1, we pro-879

vide additional results with multiple embedding880

models and clustering methods. As can be seen in881

Table 8, the Str_EM performance remains consis-882

tent across these variations.883

Method Emb. Clus. Mauve Str_EM QA-F1
USC - - 40.19 39.05 30.88
ASC SimCSE Agglom. 47.01 44.1 32.22
ASC SimCSE KMeans 55.25 43.42 31.09
ASC GTR Agglom. 53.66 42.61 32.14
ASC GTR KMeans 49.85 43.62 32.18

Table 8: Different embedding and clustering methods
for ASC. Agglomerative (d=0.15) and Kmeans (K=39)

A.5 Generating oracle Numbers 884

In both ASQA and QAMPARI, we have access 885

to reference short answers. Evaluation metrics - 886

QA_F1 and precision, recall are all built over these 887

short answers first and then averaged over the entire 888

dataset. For each of these short answers, we find 889

the maximum possible metric value among the 50 890

generations. This maximum value per short answer 891

is averaged over the entire dataset to get the oracle 892

numbers. For Fig. 2, we use maximum values 893

at the entire response level rather than at a short 894

answer level. 895

A.6 Prompts 896

A.6.1 Generation Prompts 897

We used the exact same generation prompts and few 898

shot exemplars from (Gao et al., 2023) for ASQA, 899

QAMPARI, ELI5. For QUEST (not analysed by 900

(Gao et al., 2023)), we used the same prompt as 901

QAMPARI. 902

A.7 Summarization Prompt Pcombine 903

Summarization prompts followed the template 904

shown below. An example for asqa summariza- 905

tion with few shot examples is shown later. We 906

used two shot summarization for both ASQA and 907

ELI5. 908
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Summarization Template

{task instruction}
Question: {....}
Sentence1: {...}
Sentence2: {...}
...
Answer: {....}

{task instruction}
Question: {....}
Sentence1: {...}
Sentence2: {...}
...
Answer: {....}

{task instruction}
Question: { ....}
Sentence1: {...}
Sentence2: {...}
...
Answer:

909

Summarization Prompt Example

Instruction: You are given an ambiguous question
and a few sentences which have some parts of
its answer and some irrelevant content. Remove
irrelevant sentences and combine all relevant
ones i nto a single answer that can address all
interpretations of the question. Do not miss any
minor details relevant to the question. Also, add any
missing details.
Question: Where did bruno live in the boy in the
striped pajamas?
Sentence1: Bruno lived in Germany
Sentence2: Bruno moves to Auschwitz when his
father got promoted.
Sentence3: He is upset about the move.
Sentence4: Bruno liked playing with his friends.
Sentence5: Bruno lives in Berlin.
Sentence6: Bruno discovered a concentration camp
near his new home.
Sentence7: Bruno was an innocent boy.
Answer: Bruno lived in Berlin in Nazi Germany
during World War II. His father Ralf gets promoted,
and relocates the family to Auschwitz (occupied
Poland).

Instruction: You are given an ambiguous question
and a few sentences which have some parts of its
answer and some irrelevant content. Remove irrele-
vant sentences and combine all relevant ones i nto a
single answer that can address all interpretations of
the question. Do not miss any minor details relevant
to the question. Also, add any missing details.
Question: Who played nathan on young and the
restless? Sentence1: Randy Brooks played nathan on
young and restless.
Sentence2: It was played by Lazarre-White in 1994.
Sentence3: He did an amazing job.
Sentence4: Brooks played Nathan.
Sentence5: From 1992, Brooks played nathan.
Sentence6: He was much younger to his predeces-
sors.
Sentence7: He was much younger to his predeces-
sors.
Sentence8: Audience liked nathan’s portrayal.
Answer: The role was played by Nathan Purdee from
1984 to 1992. Randy Brooks took over in 1992 but
was replaced in 1994 with a younger version of the
character, played by Adam Lazarre-White.

Instruction: You are given an ambiguous question
and a few sentences which have some parts of
its answer and some irrelevant content. Remove
irrelevant sentences and combine all relevant
ones into a single answer that can address all
interpretations of the question. Do not miss any
minor details relevant to the question. Also, add any
missing details.
Question: What’s the marketing strategy of skipping
a number in a numbered line of products?

910
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Question Who has the highest goals in world football?
Cluster 1

• As of August 2021, the soccer player recognized as having the highest number of goals in world
football is Josef Bican.

• As of 2021, the title for the highest goals scorer in world football is held by Josef Bican from
Austria.

Cluster 2
• As of July 2021, the player with the highest number of goals in world football is the Portuguese

forward, Cristiano Ronaldo.
• As of October 2021, the professional footballer who holds the record for the most career goals in

international football is Cristiano Ronaldo of Portugal.
• As of August 2021, Cristiano Ronaldo from Portugal is the player with the highest number of

goals in world football.

Cluster 3
• As of September 2021, Lionel Messi holds the record for the most career goals in world football,

with a total of 740 goals in 943 games for club and country.
• The name that currently holds the title of having the most official goals scored in world football

by a male player is Lionel Messi of Argentina, with a total of 756 goals scored as of January
2021.

• As of August 2021, Messi has scored a total of 744 goals in his professional career, surpassing
previous record-holder Pele’s 767 career goals.

• As of May 2021, Lionel Messi holds the record for the most goals scored in world football with
a total of 673 goals in his career.

Cluster 4
• However, there are differing opinions and methods of calculating all-time goals in soccer, so the

number of goals scored by individual players may vary depending on the criteria used.
• However, it is worth noting that determining the "highest goals" can be subjective due to variations

in scoring records and counting methods across different leagues and competitions.

Cluster 5
• In club football, the player with the highest number of goals is Lionel Messi of Argentina, who

holds the record for the most goals scored for a single club, with 682 goals for Barcelona.
• Lionel Messi, the Argentine forward for FC Barcelona, currently holds the record for the most

goals scored in world football.
• The player with the highest number of goals in world football is currently Lionel Messi, an

Argentine professional footballer who plays for FC Barcelona and the Argentine national team.

Table 9: Qualitative Analysis - Clustering.
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