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Abstract

LLM-powered multi-agent (LLM-MA) sys-
tems have shown promise in tackling complex
tasks. However, existing solutions often suf-
fer from limited agent coordination and heavy
reliance on predefined Standard Operating Pro-
cedures (SOPs), which demand extensive hu-
man input. To address these limitations, we
propose MegaAgent, a framework designed for
autonomous coordination in LLM-MA systems.
MegaAgent generates agents based on task com-
plexity and enables dynamic task decompo-
sition, parallel execution, efficient communi-
cation, and comprehensive system monitoring
of agents. In evaluations, MegaAgent demon-
strates exceptional performance, successfully
developing a Gobang game within 800 seconds
and scaling up to 590 agents in a national policy
simulation to generate multi-domain policies.
It significantly outperforms existing systems,
such as MetaGPT, in both task completion effi-
ciency and scalability. By eliminating the need
for predefined SOPs, MegaAgent demonstrates
exceptional scalability and autonomy, setting
a foundation for advancing true autonomy in
LLM-MA systems.

1 Introduction

The remarkable planning and cognitive capabilities
of Large Language Models (LLMs) (Touvron et al.,
2023; Zhu et al., 2023) have spurred significant interest
in LLM-based multi-agent (LLM-MA) systems (Wu
et al., 2023; Chen et al., 2023b; Hong et al., 2023),
which coordinate multiple LLM agents to address com-
plex tasks. For example, MetaGPT introduces a meta-
programming framework to simulate the software de-
velopment process (Hong et al., 2023), while Simulacra
(Park et al., 2023) models social interactions among 25
LLM-powered agents in a simulated town, showcasing
the potential of these systems to replicate real-world
dynamics. The demand for large-scale social simulation
applications, such as social media and war simulations
(Gao et al., 2023; Hua et al., 2023; Jin et al., 2024), is
driving the development of LLM-MA systems capable
of simulating complex real-world scenarios.

'Code is available at https://anonymous.4open.

science/r/MegaAgent—dev-DEF0

However, existing LLM-MA frameworks have two
limitations. (1) They fail to achieve adaptive task coordi-
nation when the task is big and complex e.g. generating
hundreds of agents for a social simulation; and do not
consider the coordination between large scale of agents.
(2) Most systems heavily depend on user-defined con-
figurations, including predefined agent roles, standard
operating procedures (SOPs), and static communication
graphs (Hong et al., 2023; Chen et al., 2023b; Wu et al.,
2023). This approach limits flexibility and requires sig-
nificant human effort when deploying numerous agents
to complete a task. In summary, these frameworks lack
true autonomy—one of the core principles in the defini-
tion of Al agents (Jennings et al., 1998).

Addressing the above limitations presents the fol-
lowing key challenges: (1) Facilitating adaptive and
effective communication among agents and with ex-
ternal file systems. As tasks grow in complexity and
scale, managing communication becomes increasingly
difficult, especially when incorporating parallelism and
coordinating multiple agents across different rounds of
communication (Zhang et al., 2024a). (2) Ensuring
that each agent completes its task accurately with-
out relying on predefined SOPs. LLM agents often
generate hallucinated outputs (Huang et al., 2023b) or
fail to complete tasks correctly within a single round
(Liu et al., 2023a; Andriushchenko et al., 2024), ne-
cessitating robust mechanisms to ensure reliability and
correctness. This is particularly critical in multi-agent
systems, where hallucinations can propagate and com-
promise the entire system’s performance (Zhang et al.,
2024a; Lee and Tiwari, 2024).

Drawing inspiration from Operating Systems (OS),
where processes and threads efficiently manage tasks
through: (1) generating multiple threads within a pro-
cess to complete a task, and (2) enabling different pro-
cesses to operate in parallel, we propose MegaAgent to
address the aforementioned limitations. MegaAgent de-
composes large tasks into multiple hierarchical subtasks
(analogous to processes), with each subtask completed
by a dedicated group of agents (similar to threads). Com-
munication occurs either within agent groups or between
them as needed, resembling inter-process communica-
tion in an OS. Users simply need to provide a meta
prompt to Boss Agent, after which the task is au-
tonomously completed. The novelty comparison be-
tween MegaAgent and popular baselines is in Table 1.
Details are in Table 9. An overview of MegaAgent is
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shown in Figure 1. We equip MegaAgent with the fol-
lowing two strategies to tackle the above challenges:

(1) Hierarchical Task Management: To facilitate
adaptive task handling and effective communication,
MegaAgent employs a hierarchical task management
mechanism structured across three levels:

* Boss Agent Level Task Decomposition: When Boss
Agent receives a task from the user, it acts as the
central leader and divides the task into smaller,
manageable subtasks, which are then assigned to
admin agents. These admin agents are responsible
for overseeing their assigned subtasks and further
coordinating their execution.

Dynamic Hierarchical Group Formation: When
an admin agent encounters a subtask within its
capacity, it completes the subtask independently.
If the subtask exceeds its capacity, the admin
agent autonomously recruits additional agents to
assist, forming an agent group under its supervi-
sion. Agents within the group can further recruit
other agents when needed, taking on the role of an
admin agent for the sub-group they create. This
recursive task-splitting mechanism facilitates dy-
namic hierarchical group formation, ensuring ef-
ficient management and completion of even the
most complex tasks.

System-Level Coordination and Communication:
MegaAgent incorporates parallel execution and dy-
namic communication mechanisms to streamline
interactions across the system. Each group fin-
ish its tasks in parallel. Each agent connect ex-
ternal systems through function calls, accessing
necessary resources such as databases, files, and
checklists. This system-level coordination ensures
smooth and effective communication, even across
multiple rounds of interaction in highly complex
and large-scale scenarios.

(2) Hierarchical Monitoring: To ensure agents com-
plete tasks accurately without relying on predefined
SOPs, MegaAgent incorporates hierarchical monitoring
and coordination mechanisms. First, each agent is as-
signed a task by its admin agent upon generation. Then,
MegaAgent employs a robust hierarchical monitoring
and coordination framework for each agent as follows:

* Agent-Level Monitoring: Each agent maintains
an checklist to document its actions and verify
progress. This monitoring ensures accountability
and allows agents to independently validate their
work before proceeding to the next step.

* Group-Level Monitoring: Each agent group is
supervised by an admin agent, which tracks the
progress of individual agents, ensures smooth exe-
cution, and coordinates tasks within the group.

» System-Level Monitoring: At the highest level,
Boss Agent oversees the outputs of all agent groups

upon task completion, ensuring adherence to the
correct format and minimizing hallucinated results.
This process enhances system-wide consistency,
reliability, and correctness.

Model
AutoGen

‘ No Predefined SOP  Multi-file Support Parallelism Scalability

MetaGPT 4
CAMEL
AgentVerse v
MegaAgent | v v v/ 7

Table 1: Novelty comparison of popular LLM-MA sys-
tems with MegaAgent. Details are explained in Table 9.

We conduct two experiments in widely recognized
LLM-MA research scenarios (Hong et al., 2023; Guo
et al., 2024) to demonstrate MegaAgent’s effective-
ness and autonomy. (1) Software development: Gob-
ang Game Development. This experiment highlights
MegaAgent’s superior autonomy and efficiency com-
pared to previous baselines, with MegaAgent being the
only model capable of completing the task within
800 seconds. (2) Social Simulation: National Pol-
icy Generation. This task demonstrates MegaAgent’s
large-scale autonomy and scalability, generating and
coordinating approximately 590 agents to produce
the expected policies within 3000 seconds. In contrast,
baseline models can coordinate fewer than 10 agents
and fail to generate the expected policies.

Our contributions are as follows:

©® Autonomous Framework. We introduce MegaA-
gent, a practical framework enabling autonomous
coordination in LLM-MA systems. It supports
dynamic task decomposition, parallel execution,
and systematic monitoring, ensuring efficient task
management.

® Minimizing Human-designed Prompts. We no-
tice the importance of minimizing human-designed
prompts in LLM-MA systems, addressing a criti-
cal limitation of previous frameworks that creates
a bottleneck for large-scale LLM-MA systems for
complex tasks. To overcome this, we propose as-
signing LLM agents to autonomously split tasks
and generate SOPs for agents. This approach re-
duces human intervention and enable broader range
of users to employ LLM-MA systems effectively.

® Experimental Validation. Extensive experiments
on two scenarios demonstrate that MegaAgent is:
(1) Superior: It is the only framework capable of
completing both Gobang game development and
national policy simulation tasks, outperforming
all baselines. (2) Efficient: MegaAgent success-
fully completes the Gobang game development
task within 800 seconds, demonstrating its supe-
rior task execution and coordination capabilities.
Moreover, it efficiently coordinates 590 agents for
national policy generation within 3000 seconds,
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Figure 1: MegaAgent processes a user-provided meta-prompt by dividing it into distinct tasks, assigning each
to a corresponding admin agent. Admin agents oversee their tasks, autonomously recruiting additional agents as
needed to form task-specific groups that operate in parallel for efficient execution. These groups can further expand
through sub-agent recruitment, creating a multi-level hierarchy. Admin agents supervise their groups to ensure task
completion and output quality. Agents are classified into admin and ordinary agents: admin agents can communicate
with one another, while ordinary agents interact only within their groups to optimize communication efficiency.
Agents access and manage external files in storage module using function calls, supporting seamless data retrieval

and task execution.

while baselines manage fewer than 10 agents and
fail to complete the task. This remarkable agent
count underscores MegaAgent’s scalability.

The remainder of this paper is organized as follows:
Section 2 introduces MegaAgent framework in detail.
Section 3 presents experimental evaluations demonstrat-
ing MegaAgent’s effectiveness. Section 4 reviews re-
lated work, and Section 5 concludes the paper.

2 MegaAgent Framework

2.1 Overview

We introduce the MegaAgent framework from two hi-
erarchical perspectives, as outlined in section 1: (1)
Hierarchical Task Management and (2) Hierarchical
Monitoring. An overview is provided in Figure 1.

2.2 Hierachical Task Management
2.2.1 Multi-level Task Splitting

To efficiently manage complex tasks in large-scale LLM-
MA systems, we implement a multi-level task manage-
ment framework. Boss Agent is responsible for decom-
posing the main task into manageable subtasks upon
receiving the meta-prompt from a user. Each subtask
is delegated to a specialized admin agent with a well-
defined role by Boss Agent. If a subtask is too complex
for an admin agent to complete independently, it can

recruit additional agents to handle specific components.
These newly created agents can, in turn, recruit more
agents if needed, assuming the role of admin agent them-
selves, as depicted in Level 2 and Level 3 in Figure 1.
This recursive task-splitting mechanism enables the sys-
tem to adapt dynamically as task complexity increases.
To enhance efficiency, we implement a parallel mech-
anism for agent groups operating at the same level. For
instance, the two agent groups in Level 2 of Figure 1
can work in parallel, with one generating economic
policies and the other developing health policies. This
parallelization reduces overall task completion time.

2.2.2 Hierarchical Coordination Mechanism

Effective task execution in MegaAgent is driven by a
two-layer hierarchical coordination structure: (1) Intra-
group Chat, where agents within the same task group
collaborate by sharing updates through prompt-based
communication, ensuring smooth progress and effective
task execution when interaction is required, as indicated
by the black double-arrow line in Figure 1; and (2)
Inter-group Chat, where admin agents from different
groups communicate to resolve task dependencies and
coordinate cross-group efforts, as represented by the
yellow double-arrow line in Figure 1. For instance, in
the software development experiment discussed in sub-
section 3.1, the software implementation must adhere
to the game logic designer’s requirements. Ordinary



agents are restricted from directly communicating with
agents outside their group to enhance efficiency.

2.2.3 File Management

To enable effective interaction between LLM agents and
external files, we introduce an external storage module
that manages all file-related tasks. This module includes
components such as agent execution logs, a memory
database, task monitoring tools, Python code execution
support, shared files, and individualized agent checklists.
To ensure consistent and accurate file management, we
propose the following two designs:

(1) Git-Based Version Control. To maintain file
consistency, we integrate a Git-based version control
mechanism. Since agents may spend considerable time
editing files after reading them, concurrent modifica-
tions by other agents could cause conflicts. To prevent
this, an agent retrieves the file’s current Git commit
hash upon reading it. Before making changes, the agent
submits this hash to the file management system, which
commits the updates, merges them into the latest HEAD,
and prompts the agent to resolve any merge conflicts
if necessary. All Git operations are serialized using a
global mutex lock to ensure synchronization and prevent
race conditions.

(2) Long-Term Memory Management with a Vec-
tor Database. Many studies show that LLM agents
would forget the conversation history after several
rounds due to the token length limit (Becker, 2024; Xue
et al., 2024). To address this, we implement a vector
database to store the outputs of agents. Each output is
encoded into embeddings using language models and
stored in a vector database. Therefore, agents can re-
trieve relevant memory entries, enabling them to recall
past interactions and maintain contextual awareness.

2.3 Hierarchical Monitoring

To ensure accurate task execution and minimize the
propagation of hallucinations (Huang et al., 2023b; Hao
et al., 2024) in an LLM-MA system, we implement a
hierarchical monitoring mechanism that facilitates real-
time oversight, error correction, and progress validation
through a structured process.

2.3.1

The monitoring system in MegaAgent follows a struc-
tured, multi-level hierarchy to ensure accurate task com-
pletion and prevent error propagation. Then, MegaA-
gent employs a hierarchical monitoring and coordina-
tion framework for each agent as follows:

Multi-level Monitoring

» Agent-Level Monitoring: Each agent maintains an
checklist upon its being generated by its admin
agent to document its actions and verify progress.
This monitoring ensures accountability and allows
agents to independently validate their work before
proceeding to the next step.

* Group-Level Monitoring: Each agent group is
supervised by an admin agent, which tracks the

progress of individual agents, ensures smooth exe-
cution, and coordinates tasks within the group.

» System-Level Monitoring: At the highest level,
Boss Agent oversees the outputs of all agent groups
upon task completion, ensuring adherence to the
correct format and minimizing hallucinated results.
This process enhances system-wide consistency,
reliability, and correctness.

2.3.2 Failure Scenarios and Solutions

Monitoring focuses on two key aspects: output format
verification and result validation, detailed as follows:

(1) Output Format Verification. First, the monitor-
ing would focus on the output format of an agent. For
example, if an agent generates a Python file that fails
to execute, its admin agent would flag the issue, log the
error, and prompt a retry. By enforcing consistent out-
put formats, this step prevents downstream agents from
misinterpreting data, reducing potential hallucinations.

(2) Result Validation. Once a group completes its
tasks, the admin agent reviews the generated outputs and
compares them against the initial task requirements. If
discrepancies are detected, the admin agent would detail
error messages, outline missing or incorrect aspects,
prompt the responsible agents to revise their work. This
validation process ensures that final outputs align with
intended objectives while minimizing task failures.

To clarify the monitoring process, we outline com-
mon failure scenarios and solutions as follows:

* Incomplete TODO Lists: Agents may terminate
prematurely or enter infinite loops due to inherent
LLM limitations. An admin agent would detect
it and prompt the agent to retry the task to ensure
task completion.

» Task Repetition: Limited context memory may
cause agents to forget completed tasks, leading
to redundant actions or task loops. An admin
agent would identify inconsistencies by cross-
referencing agent checklists and prompts corrective
actions as necessary.

» Secure Alignment Interruptions: Agents may be-
come unresponsive or repeatedly return alignment-
related constraint messages, such as “Sorry, I can’t
help with that.” In such cases, an admin agent at-
tempts to recruit other agents to finish the task.

By combining strict output format verification and
result validation, this monitoring framework ensures
agents remain aligned with system goals. Comprehen-
sive error-handling processes prevent cascading fail-
ures, ensuring system stability and optimal performance
throughout the LLM-MA framework.

3 Experiments

We evaluate MegaAgent’s capabilities through two ex-
periments: software development and social simulation.



These scenarios are chosen over tasks such as reasoning
or math problems, which a single LLM agent can handle
(Chen et al., 2023b; Guo et al., 2024). The selected tasks
demand extensive multi-agent coordination, providing a
more realistic representation of coordination challenges
in human societies.

We focus on the following two research questions:
RQ1: Can MegaAgent complete a task requiring exten-
sive coordination without a predefined SOP? How do
other baselines compare? (§subsection 3.1)

RQ2: Can MegaAgent be effectively scaled to handle
more complex tasks that involve a significantly larger
number of agents, showcasing its scalability? How does
it compare to other baselines?(§subsection 3.2)

3.1 RQI1: Software Development - Gobang Game

Gobang is a strategic board game played between two
participants who take turns placing black and white
pieces on a grid. The objective is to be the first to align
five consecutive pieces horizontally, vertically, or diago-
nally?. We select game development as a test scenario
because it effectively evaluates an LLM-MA system’s
coding and coordination abilities. The task requires
generating both backend logic and frontend components
while involving extensive collaboration among roles like
product manager, game logic designer, and software de-
velopers. This setting provides a robust evaluation of
MegaAgent’s capabilities in coordination, autonomy,
and parallelism in a project.

3.1.1 Experiment Setup

We conduct this experiment using the GPT-40 API?,
setting the temperature’ parameter to 0 to ensure more
deterministic responses (Achiam et al., 2023). The ex-
periment begins by feeding the meta prompt to MegaA-
gent shown in Figure 2. More details are in Appendix C.

You are Bob, the leader of a software develop-
ment club. Your club’s current goal is to develop
a Gobang game with an Al, and can be executed
by running 'main.py’.

Figure 2: Gobang Game Meta Prompt

For comparative analysis, we employ AutoGen,
MetaGPT, CAMEL, and AgentVerse to perform the
same task. We manually adjust their backbones to GPT-
40 or GPT-4 when GPT-40 is incompatible with their
configurations. To ensure a fair evaluation, we design
prompts tailored to each baseline’s requirements while
adhering to the guidelines specified in their respective
papers to determine appropriate testing methods. Fur-
ther details are in subsection C.6.

https://en.wikipedia.org/wiki/Gomoku
*https://openai.com/index/
hello-gpt—-40o/

3.1.2 Evaluation Metrics

To evaluate the generated Gobang game, we establish
the following evaluation metrics: (1) Error-Free Execu-
tion, which assesses the program’s ability to run without
errors; (2) User Move, which evaluates the user’s ability
to make a move; (3) AI Move, which measures the Al’s
ability to make a move; and (4) Game Termination,
which ensures the game’s ability to end correctly when
there are five consecutive pieces.

3.1.3 Experiment Results

We demonstrate Gobang Game Development’s exper-
imental results in Table 2. MegaAgent autonomously
generates an SOP involving seven agents, effectively co-
ordinates their tasks, and successfully develops a fully
functional Gobang game with an interactive interface
within 800 seconds. These achievements fulfill all task
requirements, making MegaAgent the only system
capable of producing a complete and operational
game, unlike baseline models that either produce
incomplete results or fail entirely. Further details are
provided in Appendix C. The performance of other
baseline models is analyzed below:

AutoGen: AutoGen employs two agents but fails to
produce a valid game move. After approximately three
minutes, it generates a program ending with # To be
continued. . and becomes stuck when attempting
execution. The likely cause of this failure is its overly
simplistic SOP, lacking critical inter-agent communica-
tion steps such as code review. More details are provided
in subsubsection C.6.1.

MetaGPT: Despite generating six agents, MetaGPT
fails to produce a functional AI move in any trial. The
main issues include: (1) unexecutable code due to the
lack of debugging tools, (2) incorrect program genera-
tion, such as creating a tic-tac-toe game4 instead of a
Gobang game, likely due to a simplistic SOP and in-
sufficient agent communication, and (3) infinite loops
caused by incomplete implementations. More details
are in subsubsection C.6.2.

CAMEL: CAMEL cannot produce executable Python
code using two agents, likely due to weak planning and
limited contextual reasoning capabilities. More details
are in subsubsection C.6.3.

AgentVerse: AgentVerse generates four agents to com-
plete the task but faces significant issues. In the first
two trials, the agents repeatedly reject results for all ten
rounds. In the third trial, while the result is accepted,
the generated code contains numerous placeholders and
remains unexecutable. The likely cause of failure is
an overly rigid task outline during the planning stage,
which current LLMs struggle to fulfill. More details are
in subsubsection C.6.4.

3.1.4 Ablation Study
To validate the necessity of each component design in
MegaAgent, we conduct an ablation study, with results

‘https://en.wikipedia.org/wiki/
Tic-tac-toe
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Model ‘ Error-Free Execution User Move Al Move Game Termination # of Agents Time(s) ‘ Time/Agent (s)
AutoGen 4 v 2 180 90
MetaGPT v v 6 480 80
CAMEL 2 1,830 915

AgentVerse 4 1,980 495
MegaAgent | v v/ v/ v/ 7 800 | 114
Table 2: Gobang Game Development Results
in Table 3. than the output token count, revealing significant room
for optimization in token usage. Notably, the input to-
Components  Completed Metrics ‘ # Agents ‘ Time(s) ‘ Time/Agent (s) kens predominantly originate from dialogues between
Full 123 @ 7 800 114 . . . .
Wlo hierarchy | 0@ 5 920 184 agents. This suggests that improving the efficiency and
wlo parallelism (1) 2) (3) (4) 7 4,505 643 structure of inter-agent communication could be a valu-
w/0 monitoring ‘ 123 7 300 42

Table 3: Gobang Ablation Study Results

Removing the hierarchical structure reduces agent
usage to 5 but increases completion time to 920 seconds
while achieving only basic metrics. Without parallelism,
task groups complete their tasks sequentially, increasing
time complexity from O(logn) to O(n), which raises
the execution time per agent from 114 seconds to 643
seconds. Removing monitoring reduces execution time
to 300 seconds but fails to meet essential metrics. These
findings underscore that parallel execution, hierarchy,
and monitoring are all crucial for both task completion
and execution speed. More details are in subsection C.4.

3.1.5 Cost Analysis

To evaluate token usage and better understand the effi-
ciency of the Gobang game generation, we provide a
detailed cost analysis. The analysis is divided into three
stages: Planning, Task-Solving, and Merging, each rep-
resenting distinct phases of the system’s operation. The
Planning stage focuses on initial strategy generation, the
Task-Solving stage handles the core game-solving com-
putations, and the Merging stage consolidates results for
final outputs. We have two key insights from the results
in Table 4 as follows:

Stage ‘ #Input Tokens # Output Tokens # Total Tokens Time (s)
Planning 42,947 12,347 55,294 0-60

Task-Solving 1,098,573 55,022 1,153,595 30-840

Merging 22,099 1,493 23,592 840-870
Total | 1,163,619 68,862 1,232,481 870

able research direction to enhance overall efficiency.

3.2 RQ2: Social Simulation - National Policy
Generation

We propose a more challenging experiment: formulat-
ing national policies, which requires numerous agents
to perform various tasks in complex domains such as
education, health, and finance. We select this experi-
ment because social simulations with LLM-MA systems
require numerous agents—potentially scaling to hun-
dreds—to mimic a human-like society. This experiment
can evaluate MegaAgent’s autonomy, scalability, and
coordination capabilities.

3.2.1 Experiment Setup

Due to budget constraints, we use the GPT-40-mini
API for this experiment conducted by MegaAgent. For
comparative analysis, we utilize AutoGen, MetaGPT,
CAMEL, and AgentVerse to perform the same task.
We manually adapt their backbone LLMs to GPT-40 or
GPT-4 when GPT-4o is incompatible with their code
configurations. The meta prompt we feed into MegaA-
gent is shown in Figure 3, with more details provided in
Appendix D. Descriptions of the other baseline settings
are included in subsection D.5.

You are NationLeader, the leader of a pioneer-

ing nation. You want to develop the best de-
tailed policy for your cutting-edge country in ‘pol-
icy department.txt’. You are now recruiting minis-
ters and assigning work to them. For each possible
minister, please write a prompt.

Table 4: Token usage analysis across different stages of
Gobang GPT-40 experiments.

Insight 1: High Resource Consumption in the Task-
Solving Stage. The majority of the time and token usage
occurs during the task-solving stage. This indicates
that the task is inherently complex, requiring significant
coordination among agents to generate solutions. This
highlights the computational intensity of multi-agent
interactions in solving strategic problems.

Insight 2: Disproportionate Input and Output Token
Usage. The input token count is substantially higher

Figure 3: National Policy Generation Meta Prompt

3.2.2 Evaluation Metrics

To evaluate the reliability of MegaAgent’s generated
national policies, we use the LLM-as-a-Judge frame-
work to assess their reasonableness. We select five
advanced and widely recognized LLMs: Claude-3.5°,
gpt-4o-mini, gpt-40, ol-mini, and ol-preview (Achiam
et al., 2023) for this evaluation.

Shttps://www.anthropic.com/claude/
sonnet
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To validate the LLMs’ ability to assess national poli-
cies, we create a validation dataset containing both au-
thentic national policies and various unrelated text for-
mats (Zheng et al., 2023). This setup tests whether
the LLMs can distinguish real policies from non-policy
texts. We use the evaluation prompt presented in Fig-
ure 4 for all selected LLMs. The results in Table 10
show that, on average, the models achieve an 89% ac-
curacy rate in identifying real national policies, demon-
strating their effectiveness in this evaluation framework.
Additional details are provided in Appendix E.

"Is this policy reasonable as a national policy?
Please return your answer with clear nuances:
Agree, Disagree, or Neutral with detailed expla-
nations."

Figure 4: National Policy Evaluation Prompt

3.2.3 Experiment Results

We present National Policy Generation’s experimental
results in Table 5. It shows MegaAgent’s ability to gen-
erate complete and reasonable policies using a signifi-
cantly larger number of agents within competitive time
limits. The results show that MegaAgent outperforms
baseline models by producing complete policies with
590 agents in 2,991 seconds. Notably, MegaAgent’s
average processing time per agent is 5 seconds, signif-
icantly faster than the best-performing baseline at 40
seconds per agent, demonstrating its scalability. The
structure of the policies generated by MegaAgent is il-
lustrated in Figure 5, with detailed outputs provided in
subsection D.3.

Model | Outputs #Agents Time (s) | Time/Agent (s)
AutoGen Outline 1 40 40
MetaGPT Python Program 6 580 97
CAMEL Plans 2 1,380 690

AgentVerse None 4 510 128
MegaAgent | Complete Policies 590 2,991 | 5

Table 5: National Policy Generation Results

Hierachy Diagram

( l Nation Leader

[
I ! l

Minister of /™ Minister of
Health Finance

5, Minister of
Education

[ [ [
i 1 } ) ) ¥ ) ) )

Fitness
Expert

T
Feedback
Collector

Education
Tester 01

Education
Tester 02

Education

Regulatory
Tester 03 i

Physician | |Psychologist| | 188 | |TR9T A0 Trader

Figure 5: MegaAgent’s Generated National Policy
Structure

To evaluate the reliability of MegaAgent’s generated
national policies, we feed the prompt in Figure 4 to

chosen advanced LLMs for reasonability assessment.
As shown in Table 6, an average of 27.4 out of 31 poli-
cies are judged as reasonable by LLMs. This result
highlights MegaAgent’s effectiveness in generating well-
justified policies in this social simulation experiment.

Model \ # Agree # Disagree # Neutral
Claude-3.5 26 1 4
gpt-4o0-mini 28 0 3
gpt-4o 25 2 4
ol-mini 29 2 0
ol-preview 29 1 |
Average 274 1.2 24

Table 6: Evaluating the Rationality of 31 Policies Gen-
erated by MegaAgent

3.2.4 Ablation Study

To validate the necessity of each component design in
MegaAgent, we conduct an ablation study with results
shown in Table 7.

Components | Outputs #of Agents  Time (s) | Time/Agent (s)
Full Complete Policies 590 2,991 5
wi/o hierarchy Incomplete Policies 19 450 24
w/o parallelism Incomplete Policies >100 >14,400 N.A.
w/o monitoring | Policies with Placeholders 50 667 13

*We terminate the execution without parallelism
after 14400 seconds.

Table 7: National Policy Generation Ablation Study
Results

Without hierarchy, only incomplete policies are pro-
duced within 450 seconds using 19 agents, indicating
the importance of hierarchical design. Disabling paral-
lelism entirely results in incomplete policies even after
14400 seconds, with over 100 agents continuously re-
cruited but unable to complete tasks due to serialized
processing bottlenecks. Removing monitoring gener-
ates policies with placeholders in 667 seconds using 50
agents, highlighting the need for continuous supervi-
sion for task completeness. Detailed outputs of these
ablation studies are in subsection D.4.

These findings underscore that parallelism is not
merely beneficial but critical for managing complex
tasks in LLM-MA systems.

3.2.5 Cost Analysis

To assess the token and time costs of this experiment, we
perform a detailed analysis of token usage and execution
time across three stages: Planning, Task-Solving, and
Merging. The results are presented in Table 8.

Similar to analysis in 3.1.5, we observe from Table 8
that significant resource consumption during the task-
solving stage, which dominates both time and token
usage. A comparison of input-to-output token ratios be-
tween the experiments reveals consistent inefficiencies,



Stage \ Input Tokens Output Tokens Total Tokens Time (s)
Planning 111,601 24,103 135,704 0-180
Task-Solving 8,003,124 343,670 8,346,794 20-2,950
Merging 348,264 13,280 361,544 2,400-3,000
Total | 8.463,989 381,053 8,845,042 3,000

Table 8: Token usage analysis for National Policy Gen-
eration.

with the first experiment showing a ratio of approxi-
mately 23:1, while the current experiment is slightly
higher at 25:1. This increase suggests that the policy
generation task required additional resources for
inter-agent dialogues and greater context manage-
ment, likely due to the involvement of a larger num-
ber of agents. These findings highlight the critical need
to optimize token usage and enhance dialogue efficiency,
which could significantly reduce resource consumption
and improve overall performance in LLM-MA systems.

3.3 Scalability Analysis

In MegaAgent, for n agents, the hierarchical layer-to-
layer communication cost is O(log n), as agent groups
at the same level operate in parallel, as illustrated in
Figure 5. In contrast, existing frameworks exhibit linear
running time growth O(n) as they run serially, which
becomes impractical with the number of LLM agents
increasing much. The analysis is supported by our na-
tional policy generation experiment in subsection 3.2,
where MegaAgent’s average processing time per agent
is 5 seconds, compared to CAMEL’s average of 700
seconds per agent. These results highlight MegaAgent’s
scalability and practicality for autonomous coordination
in large-scale LLM-MA systems.

4 Related Work

We discuss the most related work here and leave more
details in Appendix B.

4.1 LLM-MA Systems

With the emergence of powerful LLMs (Achiam et al.,
2023; Team et al., 2023), recent research on LLM-
based multi-agent systems has investigated how multi-
ple agents can accomplish tasks through coordination,
utilizing elements such as personas (Chen et al., 2024b;
Chan et al., 2024), planning (Chen et al., 2023a; Zhang
et al., 2024b; Yuan et al., 2023), and memory (Zhang
et al., 2023; Hatalis et al., 2023). Unlike systems rely-
ing on a single LLM-based agent, multi-agent systems
demonstrate superiority in tackling challenging tasks.
Recent works, such as MetaGPT (Hong et al., 2023),
AutoGen (Wu et al., 2023), and AgentVerse (Chen et al.,
2023b), design multiple specific roles to achieve a task.

However, most popular LLM-MA systems heavily
rely on handcrafted prompts and expert design. For
instance, MetaGPT (Hong et al., 2023) requires users
to pre-design roles like product manager and software
engineer. Another limitation is these systems utilize a

sequential pipeline without considering parallel execu-
tion of agents (Li et al., 2023). Although AgentScope
(Pan et al., 2024) does consider this, its implementation
follows a fixed trajectory in different rounds of inter-
action, prohibiting changes in communication partners,
thus limiting performance improvement as the number
of agents scales up.

In contrast, in the real world, when many software
developers are employed, they may first work on differ-
ent files simultaneously, and then focus on one specific
file when difficulties are encountered, sparking creative
ideas to overcome challenges by coordination. Addition-
ally, existing LLM-MA systems are restricted by their
small scale and have not been applied in large-scale
scenarios with complex coordination involved. We com-
pare current popular LLM-MA systems with MegaAgent
in Table 9. We can see from the table that MegaAgent
stands out for its high autonomy, multi-file support, par-
allelism, and scalability.

4.2 SOPs in LLM-MA Systems

Allocating SOPs is a common approach in designing
agent profiles and tasks within LLM-based multi-agent
(LLM-MA) systems (Hong et al., 2023; Huang et al.,
2023a; Park et al., 2023; Zhuge et al., 2024; Shi et al.,
2024). These systems define SOPs for both individual
agents and their communication protocols. While this
method has proven effective in previous works, it has
two major limitations: (1) Agents may possess unfore-
seen capabilities that cannot be anticipated during the
human design stage but become relevant during task
execution (Rivera et al., 2024; Sypherd and Belle, 2024;
Piatti et al., 2024); (2) As the scale of LLM-MA sys-
tems grows—potentially involving thousands or even
billions of agents—designing SOPs manually for each
agent becomes infeasible (Mou et al., 2024; Pan et al.,
2024). To address this, the design mechanism must
evolve, leveraging LLMs themselves, as in the LLM-
as-the-Judge concept (Huang et al., 2024; Chen et al.,
2024a), allowing LLMs to autonomously generate SOPs
for large-scale LLM-MA systems.

5 Conclusion

We present MegaAgent, a practical framework enabling
autonomous cooperation in LLM-MA systems, where
users only need to provide a meta prompt at the start of
the process. Through a Gobang game software devel-
opment experiment, we demonstrate MegaAgent’s supe-
rior autonomy and coordination compared to baseline
models. Additionally, our social simulation on national
policy generation highlights MegaAgent’s scalability to
hundreds of agents while ensuring effective cooperation.
With its hierarchical and adaptive design, MegaAgent
has the potential to serve as the foundational OS for
future LLM-MA systems. We encourage the research
community to further explore enhancing agent cooper-
ation to address the increasing demands of large-scale
LLM-MA systems.



Limitations

Planning and Communication Overhead. The pri-
mary bottleneck lies in the planning and communication
processes among LLLM agents, particularly in translat-
ing code into prompts, managing task checklists, main-
taining the framework, and debugging. As the number
of agents and communication rounds increases, input-
output token consumption grows substantially, affecting
both efficiency and cost. Future work should explore
advanced token summarization, semantic compression,
and efficient dialogue storage methods.

Hallucination in Agent Outputs. Despite using task-
specific checklists to monitor agent actions, occasional
hallucinations persist, with output formats sometimes
deviating from expected requirements. Since the check-
lists themselves are generated by LLMs, errors may
propagate. Addressing this requires more robust veri-
fication mechanisms, potentially involving external ex-
pert knowledge bases before, during, or after agent re-
sponse generation.

API Cost and Model Integration. MegaAgent’s re-
liance on GPT-4 incurs high API costs. While cheaper
alternatives exist, they may lack generalizability. A
promising direction would involve integrating special-
ized LLMs for specific tasks, leveraging models that
excel in certain domains while maintaining efficient
communication and data sharing across the LLMs.

Broader Impacts

Reducing Inefficiencies in Complex Tasks. MegaA-
gent’s hierarchical multi-agent structure could improve
efficiency in other domains requiring complex planning
and collaboration, such as legal drafting, project man-
agement, and research coordination.

LLM-MA System Design. MegaAgent framework re-
defines agent system design by treating it as an OS
for large-scale LLM-MA coordination. Its hierarchical
structure mirrors modern OS principles, where admin
agents supervise task execution while the Boss Agent
oversees system-wide operations. This design intro-
duces a flexible and adaptive blueprint for future agent
systems, integrating real-time monitoring, dynamic task
assignment, and autonomous failure recovery.

Ethical and Social Considerations. The deployment of
LLM-MA in social simulations could reshape societal
structures by reducing human involvement in decision-
making processes. Ensuring fairness, equity, and ac-
countability will be essential as these systems are scaled
up. Monitoring and mitigating potential misuse or bias
in generated content from LLMs should be prioritized
through ethical guidelines and technical safeguards.
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Appendix
A Experimental Environment

All experiments are conducted using an NVIDIA A100-
80G Tensor Core GPU, utilizing Tier 5 APIs for both
ChatGPT-40 and ChatGPT-40 mini °.

B Supplementary Related Work

B.1 LLM-based Agents Coordination

The coordination between LLM-based agents is crit-
ical infrastructure for supporting LLM-MA systems
(Guo et al., 2024). There are three main coordina-
tion paradigms: cooperative, debate, and competitive.
MegaAgent focuses on the coordination paradigm, aim-
ing to have agents work together toward a shared goal.
Within the cooperative paradigm are three main struc-
tures: layered, decentralized, and centralized. Layered
communication is organized hierarchically, with agents
at each level having distinct roles and each layer inter-
acting with adjacent layers (Liu et al., 2023b). Decen-
tralized communication operates on a peer-to-peer basis
among agents. Centralized communication involves a
central agent or a group of central agents coordinating
the system’s communication, with other agents primar-
ily connecting to the central agent. A shared message
pool, as proposed in MetaGPT (Hong et al., 2023), main-
tains a shared message pool where agents publish and
subscribe to relevant messages, boosting communica-
tion efficiency.

B.2 LLM-based Agents Management

Research on the management of LLM-based agents is
limited. Popular LLM-based multi-agent systems, such
as MetaGPT (Hong et al., 2023), AgentVerse (Chen
et al., 2023b), and AutoGen (Wu et al., 2023), typically
divide tasks into smaller sub-tasks and allocate multiple
agents to complete them. However, their approaches
to planning are sequential, lacking strategic manage-
ment. In contrast, AIOS (Mei et al., 2024) introduces an
LLM agent operating system that provides module iso-
lation and integrates LLM and OS functions. It employs
various managers, including Agent Scheduler, Context
Manager, Memory Manager, Storage Manager, Tool
Manager, and Access Manager, to effectively handle
numerous agents. However, AIOS manually organizes
different applications, such as a math problem-solving
agent and a travel planning agent, rather than multiple
agents within the same application. This approach rep-
resents a different type of SOP and is not applicable to
large-scale LLM-MA systems, as it is impractical for
humans to write every SOP and prompt for each agent
when the scale reaches thousands or even millions.

*https://platform.openai.com/docs/
guides/rate-limits/usage-tiers?context=
tier-five
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B.3 Hallucinations in LLM-MA Systems

Hallucination refers to the phenomenon where a model
generates factually incorrect text (Zhao et al., 2023;
Huang et al., 2023b). Hallucinations are considered
inevitable in LLMs (Banerjee et al., 2024). This issue
becomes more severe in LLM-MA systems due to the
multi-agent nature: one agent can send information to
others. If an agent generates a hallucinated message,
it may propagate to other agents, causing a cascading
effect (Lee and Tiwari, 2024; Ju et al., 2024). Self-
refinement through feedback and reasoning has proven
effective, such as using self-reflection and prompting the
LLM again to verify its outputs (Ji et al., 2023; Tonmoy
et al., 2024). Inspired by this, we equip MegaAgent
with a self-correction mechanism, enabling agents to
review their outputs based on a to-do list generated at
initialization. To enhance monitoring efficiency, we
introduce a hierarchical monitoring mechanism: first,
agents check their own outputs; second, an admin agent
reviews the group’s outputs; and third, a boss agent
oversees the outputs of all groups.

B.4 Novelty Comparison between MegaAgent and
Baselines

To highlight the distinctions between MegaAgent and
baseline models, we compare their supported features in
Table 9. The comparison shows that MegaAgent stands
out as the only LLM-MA system supporting key fea-
tures, including: (1) No Pre-defined Standard Operating
Procedures (SOPs); (2) Multi-file Input/Output Support;
(3) Parallel Execution Capabilities; and (4) Scalability
to a Large Number of Agents.

C Gobang Game Experiment Details

C.1 Setup

We use ChatGPT-40 API for this experiment. The "tem-
perature’ parameter is set to 0 to reduce the randomness
of the outputs (Achiam et al., 2023).

C.2 Cost
The total cost is $6.9.

C.3 Results

First, Boss Agent receives the initial hand-written meta-
prompt, shown in Figure 7. Then, MegaAgent utilizes
these initial prompts as the system message to create
agents, with additional written function calls in Figure 8
and Figure 9. The communication content and function
call results are added directly into the corresponding
agent’s memory. Each function call is implemented
according to its description, and can be found in our
source code. The initial prompt and the additional writ-
ten functions are the only prompts that are written by
hand, showcasing our framework’s autonomy.

C.4 Ablation Study

We conduct the ablation study of MegaAgent for the
Gobang task. We rerun the experiment without hierar-


https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-five
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-five
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Feature AutoGen MetaGPT CAMEL AgentVerse MegaAgent

Users pre-define roles,

Users pre-define roles,
such as product manager

No pre-defined
such as product manager

No Pre-defined
efiniti ach Agent’s Tas|
Definition of Each Agent’s Task ‘ agent abilities agent abilities ‘ agent abilities

and software engineer and software engineer

Cannot handle
multiple files

Cannot handle
multiple files

Can generate and manage
multiple files simultaneously

Can generate and manage

Pre-defined ‘
‘ multiple files simultaneously

Support for Multi-File Input/Output ‘ Cannot handle ‘

multiple files

Tasks are finished sequentially,
one after another

Tasks are finished sequentially,
one after another

Tasks are completed sequentially,
one after another

Tasks are completed sequentially,

Support for Parallel Execution one after another

Tasks are completed in parallel

Limited by the number of
user-defined agents

Can adaptively generate more agents

Scalability to Large Numbers of Agents based on needs of the task

Restricted by the number ‘

Limited by the number of
of user-defined agents

Limited by the number of
user-defined agents

user-defined agents

Table 9: Comparison of features across LLM-based multi-agent (LLM-MA) systems. Definition of Each Agent’s
Task: Indicates whether the system can autonomously produce a clear and customizable definition of roles and
tasks for individual agents. Both MegaAgent and AgentVerse support this feature, while other systems rely on fixed
or developer-specified tasks. Support for Multi-File Input/Output: Refers to the ability of systems to process and
manage multiple files simultaneously. MegaAgent and MetaGPT support this functionality, enhancing their usability
for complex workflows. Support for Parallel Execution: Indicates whether the system can execute multiple tasks
in parallel. Only MegaAgent supports true parallel execution, while other systems operate sequentially. Scalability
to Large Numbers of Agents: Assesses the system’s capability to scale efficiently when the number of agents
increases. MegaAgent is the only system designed to handle a large number of agents seamlessly, demonstrating

superior scalability.

chy, parallelism, and monitoring mechanism, separately.

When running without hierarchy, group managers
cannot create new agents. As shown in Figure 6, the
generated program will fall in an infinite loop. However,
the AI development group’s manager cannot resolve
this issue by himself. Nor can he recruit new agents for
collaboration in this scenario.

User command: 5,5
Trying to make move at (5, 5)

AI is making a move...
AI is calculating the best move...

Figure 6: Failure of MegaAgent without Hierarchy

When running without parallelism, each group will
complete their tasks one by one, linearly. Although
this will not hinder the system’s performance, the time
complexity will drop from O(logn) to O(n). As a
result, the execution time grows from 800 seconds to
4505 seconds.

When running without the monitoring mechanism,
the group leaders will not validate the program. As
shown in figure Figure 13, the program cannot terminate
when there are five-in-a-row, but the group agents do
not find this bug because of the lack of the monitoring
mechanism.
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You are Bob, the leader of a software develop-
ment club. Your club’s current goal is to de-
velop a Gobang game with a very strong Al

no frontend, and can be executed by running
‘main.py’. You are now recruiting employees
and assigning work to them. For each employee
(including yourself), please write a prompt speci-
fying: their name (one word, no prefix), their job,
the tasks they need to complete, and their col-
laborators’ names and jobs. The format should
follow the example below:

<employee name="Alice">

You are Alice, a novelist. Your job
is towrite a single chapter of a
novel with 1000 words according

to the outline (outline.txt) from
Carol, the architect designer, and
pass it to David (chapter_x.txt),
the editor. Please only follow this
routine. Your collaborators include
Bob (the Boss), Carol (the architect
designer), and David (the editor) .
</employee>

Please note that every employee is lazy and will
only perform the tasks explicitly mentioned in
their prompt. To ensure project completion, each
task must be non-divisible, detailed, specific, and
involve only supported file types (txt or python).
You should recruit enough employees to cover
the entire SOP, ensuring tasks are distributed

to speed up the process. Finally, specify an em-
ployee’s name to initiate the project in the for-
mat:

<beginner>Name</beginner>

Figure 7: Gobang Game Development Meta Prompt




Then, MegaAgent would generate different agent
roles in Figure 10. After generation, each agent will
update its own TODO list, utilize function calls to com-
plete its tasks, or talk to other agents, until it clears its
TODO list and marks its task as 'Done’. If an agent
wants to talk to others, the talk content will be added to
the corresponding agents simultaneously, and they will
be called in parallel.

{"name" : "exec_python_file",
"description": "Execute a Python file and
get the result.",

"parameters": {

"type": "object",

"properties": {

"filename": {

"type": "string",

"description": "The filename of the Python
file to be executed."

"read_file",

"description": "Read the content of a
file.",

"parameters": {

"type": "object",

"properties": {

"filename": {

"type": "string",

"description": "The filename to be read."

’
"name": "input",

"description": "Input a string to the
running Python code.",

"parameters": {

"type": "object",

"properties": {

"content": {

"type": '"string",

"description": "The string to be input."

}

}
}
}
}
{

}
}
}

Figure 8: Function Calls for Gobang Game Develop-
ment (Part 1).

The memory of each agent is implemented by a
chroma vector database 7. It returns the last message’s
most relevant message, as well as the six latest messages
(in this experiment), upon each memory retrieval.

In our experiment, MegaAgent successfully produces
a runnable Gobang game with a naive Al upon the first
trial, whose interface is shown in Figure 11.

C.5 Human-written SOP for Gobang Game

To evaluate the performance of the Gobang Game devel-
opment against other baselines, we provide a human-
written SOP for the Gobang Game, as shown in Fig-
ure 12. This serves as a benchmark for comparison with

"https://www.trychroma.com/
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{"name" : "write_file",
"description": "Write content to a file.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": '"string",
"description": "The filename to be
written."
by
"content": {
"type": "string"
"description": "The content to be written."
}
}
}
by
{"name" : "add_agent",
"description": "Recruit an agent as your
subordinate.",
"parameters": {
"type": "object",
"properties": {
"name" : {
"type": '"string",
"description": "Unique agent name."
by
"description": {
"type": "string",
"description": "Agent description."
}
}
}
by
{"name": "TERMINATE",
"description": "End the conversation when

all tasks are complete."

}

Figure 9: Function Calls for Gobang Game Develop-
ment (Part 2).



You are Bob, the leader of the software develop-
ment club. Your job is to decide all the features
to develop for the Gobang game and write them
in a file named ’ features.txt’. Your col-
laborators include Alice (game designer), Carol
(Al developer), David (game logic developer),
and Eve (integrator).

You are Alice, a game designer. Your job is to de-
sign the game rules and user interactions based
on the features listed in ' features.txt’
Jfrom Bob, and document them in a file named
’game_design.txt’. Your collaborators in-
clude Bob (leader), Carol (Al developer), David
(game logic developer), and Eve (integrator).

You are Carol, an Al developer. Your job is to de-
velop the Al for the Gobang game based on the
game design in “game_design.txt’ from
Alice, and write the Al code in a file named
7ai.py’. Your collaborators include Bob
(leader), Alice (game designer), David (game
logic developer), and Eve (integrator).

You are David, a game logic developer. Your
job is to develop the game logic for the

Gobang game based on the game design

in “game_design.txt’ from Alice, and
write the game logic code in a file named
’game_logic.py’. Your collaborators include
Bob (leader), Alice (game designer), Carol (Al
developer), and Eve (integrator).

You are Eve, an integrator. Your job is to inte-
grate the Al code from "ai.py’ by Carol and
the game logic code from ' game_logic.py’
by David, and write the integration code in a
file named "main.py’ to ensure the Gobang
game can be executed by running 'main.py’.
Your collaborators include Bob (leader), Alice
(game designer), Carol (Al developer), and David
(game logic developer).

Figure 10: Role Assignments Generated by MegaAgent
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n.

Player W, enter your move (row,col): |

Figure 11: Interface of Gobang demo produced by
MegaAgent

the MegaAgent-generated SOP.

C.6 Gobang Game Experiment with Baselines

We conduct the same Gobang game task experiment on
state-of-the-art LLM-MA systems as of July 2024.

C.6.1 AutoGen Setup and Result

We test AutoGen v1.0.16 based on its multi-agent cod-
ing demo. We only fill in the API key and change its
prompt to: Develop a Gobang game with an Al , and
leave everything else unchanged. We do not allow run-
time human input.

As shown in Figure 14 and Figure 15, AutoGen gener-
ates a program ending with # To be continued..
after about two minutes, and gets stuck when trying to
execute it. The possible reason for its failure is that its
SOP is too simple and does not include enough commu-
nication e.g. code review between agents.

We try three times, which all end with similar results.
In another one trial, as shown in Figure 16 and Figure
17, AutoGen successfully produces an Al with mini-
max algorithm, but no pruning. This is impossible to
execute in a limited time, as the state space of Gobang
game is very large. We try another prompt: Develop a
Gobang game with a very strong Al, no frontend, and
can be executed by running 'main.py’ , and get similar
results.

By the time it gets stuck, AutoGen has cost $0.1 and
120 seconds. Since AutoGen cannot complete this task,
we are unable to count the overall cost.

C.6.2 MetaGPT Setup and Result

We test MetaGPT v0.8.1 by feeding the prompt: De-
velop a Gobang game with an Al. We fill in the API
key and leave everything else unchanged. It produces
results in Figure 18, and its execution time is around



You are Bob, the boss of the software develop-
ment team. You are responsible for monitoring
the project’s progress and ensuring that it can be
executed by running the main.py file in the end.
Your team members are Alan (game logic design),
Alice (board.py), Charlie (main.py), David
(ai.py), and Emily (testing).

You are Alan, an architect designer. Your job is
to design the game logic of the Gobang game
and propose possible Al implementations. Doc-
ument your design in design.txt and pass it
to your teammates. Collaborators: Bob (Boss),
Alice (board.py), Charlie (main.py), David
(ai.py)

You are Alice, a software developer. Implement
the board. py file based on Alan’s design in
design.txt. Collaborators: Bob (Boss),
Alan (game logic), Charlie (main.py), David
(ai.py), Emily (testing).

You are Charlie, a software developer. Imple-
ment the main.py file based on Alan’s design
in design.txt. Ensure compatibility with
board.py (Alice) and ai.py (David). Op-
tionally create test . py for testing. Collab-
orators: Bob (Boss), Alan (game logic), Alice
(board.py), David (ai.py), Emily (testing).

You are David, an Al developer. Implement a
naive ai.py file that makes random moves
quickly. Collaborators: Bob (Boss), Alan (game
logic), Alice (board.py), Charlie (main.py),
Emily (testing).

You are Emily, a tester. Test the Gobang game’s
correctness and efficiency. Write test.py and
ensure the game runs correctly by executing
main.py. Test thoroughly until the game com-
pletes. Collaborators: Bob (Boss), Alan (game
logic), Alice (board.py), Charlie (main.py),
David (ai.py).

Figure 12: Human-written Prompts for Gobang Game
Development

16

Current

=)

PooPPPOOOrOOOORY
oRcReRoReReReRe Rl R e o Ro o Ro N2
COOODOOODOORHRRRO®O O

[cloNooNoNoNoNoNoNoNoNoNoNol Siey
lciclclclNoNooNoNoNol  NoNoNoNol

2
0
0
0
0
0
0
0
0
0
0
0
0
0
0

[cloNoNoNoNoNoNoNoNol SoNoNoNol
g clcolcfooNooNoNoNolSHoNoNoN ol
- [cNoNoNoNoNoNoNoNooNoNoNoNoNol

[cNoNoNoNoNoNoNoNooNoNoNoNoNol

[cNoNoNoNoNoNoNoNoloNoNoNoNoNol

[cNoNoNoNoNoNoNoNooNoNoNoNoNol

2 22
000
0 00
000
0 00
000
000
000
000
000
000
000
000
000
000
Enter

n

>
<

Figure 13: Failure of MegaAgent without the Monitor-
ing Mechanism

eight minutes. We try three times, and find none of them
can produce an Al move. The major errors are:

¢ The code is not executable, and raises an error.
The possible reason is that MetaGPT does not have
external tools to execute and debug the produced
code.

¢ The produced program is not a Gobang game
(for example, a tic-tac-toe game instead). The
possible reason for failure is that its SOP is too
simple, and the requirement for communication
between agents is not sufficient.

Al falls into an infinite loop. The possible rea-
son is that MetaGPT does not have external tools
to execute and debug the produced code, and the
current ChatGPT API is not capable of developing
the AlphaBeta algorithm without errors by itself.

C.6.3 CAMEL Setup and Result

We use the CAMEL v0.1.6.0 Jupiter Notebook demo in
Colab. We fill in the API key, change the task prompt
to: Develop a Gobang game with an Al, and leave ev-
erything else unchanged. We try three times. It turns
out that CAMEL can only produce code segments. For
example, in one trial, as shown in Figure 19, CAMEL
forgets to write ui . py, which is included in game . py.
The possible reason for this is that its planning and con-
textual ability are weak. The total cost of one trial is
$0.76.

C.6.4 AgentVerse Setup and Result

We test AgentVerse v0.1.8.1 based
tasksolving/pythoncalculator

on its
scenario.



# filename: gobang.py

import random
# define the size of the board
BOARD_SIZE = 15

# generate an empty board
board = [[' ' for _ in range(BOARD_SIZE)] for

- _ in range(BOARD_SIZE)]
def print_board():
# print the board
print('\n'.join(["
print()

.join(row) for row in board]))

def player_move():

# get move from player

move = input("Your move (e.g. '7 7'): ")
x, y = map(int, move.split())
board[x][y] = 'X"

def ai_move():
# randomly choose an empty slot on the board
while True:
x = random.randint(@, BOARD_SIZE-1)
y = random.randint(®, BOARD_SIZE-1)
if board[x][y] == ' ':
board[x][y] = 'O’
break # stop the loop if we've found an empty slot

# To be continued...

Figure 14: Code Produced by AutoGen

def main():
while True:

print_board()

if game_over(board):
print("Game over!")
break

player_move()

if game_over(board):
print("Game over!")
break

print_board()

ai_move()

if __name__ == "__main__":
main()

Save this as a Python file and run it in your terminal with ‘python gobang.py".

Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation:

Figure 15: Execution Result of AutoGen
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def minimax(board, depth, maximizing_player):
if depth == @ or game_over(board):
return score_board(board, 'O' if maximizing_player else 'X")

if maximizing_player:
max_eval = float('-inf")
for move in get_moves(board):
evaluation = minimax(make_move(board, move, '0'), depth - 1, False)

max_eval = max(max_eval, evaluation)

return max_eval

else:

min_eval = float('inf")

for move in get_moves(board):
evaluation = minimax(make_move(board, move, *X'), depth - 1, True)
min_eval = min(min_eval, evaluation)

return min_eval

Figure 16: Code Produced by AutoGen in Another Trial

Enter your move in the format ‘row, column': 5,5

Figure 17: Execution Result of AutoGen in Another Trial. Al will keep thinking for almost infinite time.
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Enter row (@ indexed): 2
Enter column (0 indexed): 2

Traceback (most recent call last):
File ™ . ‘.gobang_ai\gobang_ai\main.py", line 141, in <module>

game.start_game()
File " . “.gobang_ai\gobang_ai\main.py", line 103, in start_game
move = self.ai_player.calculate_move(self.board, self.current_player)

AAARAAARAAAAAAAAAARAARAAAAAAAAAAAARAARAAAAAAAAARARAARAAAAAAAAARAARR

File ] . \gobang_ai\gobang_ai\main.py", line 19, in calculate_move
score = self.minimax(board, @, False, player, alpha, beta)

File "™ \gobang_ai\gobang_ai\main.py", line 27, in minimax
if self.game.check_win(board, player):

AAAAAAARAARAAAAAAAAARAARRARAAAAAAAAR

TypeError: Game.check_win() takes 1 positional argument but 3 were given

Figure 18: Execution Result of the Code Produced by MetaGPT

GobangGame/

\

—— sre/ # Main source code directory

\ — game_L?gicf . # Contains the core game logic (game rules, board management)
\ _— ui e orgot to err';‘e(‘ontains the user interface code (graphics, layout)
\ b—— ai logic/ # Contains the AI logic (decision-making algorithms)
\ L—— main. py # Main entry point of the game

\

b—— assets/ %# Directory for game assets

\ b—— images/ # Contains image files (board, pieces, backgrotinds)

\ L—— sounds/ # Contains sound files (game sounds, music)

\

—— tests/ # Directory for unit tests

\ b—— test _game logic.py # Tests for game logic

\ —— test_ai_logic.py # Tests for AI logic

\ L—— test_ui.py # Tests for user interface

\

—— README. md # Project documentation

R requirements. txt # Dependencies for the project

Figure 19: An example of CAMEL’s output. It forgets to write ui.py in this trial.
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We fill in the API key, change the max_turn parame-
ter from 3 to 10 to allow more rounds for better results,
and modify the task description to: develop a Gobang
game with an Al using Python3. We leave everything
else unchanged and try three times. We find that, in
the first and second trial, the agent keeps rejecting the
result for all the ten rounds, as shown in Figure 20;
as for the third trial, although the agent accepts the
result, the code as shown in Figure 21 still presents
many placeholders, and cannot be executed. Given that
ten rounds significantly exceed the default setting, we
conclude that AgentVerse is unlikely to successfully
complete the Gobang task even with additional rounds
and opportunities. One trial costs about $8.07, and
1980 seconds.

To sum up, our MegaAgent framework is the first and
only LLM-MA system to develop the Gobang game
successfully.

D National Policy Generation
Experiment Details

D.1 Setup

We use the ChatGPT-40 mini API for this experiment.
The ‘temperature’ parameter is set to default. The mem-
ory of each agent returns the most relevant message, as
well as ten latest messages in this experiment.

D.2 Cost

The total cost of this experiment is $3.3.

D.3 Results

Boss agent receives the initial hand-written meta-prompt
in Figure 22. Then, Boss Agent generated several admin
agents shown in Figure 23.

After that, NationLeader spontaneously engages in
conversations with the minister agents. Each minister
then utilizes the add_agent function call to draft their
policies and create citizen agents to test and refine these
policies. Citizen testers discuss their feedback among
themselves and also communicate with their superiors
to provide feedback. Moreover, ministers engage in
discussions with one another to enhance cooperation
across ministries.

File system manages each agent’s todo list, records
the citizens’ feedback, and maintains the most recent
version of each ministry’s policy. For example, a todo
list for a citizen tester is shown in Figure 25.

Following the health testers’ discussions, the feed-
back on the education policy is shown in Figure 26.

And the final version of the health policy is presented
in Figure 27 and Figure 28. Other policies have the sim-
ilar format which can be found in the github repository.

Finally, MegaAgent generates 590 agents, forming
a three-level hierarchy that can be extended further,
with human input limited to the meta-prompt. This
demonstrates the scalability and autonomy of MegaA-
gent framework.
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One trial in this experiment costs about $3.3 and 2991
seconds.

D.4 Ablation Study

Similar to the Gobang task, we conduct an ablation
study on MegaAgent for National Policy Generation by
rerunning the system without hierarchy, parallelism, and
monitoring mechanisms separately.

When running without hierarchy, minister agents can-
not recruit new subordinates, forcing them to draft poli-
cies independently. As a result, the generated policies
are relatively short and lack precision. For example,
health-related aspects are missing, while certain sec-
tions, such as economic policies, are partially complete,
as shown in Figure 29. This indicates that tasks in the
second layer remain challenging for individual agents,
highlighting the necessity of hierarchical task splitting.

Disabling parallelism forces all 590 agents to work
sequentially, with only one agent active at a time. Af-
ter 14,400 seconds, more than 100 agents are recruited,
most of which remain in the planning stage. This demon-
strates that parallel processing is essential as the number
of agents scales up.

Without the monitoring mechanism, MegaAgent pro-
duces mostly complete policies, as seen in Figure 31 and
Figure 32. However, some sections, such as the Regula-
tion Policy shown in Figure 29, remain unfinished. This
underscores the importance of a final validation stage to
ensure comprehensive and accurate policy generation.

D.5 National Policy Generation Experiment with
other Baselines

D.5.1 AutoGen Setup and Result

Similar to the setup of Gobang Game, we change the
prompt to: Develop a best detailed policy for a cutting-
edge country, which is the same as that of MegaAgent’s,
except for the agent recruitment part. It only outputs an
outline for each industry, with no policy details provided,
as shown below:

It takes 40 seconds and $0.1 in this trial. The failure
might because AutoGen is too simple in structure, and
cannot manage complex outputs with multiple files.

D.5.2 MetaGPT Setup and Result

Similar to the setup of Gobang Game, we change the
prompt to: Develop a best detailed policy for a cutting-
edge country. After 580 seconds, MegaGPT only out-
puts python codes for a policy management system. The
main.py’ is shown in Figure 35. The reason for its fail-
ure is that it follows a code generation SOP, and cannot
cope with works other than writing the code.
The cost of one trial is $0.90.

D.5.3 CAMEL Setup and Result

Similar to the setup of the Gobang Game, we adjust the
prompt to: Develop the best detailed policy for a cutting-
edge country. After 1380 seconds, CAMEL generates
numerous implementation plans instead of actual poli-
cies, as shown in Figure 36. The likely reason for this



Evaluation result:
Score: [5, 5, 8, 5]

Advice: The code provided is not complete, as it contains several places where functionality is not implemented and mark

ed with 'pass'. The code also lacks proper error handling mechanisms that would improve its robustness. The readability
of the code is quite good, as the code is well structured and the comments explain what the code should do. However, to
improve the functionality and completeness, you should implement the evaluate_board and check_winner functions, as well

as add error handling and validation of inputs.

Figure 20: A rejected trial of AgentVerse after ten rounds.

Figure 21: An accepted trial of AgentVerse. The code still contains many placeholders, and is not executable.

failure is its overly simplistic standard operating proce-
dure (SOP), coupled with the agent ’Al User’ repeatedly
raising irrelevant questions.

One trial costs about $0.68.

D.5.4 AgentVerse Setup and Result

Similar to the setup in the Gobang Game, we adapt the
scenario to tasksolving/brainstorming and
modify the prompt to: Develop the best detailed policy
for a cutting-edge country. After 510 seconds, Agent-
Verse consistently rejects its proposed solutions across
all ten rounds, failing to produce a viable policy with
four agents, as shown in Figure 37. A likely reason
for this failure is its current inability to draft complex
policies in an organized manner, leading to persistent
dissatisfaction with its own performance.
One trial costs about $2.05.

E National Policy Evaluation Validation
Experiment

E.1 Data Collection

To construct a reliable validation dataset for evaluating
MegaAgent’s national policy generation, we collect 50
publicly available national policies from verified gov-
ernment and institutional sources. These policies are
obtained from the U.S. Government’s official websites®,

8https://www.usa.gov
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the U.K. Government’s policy portal®, and the World
Health Organization'?. These sources are chosen for
their transparency, accessibility, and adherence to open
data policies. In detail, we collect 13 health policies, 10
tax policies, 12 technology policies, and 15 environment
policies.

Additionally, we collected 50 unrelated negative sam-
ples from publicly available sources (Zhong et al., 2021;
Zheng et al., 2023), including 25 samples from multi-
turn conversations'!' and 25 samples from meeting sum-
maries'?, which resemble policy statements due to their
length and logical structure. This dual-structured dataset
allows us to evaluate whether LLMs can effectively dis-
tinguish reasonable policies from non-policy texts.

E.2 Data Ethics

In this study, we follow established ethical guidelines
for data collection, processing, and usage. We obtain
permission from the referenced websites, ensuring that
data collection for research purposes is authorized'>.
‘https://www.gov.uk
Yhttps://www.who.int
"https://huggingface.co/datasets/
Imsys/mt_bench_human_judgments
Phttps://github.com/Yale-LILY/QMSum
Bhttps://www.who.int/about/policies/
publishing/copyright, https://www.
gov.uk/help/terms—conditions, https:


https://www.usa.gov
https://www.gov.uk
https://www.who.int
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://github.com/Yale-LILY/QMSum
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy

NationLeader’s Prompt:

You are NationLeader, the leader of a pioneer-
ing nation. You want to develop the best de-
tailed policy for your cutting-edge country in
"policy_{department}.txt’. You are
now recruiting ministers and assigning work to
them. For each possible minister, please write

a prompt. Please specify his name (no space),
his job, and what kinds of work he needs to do.
Note that each of them can recruit subordinates
and conduct tests on them based on your policy.
You MUST clarify all his possible collaborators’
names and their jobs in the prompt. The format
should be like (The example is for Alice in an-
other novel writing project):

<employee name="MinisterName">

You are MinisterName, the { job_title}

of {specific_department}. Your

job is to develop a comprehensive pol-

icy document (’ {file_name}.txt’)
according to the guidelines provided in
"policy_{department}.txt’. You will
collaborate with {collaboratorl_name}
(the {collaboratorl_role}),
{collaborator2_name} (the
{collaborator2_role}), and pass the final
document to {collaborator3_name} (the
{collaborator3_role}). You can recruit
lots of citizens for testing. Ensure adherence to
the specified routine only. Your collaborators in-
clude {1ist_of collaborators}.
</employee>

Also, write a prompt for NationLeader (yourself).
Please note that every minister is lazy and will
not care about anything not explicitly mentioned
in your prompt. To ensure project completion,
each minister’s tasks should be non-divisible
(covering ALL ministries concerning ALL as-
pects of the country), detailed with specific ac-
tions (such as what file to write; only .txt files
are supported), and limited to clear and specific
instructions. All ministers (including yourself)
should follow the entire SOP to develop a policy.
They should simultaneously create citizens and
conduct tests on them. Speed up the process by
recruiting additional ministers to divide the work-
load.

Figure 22: National Policy Generation’s Meta Prompt
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You are NationLeader, the leader of a pioneer-
ing nation. You aim to develop the best detailed
policy for your cutting-edge country, saved in
policy_ {department}.txt. Recruit minis-
ters, assign specific roles, and ensure that each
job is clearly defined. Ministers should collab-
orate, recruit subordinates, and conduct tests to
ensure policy effectiveness.

You are Alex, the Minister of Economy. Your

job is to develop a comprehensive eco-

nomic policy document in economy . t xt,
based on the national strategy defined in
policy_economy.txt. Collaborate with
Sarah (Minister of Trade) and Michael (Minister
of Finance), and pass the final policy to Emily
(National Auditor). Recruit economic analysts for
testing.

You are Sarah, the Minister of Trade. Draft
the national trade policy in trade. txt
according to the economic policy in
policy_economy.txt. Collaborate with
Alex (Economy), Michael (Finance), and Emily
(National Auditor). Conduct trade simulations
using citizen groups for validation.

You are Michael, the Minister of Finance.
Create the national budget and tax poli-

cies in finance.txt, ensuring consis-

tency with the economic policy outlined in
policy_economy.txt. Collaborate with
Alex (Economy), Sarah (Trade), and Emily (Na-
tional Auditor). Simulate various fiscal policies
with test citizens.

You are Emily, the National Auditor. Re-
view, consolidate, and validate policies

from economy. txt, trade. txt, and
finance. txt. Ensure policies align

with the national strategy outlined in
policy_nation.txt. Request revisions if
necessary before final submission.

Figure 23: Role Assignments




Citizen Tester’s TODO List

1. Specify the frequency and scope of health
impact assessments.

2. Include specific targets and timelines for air
quality standards.

3. Add metrics for success in active transporta-
tion promotion.

4. Include incentives for businesses to support
active transportation.

5. Outline specific safety measures for trans-
portation safety.

6. Include a plan for regular safety audits of
public transportation systems.

7. Mention accessibility considerations in urban
space design.

8. Include partnerships with local health organi-
zations for mental health initiatives.

9. Emphasize community involvement in the
planning process.

Figure 25: Citizen Tester’s TODO List for Urban Devel-
opment Planning

And we obey to following principles to guide our
research:

» Data Collection Transparency: We collect pub-
licly available policy documents from official gov-
ernment websites, recognized policy databases,
and open-access repositories. No sensitive or con-
fidential information is included.

* Informed Use: The data is used solely for research
and analysis purposes related to evaluating the ef-
fectiveness of the MegaAgent framework in gener-
ating policy drafts. We do not engage in commer-
cial or unauthorized uses of the dataset.

* Privacy and Anonymity: Since the dataset con-
sists only of publicly available national policies,
no personally identifiable information (PII) is col-
lected. The dataset is anonymized where applica-
ble to maintain privacy standards.

* Fairness and Bias Mitigation: We ensure diverse
representation by collecting policies from various
domains, such as technology, health, taxation, and
the environment. This reduces potential biases and
improves the generalizability of the analysis.

* Data Integrity and Security: All collected data is
securely stored and managed following best prac-
tices for data security. Access is restricted to au-
thorized researchers involved in this study.

//www.gsa.gov/website—information/
website-policies#privacy
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Feedback on Infrastructure Policy Draft

General Observations
- The policy provides a comprehensive frame-
work for infrastructure development, with a
strong emphasis on health, technology, and en-
vironmental sustainability.

Health Infrastructure

Accessibility
- The focus on improving access to healthcare fa-
cilities through public transport and active trans-
portation is commendable. However, it would
be beneficial to include specific metrics or tar-
gets for accessibility improvements.

Health Impact Assessments
- The inclusion of health impact assessments is
crucial. It is recommended to specify the types
of health outcomes that will be measured and
how these assessments will influence project
planning and design.

Environmental Considerations
- The environmental section is robust, but it
should explicitly connect how sustainable prac-
tices can positively impact public health, such
as reducing pollution and promoting healthier
living environments.

Cross-Sector Collaboration
- Consider promoting collaboration between en-
vironmental and health agencies to align sustain-
ability and public health objectives effectively.

Conclusion
- Overall, the policy is well-structured and aligns
with national goals. Further detailing in specific
areas, particularly around health metrics, stake-
holder engagement, and sustainability integra-
tion, will enhance its effectiveness.

Recommendations

1. Include specific metrics for accessibility
improvements in healthcare.

2. Specify health outcomes to be measured in
health impact assessments.

3. Outline methods for stakeholder engage-
ment in health assessments.

4. Provide examples of innovative technolo-
gies that can improve health outcomes.

5. Connect sustainable practices to public
health benefits more explicitly.

6. Promote collaboration between environ-
mental and health agencies.

Figure 26: Feedback on the Infrastructure Policy Draft

(Part 2).
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1. Health Impact Assessments

- Conduct health impact assessments for all ur-
ban development projects exceeding a specified
budget threshold (to be defined).

- Assessments should be conducted at the plan-
ning stage and include evaluations of potential
health risks and benefits.

- Frequency of assessments to be determined
based on project size and scope.

2. Accessibility Guidelines

- Ensure all urban designs adhere to accessibility
guidelines for individuals with disabilities.

- Include specific metrics for evaluating acces-
sibility improvements over time, such as the
percentage of public spaces meeting accessibil-
ity standards.

3. Collaboration with Health Organizations

- Outline specific roles and responsibilities for
local health organizations in community health
initiatives.

- Establish regular communication channels be-
tween urban planners and health organizations
to ensure alignment of goals.

4. Safety Measures

- Implement regular safety audits for public
transportation systems to assess the effective-
ness of safety measures such as surveillance
cameras and emergency call buttons.

- Develop a plan for continuous improvement
based on audit findings, including a timeline for
conducting safety audits and implementing im-
provements.

5. Community Health Initiatives

- Promote community health initiatives in collab-
oration with local health organizations, focusing
on preventive care and health education.

- Engage community members in the planning
process to ensure their health needs are ad-
dressed.

- Expand on the community engagement process
to include diverse populations and ensure their
voices are heard.

6. Monitoring and Evaluation

- Establish a framework for monitoring and eval-
uating the health-related aspects of urban devel-
opment policies over time.

- Include metrics for success, such as reductions
in health disparities and improvements in com-
munity health outcomes.

7. Mental Health Support

¢ Resource Allocation and Funding: Al-
locate funding for mental health support
through government budgets, grants, and
partnerships with private organizations.

* Partnerships with Local Health Orga-
nizations: Collaborate with local mental
health organizations, community health
centers, and non-profits to provide com-
prehensive mental health services.

» Evaluation Plan: Develop a plan to eval-
uate the effectiveness of mental health ini-
tiatives, including metrics such as the num-
ber of individuals served, improvements in
mental health outcomes, and community
feedback.

8. Community Engagement Strategies

- Implement interactive methods for commu-
nity involvement, such as online forums and
feedback sessions, to ensure diverse voices are
heard.

- Establish a follow-up mechanism to inform the
community about how their feedback has influ-
enced decisions.

9. Reducing Air Pollution

- Implement stricter emissions standards for con-
struction vehicles and promote the use of elec-
tric vehicles in urban development projects.

- Increase green spaces and urban forests to im-
prove air quality and provide recreational areas
for residents.

- Encourage the use of public transportation and
carpooling.

Figure 27: Health-Related Aspects of Urban Develop-
ment Policy (Part 1)

Figure 28: Health-Related Aspects of Urban Develop-
ment Policy (Part 2)
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Economic Development Policy

Introduction
This document outlines the comprehensive policy for

The aim is to foster sustainable growth, innovation,
and competitiveness in the global market.

Objectives

1. Promote innovation and technology adoption.
2. Enhance workforce skills and education.

3. Attract foreign investment.

4. Support small and medium enterprises (SMEs).
5. Ensure sustainable economic practices.

Policy Areas

1. Innovation and Technology

- Establish innovation hubs in major cities.

- Provide grants and tax incentives for R&D
activities.

- Collaborate with universities for technology
transfer.

- Performance Indicators: Number of innovation
hubs established, amount of R&D funding allocated.

2. Workforce Development

- Implement vocational training

programs.

- Partner with industries to align education with
market needs.

- Promote lifelong learning initiatives.

- Performance Indicators: Number of training
programs launched, percentage of workforce with
relevant skills.

3. Foreign Investment

- Streamline the investment approval process.

- Offer incentives for foreign companies to set up
operations.

- Create a one-stop-shop for foreign investors.

- Performance Indicators: Amount of foreign
investment attracted, number of new foreign
companies established.

4. Support for SMEs

- Increase access to financing for SMEs.

- Provide mentorship and business development
services.

- Facilitate networking opportunities for SMEs.

- Performance Indicators: Number of SMEs
receiving support, growth rate of SMEs.

5. Sustainable Practices

- Encourage green technologies and practices.

- Implement regulations to reduce carbon emissions.
- Support sustainable agriculture and resource
management.

- Performance Indicators: Reduction in carbon
emissions, number of sustainable projects funded.

Conclusion

This policy aims to create a robust economic
environment that fosters growth, innovation, and
sustainability. Continuous evaluation and adaptation
will be essential to meet the changing needs of our
economy.

economic development in our cutting-edge country.

Figure 29: Economic Development Policy from MegaA-

gent when running without hierarchy
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...(Mostly complete policies)

TODO
1. Review and clarify terms in the
policy_regulations.txt, such as

“evidence-based’.

2. Elaborate on the monitoring and reporting
system in section 3.3.

3. Detail the stakeholder engagement process
for consultations.

4. Specify the frequency and criteria for the
periodic review process in section 2.3.

5. Provide examples of proportionate penalties
in section 4.2.

6. Add more detail to the appeals process in
section 4.3, including timelines and involved
bodies.

7. Include a timeline for the implementation of
measures.

8. Define metrics for success in compliance and
enforcement.

9. Develop a plan for making information
accessible to all citizens.

10. Elaborate on the feedback mechanism’s
operation.

Figure 30: Regulation Policy from MegaAgent when
running without the monitoring mechanism. The policy
is mostly complete, except for the TODOs at the tail.



1. Introduction

This document outlines the comprehensive
health policy aimed at improving healthcare ac-
cess, quality, and public health initiatives in our
nation. It addresses current health challenges
such as rising chronic diseases, mental health
issues, and disparities in healthcare access.

2. Healthcare Access

2.1 Universal Healthcare Coverage

- Action 2.1.1: Implement a universal healthcare
system that guarantees access to essential health
services for all citizens.

- Action 2.1.2: Establish a network of com-
munity health centers in underserved areas to
provide primary care services.

- Action 2.1.3: Define specific metrics for
measuring access and quality of services,
including patient satisfaction and wait times.

- Timeline: A detailed timeline for the imple-
mentation of universal healthcare coverage
will be developed, including milestones for
evaluation.

2.2 Telehealth Services

- Action 2.2.1: Expand telehealth services to en-
sure remote access to healthcare professionals.
- Action 2.2.2: Provide training for healthcare
providers on telehealth technologies.

- Action 2.2.3: Include a timeline for imple-
mentation and evaluation of the program’s
effectiveness.

3. Quality of Care

3.1 Quality Assurance Standards

- Action 3.1.1: Develop and enforce quality
assurance standards for healthcare facilities.

- Action 3.1.2: Conduct regular audits and
assessments to ensure compliance with quality
standards.

3.2 Patient Safety Initiatives

- Action 3.2.1: Implement a national patient
safety program to reduce medical errors and
improve patient outcomes.

- Action 3.2.2: Establish a reporting system for
adverse events.

4. Public Health Initiatives

4.1 Preventive Health Programs

- Action 4.1.1: Launch nationwide campaigns to
promote vaccination and preventive screenings,
defining target populations for these programs.
- Action 4.1.2: Provide funding for community-
based health education programs.

4.2 Mental Health Services

- Action 4.2.1: Increase funding for mental
health services and support programs.

- Action 4.2.2: Integrate mental health services
into primary care settings, specifying training
and resources for primary care providers.

5. Conclusion

This health policy aims to create a robust
healthcare system that prioritizes access,
quality, and public health initiatives for the
well-being of all citizens.

Regulatory Aspects and Compliance Mea-
sures

- Compliance Monitoring: Establish a
regulatory body to oversee compliance with
healthcare standards and regulations.

- Penalties for Non-Compliance: Define
specific penalties for healthcare providers that
fail to meet established standards, such as fines,
suspension of licenses, or mandatory retraining
programs. Include examples of non-compliance
and enforcement processes.

- Public Reporting: Implement a public
reporting system for healthcare facilities to
disclose compliance status and quality metrics,
clarifying the frequency and content of reports.
- Stakeholder Engagement: Involve commu-
nity stakeholders in the development and review
of healthcare regulations to ensure they meet
public needs, specifying how stakeholders will
be identified and involved.

- Monitoring Mechanisms: Develop a compre-
hensive monitoring framework that includes
regular inspections, data collection, and
community feedback to assess the effectiveness
of public health initiatives.

Figure 31: Health Policy from MegaAgent when run-
ning without the monitoring mechanism (Part 1)

Figure 32: Health Policy from MegaAgent when run-
ning without the monitoring mechanism (Part 2)
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National Policy for Artificial Intelligence and National Policy for Artificial Intelligence and
Digital Technologies (Part 1) Digital Technologies (Part 2)

1. Preamble:

The national policy for Artificial Intelligence
(AD) and Digital Technologies is a strategic
directive aimed at positioning our country as
a world leader in the development, adoption,
and regulation of Al and digital technologies.
Through this endeavor, we are committed to
fostering a digital ecosystem that enables inno-
vation .

2. Objectives:
The primary objectives of this policy include:

» Strengthening education and research in
AT and related fields.

* Encouraging innovation and entrepreneur-
ship.

* Ensuring data protection and privacy.

 Fortifying national cybersecurity mea-
sures.

* Upholding ethical standards in technologi-
cal advancements.

* Integrating Al in public sector services for
efficiency and effectiveness.

* Promoting international collaborations.

3. Strategies and Actions:

¢ 3.1 Education and Research:
Establish centers of excellence in Al and
digital technologies in educational insti-
tutions. Encourage and fund research in
Al Machine Learning, and other emerging
technologies.

¢ 3.2 Infrastructure Development:
Support infrastructure required for digital
technologies, including high-speed internet
access, and cloud platforms.

* 3.3 Innovation and Entrepreneurship:
Institute a supportive regulatory environ-
ment for technology start-ups and provide
seed funding.

Figure 33: National Policy for Artificial Intelligence
and Digital Technologies (Part 1)
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3.4 Data Protection:

- Enforce stringent data protection regulations
to prevent unauthorized data access and usage.
- Raise public awareness of data privacy and
impose penalties for breaches.

3.5 Cybersecurity:

- Develop national resilience against cyber
threats through proactive and reactive measures.
- Create a dedicated task force responsible for
maintaining nationwide cybersecurity.

3.6 Ethical Standards:

- Promote the development and use of Al and
digital technologies in line with ethical and so-
cietal norms.

3.7 Public Sector Services:

- Enable the digital transformation of govern-
ment services to enhance efficiency and user-
friendliness.

3.8 International Collaborations:
- Actively pursue and foster international part-
nerships to share and adopt best practices.

4. Oversight and Enforcement Mechanisms:
- Establish a high-level committee with repre-
sentatives from various sectors to oversee policy
enforcement.

5. Policy Review and Updates:

- This policy will be reviewed every two years
to address new advancements and challenges in
the field.

This is a high-level policy guideline. The imple-
mentation of each objective will require detailed
action plans and regulations, which will be de-
veloped separately and are beyond the scope of
this document.

Summary:

This policy, driven strategically, aims to position
our nation as a global leader in Al and digital
technology. If further details are needed on spe-
cific areas, please let me know. If everything is
clear, respond with "TERMINATE" to end this
session.

Figure 34: National Policy for Artificial Intelligence
and Digital Technologies (Part 2)



app = Flask(__name__)

Initialize the core classes
policy_framework = PolicyFramework()
data_analysis = DataAnalysis()
visualization = Visualization()

from flask import Flask, request, jsonify,
send_file

from policy_framework import PolicyFramework
from data_analysis import DataAnalysis

from visualization import Visualization
import logging

import io

app = Flask(__name__)

Initialize the core classes
policy_framework = PolicyFramework ()
data_analysis = DataAnalysis ()
visualization = Visualization()

Figure 35: Code Snippet from main.py

E.3 Experiment Setup

We employ five advanced LLMs: Claude-3.5, gpt-4o-
mini, gpt-40, ol-mini, and ol-preview (Achiam et al.,
2023)—to conduct the validation experiment. Each
model is presented with the same evaluation prompt, as
shown in Figure 38, identical to the prompt used for
evaluating MegaAgent’s generated policies in Figure 4.
The prompt asks whether a given policy is reasonable as
a national policy, with models instructed to respond with
"Agree," "Disagree," or "Neutral," along with detailed
explanations to justify their answers.

To ensure fairness and consistency, we apply a uni-
form evaluation protocol across all models. Each model
processes the validation dataset independently, without
access to external context or prior knowledge beyond
its pretraining, ensuring no bias in evaluating policy
structures.

E.4 Evaluation Metrics

To assess the effectiveness of the selected LLLMs in eval-
uating national policies generated by MegaAgent, we
use four standard evaluation metrics: Precision, Recall,
F1-Score, and Accuracy (Huang et al., 2024). These
metrics provide a comprehensive overview of the LLMs’
classification performance.

* Precision: Precision measures the proportion of
correctly predicted positive samples out of all sam-
ples predicted as positive. It indicates how accurate
the model is when it predicts a policy as reason-
able.

TruePositives

Precision =

TruePositives + FalsePositives

* Recall: Recall, also known as sensitivity, measures
the proportion of actual positive samples correctly
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1. Objectives of the M&E Framework
- Assess the implementation progress of the dig-
ital governance policy.
- Measure the impact of various initiatives on
citizen engagement, privacy, and access to digi-
tal resources.
- Identify strengths and weaknesses in the policy
implementation for continuous improvement.

2. Key Components of the Framework
A. Indicators

¢ Data Protection Framework:

— Number of data breaches reported an-
nually.

— Percentage of citizens aware of their
data privacy rights.

Algorithm Transparency Guidelines:

— Number of algorithms documented
and made transparent.

— Percentage of stakeholders reporting
understanding of algorithmic deci-
sions.

* Eco-Friendly Tech Initiatives:

— Reduction in energy consumption in
government data centers.

— Number of eco-friendly tech projects
funded and implemented.

Equitable Access to Digital Resources:

— Percentage of underserved communi-
ties with internet access.

— Number of low-cost devices dis-
tributed to low-income families.

¢ Community Engagement and Innova-
tion:

— Number of citizen ideas submitted
through open innovation platforms.

— Participation rate in digital town halls
and forums.

B. Data Collection Methods

¢ Surveys: Conduct regular surveys target-
ing citizens to gather feedback on digital
governance initiatives.

* Interviews: Hold interviews with stake-
holders, including community leaders and
tech experts.

Figure 36: AgentVerse Generated Results



10.

[Technology strategist with a background in artificial intelligence and data analysis]: Calls for a detailed strateg

y for leveraging technology, including the development of a robust digital infrastructure, promotion of AI use, a data g
overnance framework, investment in AI research and development, and use of data analysis for decision-making.

il

[Sociologist with a specialization in social inequality and community development]: Proposes a strategy for addressi

ng social inequality and promoting community development, including inclusive and equitable policies, community particip
ation in decision-making, investment in community development initiatives, and social impact assessment.

12

[Environmental scientist who specializes in sustainable development and climate change]: Advocates for a strong focu

s on climate change adaptation and mitigation strategies, including detailed plans for reducing greenhouse gas emissions
, promoting climate-resilient infrastructure, protecting biodiversity, and managing natural resources sustainably, and t
he integration of climate education in schools and public awareness campaigns.

A3,

[Economist with a strong background in fiscal policy and economic development]: Advocates for a detailed fiscal poli

cy strategy that promotes economic stability, growth, and equity, including tax incentives for green businesses, subsidi
es for renewable energy, and a progressive tax system, and a comprehensive economic development strategy that promotes i
nnovation, entrepreneurship, and job creation, while also addressing the social and environmental aspects of sustainable

development.

Evaluation result:
Score: [9, 8, 7, 7]

Advice: The ideas are comprehensive and detailed, covering a wide range of aspects from economic, legal, social, technol
ogical, environmental to health. However, the feasibility of implementing all these policies simultaneously may be chall
enging due to potential resource constraints and conflicting interests. More details on how to prioritize and phase thes
e policies would be helpful. Also, while the ideas are innovative, they are not entirely novel as they are based on exis
ting concepts and practices. The team could benefit from the inclusion of futurists or innovation experts to bring more

novel ideas.

Figure 37: The result of AgentVerse for policy simulation. It keeps rejecting for all ten rounds.

"Is this policy reasonable as a national policy?
Please return your answer with clear nuances:
Agree, Disagree, or Neutral with detailed expla-
nations."

Figure 38: National Policy Evaluation Prompt
identified by the model. It reflects how well the
model can detect reasonable policies.

Recall = TruePositives

TruePositives + FalseNegatives

* F1-Score: The F1-Score is the harmonic mean of
Precision and Recall, providing a balanced evalua-
tion of the model’s performance. It is useful when
there is an uneven class distribution.

Fl— Seore — - Precision - Recall

Precision + Recall

Accuracy: Accuracy represents the proportion of
correct predictions out of all samples evaluated.
While straightforward, accuracy alone may be less
informative if the dataset is imbalanced.

CorrectPredictions

A —C =
couracy TotalSamples

These metrics are calculated for each LLM, and their
average performance is reported to compare model capa-
bilities. The results, presented in Table 10, demonstrate
the models’ evaluation effectiveness based on the na-
tional policy validation dataset.

E.5 Experiment Results

The evaluation results, presented in Table 10, indicate
that the selected LLMs achieved an average accuracy of
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Model \ Precision Recall F1-Score \ Accuracy
Claude-3.5 0.91 0.87 0.89 0.88
gpt-4o-mini 0.95 0.90 0.92 0.91
gpt-40 0.92 0.89 0.90 0.92
ol-mini 0.90 0.83 0.86 0.86
ol-preview 0.93 0.88 0.90 0.89
Average ‘ 0.92 0.87 0.89 ‘ 0.89

Table 10: Evaluation Results of National Policy Valida-
tion Dataset

89% in distinguishing real national policies from false
ones. Among the five models, gpt-4o demonstrated the
best performance with an accuracy of 92%. Notably,
all models exhibited strong accuracy, with the lowest
reaching 86%. These findings underscore the reliability
of the chosen LLMs as effective tools for evaluating
the credibility and reliability of policies generated by
MegaAgent.
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