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Abstract

Animal pose estimation and tracking (APT) is a fundamental task for detect-
ing and tracking animal keypoints from a sequence of video frames. Previous
animal-related datasets focus either on animal tracking or single-frame animal
pose estimation, and never on both aspects. The lack of APT datasets hinders the
development and evaluation of video-based animal pose estimation and tracking
methods, limiting real-world applications, e.g., understanding animal behavior in
wildlife conservation. To fill this gap, we make the first step and propose APT-
36K, i.e., the first large-scale benchmark for animal pose estimation and tracking.
Specifically, APT-36K consists of 2,400 video clips collected and filtered from
30 animal species with 15 frames for each video, resulting in 36,000 frames in
total. After manual annotation and careful double-check, high-quality keypoint and
tracking annotations are provided for all the animal instances. Based on APT-36K,
we benchmark several representative models on the following three tracks: (1)
supervised animal pose estimation on a single frame under intra- and inter-domain
transfer learning settings, (2) inter-species domain generalization test for unseen
animals, and (3) animal pose estimation with animal tracking. Based on the experi-
mental results, we gain some empirical insights and show that APT-36K provides a
valuable animal pose estimation and tracking benchmark, offering new challenges
and opportunities for future research. The code and dataset will be made publicly
available at

1 Introduction

Pose estimation aims to identify the categories and distinguish the locations of a series of body
keypoints from an image. As a fundamental task in computer vision, it is beneficial for many

vision tasks [28, 4, 3, 43] like behavior understanding, action recognition, etc. There has been
rapid progress in human pose estimation thanks to the availability of a large number of human
pose datasets [24, 21, 2]. However, fewer works focus on animal pose estimation, especially for

video-based animal pose estimation, although it is crucial in animal behavior understanding and
wildlife conservation.

Some efforts have been made to establish animal pose estimation datasets to facilitate research in
this area. Early works focus on the pose estimation of specific animal categories, e.g., the horse [26],
zebra [12], macaque [19], fly [29], and tiger [22] datasets collect and annotate the keypoints for some
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Figure 1: A glance of some examples from the proposed APT-36K dataset. The five columns of
images show single animal instance, complex movements, and multiple animal instances, respectively.
The keypoint trajectories of some animal instances are shown in the last frames. Best viewed in color.

specific kind of animals. They do help advance the research of pose estimation for these animals.
However, since there exist huge appearance variance, behavior difference, and joint distribution
shifts among various animal species due to evolution, the models trained on these datasets do not
perform well on unseen animal species, leading to poor generalization performance. To further
facilitate the research on animal pose estimation, datasets covering multiple animal species with
keypoint annotations are proposed, e.g., Animal-Pose [7] and AP-10K [40]. Despite their large scale
in dataset volume and diversity in animal species, they lack important temporal information, making
it unexplored to recognize poses in contiguous frames, which is very important for animal action
recognition and beyond.

To fill this gap, we propose APT-36K, i.e., the first large-scale dataset with high-quality animal pose
annotations from consecutive frames for animal pose estimation and tracking. APT-36K consists of
2,400 video clips collected and filtered from 30 different animal species with 15 frames for each video,
resulting in 36,000 frames in total. These animals can be further classified into 15 animal families
following taxonomic rank to facilitate the evaluation of inter-species and inter-family generalization
ability of pose estimation models. Specifically, the video clips are collected from YouTube videos
with carefully filtering. Then, the frames are sampled with specific intervals (i.e., at a low frame-per-
second (FPS) speed) to remove duplication and increase the temporal motion amplitude. Next, 16
well-trained annotators are recruited to label the keypoints for each animal in each frame following
the labeling routines of MS COCO [24], which are then manually double-checked. The trajectory of
each animal is also denoted with bounding boxes and exclusive instance ids across the videos. In this
way, APT-36K can support the research on both single-frame pose estimation and animal estimation
tracking in consecutive frames.

Based on APT-36K, we set up three tracks to benchmark previous state-of-the-art (SOTA) pose
estimation methods [32, 36, 41, 37, 38], i.e., (1) single-frame animal pose estimation (SF track),
(2) inter-species domain generalization (IS track), and (3) animal pose tracking (APT track). In the
basic SF track, we comprehensively evaluate the performance of representative convolutional neural
networks (CNN) and vison transformer-based methods in different settings, including inter- and
intra-domain transfer learning, where the models are pre-trained on ImageNet dataset [10], MS COCO
human pose estimation dataset [24], and AP-10k animal pose estimation dataset [40], respectively. In
the IS track, the inter-family domain generalization ability of different pose estimation methods is
evaluated, where the model is trained on images of all species from a certain family and tested on the
images of other families. In the APT track, several object trackers, including a customized one based
on the plain vision transformer [ 1], are used to track the animal instances, and representative pose
estimation methods are used to detect the keypoints of the tracked instances, where their performance
is evaluated accordingly. The detailed experiment settings and results are presented in Section 4, from
which we demonstrate that the great potential of vision transformers in both animal pose estimation
and animal pose tracking, the benefits of knowledge transfer between human pose estimation and



animal pose estimation, as well as the advantages of employing diverse animal species for animal
pose estimation.

The main contribution of this paper is two-fold. First, we establish the first large-scale benchmark
APT-36K for animal pose estimation and tracking. Its large scale, diversity of animal species, and
abundant annotations of keypoints, bounding boxes, and instance ids among consecutive frames make
it a good test bed for future study. Second, we set up three challenging tasks, including SF, IS, and
APT, based on APT-36K and comprehensively benchmark representative pose estimation methods
built upon both CNN and vision transformers, gaining some useful insights.

2 Related work

2.1 Human pose estimation

Pose estimation is a fundamental computer vision task for many applications such as behavior
understanding. In the past decades, significant progress has been made in human pose estimation
no matter in datasets [24, 21, 2] and methods [36, 32, 41, 37, 42]. For example, MPII [2] and
MS COCO [24] are two popular large-scale benchmarks for human pose estimation. To further
evaluate the performance of human pose estimation methods regarding challenging scenarios such
as occlusion or crowd, OCHuman [46] and CrowdPose [2 1] are established where there are heavy
occlusions of body keypoints or multiple human instances in a single frame. Both top-down and
bottom-up methods have been proposed and evaluated based on these datasets. Despite the significant
contribution made by these works, the temporal information has been largely ignored, which is
important to understanding human behavior and action imitation from humans to robots. To address
this issue, several video-based pose estimation datasets have been proposed, e.g., VideoPose [31],
YouTube Pose [8], JFHMDB [16], and PoseTrack [1]. They facilitate the research of human pose
estimation and tracking [36].

2.2 Animal pose estimation

Recently, animal pose estimation has attracted increasing attention from the research community
due to animal behavior understanding and wildlife conservation demand. Generally, animal pose
estimation methods share similar ideas to human pose estimation ones, e.g., bottom-up and top-down
methods based on heatmap regression [40]. Nevertheless, different from the human pose, where the
appearance, movement pattern, and keypoint distribution are similar among different people, they
vary significantly for different animal species due to the difference in their habitat and evolutionary
route. To facilitate the research in this area, many datasets have been proposed. In early works, single
category animal pose estimation datasets are introduced, e.g., horse [26], zebra [ 2], macaque [19],
fly [29], and tiger [22] datasets. However, models trained on these datasets suffer from a limited
generalization ability due to the significant difference in appearance and movement pattern between
different animal species. To address this issue, some datasets covering many animal species have been
established, including Animal-Pose [7], Animal Kingdom [27], and AP-10K [40]. For example, AP-
10K contains 10,015 annotated images from 23 animal families and 54 species. Nevertheless, there
are no temporal annotations in these datasets, making it impossible to develop animal pose tracking
methods. Recently, a dataset named AnimalTrack for animal tracking has been established [44].
However, it only focuses on animal instance tracking rather than the fine-grained keypoint tracking.
Besides, it has only limited video clips and animal species, e.g., fewer than 60 video clips and 10
animal categories. Different from the above works, we propose APT-36K to fill the gap of the lack of
real-world animal pose tracking datasets. Thanks to its large scale, diversity of animal species, and
abundant annotations of keypoints, bounding boxes, and instance ids, we believe our APT-36K will
benefit the research of animal pose estimation and tracking by serving as a training data source as
well as a test bed along with several well-defined benchmark tracks.

2.3 Visual object tracking

Object tracking [20, 28, 15, 18] is a fundamental and active research topic in computer vision. One
popular direction for object tracking follows the tracking by detection routine. For example, given
the current frame and subsequent frames, an object detector is first used to detect the candidates
from subsequent frames. Then, different techniques are employed to associate the detection results



with the target in the current frame. These methods obtain superior results in both multiple object
tracking (MOT) [34, 47] and single object tracking (SOT) [5, 48, 33]. However, the generalization
abilities of these trackers are limited, i.e., the objects they can track should belong to the categories
that the detectors support. The limitation hinders their usage in animal pose tracking, where many
animal species may be unseen during the training of the detectors. The other development direction of
object tracking follows the tracking by matching pipeline, i.e., a siamese network is utilized to extract
features from the tracked targets in the previous frame and the search regions in the subsequent frame,
and then the two kinds of features are matched to localize the targets in the search region. In this
paper, we mainly adopt this kind of tracking method for animal instance tracking since they do not
make assumptions about the target categories. Besides, we benchmark their performance for animal
pose tracking by combining them with different animal pose estimation methods.

3 Dataset

In this section, we briefly introduce the details of the proposed APT-36K dataset, including data
collection and organization, data annotation, and the statistics of the dataset. Moreover, we provide
detailed datasheets and more results in the supplementary material.

3.1 Data collection and organization

The goal of APT-36K is to provide a large-scale benchmark for animal pose estimation and tracking in
real-world scenarios, which has been rarely explored in prior art. To this end, we resort to real-world
video websites, i.e., YouTube, and carefully collect and filter 2,400 video clips covering 30 different
animal species from different scenes, e.g., zoo, forest, and desert. However, directly annotating these
videos and using them as training data is not appropriate since the movement speed of different
animals and the frame frequency of different videos vary a lot, e.g., some animals are almost static
during a specific period. To address this issue, we manually set the frame sampling rate for each video
to ensure there are noticeable movement and posture differences for each animal in the sub-sampled
video clips. Specifically, each clip contains 15 frames after the sampling process. It should be noted
that challenging cases such as truncation and occlusion are kept in the dataset owing to the above
process, making it possible to evaluate the models regarding these challenges.

After the video collection and cleaning process, we categorize the videos from 30 animal species fur-
ther into 15 families following the taxonomic rank. Following the terms of YouTube, we use sparsely
sampled frames in the videos to formulate the APT-36K dataset and use them for research purposes
only. According to Linnean’s theory of evolution, animals belonging to the same taxonomic rank
may share more similarities in behavior patterns, anatomical keypoint distribution, and appearance
than those belonging to different families. For example, the walking posture of dogs and wolves is
similar since they belong to the Canidae family, while zebras’ walking patterns are far from similar to
them since it belongs to a different family, i.e., Equidae. Following the taxonomic rank, the proposed
dataset can be easily scaled up by collecting and annotating more animal images from the same
species or families, as well as different ones. Moreover, it also implies that such an organized way of
the animal pose dataset provides a possible way to enhance the generalization ability of animal pose
estimation models to rare animal species, i.e., by collecting and annotating images from other more
common animals of the same taxonomic rank.

3.2 Data annotation

To guarantee high-quality annotations for each image in the APT-36K dataset, 16 well-trained
annotators participated in the annotation process, and one strict cross-check was then carried out
to improve the annotation quality. The annotation-check round is repeated three times during the
labeling process. The whole data collection, cleaning, annotation, and check process takes about
2,000 person-hours. A total of 36,000 images are finally labeled, following the COCO labeling
format. There are typically 17 keypoints labeled for each animal instance, including two eyes, one
nose, one neck, one tail, two shoulders, two elbows, two knees, two hips, and four paws as [40]. It
should be noted that we do not exactly follow the biological definition to localize the keypoints for
specific animals, i.e., we use the paw to define the tire point of horses and the knee to represent the
end of their hock. In this way, it helps us better figure out the behavior of specific animals since half
of the horses’ legs will have no annotations if we strictly follow the anatomy definition. Besides



the keypoint annotations, we label the background type for each frame from 10 classes, i.e., grass,
city, and forest. In addition, we label each same animal instance across the video clips with a unique
tracking id. The annotations are also manually checked for two rounds to improve their quality. The
dataset is split into three disjoint subsets for training, validation, and test, respectively, following the
ratio of 7:1:2 per animal species. It is also noteworthy that we adopt a video-level partition to prevent
the potential information leakage since the frames in the same video clip are similar to each other.

3.3 Statistics of the APT-36K dataset

Table 1: Comparison of different animal pose datasets.

#Species #Family #Labeled image #Keypoint #Sequence #Instance #Background type
Horses-10 [26] 1 1 8,100 22 N/A 8,110 N/A
Animal-Pose Dataset [7] 5 N/A 4,666 20 N/A 6,117 N/A
Animal kingdom [27] 850 6 33,099 23 N/A N/A 9
AP-10K [40] 54 23 10,015 17 N/A 13,028 N/A
Animal track [44] 10 N/A 24,700 N/A 58 429,000 N/A
APT-36K 30 15 36,000 17 2,400 53,006 10
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Figure 2: Statistics of APT-36K. (a) The motion distribution and average motion distance of different
keypoint categories. "N/A" indicates that the corresponding entry is not available in the given dataset.
(b) The distribution of IOU scores between the tracked bounding boxes in adjacent frames. (c) The
distribution of aspect ratios of the bounding boxes in APT-36K.

As shown in Table 1, APT-36K contains 30 different animal species belonging to 15 different families.
It has 36,000 annotated frames with 53,006 annotated animal instances from 2,400 video clips, which
are much richer than previous animal pose estimation datasets. Therefore, it sets new challenges for
animal pose estimation tasks. All the videos are collected from the YouTube website from a set of
different topics, including documentary films, vlogs, education films, etc.They are captured using
different cameras, at different shooting distances with diverse camera movement patterns. There are
10 types of background in the images of APT-36K, providing diverse scenes for a comprehensive
evaluation of animal pose estimation and tracking. For each animal species in APT-36K, there are 80
video clips in total, making it a balanced dataset. It is different from previous animal pose estimation
datasets like AP-10K, which is long-tailed and has much fewer instances in some species, e.g.,
Cercopithecidae. APT-36K is the first dataset suitable for both animal pose estimation and tracking,
filling the gap in this area and providing new challenges and opportunities for future research.

We also calculate the distributions of the keypoint motion, IOU between tracked bounding boxes in
adjacent frames, and the aspect ratio of the annotated bounding boxes in our APT-36K dataset. As
shown in Figure 2 (a), the motion distribution and average motion distance vary a lot for different
keypoints, e.g., the average motion distance of paws is over 50 pixels, which is much larger than that
of eyes or necks (about 35 pixels). Moreover, the motion magnitudes of shoulder, knee, and hips
lie between those of eyes and paws, which is in line with the movement characteristics of four-leg
animals. Besides, most of the instances have small IOU scores between their tracked bounding boxes



in adjacent frames, implying large motion is very common in APT-36K, as demonstrated in Figure 2
(b). It can also be observed from Figure 2 (c) that the aspect ratio of the bounding box varies a lot
from less than 0.4 to more than 3.1. It is because APT-36K contains diverse animals with different
actions, e.g., running rabbits and climbing monkeys. These results illustrate the diversity of APT-36K.

4 Experiment

4.1 Implementation details

To provide a comprehensive evaluation for animal pose estimation and tracking, we benchmark
representative CNN-based and vision transformer-based pose estimation methods [32, 36, 37, 41]
using ground truth bounding boxes or tracked object boxes on the proposed APT-36K dataset.
Representative tracking methods [39, 20, 23] are employed to obtain the tracked boxes for the animal
instances in the video clips. We set up three tracks based on APT-36K, i.e., the SF track, IS track, and
APT track, as described in Sec. 1. The models are implemented based on the MMPose [9] codebase
and trained for 210 epochs following the common practice in human/animal pose estimation tasks.
The initial learning rate is Se-4 and decreased by a factor of 10 at the 170th and 200th epochs. The
detailed experimental settings for each track are presented in the following part. We use the average

precision (AP) [24] as the primary metric to evaluate the performance of different models. It can be
calculated as AP = %j’m, where p is the index of the person and oks,, is the object keypoint
similarity metric. The OKS metric is defined as Y, [exp(—d? /2s%k2)6(v; > 0)]/>".[0(v; > 0)],
where d; is the distance between the ¢-th predicted results and the i-th ground truth keypoint locations.
s is the scale of the object and k; is a predefined constant that controls falloff. v; indicates the
visibility of the ¢-th keypoint. We use the constant as defined in AP-10K [40].

4.2 Single-frame animal pose estimation (SF track)

Setting In the SF track, we benchmark the representative CNN-based and vision transformer-
based pose estimation methods, including SimpleBaseline [36], HRNet [32], HRFormer [4 1], and
ViTPose [37]. The SimpleBaseline takes the ResNet [14] (i.e., ResNet-50 and ResNet-101) as the
backbone encoder for feature extraction and uses three deconvolution blocks to up-sample the feature
maps for decoding. HRNet takes a similar pipeline but employs a multi-resolution parallel backbone
network to extract high-resolution feature maps and discards the deconvolution blocks in the decoder
part. HRFormer follows a similar spirit to HRNet and takes a multi-stage transformer structure
with multiple branches to jointly encode the multi-resolution information into a high-resolution
feature map. ViTPose, on the other hand, utilizes a plain and non-hierarchical vision transformer as a
backbone encoder for feature extraction. We set up three settings to benchmark their performance,
including using network weights pre-trained on the ImageNet-1K dataset [10], the MS COCO human
pose estimation dataset [24], and the AP-10K dataset [40], respectively. We randomly split the dataset
three times with random seeds 0, 10,000, and 20,000, respectively, and train each model accordingly
to estimate the error bar of their performance. Specifically, the three settings are detailed as below:

* ImageNet-1K pre-training. It is a common practice to use ImageNet-1K pre-trained weights
to initialize the backbones of pose estimation models. We follow this practice and fine-tune
the models initialized with ImageNet-1K pre-trained weights for further 210 epochs on
the APT-36K training set. It is noted that we adopt the fully supervised learning scheme
on ImageNet-1K to get the pre-trained weights for the backbones used by SimpleBaseline,
HRNet, and HRFormer. The vision transformer backbones in ViTPose are initialized with
the pre-trained weights from the self-supervised MAE pre-training [13]. The Adam [17]
optimizer is utilized for training the CNN-based models, and AdamW [30] optimizer is
employed to train the vision transformer-based ones, following their default settings.

* Human pose pre-training. Since the keypoint definition of four-foot animals is similar to
those of human beings, it may be beneficial to transfer the knowledge learned from human
keypoint annotations to animal pose estimation. Consequently, it will help us make use of
the existing large-scale datasets for human pose estimation and bypass the difficulties of
building large animal pose estimation datasets. To this end, we pre-train the CNN-based
and vision transformer-based models on the MS COCO human pose estimation dataset
for 210 epochs. Then, the pre-trained weights are used to initialize the models, which are



further fine-tuned on the APT-36K training set for another 210 epochs, following the above
ImageNet-1K pre-training setting.

* Animal pose pre-training. Previous animal pose estimation datasets provide abundant
animal images with keypoint annotations for four-foot animals. To investigate the benefit of
leveraging the animal pose estimation datasets, we first pre-train the models on AP-10K for
210 epochs and further fine-tune them on the APT-36K training set for another 210 epochs.

Table 2: Results on the APT-36K val set (AP) of different models on the SF track with ImageNet-1K
(IN1K) [10], MS COCO [24], and AP-10K [40] pre-training, respectively. Acoco and Aap_10x
denote the gains of MS COCO and AP-10K pre-training over ImageNet-1K pre-training, respectively.

SimpleBaseline ~ SimpleBaseline HRNet HRNet HRFormer HRFormer ViTPose

(ResNet-50) (ResNet-101)  (HRNet-w32) (HRNet-w48) (HRFormer-S) (HRFormer-B)  (ViT-B)

IN1K 69.441 .2 69.641.3 742411 74.140.8 71.340.8 74240.9 774410

COCO 73.741.2 735411 76.440.5 77410.7 74.641.0 76.6+0.9 783108
Acoco 4.3 3.9 22 33 33 2.4 0.9

AP-10K 72.440.9 72.441.0 75.941.2 76.410.7 72.640.9 75.240.7 782407
AAP_10K 3.0 2.8 1.7 2.3 1.3 1.0 0.8

Results and analysis The results are summarized in Table 2. It can be observed that with human
pose pre-training, both CNN-based and vision transformer-based methods show performance gains,
e.g., from 69.6 AP to 73.5 AP for SimpleBaseline with a ResNet-101 backbone network, from 74.1
AP to 77.4 AP for HRNet-w48, and from 74.2 AP to 76.6 AP for HRFormer-B. A similar benefit can
also be obtained by using AP-10K for pre-training, e.g., SimpleBaseline reaches 72.4 AP with either
a ResNet-101 or ResNet-50 backbone network, and HRNet-w48 gets a gain of 2.3 AP compared with
the ImageNet-1K pre-training. Generally, the benefit is slightly more significant for models with
worse performance than those stronger models, which is reasonable. It is noteworthy that ViTPose
with a plain vision transformer backbone, which is pre-trained on ImageNet-1K without using its
labels, obtains a remarkable performance of 77.4 AP. Also, after human pose pre-training or animal
pose pre-training, the performance could be further improved to 78.3 AP and 78.2 AP, respectively,
which is much better than other models.

Another interesting finding is that, although using the animal pose dataset AP-10K for pre-training
brings performance gains, the benefit is less than that of using the human pose dataset for pre-training,
no matter for CNN-based models or vision transformer-based models (See the third and fifth rows in
Table 2 denoted by Acoco and Aap_10k, respectively). We suspect there are two reasons. First,
there is still a domain gap between AP-10K and APT-36K due to their different data sources and
distributions, i.e., imbalanced and long-tailed species in AP-10K v.s. balanced ones in APT-36K.
Second, MS COCO is much larger than AP-10K by about an order of magnitude, probably leading to
more sufficient pre-training since the model could see more diverse training instances and learn more
discriminative feature representations. Nevertheless, the difference between Acoco and Aap_10x
is not evident for ViTPose, owing to the strong representation ability of vision transformers.

4.3 Inter-species animal pose generalization (IS track)

Setting Regarding the diverse animal species in the real world, it is essential to evaluate the inter-
species generalization ability of animal pose estimation models, i.e., investigating their performance
on unseen animal species. To this end, we set up the IS track, where we select six representative
animal families for training and test, i.e., Canidae, Felidae, Hominidae, Cercopithecidae, Ursidae,
and Bovidae. In each experiment, all the instances from a specific family form the test set while those
instances belong to other families are split into the training set and validation set at a ratio of 9:1. We
use the representative HRNet-w32 model with MS COCO pre-training in this track due to its good
performance and simplicity. The models are trained following the same setting in the SF track.

Results and analysis As can be seen from Table 3, the models generalize well on the Canidae,
Felidae, Bovidae, and Equidae families with instances from other animals for training. For example,
it obtains 57.6 AP on the Canidae family, as indicated in the top-left cell. It is because although the
animal instances from the Canidae family are not used during training, they share some commonness
with animals in the Ursidae family and Felidae family since they belong to the same Carnivora
order. For rare species that do not share commonness with the training set, the models show much
poorer generalization ability, e.g., the model trained without data from the Cercopithecidae family
only obtains 29.6 AP on the Cercopithecidae family. In contrast, after using the instances from the



Table 3: Results of HRNet-w32 models on the IS track (AP) of APT-36K.

{raining test Canidae Felidae Hominidae Cercopithecidae Ursidae Bovidae Equidae
w/o Canidae 57.6 82.8 81.9 76.0 80.1 81.6 84.0
w/o Felidae 80.9 57.6 81.0 76.6 79.7 81.6 84.6
w/o Hominidae 80.3 81.9 44.2 77.2 80.3 81.9 84.3
w/o Cercopithecidae 81.1 83.4 80.8 29.6 80.7 81.1 84.7
w/o Ursidae 80.7 833 80.8 76.7 43.3 82.0 84.1
w/o Bovidae 80.1 83.6 80.6 76.7 80.8 58.6 84.5
w/o Equidae 80.4 82.4 82.0 77.2 79.7 82.2 61.5

Cercopithecidae family for training, the performance could reach over 76.0 AP (See other scores
in the fourth column except the diagonal one). It also should be noted that although the model
generalizes well on the families mentioned above, the performance still falls behind the models that
have seen data from those families during training by a large margin, e.g., 57.6 AP v.s. over 80 AP
on the Canidae family. The results imply that 1) each animal species has its own characteristics,
2) it is beneficial and necessary (if possible) to collect and annotate animal instances from diverse
animal families, especially for rare species like the Cercopithecidae family, and 3) more efforts
should be made to improve the inter-species generalization ability of animal pose estimation models.
Besides, the models trained with slightly different training sets demonstrate similar performance on
the same seen family as shown in each column (except the diagonal one) in Table 3, which is probably
attributed to the balanced data distribution (80 video clips for each species) of animal species in the
APT-36K dataset.

Table 4: Results of HRNet-w32 models on the few-shot learning setting (AP) of APT-36K.

Canidae Felidae Hominidae Cercopithecidae Ursidae Bovidae Equidae
zero-shot 52.3 54.8 46.3 35.6 38.0 54.9 61.4
20-shot 53.3 55.5 484 37.6 433 55.5 61.7
30-shot 539 56.0 52.5 41.6 48.0 56.3 62.0
40-shot 54.3 57.2 52.7 42.1 48.1 56.8 62.8

Few-shot learning To further evaluate the model’s generalization ability, we carried out the experi-
ment under the few-shot setting. As can be seen from Table 4, with more data used for training, the
performance is greatly improved, especially on species with unique textures, appearance, and posture
characteristics, e.g., the Hominidae, Cercopithecidae, and Ursidae species. It is because these unique
characteristics are not shared in the training images of other species. The performance gain brought
by more training data is relatively smaller for species that shares some common characteristics with
the training species, e.g., the Canidae, Felidae, Bovidae, and Equidae species. We think that the
few-shot setting is an important research topic in animal pose estimation, e.g., how to make the
pre-trained models generalize well on unseen species. Besides, recent studies have shown that large
models are already few-shot learners [45, 6]. It is interesting to explore their performance on the
few-shot animal pose estimation tasks, where the proposed dataset can provide a suitable benchmark.

4.4 Animal pose tracking (APT track)

Setting In this track, we use representative object trackers with both CNN-based backbones and
vision transformer-based backbones to track each animal instance across the video clips, giving
each animal’s ground truth bounding box in the first frame. Once the tracked bounding boxes
are obtained, the pose estimation methods with MS COCO pre-training are used for animal pose
estimation accordingly. We also use the average precision metric for evaluation. Specially, the
CNN-based tracking methods SiamRPN++ [20] and STARK [39] with a ResNet-50 backbone [14]
are employed for animal tracking. For vision transformer-based methods, we adopt the recent SOTA
tracking method SwinTrack [23] with a Swin transformer backbone [25]. We also design a simpler
ViTTrack baseline with the plain vision transformer as the backbone, i.e., ViT [ 1], to compare the
performance of both stage-wise transformer structure and plain transformer structure. ViTTrack is a
siamese structure with a shared backbone encoder for feature extraction. The target object in the first
frame is used as a template for feature matching in the subsequent frames and tracking. Specifically,
the features from subsequent frames are concatenated with the template feature and fed into decoder
layers, whose output is then used to predict the locations of the target object via a simple MLP. The
encoder and decoder are all plain vision transformers, which are pre-trained on ImageNet-1K via



MAE [13]. To reduce the computational cost, the template image size is usually set to 112x112,
while the size of the search region in the subsequent frames is set to 224 x224.

Table 5: Results on the APT-36K test set (AP) of different models on the APT track with different
object trackers. t denotes ViTTrack uses the fixed ViT encoder of ViTPose trained on APT-36K.

SimpleBaseline  SimpleBaseline HRNet HRNet HRFormer HRFormer ViTPose

(ResNet-50) (ResNet-101)  (HRNet-w32) (HRNet-w48) (HRFormer-S) (HRFormer-B)  (ViT-B)

SiamRPN++ [20] 702417 70.1+1.6 73.0+1.4 73.6+1.6 709+1.6 73.1+1.4 742411
STARK [39] T1.541.7 714417 741414 74.8+1.5 721415 742414 75311.0
SwinTrack [23] 71.641.8 71.541 6 74141 .4 749416 722418 743415 754411
ViTTrack 71.941.6 71.941.4 74441 2 75341.4 72.741.4 74.641.2 75.840.9
ViTTrack’ 77417 71.641.4 742411 74941 4 72341.4 74511 2 75.540.0

Results and analysis The results are summarized in Table 5. It can be observed that the APT
performance based on the vision transformer-based trackers is slightly better compared with that
using CNN-based trackers, i.e., HRFormer-S [41] obtains 72.1 AP with STARK [39] and 72.7 AP
with ViTTrack, respectively. Similarly, SimpleBaseline [36] with ResNet-50 [14] achieves 71.5 AP
with STARK and 71.9 AP with ViTTrack. Again, ViTPose achieves the best performance among
all the pose estimation models no matter which object tracker is used. Moreover, ViTPose with
ViTTrack delivers the best 75.8 AP, surpassing the SimpleBaseline with SiamRPN++ tracker by a
large margin of 5.6 AP. Besides, we initialize the ViT-B encoder of ViTTrack with the weights of the
ViT-B encoder in ViTPose trained on APT-36K training set and keep it fixed during training on the
tracking data, i.e., denoted as ViTTrack! in Table 5. Surprisingly, with the shared ViT-B encoder,
ViTPose with ViTTrack’ obtains the second-best performance, i.e., 75.5 AP, which is even better than
ViTPose with SwinTrack, which requires an extra Swin transformer encoder. These results imply
the potential of plain vision transformers as a foundation model for simultaneously serving multiple
vision tasks, which is of great significance and deserves more research in future work.

Table 6: Results of different single object tracking methods (success and precision) on APT-36K.

SwinTrack [23] SiamRPN [20] STRAK [39] ViTTrack ViTTrack’
Success 81.5 76.3 81.9 81.2 80.9
Precision 62.9 46.8 62.6 64.2 61.5

Multi-object tracking methods have been studied in previous pose-tracking tasks. However, it is
really a hard job to adapt existing multi-object tracking methods to the animal pose tracking task,
due to the scope mismatching issue between the animal species and in-distribution categories of
current detectors. Specifically, most of the animals in the proposed APT-36K dataset can’t be
successfully recognized by the current object detectors. To address this issue, a simplified strategy
in SimpleBaseline [30] using optical flow-based tracking is adopted to evaluate the performance of
multi-object tracking on APT-36K. With the HRNet-w32 [32] pose estimator, this strategy obtains
71.3 AP, which is not well as the single-object tracking results, e.g., at least 73.0 AP as shown in
the 3rd column in Table 5. Thus, we focus on single-object tracking in this paper and compare their
success rate and precision using the OPE metric [35]. The results are summarized in Table 6. It can be
observed that the success rate of single object tracking on the APT-36K dataset is around 80 and the
precision is slightly above 60 even for the strong tracker SwinTrack [23]. Such results demonstrate
that the proposed APT-36K dataset is challenging for both multi-object and single-object tracking
methods. How to efficiently deal with the diverse animal species deserves more research efforts in
the future, e.g., an object detector with better detection results for out-of-distribution categories.

5 Limitation and discussion

Our APT-36K fills the gap between single-frame animal pose estimation and animal tracking datasets,
based on which we benchmarked representative pose estimation models and gained some insights. We
believe APT-36K can benefit the future research of animal pose estimation and tracking, e.g., regarding
novel model design, effective inter-species generalization, and multi-task learning. Although the
scale of APT-36K is larger than previous animal pose estimation datasets, it is still much smaller than
human pose estimation datasets. Considering the diverse species of animals, there are more efforts
to be made in future work. Besides, the number of average animal instances in the video clips of
APT-36K is limited compared with that in animal instance tracking datasets. Although more animals
in the video clips always imply many small and occluded instances, it makes the annotation process



of keypoint tracking extremely more difficult and expensive compared with annotating the bounding
boxes of animal instances. To this end, it still matters to train better animal pose tracking models to
be applicable in real-world scenarios. One possible solution is to resort to a modern 3D engine to
generate realistic synthetic images and automatically produce annotations automatically.

6 Conclusion

We establish APT-36K, i.e., the first large-scale dataset with high-quality animal pose annotations
from consecutive frames for animal pose estimation and tracking. Based on APT-36K, we benchmark
representative state-of-the-art pose estimation methods under the single-frame animal pose estimation
setting, inter-species animal pose generalization setting, and animal pose tracking setting, respectively.
Extensive experimental results demonstrate the benefit of inter- and intra-domain pre-training for
animal pose estimation, the significance of collecting and annotating keypoints of diverse animal
species, and the great potential of plain vision transformers for animal pose tracking. We hope
APT-36K can provide new opportunities for further animal pose estimation and tracking research.

Social impact. The proposed APT-36K can facilitate the research of animal pose estimation and
tracking, which is beneficial for animal behavior understanding and wildlife preservation. However,
due to the great diversity of real-world animal species, it should be careful about whether a model
trained on APT-36K can generalize well on unseen rare animal species.
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