
Scaling Gaussian Processes with Derivative
Information Using Variational Inference

Misha Padidar 1, Xinran Zhu1 Leo Huang1,
Jacob R. Gardner2, David Bindel1

1Cornell University, (map454, xz584, ah839, bindel)@cornell.edu
2University of Pennsylvania, jacobrg@seas.upenn.edu

Abstract

Gaussian processes with derivative information are useful in many settings where
derivative information is available, including numerous Bayesian optimization
and regression tasks that arise in the natural sciences. Incorporating derivative
observations, however, comes with a dominating O(N3D3) computational cost
when training on N points in D input dimensions. This is intractable for even
moderately sized problems. While recent work has addressed this intractability in
the low-D setting, the high-N , high-D setting is still unexplored and of great value,
particularly as machine learning problems increasingly become high dimensional.
In this paper, we introduce methods to achieve fully scalable Gaussian process
regression with derivatives using variational inference. Analogous to the use of
inducing values to sparsify the labels of a training set, we introduce the concept of
inducing directional derivatives to sparsify the partial derivative information of a
training set. This enables us to construct a variational posterior that incorporates
derivative information but whose size depends neither on the full dataset size N
nor the full dimensionality D. We demonstrate the full scalability of our approach
on a variety of tasks, ranging from a high dimensional stellarator fusion regression
task to training graph convolutional neural networks on Pubmed using Bayesian
optimization. Surprisingly, we find that our approach can improve regression
performance even in settings where only label data is available.

1 Introduction

Gaussian processes (GPs) are a popular tool for probabilistic machine learning, widely used in
scenarios where uncertainty quantification for regression is necessary [27, 38, 14]. When used for
Bayesian optimization (BO) [18, 30], or in some regression settings found in the physical sciences like
estimation of arterial wall stiffness, derivative information may be available [37, 34]. In these settings,
we have not only noisy function values y = f(x) + ε but also noisy gradients ∇y = ∇xf(x) + ε at
some set of training points X ∈ RN×D. On paper, GPs are ideal models in these settings, because
they allow for training on both labels y and gradients∇y in closed form.

Though analytically convenient, Gaussian process inference with derivative information scales poorly:
computing the marginal log likelihood and predictive distribution for an exact GP in this setting
requires O(N3D3) time and O(N2D2) memory. Recent work has addressed this scalability in
certain settings, e.g. for many training points in a low-dimensional space [5] or for few training points
in a high-dimensional space [3]. Despite these advances, training and making predictions for a GP
with derivatives remains prohibitively expensive in regimes where both N and D are on the order of
hundreds or even thousands.

We introduce a novel method to scale Gaussian processes with derivative information using stochastic
variational approximations. We show that the expected log likelihood term of the Evidence Lower

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Bound (ELBO) decomposes as a sum over both training labels and individual partial derivatives. This
lets us use stochastic gradient descent with minibatches comprised of arbitrary subsets of both label
and derivative information. Just as variational GPs with inducing points replace the training label
information with a set of learned inducing values, we show how to sparsify the derivative information
with a set of inducing directional derivatives. The resulting algorithm requires only O(M3p3) time
per iteration of training, where M � N and p� D.

We demonstrate the quality of our approximate model by comparing to both exact GPs with derivative
information and DSKI from [5] on a variety of synthetic functions and a surface reconstruction task
considered by [5]. We then demonstrate the full scalability of our model on a variety of tasks that
are well beyond existing solutions, including training a graph convolutional neural network [16] on
Pubmed [28] with Bayesian optimization and regression on a large scale Stellarator fusion dataset
with derivatives. We then additionally show that, surprisingly, our variational Gaussian process
model augmented with inducing directional derivatives can achieve performance improvements in
the regression setting even when no derivative information is available in the training set.

2 Background

In this section we review the background on Gaussian processes (GP) (Section 2.1), Gaussian
processes with derivative observations (Section 2.2), and variational inference inducing point methods
for training scalable Gaussian processes (Section 2.3).

Derivative notation. Throughout this paper for compactness we abuse notation slightly and use
∂jyi to refer to the jth element of ∇yi. In this particular case, this would correspond to the partial
derivative observation in dimension j for training example xi. We also use ∂vyi to refer to the
directional derivative in the direction v, i.e. ∇y>i v.

2.1 Gaussian processes

A Gaussian process (GP) is a distribution over functions f ∼ GP(µ(x), k(x,x′)) specified by mean
and covariance function µ, k [23]. Given data points X = {x1, ...,xN} and function observations
f = {f(x1), ..., f(xN)}, placing a GP prior assumes the data is normally distributed with f ∼
N (µX ,KXX) where µX is the vector of mean values atX andKXX ∈ RN×N is a covariance matrix.
Conditioning on noisy observations y = f + ε where ε ∼ N (0, σ2I) induces a posterior distribution
p(f∗|y) over the value of f at points x∗, which is Gaussian with mean µ(x∗) − Kx∗X(KXX +
σ2I)−1(f − µX) and covariance k(x∗,x∗) − Kx∗X(KXX + σ2I)−1KXx∗ . Thus, standard GP
inference takes O(N3) time. Hyperparameters such as σ, θ are generally estimated by Maximum
Likelihood. The log marginal likelihood

L(X, θ, σ|y) = −1

2
(y−µX)T (KXX +σ2I)−1(y−µX)− 1

2
log |KXX +σ2I| − n

2
log(2π) (1)

can be optimized with methods like BFGS [19] at a complexity of O(N3) flops per iteration.

2.2 Gaussian processes with derivatives

GPs can leverage derivative information to enhance their predictive capabilities. Notably, as differen-
tiation is a linear operator, the derivative of a GP is a GP [20]. Derivative observations can then be
naturally included in a GP by defining a multi-output GP over the tuple of function observations and
partial derivative observations (y,∇y) [24]. The GP has mean and covariance functions

µ∇(x) =

[
µ(x)
∇xµ(x)

]
, k∇(x,x′) =

[
k(x,x′)

(
∇x′k(x,x′)

)T
∇xk(x,x′) ∇2k(x,x′)

]
. (2)

While including partial derivative observations can enhance prediction of f , and vice versa, a price is
paid in the computational cost, as training and inference of GPs with derivatives scale as O(N3D3).
This scalability issue has been addressed in the low D setting, and is discussed in section 3.

2.3 Stochastic Variational Gaussian Processes

Inducing point methods [29, 22, 33, 10] achieve scalability by introducing a set of inducing points: an
“artificial data set” of points Z = [zj]

M
j=1 with associated inducing values, u = [uj]

M
j=1. Stochastic

2

Variational Gaussian Processes (SVGP) [9] augment the GP prior p(f | X)→ p(f | u,X,Z)p(u | Z)
and then learn a variational posterior q(u) = N (m,S). Inference for an observation y∗ at x∗ takes
time O(M3):

q(y∗) = N (y∗;Kx∗ZK
−1
ZZm, σf (x

∗)2 + σ2) (3)

where σf (x)2 = Kxx − KxZK
−1
ZZKZx + KxZK

−1
ZZSK

−1
ZZKZx is the data-dependent variance.

Using Jensen’s inequality and the variational ELBO [10, 11], SVGP develops a loss that is separable
in the training data and amenable to stochastic gradient descent (SGD) [25], as the Kullback-Leibler
(KL) divergence regularization only depends on u

ELBOSVGP =

N∑
i=1

{
logN (yi|µf (xi), σ

2)− σf (xi)
2

2σ2

}
− KL [q(u)||p(u)] . (4)

In equation (4), µf (xi), σf (xi)
2 are the predicted mean and variance, respectively. The ELBO is

maximized over the variational parameters m,S and the GP hyperparameters θ. Training with SGD
on mini-batches of B data points brings the time per iteration to O(BM2 +M3).

While SVGP scales well, its predictive variances are often dominated by the likelihood noise [13].
Modeling derivatives necessarily involves heteroscedastic noise, or at least different noise for the
function values and gradients, which may make SVGP with a Gaussian likelihood ill-suited to the
task. The Parametric Gaussian Process Regressor (PPGPR) achieves heteroscedastic modeling by
using the latent function variances without modifying the likelihood by symmetrizing the dependence
of the loss on the data-dependent variance σf (xi)

2 term

ELBOPPGPR =

N∑
i=1

logN (yi|µf (xi), σ
2 + σf (xi)

2)− KL[q(u)||p(u)]. (5)

In Section 5, we evaluate our approach as an extension to both SVGP and PPGPR, and find that
PPGPR gives significant performance gains.

3 Related Work

DSKI and DSKIP [5], derivative extensions of SKI [36] and SKIP [7], are among the first methods to
address scaling Gaussian processes with derivative information in a low dimensional setting. DSKI
and DSKIP approximate derivative kernels by differentiating interpolation kernels ∇k(x,x′) ≈∑

i∇wi(x)k(xi,x
′) where wi(x) are interpolation weights used in SKI. Like SKI, DSKI suffers

from the curse of dimensionality, and matrix-vector products cost O(ND6D + M logM) time.
DSKIP improves the dependence on D, but still costs O(D2(N +M logM + r3N logD)) to form
the approximate kernel matrices, where r � N is the effective rank of the approximation. Thus
while these methods exhibit high model fidelity, they are limited to low dimensional settings.

Recently [3] introduced an exact method for training GPs with derivatives in time O(N2D+ (N2)3),
which improves on the naive O(N3D3) when N < D. This method is not applicable as N grows
moderately large, while our paper chiefly focuses on the high-N and high-D setting.

Bayesian optimization with derivatives was considered in [37]. Here, the authors consider condition-
ing on directional derivatives to achieve some level of scalability, but the dataset sizes considered
never exceed N of around 200 or D of around 8. Distinct from their consideration of directional
derivative information, we will be equipping each inducing point in a sparse GP model with its own
set of distinct directional derivatives, allowing the model to learn derivatives in many directions in
regions of space where there are a large number of inducing points.

4 Methods

Our goal is to enable training and inference on data sets with large N and D when derivatives
are available. We will present our method in three steps. First, we describe a naive adaptation of
stochastic variational Gaussian processes to the setting with derivatives. Second, we argue that this
adaptation again scales poorly in D. Finally, we show that using additional sparsity on the derivatives
gives us scalability in both N and D.

3

4.1 Variational Gaussian processes with derivatives.

As described in Section 2.3, SVGP creates a dataset of inducing points Z = [zj]
M
j=1 with labels (or

inducing values) u = [uj]
M
j=1. Assume we are given a dataset X = [xi]

N
i=1 with labels y = [yi]

N
i=1

and derivative observations ∇y = [∇yi]Ni=1. A natural extension of SVGP to this data is to augment
the standard inducing dataset with inducing derivatives,∇u = [∇uj]Mj=1, each of length D, so that
each inducing point becomes a triple (zj , uj ,∇uj). This corresponds to a new augmented GP prior:

p(f ,∇f | X)→ p(f ,∇f | u,∇u,X,Z)p(u,∇u | Z). (6)

Analogous to SVGP, we introduce a variational posterior:

q(u,∇u) = N
(
m∇,S∇

)
= N

([
m
∇m

]
,

[
S ∇S
∇S> ∇2S

])
. (7)

Here, m and∇m are trainable parameters learned by maximizing the ELBO. We abuse notation and
call the second portion of the vector∇m because these variational mean parameters correspond to
the M ×D inducing derivative values. This also holds for the matrices∇S and ∇2S.

With this augmented variational posterior, the ELBO becomes:

Eq(f ,∇f) [log p(y,∇y | f ,∇f)] − KL(q(u,∇u)||p(u,∇u)). (8)

Assuming the typical iid Gaussian noise likelihood for regression and expanding the first term further:

Eq(f ,∇f) [log p(y,∇y | f ,∇f)] =

N∑
i=1

Eq(fi) [log p(yi | fi)] +

N∑
i=1

D∑
j=1

Eq(∂jfi) [log p(∂jyi | ∂jfi)] .
(9)

Here, we have used linearity of expectation and the conditional independence between yi and ∂jfi
given fi to show that the term of the ELBO that depends on training data decomposes as a sum over
labels yi and partial derivatives ∂jyi. Thus, minibatches can contain an arbitrary subset of labels
(xi, yi) and partial derivatives (xi, ∂jyi), and the minibatch size B remains independent of N and D.

The moments of q(f ,∇f) =
∫
p(f ,∇f | u,∇u)p(u,∇u) du d∇u are similar to those in SVGP, but

the kernel matrices have been augmented with derivatives (i.e., using the kernel k∇(x,x′)):

µf ,∇f = K∇XZ

(
K∇ZZ

)−1
m∇, Σf ,∇f = K∇XX +K∇XZK

∇−1
ZZ (S∇ −K∇ZZ)

(
K∇ZZ

)−1
K∇ZX . (10)

Here, K∇XX is a B ×B matrix that corresponds to a randomly sampled subset of label and partial
derivative information. K∇XZ is B ×M(D + 1), and both S∇ and K∇ZZ are M(D + 1)×M(D +
1). Similarly, the KL divergence KL(q(u,∇u)||p(u,∇u)) involves multivariate Gaussians with
covariance matrices of size M(D + 1)×M(D + 1). As a result, the running time complexity of an
iteration of training under this framework is O(M3D3) which, grows rapidly with dimension.

4.2 Variational Gaussian processes with directional derivatives.

The procedure above is deceptively expensive despite the asymptotic complexity of a single iteration.
Because a minibatch of size B contains an arbitrary subset of the N labels and ND partial derivatives
rather than simply a subset of the N labels, each epoch in the above procedure must process roughly
N+ND

B minibatches, rather than the usual N
B . Additionally, because K∇ZZ is of size M(D + 1) ×

M(D + 1), the above procedure is also analogous to SVGP using M(D + 1) inducing points rather
than using M . While minibatch training adapts readily to N(D + 1) training examples, it is rare to
use significantly more than 1000 inducing points, which can require specialized numerical tools to
make scale even to M = 10000 [21]. In practice, M(D + 1) would rapidly result in matrices K∇ZZ
that make training infeasibly slow.

To make the matrix K∇ZZ not directly scale with the input dimensionality, we replace the induc-
ing derivatives from equation (7) with inducing directional derivatives. Rather than the triplet
(zi, ui,∇ui) with ∇ui having dimension D, each inducing point is now equipped with a set of p
distinct directional derivatives (zi, ui, ∂Vi1ui, ..., ∂Vipui) in the directions vi1, ...,vip. We include
the inducing directions V = [V1 · · ·VM] ∈ RMp×D as trainable parameters.

4

GPs with Directional Derivatives. Similar to how we built the derivative kernel matrix in Section
2.2, we may define a multi-output GP over an unknown function and its directional derivatives. For a
point zi and some direction vi and another point and direction zj and vj the directional-derivative
covariance function is:

k∂vi
∂vj (zi, zj) =

[
k(zi, zj) ∇zj

k(zi, zj)
>vj

v>i ∇zi
k(zi, zj) v>i ∇2

zizj
K(zi, zj)vj

]
, (11)

which is of size 2× 2 rather than (D + 1)× (D + 1) as with k∇(·, ·).

GivenMp inducing directions V, p per each of theM inducing points, the relevant kernel matrices (1)
between all pairs of inducing values and directional derivatives, KZZ , and (2) between all inducing
values and training examples with full partial derivative observations, KXZ , are:

KZZ =

[
KZZ ∇ZKZZV

V
>∇ZKZZ V

>∇2
ZZKZZV

]
, KXZ =

[
KXZ ∇ZKXZV
∇XKXZ ∇2

ZKXZV

]
, (12)

the first of which has shape M(p+ 1)×M(p+ 1). Constructing KZZ ,KXZ is inexpensive as we
compute them directly from the directional derivative kernel (11), rather than computing the full
gradient kernel k∇ and multiplying by the directions V which would incur a cost of O(M2D2).

Variational inference with this model is nearly identical to inference with full inducing gradients. We
define a variational posterior, this time over the M(p+ 1) inducing values and directional derivatives:

q(u, ∂Vu) = N
(
m,S

)
(13)

where m ∈ RM(p+1) and S ∈ RM(p+1)×M(p+1). The model is trained by optimizing the variational
ELBO

Eq(f ,∇f) [log p(y,∇y | f ,∇f)] − KL(q(u, ∂Vu)||p(u, ∂Vu)). (14)

over the variational parameters m,S, the inducing points Z, the inducing directions V, and the hy-
perparameters. Because the structure of the ELBO remains unchanged, the training labels and partial
derivatives can again be subsampled to form minibatches of size B, yielding KXZ ∈ RB×M(p+1).
Inference proceeds by computing q(f ,∇f) from (10) by replacing the kernel matrices K∇XZ and
K∇ZZ with our directional derivative variants KXZ and KZZ .

Learning inducing directions The above algorithm requires the selection of a set V =
[V1 · · ·VM] of inducing directions. In the setting where all inducing points have a shared set
of p global inducing directions, there is an optimal fixed choice for the inducing directions [2, 5].
However, for a variational GP with directional derivatives, sharing inducing directions does not
improve scalability as the size of the kernel matrices KXZ ,KZZ is unchanged from the case where
each inducing point has p distinct inducing directions. Thus we may improve model flexibility and
performance by allowing each inducing point to have distinct directions at no additional computation
complexity (see the supplementary materials for a comparison against shared inducing directions). In
this case, a principled approach to setting the inducing directions is to include them as a set of mpd
trainable parameters, and learn them when maximizing the ELBO (14). Learning inducing directions
allows nearby inducing points to balance the directions from which they capture information, and
encourages the model to capture the locally most informative directions. We adopt this approach in
our experiments in section 5.

Derivative modeling with p� D. A key feature of this framework is that it allows for the use of
a different number p of directional derivatives per inducing point than the number of partial derivative
observations per training point. Particularly for kernel matrices involving training examples with full
partial derivative information, using p� D directional derivatives keeps the matrix dimension small
and independent of D. Nevertheless, allowing each inducing point to have its own set of learnable
directions enables the model to learn many derivative directions where necessary in the input space
by placing multiple inducing points with different directions nearby. A notable case is when each
inducing point zi has the p = D canonical inducing directions Vi = I , through which we recover
the full variational GP with derivatives as described in section 4.1.

5

Complexity. For a minibatch size B, when learning p directional derivatives per inducing point,
the matrices KXZ and KZZ become B ×M(p+ 1) and M(p+ 1)×M(p+ 1) respectively. As
a result, the time complexity of variational GP inference with directional derivatives is O(M3p3).
When using p directions per inducing point, this is computationally equivalent to running SVGP
with p+ 1 times as many inducing points. To counteract the additional matrix size, one may use the
whitened formulation of variational inference [17] for GPs when computing equation (10) and use
contour integral quadrature as in [21].

5 Experiments

In this section we evaluate the empirical performance of variational GPs with directional derivatives.
In sections 5.1 and 5.2 we benchmark the performance of our method on small regression problems
where we can compare to prior work such as exact GPs with derivatives and DSKI. In sections 5.3,
5.4, and 5.5 we compare to variational GPs without derivatives on high dimensional regression and
Bayesian optimization (BO) tasks which are well beyond the scalability means of all prior work
we are aware of. In section 5.6 we perform an ablation study to understand the effect of increasing
the number of inducing directions. In section 5.7 we investigate the value of learning directional
derivative information even when derivative observations are not available. All of our GP models
use a constant prior and Gaussian kernel (or associated directional derivative kernel) and were
accelerated through GPyTorch [8] on a single GPU. Code is available at https://github.com/
mishapadidar/GP-Derivatives-Variational-Inference.

5.1 Synthetic functions

In this section, we consider low-dimensional regression with derivatives on test functions including
Branin (2D), SixHumpCamel (2D), Styblinksi-Tang (2D) and Hartmann (6D) from [32], a mod-
ified 20D Welch test function [1] (Welch-m)1, and a 5D sinusoid f(x) = sin(2π||x||2) (Sin-5).
We compare variational GPs without derivatives (SVGP, PPGPR) to variational GPs with deriva-
tives (GradSVGP, GradPPGPR), exact GPs with derivatives (GradGP), non-variational GPs with
derivatives (DSKI), and variational GPs with p = 2 directional derivatives per inducing point
(DSVGP2,DPPGPR2). Exact and variational GPs with full derivatives are only tractable in low-
dimensional settings due to the scalability issues mentioned in sections 3 and 4.1. Therefore, to apply
GradSVGP and GradPPGPR on the 20D Welch-m function, we first perform dimension reduction
onto a low dimensional active subspace [2], similar to [5]. To show the limitation of GradSVGP and
GradPPGPR, we modified the Welch function to have a low-quality low-dimensional active subspace.

In this low-dimensional setting, we find that variational GPs with directional derivatives, DSVGP2 and
DPPGPR2, perform comparably to the methods that incorporate full derivatives (DKSI, GradSVGP,
GradPPGPR, GradGP); see Table 1. In Figure 1 we compare the negative log likelihood of each
method as the inducing matrix size grows on the Sin-5 and Hartmann test functions. We find
that DSVGP2 and DPPGPR2 often outperform other methods due to their ability of incorporating
derivative information while only modestly increasing the inducing matrix size.

5.2 Implicit Surface Reconstruction

In order to further validate the fidelity of our method’s derivative modeling, we consider the surface
reconstruction task considered in [5]. We compare to DSKI with the goal of achieving comparable
performance, as DSKI is nearly exact for this problem. In Figure 2, we reconstruct the Stanford
Bunny by training DSVGP with p = 3 inducing directions for 1200 epochs and DSKI on 11606
noisy observations of 34818 locations and corresponding noise-free surface normals (gradients of the
bunny level sets). DSVGP smoothly reconstructs the bunny and is comparable to DSKI.

5.3 Training Graph Convolutional Neural Networks with Bayesian Optimization

In this section, we demonstrate the full scalability of our approach by training the D = 4035
parameters of a two layer graph convolutional neural network (GCN) [16] on the node classification

1The Welch test function has intrinsically a 6D active space. We modified it to have a low-quality 6D active
subspace and to show the limitation of GradSVGP and GradPPGPR.

6

https://github.com/mishapadidar/GP-Derivatives-Variational-Inference
https://github.com/mishapadidar/GP-Derivatives-Variational-Inference

Branin Camel StyTang Sin-5 Hartmann Welch-m
RMSE
(1e-3) NLL RMSE

(1e-3) NLL RMSE
(1e-3) NLL RMSE

(1e-1) NLL RMSE
(1e-1) NLL RMSE

(1e-2) NLL

SVGP 1.45 -3.12 5.28 -2.95 3.64 -3.06 6.64 0.99 1.02 -0.69 16.20 -0.39
PPGPR 1.60 -3.21 6.46 -3.10 4.64 -3.17 4.35 0.35 3.02 -1.28 18.08 -0.56

GradGP 15.4 -0.87 25.1 -0.22 44.4 -0.82 2.59 -.23 0.50 -0.74 16.3 -0.38
GradSVGP 0.35 -3.65 2.09 -3.62 1.00 -3.65 4.85 2.31 2.08 0.59 18.94 42.82

GradPPGPR 0.67 -3.32 23.1 -3.14 2.91 -3.30 4.83 0.37 3.95 -1.16 18.92 -0.25
DSVGP2 0.29 -3.10 1.82 -2.50 0.86 -2.97 3.03 1.87 0.92 -0.75 3.74 -0.74

DPPGPR2 0.47 -3.32 8.43 -3.24 1.75 -3.31 4.30 0.05 2.69 -1.64 26.08 -0.71
DSKI 0.91 -4.47 3.85 -3.00 1.59 -4.74 N/A N/A N/A N/A N/A N/A

Table 1: Regression results on Branin (2D), SixHumpCamel (2D), Styblinksi-Tang (2D), Sin-5 (5D),
Hartmann (6D) and Welch-m (20D), each with 10000 training and 10000 testing points. Following
[5], we train GradGP on 10000/(D + 1) points. The inducing matrix size is 800 for all variational
inducing point methods, while DSKI is trained on 800 inducing points per dimension. See the
supplementary material for error bars.

Figure 1: Negative Log Likelihood (NLL) for the various GPs when using different inducing matrix
sizes to regress on Sin-5 (Left) and Hartmann (Right). DPPGPR2 often outperforms other methods
due to its ability to incorporate derivative information while only modestly increasing the inducing
matrix size. DSKI is removed because it does not have comparable matrix size. In both figures,
shaded regions correspond to standard errors.

Figure 2: Surface reconstruction of the Stanford bunny: (Left) Original surface, (Middle) DSVGP
with 800 inducing points and 3 directions, (Right) D-SKI with 303 inducing grid points.

task of the Pubmed citation dataset [28] using Bayesian optimization. The Bayesian optimization
setting compounds the need for scalability, as the GP model must be retrained after each batch of
data is acquired. For example, in the last 500 of 2500 optimization iterations with a batch size of 10,
a GP must be fit 50 times to datasets with N(D + 1) ≈ 2500(4035 + 1) > 106 combined function
and partial derivative labels. Any one of these datasets would be intractable to existing methods for
training GPs with gradient observations.

7

For this experiment, we make no effort to modify the Bayesian optimization routine itself to account
for the derivative information (e.g., as in [37]), as this would confound the performance improvements
achieved by higher fidelity modelling by incorporating derivative information. Instead, we focus
only on swapping out the underlying Gaussian process model. We consider TuRBO [6] as a base
Bayesian optimization algorithm which we run with an exact GP, PPGPR, DPPGPR1, DPPGPR2
surrogate models. See supplementary material for p = 3 results. We additionally include traditional
BO with the Lower Confidence Bound (LCB) [31] acquisition function, Adam [15] and random
search. All algorithms were initialized with 400 random evaluations, and the TuRBO variants were
run with a batch size of 20 and retrained over 150 steps. Figure 3 summarizes results averaged over
6 trials. We observe that TuRBO with DPPGPR significantly outperform traditional BO and other
TuRBO variants. While all Bayesian optimization methods under-perform compared to Adam, we
conjecture that this performance gap could be narrowed by incorporating the gradient information
into the Bayesian optimization algorithm itself.

Figure 3: GCN training on the Pubmed dataset: (Left) training loss and (Right) training accuracy.
Averaged over 6 trials for all optimizers. Shaded regions correspond to standard errors.

5.4 Stellarator Regression

In this experiment, we show the capacity of variational GPs with directional derivatives to extend
GP regression with derivatives to massive datasets in a high dimensional settings. We perform
regression on N = 500000 function and gradient observations gathered from a D = 45 dimensional
optimization objective function through the FOCUS code [39]: a code for evaluating the quality of
magnetic coils for a Stellarator, a magnetic confinement based fusion device for generating renewable
energy [12]. The dataset is available upon request.

We compare variational GPs with directional derivatives using p = 1, 2 directions (DSVGP1,
DPPGPR1, DSVGP2, DPPGPR2) to variational GPs without directional derivatives (SVGP, PPGPR).
See supplementary material for p = 3 results. While D is too large to use variational or exact GPs
with derivatives, we can apply variational GPs with derivatives to a projection of the data set onto
a low-dimensional active subspace as in section 5.1. Variational GPs with derivatives trained on
reduced datasets of dimension two and three performed poorly compared to all other methods tested.
The results of this experiment are shown in Figure 4: variational GPs with directional derivatives
significantly enhance regression performance. Even the inclusion of one directional derivative is
enough the enhance the predictive capabilities of the regressor. The experiments were averaged over
5 trials, using an Adam optimizer with a multi-step learning rate scheduler and 1000 epochs.

5.5 Rover Trajectory Planning

The rover trajectory planning problem [6, 35] is a D = 200 dimensional optimization problem
with gradients. This experiment validates the use of variational GPs with directional derivatives in
Bayesian optimization by leveraging derivative information in a setting where no other methods can.
We solve a variant of the rover problem in which the goal is to find an open-loop controller that
minimizes the energy of guiding a rover through a series of waypoints in the xy-plane. The rover
trajectory is integrated over 100 steps at which forces in x and y directions are applied to the rover,

8

Figure 4: Stellarator Regression (Left) and Rover (Right). Negative log likelihood of GP variants
as the inducing matrix size increases for the D = 45, N = 500000 Stellarator Regression experiment.
Rover (Right) shows the value of the objective function over the course of optimization. In both
figures, shaded regions correspond to standard errors.

making a total of D = 200 decision variables. We compare the performance of TuRBO, TuRBO with
DPPGPR using p = 1, 2, traditional Bayesian optimization with the LCB acquisition function, and
random search. All algorithms were initialized with a 100-point experimental design, and the TuRBO
variants were run with a batch size of 5, and retrained over 300 steps. The results, averaged over
5 trials, are summarized in Figure 4. We observe that the TuRBO variants that leverage derivative
information outperform the other algorithms almost immediately.

5.6 Ablation Study Over Number of Inducing Directions

Increasing the number of inducing directions p, should increase model flexibility and allow for
the model to capture the full set of derivative information. However, as inducing directions are
distinct to each inducing point, and are trainable parameters, each inducing directional derivative can
encode information from multiple partial derivative directions. Thus variational GPs with directional
derivatives may only need a small set of inducing directions to accurately encode the full set of
derivative information. In table 2 we show the effect of increasing p on the performance of DPPGPR
in the GCN Bayesian optimization (Section 5.3), stellarator regression (5.4), and rover Bayesian
optimization (5.5) experiments. We find that using p = 1 is usually sufficient for capturing much

GCN Stellarator Rover
Loss

(1e-1)
Accuracy

(%)
RMSE
(1e-2) NLL Objective

PPGPR 4.31 85.28 2.43 -2.22 -
DPPGPR1 1.59 96.33 2.39 -2.27 258.6
DPPGPR2 0.39 99.67 2.31 -2.31 255.8
DPPGPR3 9.65 98.89 2.32 -2.31 253.0

Table 2: The effect of increasing the number of inducing directions p on the performance of variational
GPs with directional derivatives on the GCN Bayesian optimization, stellarator regression, and rover
trajectory planning tasks. PPGPR was run with 1000 inducing points and DPPGPRp was run with
1000/(p+ 1) inducing points to ensure equivalent computational complexity. Increasing p from zero
to one shows a significant improvement, but performance improvement diminishes after that.

of the benefit of derivative information, and that increasing p can improve performance but at
diminishing returns. See supplementary material for more p = 3 results on the GCN, Stellarator, and
Rover tasks.

5.7 UCI Regression

Increasing the number of inducing points for Gaussian process models often results in diminishing
returns on final model performance, with 500 ≤M ≤ 2000 often proving sufficient [9, 26, 13, 21].
This saturation is likely due in part to the ability of sparse Gaussian processes to represent variation

9

in the data, but may also be due to increasingly challenging optimization dynamics as more inducing
points are added.

One hypothesis worth exploring is that, in some cases, it may be beneficial to augment a smaller set
of inducing points with additional descriptive variables rather than to simply increase the number
of inducing points. To that end, we test our method on a number of UCI benchmark regression
datasets for which no derivative information is available. To accomplish this, a variational GP
with directional derivatives is initialized with inducing directional derivatives as normal, but during
training, minibatches of data only correspond to function observations. In other words, rows of the
matrix KXZ never correspond to partial derivative observations because there are none, however
columns of KXZ and rows/columns of KZZ still correspond to inducing directional derivatives as
applicable. No changes to the inference procedure are needed.

We test on a number of UCI datasets [4]: Elevators (D=18 N=16599), Kin40k (D=8, N=40000),
Energy (D=8, N=768), Protein (D=9, N=45730), Kegg-Directed (D=20, N=53414). We compare
variational GPs without derivatives (SVGP, PPGPR) to variational GPs with p = 1 directional
derivative per inducing point (DSVGP1, DPPGPR1). To ensure that methods have equivalent time
complexity, we fix the inducing matrix size to 800. Thus, DSVGP1/DPPGPR1 use 400 inducing
points, so that 400× (p+ 1) = 800, while SVGP/PPGPR use a full 800 inducing points. We use an
80-20 train-test split for all experiments, and train for 800 epochs. Interestingly, the results in Table 3
show that learning derivative information can improve prediction performance.

Elevators kin40k Energy Protein Kegg-directed
RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL

SVGP 0.391 0.480 0.163 -0.302 0.231 -0.029 0.680 1.03 0.0870 -1.028
DSVGP1 0.379 0.449 0.134 -0.545 0.087 -1.05 0.654 0.998 0.085 -1.048

PPGPR 0.407 0.404 0.274 -0.874 0.252 -0.899 0.709 0.928 0.0915 -1.57
DPPGPR1 0.391 0.390 0.264 -1.105 0.251 -0.936 0.695 0.892 0.088 -1.643

Table 3: Variational GPs with no derivative modelling (SVGP, PPGPR) versus with (DSVGP1,
DPPGPR1) on UCI benchmark datasets for which no derivative information is available. Bold entries
indicate the best method in the column. See the supplementary material for error bars.

6 Discussion

Augmenting GPs with derivative information can significantly improve their predicitive capabilities
but at a significant O(N3D3) cost. We introduce a novel method for achieving fully scalable
— scalable in N and D — GPs with derivative information by leveraging stochastic variational
approximations. The resulting model reduces the cost of training GPs with derivatives to O(M3p3)
time per iteration of training, where M � N and p� D. A practical limitation of our method is that
M,p must be small enough for fast computations, which is not a reasonable assumption in very high
dimensional problems. Through a series of synthetic experiments and a surface reconstruction task,
we demonstrate the quality of our approximate model in low dimensional settings. Furthermore, we
demonstrate the full scalability of our model through training a graph convolutional neural network
using Bayesian optimization, in addition to performing regression on a large scale Stellarator fusion
dataset with derivatives. Lastly, we show that our methods can even have benefit in the regression
setting when no derivative information is available in the training set, by including a new avenue to
encode information. While this last result is a surprising benefit of GPs with derivatives, it is not
well understood and is thus a good direction for future study. While our method may make GPs
more accessible to practitioners and researchers for calibrating uncertainty estimates, the fundamental
assumption that the data is drawn from a GP may be flawed, leading to poor uncertainty estimates
and a lack of robustness altogether. Researchers and practitioners should take care to understand the
reliability of the GP model in their setting rather than relying faithfully on a black-box approach.

7 Acknowledgements

We acknowledge support from Simons Foundation Collaboration on Hidden Symmetries and Fusion
Energy and the National Science Foundation NSF CCF-1934985, and NSF DMS-1645643.

10

References
[1] Einat Neumann Ben-Ari and David M Steinberg. Modeling data from computer experiments: An empirical

comparison of kriging with MARS and projection pursuit regression. Quality Engineering, 19(4):327–338,
2007.

[2] Paul G Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter studies.
SIAM, 2015.

[3] Filip de Roos, Alexandra Gessner, and Philipp Hennig. High-dimensional Gaussian process inference with
derivatives. In 38th International Conference on Machine Learning, 2021.

[4] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. Irvine, CA: University of California,
School of Information and Computer Science, 2017.

[5] David Eriksson, Kun Dong, Eric Hans Lee, David Bindel, and Andrew Gordon Wilson. Scaling Gaussian
process regression with derivatives. In Advances in Neural Information Processing Systems, volume 31,
2018.

[6] David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek. Scalable global
optimization via local Bayesian optimization. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[7] Jacob Gardner, Geoff Pleiss, Ruihan Wu, Kilian Weinberger, and Andrew Wilson. Product kernel
interpolation for scalable Gaussian processes. In International Conference on Artificial Intelligence and
Statistics, pages 1407–1416. PMLR, 2018.

[8] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. Gpy-
torch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[9] James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, page 282–290, Arlington, Virginia,
USA, 2013. AUAI Press.

[10] James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian process
classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR, 2015.

[11] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(5), 2013.

[12] Lise-Marie Imbert-Gerard, Elizabeth J Paul, and Adelle M Wright. An introduction to stellarators: From
magnetic fields to symmetries and optimization. arXiv preprint arXiv:1908.05360, 2019.

[13] Martin Jankowiak, Geoff Pleiss, and Jacob Gardner. Parametric Gaussian process regressors. In Interna-
tional Conference on Machine Learning, pages 4702–4712. PMLR, 2020.

[14] David E Jones, David C Stenning, Eric B Ford, Robert L Wolpert, Thomas J Loredo, Christian Gilbertson,
and Xavier Dumusque. Improving exoplanet detection power: Multivariate gaussian process models for
stellar activity. arXiv preprint arXiv:1711.01318, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the
3rd International Conference on Learning Representations, 2014.

[16] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
Proceedings of the 5th International Conference on Learning Representations, 2017.

[17] Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational methods.
PhD thesis, University of Cambridge, 2017.

[18] Jonas Mockus. Bayesian approach to global optimization: theory and applications, volume 37. Springer
Science & Business Media, 2012.

[19] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

[20] Emanuel Parzen. Stochastic processes. SIAM, 1999.

[21] Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, and Jacob R Gardner. Fast matrix square roots
with applications to Gaussian processes and Bayesian optimization. In Advances in Neural Information
Processing Systems, volume 33, 2020.

11

[22] Joaquin Quinonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian
process regression. The Journal of Machine Learning Research, 6:1939–1959, 2005.

[23] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning,
pages 63–71. Springer, 2003.

[24] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge,
MA, USA, 2006.

[25] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951.

[26] Hugh Salimbeni, Ching-An Cheng, Byron Boots, and Marc Deisenroth. Orthogonally decoupled variational
Gaussian processes. In Advances in Neural Information Processing Systems, volume 31, 2018.

[27] Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. In Advances in
Neural Information Processing Systems, volume 30, 2017.

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

[29] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems, volume 18, 2006.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

[31] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic regret
bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory,
58(5):3250–3265, 2012.

[32] Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Test functions and
datasets. Retrieved May 27, 2021, from http://www.sfu.ca/~ssurjano, 2013.

[33] Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
intelligence and statistics, pages 567–574. PMLR, 2009.

[34] Selvakumar Ulaganathan, Ivo Couckuyt, Tom Dhaene, Joris Degroote, and Eric Laermans. Performance
study of gradient-enhanced kriging. Engineering with computers, 32(1):15–34, 2016.

[35] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian optimiza-
tion in high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pages
745–754. PMLR, 2018.

[36] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian processes
(KISS-GP). In International Conference on Machine Learning, pages 1775–1784. PMLR, 2015.

[37] Jian Wu, Matthias Poloczek, Andrew Gordon Wilson, and Peter I Frazier. Bayesian optimization with
gradients. In Advances in Neural Information Processing Systems, volume 30, 2017.

[38] Zhengkun Yi, Roberto Calandra, Filipe Veiga, Herke van Hoof, Tucker Hermans, Yilei Zhang, and
Jan Peters. Active tactile object exploration with gaussian processes. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4925–4930. IEEE, 2016.

[39] Caoxiang Zhu, Stuart R Hudson, Yuntao Song, and Yuanxi Wan. New method to design stellarator coils
without the winding surface. Nuclear Fusion, 58(1):016008, 2017.

12

http://www.sfu.ca/~ssurjano

	Introduction
	Background
	Gaussian processes
	Gaussian processes with derivatives
	Stochastic Variational Gaussian Processes

	Related Work
	Methods
	Variational Gaussian processes with derivatives.
	Variational Gaussian processes with directional derivatives.

	Experiments
	Synthetic functions
	Implicit Surface Reconstruction
	Training Graph Convolutional Neural Networks with Bayesian Optimization
	Stellarator Regression
	Rover Trajectory Planning
	Ablation Study Over Number of Inducing Directions
	UCI Regression

	Discussion
	Acknowledgements

