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Abstract

Combined Algorithm Selection and Hyperparameter Optimization (CASH) has
been fundamental to traditional AutoML systems. However, with the advance-
ments of pre-trained models, modern ML workflows go beyond hyperparameter
optimization and often require fine-tuning, ensembling, and other adaptation tech-
niques. While the core challenge of identifying the best-performing model for
a downstream task remains, the increasing heterogeneity of ML pipelines de-
mands novel AutoML approaches. This work extends the CASH framework to
select and adapt modern ML pipelines. We propose PS-PFN to efficiently explore
and exploit adapting ML pipelines by extending Posterior Sampling (PS) to the
max k-armed bandit problem setup. PS-PFN leverages prior-data fitted networks
(PFNs) to efficiently estimate the posterior distribution of the maximal value via
in-context learning. We show how to extend this method to consider varying
costs of pulling arms and to use different PFNs to model reward distributions
individually per arm. Experimental results on one novel and two existing standard
benchmark tasks demonstrate the superior performance of PS-PFN compared to
other bandit and AutoML strategies. We make our code and data available at
https://github.com/amirbalef/CASHPlus.

1 Introduction

What model will perform best? The best-performing answer to this crucial question depends on
the given task. We study this question in the context of predictive ML for tabular tasks, where
possible model classes range from pre-trained models [Zhu et al., 2023], tree-based methods [Chen
and Guestrin, 2016, Prokhorenkova et al., 2018], modern deep learning approaches [Holzmüller et al.,
2024, Gorishniy et al., 2021], in-context learning with foundation models [Hollmann et al., 2025, Cui
et al., 2024], and many more. Despite significantly different modelling approaches, with different
implicit biases and strengths and weaknesses, all models have one thing in common: They must be
adapted to the task at hand to perform best. This adaptation is typically an iterative procedure like
optimizing hyperparameters, fine-tuning weights, learning embeddings, adapting the architecture, or
running an AutoML system (see Figure 1).

A popular task for automatically allocating resources across workflows that include hyperparameter
optimization (HPO) is the Combined Algorithm and Hyperparameter Optimization (CASH) [Thornton
et al., 2013] problem. A common approach to the CASH problem is to model it as a single hierarchical
HPO task over a joint search space that includes the choice among K ML algorithms and their
associated hyperparameters. This is typically done by treating the algorithm selection as a categorical
hyperparameter and using conditional dependencies to define the model-specific subspaces. State-of-
the-art approaches either tackle this as a single-level optimization problem via Bayesian optimization
on the combined hierarchical search space (we refer to this as combined CASH), as done by AutoML
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Figure 1: (Left) AutoML needs to perform algorithm selection and resource allocation across
heterogeneous optimization tasks, such as hyperparameter tuning, fine-tuning, ensembling, and
more. (Right) The performance of each workflow on two datasets demonstrates the variability of the
optimization trajectories and the importance of algorithm selection .

Systems [Thornton et al., 2013, Feurer et al., 2015, Komer et al., 2014, Kotthoff et al., 2017, Feurer
et al., 2022]. However, this approach requires optimizing over a large, high-dimensional, and
heterogeneous space using a single HPO method, which can be inefficient and difficult to scale.
Alternatively, one can decompose it into a two-level optimization problem and leverage bandit
methods at the top level and HPO methods at the lower level [Li et al., 2020, Hu et al., 2021, Balef
et al., 2024, 2025] (we refer to this as decomposed CASH). This framework has also been recently
adapted to other types of workflows, e.g., selecting and fine-tuning pre-trained models [Arango et al.,
2024, van den Nieuwenhuijzen et al., 2024].

Here, we want to optimally allocate resources across different, heterogeneous workflows, with
different performance distributions, optimization behaviour, and cost per iteration (see Figure 1).
Existing combined and decomposed CASH methods are not straightforward to extend since they were
designed to perform well for a single type of workflow.

We address the algorithm selection task by resource allocation for complex AutoML pipelines using
a bandit algorithm that leverages a flexible pre-trained machine learning model performing in-context
learning to predict the posterior distribution. Our contributions are as follows:

1. We introduce CASH+ as a generalization of CASH, extending to any performance optimiza-
tion strategy, covering modern ML workflows.

2. We address this as a two-level optimization problem and at the top level as a Max-K-armed
Bandit (MKB) problem. We extend Posterior Sampling to optimize the maximal reward.

3. We identify prior-data fitted networks (PFNs) [Müller et al., 2022] as a flexible model class
to enable posterior sampling in practice and analyze HPO trajectories and learning curves to
design effective priors. We call the resulting method PS-PFN.

4. We extend PS-PFN to handle varying costs and to use different PFNs per arm.

5. Finally, we demonstrate superior empirical performance of PS-PFN on three AutoML
benchmark tasks where we compare PS-PFN with state-of-the-art MAB algorithms for
CASH.

We start by discussing our problem setup and introducing CASH+ in Section 2. Section 3 provides a
short introduction to Posterior Sampling. Next, we introduce PS-PFN in Section 4, and evaluate it in
Section 5. We conclude by discussing its limitations and future work in Section 6.

2 Combined Algorithm Selection and Optimization (CASH+)

The CASH problem, at the core of traditional AutoML pipelines [Thornton et al., 2013], involves
selecting the optimal ML algorithm A(i∗) and its hyperparameters λλλ∗ to minimize a loss metric L
(e.g., validation error). Given a dataset D = {Dtrain, Dvalid} and a set of K candidate algorithms
A = {A(1), ..., A(K)}, each with its own hyperparameter spaceΛΛΛ(i), the goal of CASH is to optimize
over the joint algorithm-hyperparameter space. Here, we generalize this to any iterative optimization
procedure where the goal is to select the optimal ML algorithm A(i∗) and its state sss∗ as found by its
optimization procedure. Formally,

A
(i∗)
sss∗ ∈ argmin

A(i)∈A,sss∈SSS(i)

L(A(i)
sss ,D). (1)
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By going beyond standard model selection and hyperparameter tuning, CASH+ brings a broader range
of optimization strategies to the AutoML pipeline. We note that this is very similar to the original
definition of CASH as introduced by Thornton et al. [2013], but explicitly allows for including any
optimization method, thus covering methods like hyperparameter tuning, fine-tuning, and ensembling.
These methods often involve highly diverse search spaces. For example, fine-tuning neural networks
typically has a large and complex space, while Post-Hoc Ensembling (PHE) may not have a well-
defined search space at all. In such cases, combined CASH approaches are no longer applicable due to
the incompatibility of the search spaces and, thus, search methods. Instead, similar to prior work [Li
et al., 2020, Hu et al., 2021, Balef et al., 2024, 2025], we tackle CASH+ as a two-level optimization
problem (as depicted in Figure 1), which we formally define as:

A(i∗) ∈ argmin
A(i)∈A

L(A(i)
sss∗ ,D) s.t. sss∗ ∈ argmin

sss∈S(i)S(i)S(i)

L(A(i)
sss ,D). (2)

At the upper level, we aim to find the overall best-performing ML model A(i∗) by selecting model
A(i) ∈ A iteratively and at the lower level, we optimize the selected model A(i).

CASH+ as a Bandit problem. To approach the upper-level decision-making task (see Figure 1)
with a bandit method, we denote ri,t to be the feedback to arm i obtained by evaluating ssst ∈ SSS(i)

at time step t ≤ T . To be consistent with the bandit literature, we consider the negative loss as the
reward and maximize it:

ri,t = −L(A(i)
ssst ,D). (3)

The goal is then to find the best-performing algorithm A(i∗) and its optimal state sss∗ given a time
horizon T . This can be framed as minimizing the regret R(T ) with It being the selected arm at time
t by:

R(T ) = max
k≤K

E[max rk,t]
t≤T

−E[max rIt,t]
t≤T

. (4)

This regret describes the gap between the highest possible oracle reward that could be obtained by
pulling only the arm with the highest performance (left part) and the actual observed rewards obtained
by applying our strategy (right part).

3 Background

The two-level optimization problem allows each model to be optimized independently. Existing
bandit algorithms used in the decomposed CASH literature generally assume that all arms (i.e.,
optimization methods) share similar characteristics [Li et al., 2020, Hu et al., 2021, Balef et al., 2024,
2025]. However, in the CASH+ setting, the arms can differ significantly in their reward processes and
costs, making those assumptions invalid. For this, we explore Posterior Sampling as a much more
flexible framework for developing our algorithm.

3.1 Posterior Sampling

Posterior sampling, first introduced in 1933 [Thompson, 1933], has become a fundamental technique
in the field of Multi-Armed Bandits (MAB) known as Thompson Sampling (TS). This approach
maintains a posterior over reward models and samples from it at each decision point to select actions.
Posterior sampling is highly flexible, as it does not require closed-form solutions or restrictive
assumptions. It can be applied with any probabilistic model, provided that sampling from the
(possibly approximate) posterior is feasible [Kveton et al., 2024].

In Algorithm 1 at each round t, the agent maintains a dataset Di of all observed rewards from arm
i and models the posterior distribution accordingly. It then samples si ∼ p(· | Di, f(t)) from the
posterior distribution. The function f(t) can account for potential temporal dependencies in the
reward process, such as rested or non-stationary rewards [Liu et al., 2023], which can be viewed as
using time information as context for modeling reward processes in contextual bandits [Shen et al.,
2023]. After pulling arm It, the agent observes the reward rIt,nIt+1 and updates the dataset DIt with
the new observation.
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Posterior sampling relies fundamentally on the agent’s ability to reason about the posterior distribution
over rewards. This leads to optimal performance in maximizing the expected cumulative reward in
classical bandit settings [Russo and Van Roy, 2014]. In contrast, the goal in our setting is to optimize
the expected maximum observed reward (see Equation 4), which aligns with the MKB framework.
This shift in objective requires reasoning about the posterior distribution of maximum values across
arms, introducing new challenges. In this paper, we develop approximation methods designed to
estimate this distribution effectively.

Algorithm 1 Posterior Sampling (Thompson
Sampling)
Require: time horizon T , time function f(t), number of arms K
1: for each arm i ∈ {1, . . . , K} do
2: Pull arm i once; observe reward ri,1
3: Initialize dataset Di ← {(1, ri,1)} and counter ni ← 1

4: end for
5: for t = K + 1 to T do
6: for each arm i ∈ {1, . . . , K} do
7: Draw si ∼ p(· | Di, f(t)) {Sample from posterior}
8: end for
9: Select arm It ← arg max

i∈{1,...,K}
si

10: Pull arm It; observe reward rIt,nIt
+1

11: nIt ← nIt + 1

12: Update DIt ← DIt ∪ {(nIt , rIt,nIt
)}

13: end for

Figure 2: A single iteration of PS-PFN. (1) Context
construction: Format observed rewards as PFN
input; (2) Posterior prediction: Query PFN for
time step t; (3) Decision: Sample from posterior
to select arm.
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3.2 Model-based Posterior Approximation

Computing the exact posterior distribution is often analytically or computationally infeasible for
complex reward models. Consequently, approximate inference methods such as Markov Chain Monte
Carlo or Variational Inference are commonly employed to estimate posterior distributions in practice
[Phan et al., 2019]. Recently, transformers have demonstrated the capability to perform in-context
learning (ICL) when trained on large amounts of data [Brown et al., 2020]. ICL methods are very
sample efficient, yielding high accuracy with only a few observations, making them very suitable for
tasks with short time horizons.

So-called Decision Transformers (DTs) reframe reinforcement learning (RL) as a sequence modeling
task, by conditioning on desired returns, past states, and actions [Chen et al., 2021]. DTs predict
future actions and leverage ICL to generalize with minimal adaptation. Lin et al. [2024] studies
the ICL capability of pretrained transformers for RL in theory. Recent work shows that Decision
Pretrained Transformers can approximate Bayesian posterior sampling over actions, enabling princi-
pled exploration to solve bandit problems [Lee et al., 2023]. While prior work focuses on predicting
optimal actions, our approach instead models the posterior distribution over rewards to achieve better
scalability, for example, concerning the number of actions.

4 Methodology

Accurately estimating the posterior distribution of the maximum reward is crucial for effective
decision-making in the MKB settings. We first show how to extend PS to the MKB setting by
finding the posterior distribution of maximum values under the simplified assumption of i.i.d. rewards
and sufficiently fast concentration around the maximum. Since this assumption can be limiting for
addressing CASH+, we then discuss ICL using prior-fitted networks as a more flexible and expressive
approximation of the posterior.

4.1 PS-Max: Posterior Sampling for Max K-armed Bandit

We need to accurately predict the posterior distribution of the maximum reward to extend classical
Thompson Sampling to our setting. Based on Algorithm 1 and the regret definition (Equation 4),
we introduce PS-Max for K arms with a limited time horizon of T . Let ri,1:t denote sequence of
rewards from time 1 till time t.
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Assumption 1. We assume that the i.i.d. random variable ri,t, representing the reward of pulling
arm i at time t, follows a sub-Gaussian distribution with cumulative distribution function (CDF)
F (x).

When Assumption 1 is held, line 7 in Algorithm 1 can be replaced by:

si = F−1i (U1/t), U ∼ Uniform(0, 1) (5)

where f(t) = t and F−1i is the inverse CDF of our sub-Gaussian prior for arm i. We call the resulting
method PS-Max.

Theorem 1 (Analysis of PS-Max). If the expected maximum satisfies:

E[max(ri,1:t)] ≥ F−1i

(
1− 1

t2

)
,

then the number of times sub-optimal arm i is pulled grows logarithmically with time.

PS-Max operates similarly to classical Thompson Sampling. At each iteration, it updates the sub-
Gaussian prior based on observed rewards and then draws samples from the posterior of the maxima
(Equation 5) rather than from the posterior of the sub-Gaussian. For now, we choose f(t) = t and
assume constant costs to ensure anytime performance, as this choice aligns with the objective of
identifying the arm with the highest expected maximum at each time step t. 1

We provide the proof of Theorem 1 in Appendix A.1. MAB algorithms can surely achieve optimal
performance only when the reward distribution aligns with their assumptions. The condition in
Theorem 1 highlights that the distribution must have a very light tail near its maximum. In CASH
problems, because of the left-skewed reward distribution and almost non-stationarity, the conditions
of Assumption 1 and Theorem 1 are often satisfied [Balef et al., 2025].

However, for CASH+ tasks, the heterogeneity of the lower-level optimization methods results in
rewards drawn from different distributions. This brings up three main limitations to overcome:

• The reward distributions do not follow a common form and exhibit a highly negatively
skewed distribution as shown on the left side of Figure 3.

• The reward distribution varies across the arms as different optimization methods can
induce distinct reward processes.

• The reward distribution may shift over time when pulling the same arm (rested setting)
as shown on the right side of Figure 3 where the reward distribution drifts over time.
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Figure 3: Exemplary HPO trajectories (from the Reshuffling benchmark) exhibit distributions that
standard parametric models cannot capture.

Addressing these limitations is vital to address CASH+. As a consequence, extending PS-Max for
complex reward processes requires addressing three key challenges: (2) the presence of heterogeneous
reward distributions [Baudry et al., 2021]; (3) changes in the reward process over time [Fiandri et al.,
2024]; and (4) varying costs associated with pulling different arms [Xia et al., 2015a]. To tackle them,
we employ in-context learning through PFNs, as we discuss next.

1In MKB problems, there is no single best arm and the oracle arm depends on the budget T [Nishihara et al.,
2016]. If T is known and sufficiently large, with f(t) = T , the agent aims to achieve the best final performance.
With f(t) = ni + T − t, the agent accounts for how many more iterations it can pull a given arm.
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4.2 PS-PFN: Posterior sampling using PFNs

We need to accurately predict the posterior distribution of the maximum reward while accounting
for changes in the reward distribution and left skewness of the distributions. We achieve this using
prior-data fitted networks (PFNs) [Müller et al., 2022]. PFNs have demonstrated strong performance,
particularly for predictive ML tasks on small tabular datasets [Hollmann et al., 2023, 2025], and have
been successfully applied in related tasks such as learning curve extrapolation [Adriaensen et al.,
2023] and Bayesian optimization [Müller et al., 2023a].

PFNs are pre-trained on synthetic data generated from a prior to perform approximate Posterior
Predictive Distributions (PPD), without explicit retraining for new tasks. In other words, they are
trained to predict some output y, conditioned on an input n and a training set Dtrain of given
input-output examples. Müller et al. [2022] proved that minimizing this loss over many sampled tasks
(n, y) ∪Dtrain directly coincides with minimizing the KL divergence between the PFN's predictions
and the true PPD. In essence, the PFN meta-learns to perform approximate posterior inference on
synthetic tasks sampled from the prior, and at inference time, also does so for an unseen and real task.
We focus on this model class since PFNs particularly perform well on small data tasks, enable instant
predictions due to in-context learning, can be efficiently trained entirely on synthetic data, and the
prior design allows incorporating assumptions and prior knowledge about data we expect to observe
in the real world.

We use PFNs to model and estimate the unknown per-arm reward distributions as shown in Figure 2.
Specifically, we use the maximum of the reward as output y = max(ri,1:t). For a sequence of
rewards (and potentially additional information) from arm i with ni observations, we obtain Di,1:ni

=
{(1, ri,1), (2,max(ri,1:2)), . . . , (ni,max(ri,1:ni

))}. We then apply in-context learning with PFNs,
using the observed data Di,1:ni as the context to output the posterior distribution p(max(ri,1:t) |
Di,1:n, t). This distribution is then used to guide the agent’s next arm selection.

To apply PFNs to our setup, we need the key ingredients: (a) a pre-training task that matches our
problem formulation and (b) a prior to generate synthetic reward sequences that are close to what we
expect to observe in the real world.

Architecture and pre-training task for reward distribution estimation. We use the same architec-
ture used by Müller et al. [2022] which is a sequence Transformer [Vaswani et al., 2017]. For training,
we use Dtrain = {(1, r1), (2,max(r1:2)), . . . , (ni,max(r1:ni

))} as context and Dtest = (t, ) as a
test output. Following Adriaensen et al. [2023], we use a similar setup; we omit positional encodings
since the input already includes a positional feature, and we mask the attention matrix so that each
position only attends to training data positions. However, instead of uniformly sampling the cutoff
points to split trajectories into training and test datasets for each batch, we use a harmonic distribution
to assign more weight to smaller cutoff points. This is because predictions with fewer observations are
more crucial in our setting. We provide more details on our architecture and training in Appendix D.

Once pre-trained, the PFN (with parameters θ) outputs a discretized distribution Pθ(max(ri,1:t) |
Dtest, t) with a fixed number of bins, and predicting the probability mass for each bin [Müller
et al., 2022]. We will use this distribution to generate samples for line 7 in Algorithm 1 using
si ∼ Pθ(· | Di,1:ni

, t).

A prior for reward distributions. The prior design is critical to the effectiveness of PFNs [Breejen
et al., 2024], and our reward distributions heavily depend on the optimization landscape of the
AutoML task and can vary considerably in structure and complexity; thus, we define three priors
(flat, semi-flat, and curved) to generate synthetic data for training PFNs. The resulting PFNs cover
common characteristics of optimization problems:

1. The flat prior covers optimization landscapes common in HPO, which are characterized
by large plateaus in the objective space, where many hyperparameter configurations yield
similar performance [Pushak and Hoos, 2022]. As a result, the distribution of observed
rewards tends to be left-skewed, as most configurations cluster around suboptimal yet similar
values. Importantly, there is no significant shift in the distribution over time (see Figure 4,
left).

2. The semi-flat prior covers trajectories where rewards gradually improve over time, reflecting
a shift with a rapid decay in the distribution (see Figure 4, middle), for example, when the
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Figure 4: (Top) Different optimization trajectories for CASH+ and synthetically generated counter-
parts. (Bottom) Corresponding posterior predictions by PFNs given the same input (black line).

search space for optimization is large. This means that the magnitude of the shift is larger in
the initial steps and gradually decreases over time when the optimization converges.

3. The curved prior covers scenarios where the amount of shift is considerably high and does
not decay rapidly (see Figure 4, right). This behavior can be observed when training neural
networks from scratch.

The semi-flat prior serves as a robust and broad prior covering most settings. The flat prior should be
reserved for settings where the lower-level optimization converges fast and only little exploration
is needed to approximate the posterior distribution. In contrast, the curved prior should be used for
workflows that require more exploration to reduce uncertainty. In Appendix B.1, we describe how the
reward sequence is generated for each prior.

4.3 Cost-awareness and handling budgets

Finally, we need to address varying costs for pulling different arms. In classical bandit settings,
cost-awareness or budgeted bandits are typically incorporated by normalizing the reward by the cost,
i.e., maximizing the reward-to-cost ratio [Ding et al., 2013, Xia et al., 2015b, 2016]. This approach is
justified because pulling the arm with the highest reward rate decreases the cumulative regret the most
[Cayci et al., 2020]. A similar heuristic is used in Bayesian optimization, where improvement-based
acquisition functions are divided by (the logarithm of) cost [Snoek et al., 2012]; however, it may
underperform without proper controlling [Xie et al., 2024]. In our setting, regret is only reduced
when a higher reward than previously observed is obtained, making this strategy less appropriate.

Instead, we propose a different perspective: rather than adjusting the reward process by a cost
estimate, we predict the posterior distribution of the maximal reward for a future time step adjusted
by the remaining budget.

Figure 6 exemplarily shows that, for a fixed budget, e.g., 5 minutes, MLP achieves over 30 pulls
(iterations), whereas CatBoost can be pulled only 20 times since each iteration has a higher cost
(runtime). This means that the maximum number of pulls, i.e., the time step t for which we want to
predict the distribution of maximal reward, varies across models. To consider this in our algorithm
and to estimate the effective posterior for each arm, we must modify f(t) in Algorithm 1 based on
the remaining pulls per arm.

To estimate costs per pull per arm, we introduce B as the total (time) budget. Since runtimes can
be stochastic, we model them as random variables and sample from their distribution e.g. log-
normal distribution. Specifically, the cost of pulling arm i is ci,t, and we adjust our decision-making
(exploration vs. exploitation) based on both the observed empirical cost and the spent budget b. Let
c ∼ pc(· | {ci,t}ni

t=1) denote a sample draw from the posterior distribution of the cost for arm i, given
observed costs {ci,t}ni

t=1. We then define the corrected time function as:

fi(t) = ni +
B − b

c ∼ pc(· | {ci,t}ni
t=1)

where b =
∑
i≤k

ni∑
t=1

ci,t (6)
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The intuition behind this definition is as follows: arm i has already been pulled ni times, and B − b
represents the remaining budget. By dividing the remaining budget by the cost, we estimate the
maximum number of additional pulls that can be performed. This allows us to predict the posterior
distribution corresponding to that future iteration (see Appendix A.2 for more details).
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Figure 5: (Left) for 30 iterations of HPO, CatBoost outperforms MLP, while with the same budget, it
is possible to run MLP for 50 iterations, outperforming CatBoost. (Right) The cost of one iteration is
noisy.
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5 Experiments on AutoML tasks

Next, we examine the empirical performance of our method in an AutoML setting via reporting
average ranking for each benchmark.We will first briefly overview the experimental setup used across
all experiments, and then discuss several research questions focusing on different aspects of this
comparison.

Experimental setup. We use three AutoML benchmarks, implementing CASH and CASH+ tasks
for tabular supervised learning, differing in the considered ML models, optimization method, and
datasets (see Table C.1. For the existing CASH benchmarks, TabRepoRaw and YaHPOGym, we use
available pre-computed HPO trajectories [Salinas and Erickson, 2024, Balef et al., 2025]. For our
newly developed CASH+ task, Complex, we run 5 different methods across 30 datasets implementing
heterogeneous ML workflows as seen in Figure 1.2

Baselines. We compare our methods against MaxUCB [Balef et al., 2025], Rising Bandits and
Rising Banditscost [Li et al., 2020], which have been developed for the decomposed CASH task.
Additionally, we compare against Thompson Sampling as a classical posterior sampling method. We
use the default hyperparameter settings for all methods. As combined CASH baselines, we consider
Bayesian optimization (SMAC) and random search.3

Our Methods. We evaluate three different methods and their cost-aware variants:

• PS-Max as the most basic baseline. We assume Gaussian rewards (see Appendix E).

2 For all experiments, we used the AutoML Toolkit (AMLTK) [Bergman et al., 2024] and ran the optimization
methods on a compute cluster equipped with Intel Xeon Gold 6240 CPUs and NVIDIA 2080 Ti GPUs, requiring
800 CPU and 50 GPU days.

3Only available for TabRepoRaw and YaHPOGym.
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• PS-PFN uses the same PFN for modeling the reward distribution of each arm, pre-trained
on the semi-flat prior.

• PS-PFNmixed uses a different PFN for each arm (see Appendix E).

• PS-Maxcost, PS-PFNcost, and PS-PFNcost
mixed are the cost-aware extensions of the aforemen-

tioned methods. We assume costs follow a log-normal distribution (see Appendix E).

How does PS-Max and PS-PFN compare against Thompson Sampling? In Figure 6, we compare
the average rank over time of PS-Max (- -) and PS-PFN (- -) to classical Thompson Sampling (–).
While PS-Max and Thompson Sampling initially perform similarly, this gap increases with higher
budget, highlighting that targeting maximum values is crucial for effectively solving CASH problems.

How does using a PFN improve the performance? Figure 6 shows a large improvement in
ranking when comparing PS-Max (- -) with PS-PFN (- -). Table ?? also shows that this difference is
statistically significant. Furthermore, using different PFNs per arm, each trained on a different prior,
can further improve ranking, especially for high budgets, as seen by PS-PFNmixed (- -) performing
better than PS-PFN (- -). However, this gap is smaller for YaHPOGym and Complex, underlining the
importance of carefully choosing a prior.

How does PS-PFN compare against other decomposed CASH bandit methods? In Figure 6, we
observe that Rising Bandits (–) perform substantially worse than our method. While the performance
of MaxUCB (–) can be competitive, it tends to perform worse for low budgets. Since the non-PFN-
based variant PS-Max (–) consistently performs worse than MaxUCB (–), we attribute the superior
performance not to the bandit framework, but to leveraging an ML model.

How does cost-awareness improve the
performance? Finally, we evaluate
our cost-aware extension. For this, we
compare the cost-aware variants (solid)
to their counterpart (dashed) for PS-Max
(– vs - -), PS-PFN (– vs - -), and PS-
PFNmixed (– vs - -) in Figure 6.

Table 1: Percentage gain in number of pulled arms when
using the cost-aware variant of each method.

PS-PFNcost
mixed PS-PFNcost PS-Maxcost

YaHPOGym 7.50% 4.66% 2.94%
TabRepoRaw 15.36% 6.74% 7.55%
Complex 15.32% 17.35% 4.69%

Table 1 shows that the number of arms pulled increases when cost-awareness is enabled, meaning the
agent observes more rewards within the same budget. However, this does not always improve final
performance if cheaper arms are worse.

6 Discussion and Future Work

By extending the CASH framework to CASH+, we address the selection and adaptation of heteroge-
neous pipelines, covering modern ML workflows using fine-tuning, ensembling, and hyperparameter
optimization. We address the resulting bi-level optimization problem as a max k-armed bandit
problem and identify Posterior Sampling as a flexible framework for resource allocation. To effi-
ciently model reward distributions that do not follow common forms, are different for each arm, and
potentially shift over time, we exploit prior-fitted networks [Müller et al., 2023b]. The resulting
method, PS-PFN and its extensions, outperforms prior approaches and paves the way for a data-driven
development of AutoML solutions for CASH+. In the following, we briefly discuss limitations and
avenues for future research.

Limitations. PS-PFN is computationally more expensive than other baselines since it leverages in-
context learning for estimating the posterior distribution. Thus, in cases where iterations of the lower-
level (optimization) method are fast, PS-PFN may dominate compute costs. Additionally, quadratic
scaling in context length limits application for large budgets since we use reward observations as
context. However, we note that in CASH+ tasks, iterations of the underlying method are typically
cost-intensive, with tight budget constraints. We note that theoretically analyzing PS-PFN might
be challenging due to the heuristic synthetic data generation and using ML models to approximate
the posterior. Furthermore, while our cost-aware extension increases the number of arms pulled,
performance does not constantly improve. We model the training cost with a log-normal distribution;
however, it could be modeled more accurately based on the dataset and configurations. Lastly, though
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our method can be used beyond AutoML tasks, it is sensitive to the prior choice for training the PFNs,
and applying it to other tasks might require careful adaptation.
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A Preliminiaries

A.1 Proof of Theorem

Theorem 1. (Analysis of PS-Max) If the expected maximum satisfies:

E[max(ri,1:t)] ≥ F−1i

(
1− 1

t2

)
,

Then the number of times sub-optimal arm i is pulled grows logarithmically with the time horizon.

Proof. Sampling the Maximum. Let r1, . . . , rt be i.i.d. with CDF F (x). The CDF of the maximum
of reward max(r1:t) is:

Fmax(x) = P (max(r1:t) ≤ x) =

t∏
i=1

P (ri ≤ x) = [F (x)]t. (7)

To sample from Fmax, we use inverse transform sampling:

1. Draw U ∼ Uniform(0, 1)

2. Solve Fmax(x) = U :

[F (x)]t = U =⇒ F (x) = U1/t =⇒ x = F−1(U1/t)

Thus, max(r1:t) = F−1(U1/t) follows the correct distribution.

Convergence Analysis. For the convergence analysis, let Fn(x) denote the empirical CDF estimated
from n i.i.d. samples. Using the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality:

P
(
sup
x

|Fn(x)− F (x)| ≥ ϵ

)
≤ δ, with ϵ =

√
ln(2/δ)

2n
. (8)

Now we want to bound |F t
n(x)− F t(x)|. We know:

|F t
n(x)− F t(x)| ≤ t|Fn(x)− F (x)|

Hence,

P
(
sup
x

|F t
n(x)− F t(x)| ≥ tϵ

)
≤ δ. (9)

This implies a worst-case deviation that grows linearly with t, leading to potentially linear regret.
However, we are particularly interested in the concentration around the maximum max(r1:t), where
tighter bounds can be established under some conditions.

We know the variance of the empirical CDF satisfies:

Var(Fn(x)) =
F (x)(1− F (x))

n
≤ 1− F (x)

n
.

Applying Bernstein’s inequality, for any λ > 0 and near the right tail x = max(r1:t):

P (|Fn(max(r1:t))− F (max(r1:t))| ≥ λ) ≤ 2 exp

(
− nλ2

2(1− F (max(r1:t))) +
2
3λ

)
.

With rewriting it as the form of ϵ at confidence level δ, we obtain:

P (|Fn(max(r1:t))− F (max(r1:t))| ≥ ϵ)) ≤ δ, where ϵ =

√
2(1− F (max(r1:t)) ln(2/δ)

n
.

(10)
This shows that the deviation is significantly smaller near the maximum when

1− F (max(r1:t)) ≤
1

t2
.
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By applying Equation 10 to Equation 9, we obtain the following refined bound under the additional
condition:

P
(
|F t

n(max(r1:t))− F (max(r1:t))| ≥ ϵ)
)
≤ δ, (11)

where ϵ =

√
ln(2/δ)

n
, and E[max(r1:t)] ≥ F−1

(
1− 1

t2

)
(12)

under which the concentrations are fast enough. With this fast concentration, following the classical
Thompson sampling proof (see Theorem 36.2 from [Lattimore and Szepesvári, 2020]), we can
show that the number of times sub-optimal arms are pulled grows logarithmically with the time
horizon.
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A.2 Budget Constraint and Variable Costs

In addition to the main paper, we provide more details on implementing cost-awareness in our method.
For this, we consider CASH+ with a time budget constraint B and variable costs per arm, i.e. the
evaluation of the model for the model state A

(i)
sss for dataset D costs C(A(i)

sss ,D), with LSLSLS
(i) being the

list of previously evaluated configurations for model i. Formally,

A(i∗) ∈ argmin
A(i)∈A

L(A(i)
sss∗ ,D) (13)

s.t. SSS∗ ∈ argmin
sss∈S(i)S(i)S(i)

L(A(i)
sss ,D). (14)

s.t.
∑
i∈K

∑
sss∈L(i)

S
L

(i)
SL
(i)
S

C(A(i)
sss ,D) ≤ B (15)

Given an overall budget of B, we define ssst to be the model state proposed by the optimizer in the
lower level and ri,t to be the feedback to arm i obtained by evaluating ssst. To be consistent with the
bandit literature, we maximize the negative loss with cost ci,t:

ri,t = −L(Ai
ssst ,D)

ci,t = C(A(i)
ssst ,D) (16)

The goal is then to find the best-performing algorithm A∗ and its state sss∗ with spending a time budget
B, and we assume the cost of pulling arm i follows a sub-Gaussian distribution with expected mean
ci.

R(B) = max
i≤K

E
[

max
t≤⌊B/ci⌋

ri,1:t

]
− E

[
max
t≤T

rIt,1:t

]
(17)

s.t.
T∑

t=1

cIt,t ≤ B (18)

Each arm experiences a different time horizon Ti =
B
ci

. If we sort arms based on optimality (denoting
the optimal arm as 1 and the most sub-optimal arm as K), we have:

E
[

max
t≤⌊B/c1⌋

r1,1:t

]
> E

[
max

t≤⌊B/c2⌋
r2,1:t

]
> · · · > E

[
max

t≤⌊B/cK⌋
rK,1:t

]
(19)

Let at time step t, arm i be pulled for ni times and the spent budget be b =
∑

i≤k
∑ni

t=1 ci,1:t. The
remaining budget at time step t is B − b. And arm i has been pulled for ni times. In the base case,
we can only pull this arm for B−b

ci
times. Meaning that instead of f(t) = t we need to predict

the posterior at f(t) = ni +
B−b
ci

. However, the cost of pulling arms is noisy (e.g., the cost of
pulling an arm implementing hyperparameter optimization will depend on the model size and training
hyperparameters for each configuration), and we need to estimate ci. We model these costs as a
random distribution to estimate ci, and sample the cost from this distribution.

fi(t) = ni +
B − b

c ∼ pc(· | {ci,t}ni
t=1)

where b =
∑
i≤k

ni∑
t=1

ci,t. (20)

Principally, without having prior information about maximum budget B, one can use f(t) as follows:

fi(t) =
b

c ∼ pc(· | {ci,t}ni
t=1)

where b =
∑
i≤k

ni∑
t=1

ci,t. (21)

This is the cost-scaled version of f(t) = t.
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A.3 Importance of priors

Here, we study the sensitivity of the PFN concerning its prior. For this, we pre-trained three separate
PFNs using rewards generated from a truncated skewed normal distribution. The priors mainly differ
in the parameter range used to sample from to initiate the distribution , as shown in Table A.1. We
then evaluated them as a model for PS-PFN on a synthetic multi-armed bandit task with 7 arms,
with the reward distributions characterized by the mean µ and standard deviation σ values listed in
Table A.2. To assess generalization across skewness, we varied the skewness parameter a within the
range [−100, 100] in increments of 5.

Dataset Parameters

Neg
a ∼ U(−100,−20)
µ ∼ U(0.0, 1.0)
σ ∼ U(0, 0.2)

Pos
a ∼ U(20, 100)
µ ∼ U(0.0, 1.0)
σ ∼ U(0, 0.2)

Mix
a ∼ U(−100, 100)
µ ∼ U(0.0, 1.0)
σ ∼ U(0, 0.2)

Table A.1: Parameters of the priors per dataset type
used to train the PFNs.

Arm Parameter µ Parameter σ
1 0.80 0.05
2 0.75 0.05
3 0.70 0.05
4 0.60 0.05
5 0.70 0.10
6 0.60 0.10
7 0.50 0.10

Table A.2: Reward distribution parameters
for the synthetic MAB tasks.

We analyze the impact of prior distributions by evaluating both ranking and normalized regret
plots. We define three types of environments based on the skewness parameter a: Neg for strongly
left-skewed distributions (a ∈ [−100,−45]), Mix for mildly skewed or symmetric distributions
(a ∈ [−45, 45]), and Pos for right-skewed distributions (a ∈ [45, 100]).

As shown in the ranking plot (Figure A.1), an interesting observation is that PS-PFN(Pos) un-
derperforms even in positively skewed environments. This is likely because right-skewed reward
distributions make the problem more exploration-heavy, requiring more time horizon than the avail-
able budget allows. This trend is also reflected in the normalized regret plot (Figure A.2), where
PS-PFN(Pos) exhibits higher regret.

Furthermore, the number of arm pulls reported in Figure A.2 shows that PS-PFN(Pos) explores more
frequently than the other models. Finally, the heatmap in Figure A.4 highlights that PS-PFN(Neg)
performs best in environments with left-skewed reward distributions.

Neg Mix Pos

0 50 100 150 200
Iteration

3.5

4.0

4.5

5.0

5.5

R
an

ki
ng

0 50 100 150 200
Iteration

3.0

3.5

4.0

4.5

5.0

5.5

6.0

R
an

ki
ng

0 50 100 150 200
Iteration

3.5

4.0

4.5

5.0

5.5

6.0

R
an

ki
ng

PS-PFN(Mix)

PS-PFN(Pos)

PS-PFN(Neg)

PS-Max

MaxUCB

Rising-Bandit

Random Policy

Oracle Arm

Figure A.1: Comparing ranking of PS-PFN with different priors on synthetic tasks.

A.4 Out of distribution

Here, we examine two PFNs trained on a negatively skewed distribution. However, one of them rarely
sees values lower than 0.8, we call it Neg(limited). In the prediction, as seen in Figure A.5 it cannot
extrapolate properly. Therefore, for generating synthetic trajectories, we always choose the parameter
distribution such that the trajectories cover the whole range [0, 1] during pre-training PFNs.
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Figure A.2: Comparing normalized loss of PS-PFN with different priors on synthetic tasks.
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Figure A.5: out of distribution analysis
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B Synthetic data

B.1 Generating synthetic reward trajectories

To train our PFNs, we must generate synthetic trajectories for each prior. We implement this using
two distributions d1 and d2.

The first distribution, d1, models the rewards and captures characteristics of the optimization output
and its uncertainty, i.e., left skewness when rewards are i.i.d. as is typical with random search.
The second distribution, d2, models the shift over time and introduces non-stationarity by modeling
changes in the reward distribution over time. The reward sequence is generated by element-wise
multiplication of the samples from d1 with the sorted samples from d2. Concretely, to generate a
synthetic trajectory, we draw one sample for each parameter of the distributions, e.g., µ1. We then
draw t = 200 samples from d1 and d2, denoted by r1,1:t and r2,1:t, respectively. Next, we sort r2,1:t
in ascending order and perform element-wise multiplication with r1,1:t to obtain the final reward
sequence r1:t = r1,1:t · sort(r2,1:t).
Choosing appropriate distributions for d1 and d2 and the range of their parameters is challenging,
and suitable values depend on the task at hand. We derive suitable ranges based on holdout tasks as
detailed in Appendix B.2.

Distribution d1 (Reward Uncertainty) The distribution d1 models the uncertainty in the rewards
and is designed to be left-skewed. We use a truncated skewed normal distribution over the interval
[0, 1], where the mean µ1 is sampled from Uniform(0, 1) (see Appendix A.4), the skewness is sampled
from Uniform(−100,−20), and the standard deviation σ1 controls the level of model uncertainty.

Distribution d2 (Non-Stationarity) The distribution d2 captures non-stationarity by introduc-
ing time-dependent shifts in the reward distribution. Similar to d1, it is also modeled using a
truncated skewed normal distribution over [0, 1], with a fixed mean of 1, skewness sampled from
Uniform(−100,−20), and standard deviation σ2 controlling the severity of the non-stationary behav-
ior.

For each prior, we specify different values for σ1 and σ2 as summarized in Table B.1. Figure 4 shows
the posterior predictions of these three PFNs for the same input sequence. As seen, the output closely
approximates the synthetic trajectories. Additionally, in Appendix A.3, we illustrate the sensitivity of
our PFNs to prior selection by evaluating PS under different assumptions. Notably, the term (1− µ1)
is used because reward processes with a low-performing mean tend to exhibit greater non-stationarity.

Table B.1: Parameters for the distributions used to generate synthetic reward trajectories for each
prior.

Type Parameters
Flat σ1 ∼ Uniform(0, 0.1) σ2 ∼ Uniform(0.001(1− µ1), 0.001)
Semi-flat σ1 ∼ Uniform(0, 0.2) σ2 ∼ Uniform(0.01(1− µ1), 0.01)
Curved σ1 ∼ Uniform(0, 0.2) σ2 ∼ Uniform(0.1(1− µ1), 0.1)
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Figure B.1: Studying the effect of σ̂1

B.2 Trajectory Analysis

Here, we detail how we designed the priors for training our PFNs, based on analyzing the optimization
trajectories of the Reshuffling benchmark. We aim to find robust default parameters for d1 and d2.
For simplicity and clarity, we define σ̂1 and σ̂2 as parameters to control range of σ1 and σ2 such that
σ1 ∼ Uniform(0, σ̂1) and σ2 ∼ Uniform(σ̂2(1− µ1), σ̂2). Our goal is to identify suitable values for
σ̂1 and σ̂2.

We start by using σ̂2 = 0.001, which is close to zero. This eliminates the effect of d2 and yields
stationary trajectories. In Figure B.1, we show the effect of σ̂1. Each row uses the same value for
σ̂1, and each column shows results for a different ML pipeline (arm). Ideally, the blue area fully
covers the yellow area, and the shape of the average trajectory is similar in terms of flatness or
incremental trend. Comparing the blue curve (average of synthetic trajectories) with the yellow curve
(average of real-world trajectories), we found that most often σ̂1 = 0.3 is too high (last row). For
CatBoost, σ̂1 = 0.1 yields good results, while for XGBoost, σ̂1 = 0.2 fits better. We use σ̂1 = 0.1
and σ̂2 = 0.001 for flat prior.

We now increase the amount of non-stationarity by changing σ̂2, while keeping hatσ1 fixed at 0.2.
As seen in Figure B.2, σ̂2 = 0.01 covers better slight non-stationarity. For instance, in the case of
MLP and LogReg, the increasing trend of the synthetic trajectories with σ̂2 = 0.01 aligns more
closely with the real-world trajectories compared to σ̂2 = 0.001 (see Figure B.1). We use σ̂1 = 0.2
and σ̂2 = 0.01 for semi-flat prior.

Notably, we also use σ̂1 = 0.2 and σ̂2 = 0.1 for our curved prior as seen in Figure B.2.
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Figure B.2: Studying the effect of σ̂2

23



C Benchmarks

In our empirical evaluation, we use three AutoML benchmarks (TabRepoRaw, YaHPOGym and
Complex) as described in Table C.1. Additionally, we make use of the Reshuffling benchmark during
development (as detailed in Section B.2). We describe all of them in more detail here.

Complex is a novel CASH+ benchmark which we build for this work, covering optimization meth-
ods for 5 different workflows covering fine-tuning XTAB [Zhu et al., 2023] and TabForestPFN [Bree-
jen et al., 2024], running the AutoML system FLAML [Wang et al., 2021], optimizing hyperparame-
ters of a shallow neural network [Holzmüller et al., 2024] and PHETabPFNv2 [Hollmann et al., 2025].
Table C.2 provides details for each model, including the optimization method and the corresponding
hyperparameter search space. Additionally, Table C.3 lists the datasets from OpenML [Bischl et al.,
2025] used in these experiments. We ran the optimization with four different random seeds, using
seven folds to train the ML model and its optimization process, and the remaining three folds to
evaluate the loss. Each run produced 12 distinct optimization trajectories as repetitions.

YaHPOGym [Pfisterer et al., 2022] is a surrogate benchmark that covers six ML models (details in
Table C.4) on 103 datasets and uses a regression model (surrogate model) to predict performances for
queried hyperparameter settings. We re-use HPO trajectories provided by Balef et al. [2025]. In our
empirical evaluation, we exclude the last 3 datasets we used to derive our priors (see Section B.2).

TabRepoRaw uses the non-discretized search space from TabRepoRaw [Salinas and Erickson,
2024] (details in Table C.5). We re-use HPO trajectories provided by Balef et al. [2025], which cover
30 datasets (see context name D244_F3_C1530_30 in the original TabRepoRaw code repository).
We run Bayesian optimization for 8 more datasets to study trajectories, which we exclude from the
evaluation.

Reshuffling is an existing benchmark provided by Nagler et al. [2024] from which we analyze HPO
trajectories to develop our PFNs. It covers 4 ML models (details in Table C.6) across 10 datasets,
with 10 repetitions and 3 different validation split ratios within a budget of 250 iterations. As an
HPO method, it uses HEBO [Cowen-Rivers et al., 2022]. Since this benchmark does not contain cost
information, we do not use it in our empirical evaluation.

name #models #tasks type HPO meth. (rep.) budget reference

YaHPOGym 6 103 surrogate SMAC (32) 200 iterations [Pfisterer et al., 2022]
TabRepoRaw 7 30 raw SMAC (32) 200 iterations -
Complex 5 30 raw Various (12) 2 hours -

Table C.1: Overview of AutoML tasks
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Table C.2: ML models in Complex.

ML model Optimization method Hyperparameters Search Space Range Info

XTab Fine-tuning (AdamW)

FLAML

HPO (LightGBM)

num_leaves integer [4, 32768] log
max_depth integer [-1, 15] -1 = no limit
learning_rate continuous [0.0001, 1.0] log
n_estimators integer [16, 32768] log
min_child_samples integer [1, 100]
subsample continuous [0.1, 1.0]
colsample_bytree continuous [0.1, 1.0]
reg_alpha continuous [0.0, 10.0]
reg_lambda continuous [0.0, 10.0]

HPO (XGBoost)

max_depth integer [3, 15]
learning_rate continuous [0.0001, 1.0] log
n_estimators integer [16, 32768] log
subsample continuous [0.1, 1.0]
colsample_bytree continuous [0.1, 1.0]
reg_alpha continuous [0.0, 10.0]
reg_lambda continuous [0.0, 10.0]

HPO (CatBoost)

learning_rate continuous [0.0001, 1.0] log
depth integer [4, 10]
l2_leaf_reg continuous [1.0, 10.0]
iterations integer [16, 32768] log
rsm continuous [0.5, 1.0]
border_count integer [32, 255]
bootstrap_type categorical {Bayesian, Bernoulli, MVS}
bagging_temperature continuous [0, 1] for Bayesian

HPO (Random Forest)
max_depth integer [2, 15]
n_estimators integer [16, 32768] log
max_features categorical {sqrt, log2, None}

HPO (Logistic Regression) C continuous [1e-6, 1e6] log

RealMLP HPO (SMAC)

num_emb_type categorical {none, pbld, pl, plr}
add_front_scale categorical {True, False}
lr continuous [0.02, 0.3] log
p_drop categorical {0.00, 0.15, 0.30}
act categorical {selu, relu, mish}
hidden_sizes categorical {[256,256,256], [64,64,64,64,64], [512]}
wd ordinal {0.0, 0.02}
plr_sigma continuous [0.05, 0.5] log
ls_eps ordinal {0.0, 0.1}
epochs ordinal {16, 32, 64, 128, 256} default=256
batch_size ordinal {32, 64, 128, 256} default=256

TabForestPFN Fine-tuning (AdamW)

TabPFN (v2) Post-Hoc Ensembling

Table C.3: Dataset in Complex.

index task id dataset name number of samples number of features number of categorical features number of calsses

1 3593 2dplanes 40768 11 1 2
2 3627 cpu-act 8192 22 1 2
3 3688 houses 20640 9 1 2
4 3844 kdd-internet-usage 10108 69 69 2
5 3882 pendigits 10992 17 1 2
6 3904 jm1 10885 22 1 2
7 7295 Click-prediction-small 39948 10 1 2
8 9933 volcanoes-c1 28626 4 1 5
9 9965 skin-segmentation 245057 4 1 2
10 9977 nomao 34465 119 30 2
11 9986 gas-drift 13910 129 1 6
12 9987 gas-drift-different-concentrations 13910 130 1 6
13 10106 CreditCardSubset 14240 31 1 2
14 14965 bank-marketing 45211 17 10 2
15 34537 PhishingWebsites 11055 31 31 2
16 34539 Amazon-employee-access 32769 10 10 2
17 361056 california 20634 9 1 2
18 361063 house-16H 13488 17 1 2
19 361071 jannis 57580 55 1 2
20 361110 electricity 38474 9 2 2
21 361111 eye-movements 7608 24 4 2
22 361112 KDDCup09-upselling 5032 46 12 2
23 361113 covertype 423680 55 45 2
24 361114 rl 4970 13 8 2
25 361115 road-safety 111762 33 4 2
26 361116 compass 16644 18 10 2
27 361282 albert 58252 32 11 2
28 362098 Dota2-Games-Results-Data-Set 102944 117 117 2
29 362407 adult 48790 15 9 2
30 363550 cdc-diabetes 253680 22 1 2
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Table C.4: Hyperparameter spaces for ML models in YaHPOGym.

ML model Hyperparameter Type Range Info

- trainsize continuous [0.03, 1] =0.525 (fixed)
imputation categorical {mean, median, hist} =mean (fixed)

Glmnet alpha continuous [0, 1]
s continuous [0.001, 1097] log

Rpart

cp continuous [0.001, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]

SVM

kernel categorical {linear, polynomial, radial}
cost continuous [4.5e-05, 2.2e4] log
gamma continuous [4.5e-05, 2.2e4] log, kernel
tolerance continuous [4.5e-05, 2] log
degree integer [2, 5] kernel

AKNN

k integer [1, 50]
distance categorical {l2, cosine, ip}
M integer [18, 50]
ef integer [7, 403] log
ef_construction integer [7, 403] log

Ranger

num.trees integer [1, 2000]
sample.fraction continuous [0.1, 1]
mtry.power integer [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] splitrule

XGBoost

booster categorical {gblinear, gbtree, dart}
nrounds integer [7, 2980] log
eta continuous [0.001, 1] log, booster
gamma continuous [4.5e-05, 7.4] log, booster
lambda continuous [0.001, 1097] log
alpha continuous [0.001, 1097] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] booster
min_child_weight continuous [2.72, 148.4] log, booster
colsample_bytree continuous [0.01, 1] booster
colsample_bylevel continuous [0.01, 1] booster
rate_drop continuous [0, 1] booster
skip_drop continuous [0, 1] booster
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Table C.5: Hyperparameter spaces for ML models in TabRepoRaw.

ML model Hyperparameter Type Range Info Default value

NN(PyTorch)

learning rate continuous [1e-4, 3e-2] log 3e-4
weight decay continuous [1e-12, 0.1] log 1e-6
dropout prob continuous [0, 0.4] 0.1
use batchnorm categorical False, True
num layers integer [1, 5] 2
hidden size integer [8, 256] 128
activation categorical relu, elu

NN(FastAI)

learning rate continuous [5e-4, 1e-1] log 1e-2
layers categorical [200], [400], [200, 100],

[400, 200], [800, 400],
[200, 100, 50], [400, 200, 100]

emb drop continuous [0.0, 0.7] 0.1
ps continuous [0.0, 0.7] 0.1
bs categorical 256, 128, 512, 1024, 2048
epochs integer [20, 50] 30

CatBoost

learning rate continuous [5e-3 ,0.1] log 0.05
depth integer [4, 8] 6
l2 leaf reg continuous [1, 5] 3
max ctr complexity integer [1, 5] 4
one hot max size categorical 2, 3, 5, 10
grow policy categorical SymmetricTree, Depthwise

LightGBM

learning rate continuous [5e-3 ,0.1] log 0.05
feature fraction continuous [0.4, 1.0] 1.0
min data in leaf integer [2, 60] 20
num leaves integer [16, 255] 31
extra trees categorical False, True

XGBoost

learning rate continuous [5e-3 ,0.1] log 0.1
max depth integer [4, 10] 6
min child weight continuous [0.5, 1.5] 1.0
colsample bytree continuous [0.5, 1.0] 1.0
enable categorical categorical False, True

Extra-trees
max leaf nodes integer [5000, 50000]
min samples leaf categorical 1, 2, 3, 4, 5, 10, 20, 40, 80
max features categorical sqrt, log2, 0.5, 0.75, 1.0

Random-forest
max leaf nodes integer [5000, 50000]
min samples leaf categorical 1, 2, 3, 4, 5, 10, 20, 40, 80
max features categorical sqrt, log2, 0.5, 0.75, 1.0
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Table C.6: Hyperparameter spaces for ML models in Reshuffling.

ML model Hyperparameter Type Range Info

Funnel-Shaped MLP

learning rate continuous [1e-4, 1e-1] log
num layers integer [1, 5]
max units categorical 64, 128, 256, 512
batch size categorical. 16, 32, ..., max_batch_size
momentum continuous. [0.1, 0.99]
alpha continuous. [1e-6, 1e-1] log

Elastic Net C continuous [1e-6, 10e4] log
l1 ratio continuous [0.0, 1.0]

XGBoost

max depth integer [2, 12] log
alpha continuous [1e-8, 1.5] log
lambda continuous [1e-8, 1.0] log
eta continuous [0.01, 0.3] log

CatBoost
learning rate continuous [0.01 ,0.3] log
depth integer [2, 12]
l2 leaf reg continuous [0.5, 30]
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D PFN architecture

The PFN architecture inherits standard Transformer hyperparameters: the number of layers
(nlayers), attention heads (nheads), embedding dimension (emsize), and hidden dimension
(nhidden). Specifically, our configuration uses 6 layers, 4 attention heads, and a hidden size
of 512. For training, we adopt the Adam optimizer [Kingma and Ba, 2015] (learning rate 10−4, batch
size 100) with cosine annealing [Loshchilov and Hutter, 2017], including a linear warmup phase over
the first 25% of epochs. We set m = 200, meaning the PFN is trained to extrapolate sequences of up
to 200 steps (e.g., HPO or fine-tuning iterations). The PFN output is a discretized mass distribution
with a fixed number of bins. We set the number of bins to 1, 000 as a hyperparameter. The model
is trained for 1, 000 epochs, resulting in training with 100, 000 synthetic trajectories, which takes
approximately one GPU-day.

E Priors

We use three types of priors throughout our work: (a) a prior to efficiently estimate costs to make our
methods cost-aware, (b) a prior to estimate reward distributions to evaluate PS-Max, and (c) a prior to
generate synthetic reward trajectories to train PFNs to be used for PS-PFNmixed. We discuss the use
of these in the following.

Priors for cost-awareness. We assume that the cost (i.e., runtime) follows a log-normal distribution,
with corresponding parameters provided in Table E.1. The log-normal distribution is a natural choice
for modeling the cost of training machine learning models, as training costs often exhibit a skewed,
right-tailed behavior where higher costs are less frequent but more extreme. This makes the log-
normal distribution a good fit for such scenarios (as illustrated in Figure 1 from [Lee et al., 2020]). We
truncated the log-normal distribution to avoid unreasonably high or low costs, as shown in Table E.1.

Likelihood Model Prior Parameters Notes

Log-Normal

µ0 = 1.0
λ0 = 1.0
α0 = 1.0
β0 = 0.0

Log-cost modeled with
Normal-Inverse-Gamma prior.
Costs truncated to:
0.1 ≤ cost ≤ B/10

Table E.1: Prior distributions and posterior sampling procedures for cost model.

Priors for PS-Max. We assume that the rewards follow a Gaussian distribution, with initial
parameter values specified in Table E.2.

Likelihood Model Prior Parameters Notes

Gaussian

µ0 = 1.0
λ0 = 1.0
α0 = 1.0
β0 = 0.0

Normal-Inverse-Gamma prior.
Posterior updates:
• σ2 ∼ InvGamma(αn, βn)
• θ ∼ N (µn, σ

2/λn)

Table E.2: Prior distributions and posterior sampling procedures for reward model.

Priors for PS-PFNmixed. Our methodology allows using different priors for each arm and bench-
mark. We make use of this advantage for PS-PFNmixed, as shown in Table E.3. We note that the
choice of priors is critical, since they should match expected real-world data while simultaneously
impacting the exploration behavior of the agent. For example, choosing a curved prior instead of
a semi-flat or flat one for the same arm leads to increased exploration of that arm (independently
of whether this is the optimal choice for this arm). This implies that arms with a curved prior will
be sampled more often regardless of the true trajectory type. If such arms are consistently optimal,
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overall performance will improve. However, from another perspective, the possibility of prioritizing
arms that are more likely to be optimal can be important. For instance, in TabRepoRaw, XGBoost
has flat trajectories while it outperforms other methods more frequently. As a result, assigning a flat
prior to XGBoost reduces overall performance. For our evaluation, we selected the prior that most
closely matched the trajectory shape on the holdout datasets, as measured by the root mean square
error (RMSE), as seen in Figure E.1 and E.2, but we emphasize that investigating this trade-off is a
research direction for future work.

Benchmark Model Class (Arm) PFN Type

Complex

XTab semi-flat
FLAML semi-flat
RealMLP flat

TabForestPFN semi-flat
TabPFN_v2 semi-flat

TabRepoRaw

CatBoost semi-flat
ExtraTrees semi-flat
LightGBM curved

NeuralNet(FastAI) curved
NeuralNet(Torch) curved

RandomForest semi-flat
XGBoost flat

YaHPOGym

AKNN curved
GLMNet semi-flat

RPart semi-flat
Ranger curved
SVM curved

XGBoost curved
Table E.3: PFNs types for each arm across different benchmarks.

F Results in details

We compare the performance of PS-PFN under different priors by showing the ranking plot in
Figure F.1 and the normalized loss (regret) over time in Figure F.2.

In Figure F.3, we show the normalized loss or regret over time. Figure F.4 displays the regret heatmap
for each dataset in the Complex benchmark. Similarly, Figures F.5 and F.6 present the regret heatmaps
for the TabRepoRaw and YaHPOGym benchmarks, respectively.
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Figure E.1: Priors for TabRepoRaw
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Figure E.2: Priors for YaHPOGym
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Figure F.1: Ranking of algorithms on different benchmarks, lower is better. SMAC and random search
perform combined CASH across the joint space.
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Figure F.2: Regret of algorithms on different benchmarks, lower is better. SMAC and random search
perform combined CASH across the joint space.

Complex TabRepoRaw[SMAC] YaHPOGym[SMAC]

0.0 1.0 2.0
Wall-clock time (h)

N
or

m
al

iz
ed

re
gr

et

0.0 1.0
Normalized wall-clock time

N
or

m
al

iz
ed

re
gr

et

0.0 1.0
Normalized wall-clock time

0.1

N
or

m
al

iz
ed

re
gr

et

PS-PFNcost
mixed

PS-PFNmixed

PS-PFNcost

PS-PFN

PS-Maxcost

PS-Max

MaxUCB

Rising-Banditcost

Rising-Bandit

TS

SMAC

SMAC-no-init

Random Search
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perform combined CASH across the joint space.
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Figure F.5: Heatmap of regret of algorithms on different datasets of TabRepoRaw benchmark, lower
(green) is better.
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Figure F.6: Heatmap of regret of algorithms on different datasets YaHPOGym benchmark, lower
(green) is better.
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