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ABSTRACT

We initiate the study of decision-making under coupled uncertainties. In this prob-
lem, a learner has access to ground truth and coarse measurements of outcomes and
would like to use them for decision-making. The learner has constrained access
to ground truth measurements for only a given fraction of decision outcomes and
would like to leverage the cheaper coarse measurements of decision outcomes. We
introduce a model where the randomness of the ground and coarse measurements is
coupled, and our approach learns their correlation to optimally combine coarse mea-
surements with ground truth and achieve improved performance. This framework
unifies several settings, like learning from multi-fidelity data sources and delegating
decision-making to Al agents. We provide an upper confidence bounds based algo-
rithm CUUCB for leveraging coupled uncertainties in a multi-armed bandit task,
where the covariance structure between coarse measurements and ground truth is
unknown. We show theoretically how CUUCB adapts to the underlying covariance
structure by deriving instance-dependent and instance-independent regret bounds.
We validate our algorithm in two experiments: a task with synthetically generated
data, and an LLM benchmarking task. We compare our algorithm to existing UCB
variants with access to only ground truth measurements on the constrained fraction
of outcomes. In both cases, our algorithm is able to achieve lower regret.

1 INTRODUCTION

Recent advances in artificial intelligence (AI), computational modeling, and the development of
foundation models for science are reshaping the way experiments are conducted — accelerating the
pace of new discoveries Bommasani et al.|(2021); Wang et al.| (2023)). Predictive tools and language
models are increasingly being developed in domains like personalized healthcare Lu et al.[(2021));
Yang et al.| (2022); [Thirunavukarasu et al.|(2023), polling Tumasjan et al.|(2010); [Wang et al.| (2015)),
environmental monitoring Shi et al.[(2017); Ravuri et al.| (2021), and content moderation Gomez et al.
(2024) paving the way for new services and more efficiencies in important application areas. Despite
these advances, these powerful predictive models are often black-box which introduces challenges
when one would like to use them for downstream decision-making tasks. For example, language
models may be mis-aligned with the underlying human preferences one would like them to emulate.
Despite a large body of recent work on uncertainty quantification for black-box machine learning
predictions (the exemplar being conformal prediction [Vovk et al.| (2005); [Romano et al.| (2019);
Angelopoulos et al.|(2023b)), existing methods often yield overly conservative estimates or are simply
not amenable to online decision-making.

To overcome this challenge, we propose an algorithm for sequential decision-making when one has
access to two different types of measurements: (1) coarse measurements (e.g., machine learning or
Al-based predictions) which may be cheap and readily available, and (2) ground-truth measurements
that may require costly experimentation. The decision-maker does not know how good the coarse
measurement is but they would like to minimize their regret over a sequence of decisions while
keeping the number of “ground-truth” measurements they query below a desired threshold. To
tackle this, we introduce a feedback model where (1) the randomness in the coarse and ground
truth measurements is coupled, and (2) each time a ground-truth measurement is queried, the
corresponding coarse measurement is also observed at negligible cost. This framework captures
feedback mechanisms that naturally arise in a variety of empirical settings, including fluid dynamics
modeling, climate forecasting and active learning epidemiology systems [Niu et al.[(2024)); Wu et al.
(2023} 2022); |Li et al.|(2022a; 2020).
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The key premise of coupled uncertainty learning is that if the coarse measurements are highly
correlated with the ground-truth measurements, then one can use them to reduce the variance of the
estimators obtained from only ground-truth measurements and ultimately to substitute for ground
truth measurements altogether. Doing so however, is not straightforward since the covariance structure
of the ground truth and coarse measurements may not be known a priori, and consequently, the
weight that should be given to the coarse measurements in estimation is unknown. Furthermore, high
correlation between ground truth and coarse data is not enough to simply replace one dataset for
another since it does not solve the problem of mis-alignment—a problem that our experiments on
large language models clearly expose.

In this paper, we initiate a study of learning with coupled uncertainties in the context of multi-armed
bandits. We seek to learn the optimal arm while building estimators that combine ground truth and
coarse data to achieve lower regret with respect to a ground-truth baseline than existing algorithms.
Reflecting the fact that in many applications ground truth feedback can be expensive to collect (e.g.,
querying human feedback in language-model benchmarking tasks can be costly), we constrain the
number of ground truth queries to be an «(¢) fraction of the total number of pulls for a given arm 4.
This ratio can arise from the relative costs of ground truth vs coarse experimentation.

We propose the Coupled Uncertainty Upper Confidence Bounds (CUUCB) algorithm, which can be
seen as a variant of the UCB-V algorithm (Audibert et al.|[2009), which is a variance adaptive upper
confidence bounds algorithm. We show that CUUCB achieves an instance-independent expected
regret bound of O(+/C, T log T') while only requiring approximately «(¢) fraction of pulls for arm
1 being ground-truth samples. Here, (%) is a user-defined parameter and can be interpreted as the
target fraction of pulls of arm ¢ which access ground truth. C\, depends on the covariance structure of
the ground-truth and coarse measurements « and has the following structure:

— o(1)?
Ca = NV (i) (VA 4 pii2) 0

where Var® (i) is the variance of the ground-truth measurements for arm i and p(i) € [—1, 1] is the
correlation between ground-truth and coarse measurements for arm ¢. This can provide improved
performance compared to using a variance adaptive algorithm such as UCB-V (Audibert et al.| 2009),
when there is no access to coarse measurements and the regret bound has the form O(4/C" T logT)

Gy
with C), = 3. Vj(i)(l). We can thus expect to see improved performance when |p(i)| is large,
meaning the ground-truth and coarse measurements have a high correlation, and when «/(%) is small,

meaning only a small fraction of the measurements are ground-truth.

We verify our findings experimentally both on synthetic data and a LLM benchmarking task in which
we observe that our algorithm can overcome mis-alignment in the LLM-as-a-judge paradigm using
small amounts of ground-truth data.

2 RELATED WORK

Extensive research since [Robbins| (1952) has studied the multi-armed bandit problem, with particular
emphasis on algorithms using upper confidence bounds (Auer, 2002; Bubeck et al., 2012} |Lattimore
& Szepesvari, [2020). Within this literature, the most relevant to this paper is a line of work on
multi-fidelity bandits (Kandasamy et al., 2016bga) in which the authors consider bandit problems
when multi-fidelity information is available. In such problems, only only one type of feedback (or
fidelity level) is available at each time step, and the fidelity levels are known. In contrast our coarse
measurements are of unknown quality. By introducing the framework of coupled uncertainty bandits,
we highlight new way in which multiple fidelity feedback can be leveraged for decision-making.
By collecting both low and high fidelity feedback when querying the higher fidelity levels, the
measurements become statistically coupled. This allows the learner to learn correlations and improve
performance over and beyond existing bandit algorithms that use only high fidelity data.

These problems have also surfaced in the literature on adaptive experiment design for scientific
applications of machine learning (Fernandez-Godino et al., 2016; |Greenhill et al.,[2020) where the
goal is to fuse data sources with multiple fidelity levels and costs—online— to derive good estimates
of desired quantities. Previous works have focused on Bayesian optimization and Bayesian active
learning problems, aiming to iteratively optimize or learn a target function by leveraging data across
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different fidelity levels (Li et al., [2020; |Hernandez-Garcia et al.| 2023} |Li et al., [2022a; [Kandasamy
et al.l 2017). One popular approach involves using Gaussian processes (GPs) for multi-fidelity
surrogate modeling, providing well-calibrated uncertainty estimates for acquisition function design
(Wu et al,2020). Other multi-fidelity surrogate modeling approaches utilize neural processes (Wu
et al.| [2022;2023)) or ordinary differential equations (Li et al.,[2022b)) as an more flexible and scalable
alternative to GPs. None of these lines of work consider the potential effects of leveraging the
coupling between data sources to reduce uncertainty.

Our work also relates to the emerging literature on using Al predictions, large language models, or
other machine learning based models as substitutes for experimentation in estimation problems. In
offline settings, these problems have recently emerged under the umbrella of prediction-powered
inference (Angelopoulos et al., [2023a; [Zrnic & Candes}, [2024) which provides a generalization
of classic estimators studied in statistics like the augmented inverse propensity weighted (AIPW)
estimator from (Robins & Rotnitzky} [1995)). These works leverage predictive models to improve the
efficiency and accuracy of inference, particularly in settings where labeled data is scarce or expensive
to obtain. These techniques have been used to deal with problems of mis-alignment and a lack of
human data in the fine tuning of large language models (LLMs) (Zhou et al., [2025)). Our paper
extends some of these ideas to problems of online learning. Concurrent work (Ji et al., [2025) has also
extended these ideas to sequential decision-making settings in an attempt to warm start online learning
algorithms with coarse data. Our paper looks at a different problem of extracting statistical signal
from coarse data while collecting data under a budget constraint. Furthermore, our theoretical results
and derivations gives finite-sample bounds on estimators under a general boundedness assumption
that makes the derivations nontrivial. These expand upon the more asymptotic analyses present in the
literature on prediction-powered inference and may be of independent interest.

3 THE COUPLED UNCERTAINTY FRAMEWORK

We start with formulating the paradigm of decision-making with coupled uncertainty. In this setting,
we assume that there is a sequence of contexts {¢; };=.; arriving into the system. Given a context, ¢;
at time ¢, the system chooses an action i; from a set of actions .4, generating an outcome ¥ (c¢, it ).
These contexts and actions might be (patient, treatment) pairs in medical scenarios or (prompt,LL.M)
pairs in language model triage tasks. Importantly, we assume that outcomes can be measured with
different levels of granularity. For simplicity of exposition, we assume that there are two such levels
of measurement, one coarse and one ground-truth against which we would like to be benchmarked.

At time t, we formally denote r{ (y) as the coarse measurement we receive given the outcome ¥,
and r{ (y) as the ground truth one. To further concretize this setup we present a motivating example
based on benchmarking large language model that we experimentally validate our algorithm on in
Section[6] We remark that many other use cases including personalized medicine, scientific discovery,
content moderation, and polling fit into this framework.

Example 3.1 (LLM-as-a-judge). A number of existing platforms benchmark and rank the performance
of large language models (LLMs). This is then used to either keep leaderboards of language model
performance (Chiang et al.| 2024)), or ultimately to triage prompts to optimal models online (Ong
et al.| 202)5)), i.e., to perform model routing. The state-of-the-art approach is to allow LLM users
to compare and rate the LLM outputs, and match decisions to those made by humans. However,
high-quality human-level data is scarce, relative to the categories of the prompts we are interested in
and asking people to provide data can be costly. Therefore many researchers make use of language
models to facilitate and provide Al feedback. This raises the question of whether the Al feedback is
comparable or aligned to human preferences and also when and how to make use of it. Such problems
fit neatly into our framework: one would like to make use of LLMs as judges of quality (i.e., coarse
feedback) and use them to replace human-feedback (i.e., the ground truth). At each round t, given
the prompt c; and the LLM choice iy, the benchmarking algorithm can either query just the coarse
level Al feedback r€ (y;) and save human effort, or query both the ground truth human feedback and
the Al feedback as a tuple [r& (y;),rS (y¢)]. Existing LLM-as-a-judge Gu et al.|(2025) approaches
can easily fall prey to mis-aligned models. As we observe experimentally, incorporating even small
amounts of ground truth data ( 5%) allows us to overcome this problem.

In many examples, we observe that when the decision makers have access to fine-grained ground truth
data 7 (y), the coarse level measurement ' (y) with the same input y is cheap to obtain. We therefore
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assume in our protocol that when the learner opts to observe a ground truth measurement, they receive
a two-dimensional tuple [r{ (y), 7C (y)]. Otherwise, they receive a single coarse reward value 7 (y).
Our framework assumes that the context c arises from some underlying distribution and treats it as
a random variable that causes coupling of the ground truth and coarse measurements. Thus, the
distribution of [r& (4, ¢), 7C (i, ¢)] depends only on the learner’s action 7 as c is a random variable. We
thus omit the context c in the following discussion since it is understood to be part of the randomness.
We remark that a natural extension of our framing would be to consider context-dependent algorithms,

though we leave such problems to future work.

In the remainder of the paper we focus on multi-armed bandit problems and demonstrate in our
analyses that we can utilize the coupling between the measurements to obtain tighter concentration
bounds for the means which ultimately resulting in performance gains.

4 MULTI-ARMED BANDITS WITH COUPLED UNCERTAINTIES

In our analysis, we study the multi-armed bandit problem where at time ¢ the learner plays an action
it € A = [K]. The learner also has a choice of what type of reward measurement m; to observe at
time ¢, a coarse and a ground truth measurement (m; € {C, G}). We assume the existence of joint

measurement vectors 7, 7+ € R such that the conditional mean reward values satisfy

E[rf ()] = p©(0),  E[rf(@)] = pu®()

In our protocol when the learner opts to observe a ground truth measurement, she receives a two-
dimensional tuple [r (i), 78 ()] Otherwise she receives a single coarse reward value rC (7). We
remark that the ground truth and coarse means are not necessarily related to one another, and may in
fact encode different orderings of arms. This is a setting which we call mis-alignment: the coarse
means implicitly encode different reward preferences than the ground truth. We do however, assume
that the two measurements are correlated. We denote the unknown variance of the coarse and ground
truth data [rG (i), rC(i)] as well as their unknown covariance as Var® (i), Var® (i), and Cov(i)
respectively.

A nonzero covariance between measurements (given an arm) ensures that there is statistical signal
to extract from coarse data which is informative for explaining away some of the variation in
the ground truth measurements. The correlation can be quantified by the correlation coefficient:

p(i) = % € [—1,1] . Given these definitions, we make two key assumptions on these

random variables. The first is a common boundedness assumption.

Assumption 4.1. There exists a known value b > 0 such that r°(i),r% (i) € [0, b] almost surely, for
alli e [K].

The second assumption is of knoweldge of an upper bound on the ratio of Var® and Var®.

Assumption 4.2. There exists a known ~y > 0, such that Var® (i) < v?Var® (i) for all i € [K].

This assumption is also natural, since when v = 1, this parameter simply reflects the (natural) setting
in which the coarse measurements are “more stochastic” measurements of the ground truth.

Given this setup, we assume the learner seeks to minimize their expected regret when compared to
the optimal (ground-truth) arm.

T

Regret(T) = Y max pu© (i) — uC (i)
i1 €[ K]

Running a no-regret algorithm such as UCB (Lai & Robbins| |1985)) and setting the measurement type
to ground truth at every time step (i.e. m; = G for all ¢ € N) achieves an expected regret bound of
order O(v/KT logT). Unfortunately, this would incur a cost of T expensive ground measurements.
In our problem, however, ground truth measurements are comparatively expensive to collect, and the
user attempts to limit their usage to a user-specified ratio «(¢) of pulls, where (i) = 1 corresponds
to an algorithm using only ground truth measurements, and () = 0 an algorithm using only coarse
measurements.
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We define T, (i) as the set of time-steps £ € [t] where m, = G and i, = i similarly 7,° (i) is the set
of time-steps ¢ € [t] where m, = C and i, = i. With this notation, we can represent the number of
ground and coarse pulls for arm 7 at time ¢ as ]\étG (i) = |7;.8(i)| and NC (i) = |T,©(4)|. The total
number of pulls for arm i is denoted Ny (i) = NF (i) + NF(i).

To keep the actual ratio (i) := ]X;f((;)) close to the desired a(i) € (0,1), we develop a simple
thresholding rule:
: NS (i) < a(i)Ny_1(i
my = G . t—1(1.t) (i) Ny—1(iy) ?)
C : otherwise

NEG) _auld)
NE(i) 1—ay (i)

pulls for the arm 4. Then the target value of x4(4) is given by (i) :=

For convenience, we define the ratio x;(i) := i.e., the ratio of ground to coarse

(i)
1—a(7)
guarantees that this decision rule controls c; (i) around a(i). The proof is provided in Appendix [B]

. The following result

Lemma 4.1 (Feedback ratio guarantee). The threshold rule (2) guarantees the following bounds on
the ratio oy (i) for each arm i € [ K| and all times t:

ali) (1 - Ntl(z)) < (i) < (i) (1 _ Nﬁb) + ﬁ(l)

In the next section we combine this rule with statistical estimators for the ground truth means to derive
a new multi-armed bandit algorithm: Coupled Uncertainty Upper Confidence Bounds (CUUCB).

5 COUPLED UNCERTAINTY UPPER CONFIDENCE BOUNDS

In this section we define and analyze the statistical estimators used in the CUUCB algorithm. These
estimators exploit the coupling between the ground truth and coarse data and have tighter confidence
intervals which scale with the quantity C,, (see (I))) as opposed to the quantity C?, which would be
possible using ground truth measurements alone. As we show, using these estimators in an upper
confidence bounds algorithm results in lower regret on the multi-armed bandit problem.

5.1 UNBIASED AND REDUCED VARIANCE ESTIMATORS OF THE GROUND TRUTH MEAN

To begin constructing our estimators, recall that at time ¢, our algorithm CUUCB pulls arm ¢; and
then selects a measurement type m; € {C, G} after which it observes feedback in the form of either a
coarse measurement from arm ¢, or a tuple of coarse/ground-truth measurements. Given this feedback,
we define empirical estimators of 1 (i) and 1 () at time ¢ given by

X X/
D= e o 10, X =G.C
N jerm )

We also define the estimator for 1 (i) which is derived solely from data collected from coupled
measurements /1. (i):

e je73

Our estimator for the ground truth mean ;. (i), linearly combines 18 (), <% (i) and p€ (i) to for
variance reduction as follows:

. . C,Gy- .
ZNi) = g () = M " (0) = i (0)),

for some constant A € R. Note that Z;\(4) is an unbiased estimator of ;% () for any fixed A. This

estimator is simply the augmented inverse propensity weighted (AIPW) estimator first studied in

Robins & Rotnitzky|(1995) and more recently in|/Angelopoulos et al.|(2024) which studied the tuning

of A\ to reduce variance and thus the width of asymptotic confidence intervals. We derive finite-sample
confidence intervals in the case of unknown variances and correlations.
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Algorithm 1 Coupled Uncertainty Upper Confidence Bounds (CUUCB)
Input: 6 € (0,1),a € (0,1)X,T.
Initialize estimators {/L())( (1), Varé( (1), COVO(i)}ie[K],Xe{G,c,(c,G)}
Initialize N§* (i) = N§ (i) = 0 fori € [K].
Initialize UCB bounds Uy(7) = b for i € [K].
for t =1,2,--- T do
Select arm i; = arg max;e[x] Us—1(i).
Select feedback according to rule (2).
Update count N;™* (i¢) = N;™ (i) + 1
Update estimators ;& (i), us S (i), VarS (i), Vars © (3,),uC (ir), Var® (iy).
Compute Z; (i), Vi‘t(") (4¢) and UCB bound Uy (iy).
end for

—_

T2 Y RN R R

—_—

The main idea is to exploit the coupling between the ground and coarse rewards to choose \ resulting
in a Z} having a lower variance as compared to just using u? as the mean estimator. To see that
this is possible, we use the fact that (u$ (i) — AuS (i) and A\i$ (i) are independent to obtain the
V(i)
NE ()

expression Var(Z (i) = , where V(i) is the following quadratic expression in \:

Vi) = (1 4 z,(i))Var®(i)A% — 2Cov(i)A + Var®(i).

One then observes that the choice of ) that minimizes V(i) is given by \¥ (i) = %,
V(i)
NEG@)

which results in Z} (i) having variance , where

(1 — ay(i))Cov(i)?

*(3) = Var® (i) —
Vi) = VarS) — e

= Var®(i) (1 — (1 — (i) p(i)?) -

Note that by assumption we have |\*(7)| < (1 — oy (@))y. We remark that V(i) < Var® (i) for

N
all values of o and p which means variance reduction is obtained by using the estimator ZtA e () in
place of ;1§ (7). Through Bennett’s concentration inequality we immediately observe how one can
exploit this variance reduction to achieve an improved upper confidence bound for < (7).

Lemma 5.1 (Bennett’s Inequality). Given an arm i and fixing the number of its pulls NC (i), NS (i),
consider a fixed )\ € R satisfying |\| < (1 — oy (i))y. Then the following concentration inequality
holds with probability at least 1 — 6:

2Vi(i)log (3) | (1+7)blog (§)
NE (i) 3NE(3)

|Z3(6) — € (D) <

The proof of this follows from a simple application of Bennett’s concentration inequality and is
supplied in Appendix [B.T|for completeness.. Lemma[5.1] gives us a concentration radius with the
leading term dependent on V(7). Thus, picking A = AF (i) would allow us to obtain the tightest
concentration and thus a lower regret algorithm. However, we do not know (i) and thus cannot
directly compute V(7) or A¥ (7). As we show, one can derive a version of this bound using empirical
estimators of these quantities.

5.2 EMPIRICAL ESTIMATION OF VARIANCES AND COVARIANCES

To fully exploit our AIPW estimator without knowledge of the variances or correlations
between ground truth and coarse measurements, we introduce empirical estimators of
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Var® (i), Var® (i), Var®*% (i) and Cov(i) at time ¢ as:
) 1 ) )
Vark (i) = —— 0 (¥ (5) = uX()% X = G,C
Nt (Z) jE'TtX(Z)

Varl © (i) := 0 jG;(i)(rf(i) — &G (i))?

‘ 1 . ‘ . .
Covy(i) i= —qr >, (1) = uf (@) (5 () — uf' (0)).
N (i) ,
JETE(3)
Note that we can only compute the covariance estimator due to the coupling between the two sources

of feedback given an outcome. These definitions allow us to define the following empirical estimator
for V(i) as a function of A:

VA (i) = (1 + 24(i))Var, ()A% — 2Cov, (i) A + Var® (i),

—C
where for convenience we define Var, (i) := (1 — ay(i))Vary @ (i) + ay (i) VarS (7). The expression
for V7 can be obtained by simply replacing the variances and covariance in the expression for V; with

their appropriate empirical estimators. We analyze its concentration around V() in Appendix
We also define an empirical estimator of A} (7):

(1) = arg min V(i)
Ae[—(1—a ()7, (1—a(i)7]
. v, ifx >
C
=1 -w@)P, </3vct(z)> where: P, (z) := < z, if z € [—7,7]
Var, (i) —, ifz < —v

Note that the bounds on +y in the minimization follow from assumption[4.2] Plugging-in the estimator
A¢(7) into Z}\(i), we obtain the following estimator for ;.5 (7):

Zi(i) i= 2] @) = u$ () = M) (G (6) — 1S (0)).

The following lemma, which is an empirical analogue to Lemma [5.1] gives us the concentration of
Z4(4) around % (i) with a confidence bound that scales with the empirical variance.

Lemma 5.2 (Anytime concentration of Z;(i)). Consider a fixed arm i € [K| and some 6 € (0,1).
Define Ly() := log (16671 (N (2))?(Ny (i) + 2)). Then w.p. at least 1 — 6, the following inequalities
hold for all times t:

2V D (i) Ly (i) L 6L BLE) _ (2VELGE) | T(L+9)bL(i)

|Z4(i) — pC )| < NEO) NoG) S\ TNc@ T NGG)

The proof of Lemma([5.2)is deferred to Appendix The proof follows from showing the concentra-
tion of the empirical variance and covariance estimators and a careful covering argument to handle
the fact that \;(¢) is itself a stochastic quantity.

We use Lemma to define an Upper Confidence Bound on the true mean ;© (4) of arm i at time ¢:
2V (@) Li(0) |, 6(1+7)bLe(0)
NE (i) NE (i)
Using this confidence interval in conjunction with the thresholding rule for maintaining the desired
ratio a(7) of ground truth to coarse feedback results in the CUUCB algorithm detailed in Algorithm

U(i) := Zy(i) +

3

5.3 REGRET ANALYSIS OF CUUCB

Given our the estimator and its confidence bounds, we now present instance-dependent and instance-
independent expected regret bounds for CUUCB, the proof of which is deferred to Appendix
and follows from our concentration guarantees for our variance reduced estimator.
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Theorem 5.3 (Regret Bounds). Ler § = % Then, the expected regret of CUUCB satisfies the
instance-dependent bound:

L (V)
E|Regret(T)| < 128 - +b(1 + log(2T") + O(1),
[Regret(T)] i;giioa@)( o2+ 0(1-47) ) og(2) + O(1)

where A; = maxjer) p(j) — pC (i) is the loss of playing arm i and V*(i) := Var® (i) —

(1—a(i))Cov(i)? . . . i
TVt Moreover, the expected regret also satisfies the instance-independent bound:

E[Regret(T)] < 23 <2 v;(g;)) Tlog(2T) + O(log(T))

In the above result, one can think of V* () as the limiting value of V(%) as the number of samples
grows large, resulting in the ratio «; (%) going to «(%). Lemma gives us an instance-independent
bound on the regret of order O(v/C, T log T'), where

V*(4) a (L= p()?) 2
Co = = >V —_—
Na ~ v (g el
On the other hand, if we were to use a classical variance adaptive algorithm like UCB-V, which has
access to only the «(i) fraction of ground truth measurements but has to play for the same T steps,

then the expected regret bound will have the order O(4/C’, T logT') with C/, = . Vb;f(cz)(l) as shown
in Lemma Thus, we see that C,, has a reduction compared to C’, due to the p(i)? term. We
see that the reduction obtained is greater if |p(¢)| becomes larger and «(i) becomes smaller, i.e., as
the ground and coarse samples become more correlated and as ground samples become more scarce.
Thus, CUUCB potentially allows us to exploit the additional coarse samples to obtain a reduction in

regret. We look at this behaviour in more detail in the experiments that follow.

6 EXPERIMENTS

We now evaluate our algorithms and theory on synthetic data and an LLM-benchmarking task. For
details on implementation, dataset generation and additional experimental results, see Appendix

6.1 SYNTHETIC EXPERIMENTS

a=0.1 a=025 a=05

15,000
ucse uce ucs
ucBv ucB-v ucBv

~= CuucB -= Cuucs -= CuucB

10,000

Regret

5,000

0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000
Time Time Time

Figure 1: Comparison of CUUCB, UCB and UCB-V on synthetically generated data for fixed value
of p = 0.8 and different values of « with a time horizon of 100, 000 steps, averaged across 40 runs.

In our first experiment, we test CUUCB on synthetically generated data and compare it to UCB and
UCB-V. We keep the number of arms as K = 4 and generate the coupled ground and coarse data
points for all arms ¢ by sampling from a common 2-D jointly Gaussian distribution with correlation
set to a parameter p. We then clip the values in a desired interval to ensure the data distribution
has finite support. We choose a uniform target ratio (i) = « for all arms ¢. The algorithms UCB
and UCB-V make decisions using only the ground truth samples observed at a given time ¢, i.e.,
ground truth samples from time steps 7,° (7). Per our theory, we expect CUUCB to outperform the
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other algorithms if we pick the correlation p to be large and set « to be smaller. We compare the
algorithms when p = 0.8 is fixed and we vary « as seen in Figure [l We run the experiments for
a time horizon 7' = 100, 000 and for each algorithm, and show the average regret across 40 runs.
We observe that while increasing «(4) leads to an overall reduction in regret for all algorithms, the
performance improvement obtained by CUUCB over UCB-V is largest at smaller «. Additional
results in the setting when « is fixed and p is varied can be found in Appendix [C.4.1]

6.2 LLM-AS-A-JUDGE EXPERIMENTS

3,000 ucBv UCB-V (a = 0.1)

CUUCB (@ = 0.05) 600 CUUCB (a = 0.1)

—= CUUCB (a = 0.1) —— UCB-V (a=025)
== CUUCB (a = 0.15) == CUUCB (a = 0.25)
UCB-V (a = 0.5)
CUUCB (a = 0.5)

2,000
400

Regret

1,000 e et 200

0 25,000 50,000 75,000 100,000 0 20,000 40,000
Time Time

a b

Figure 2: LLM benchmarking regret plots: a. Performance on misaligned Dataset-A of UCB-V
which makes decisions using only coarse measurements vs. CUUCB for different o with 7' =
100, 000, averaged across 40 runs. b. Performance on Dataset-B of UCB-V which has access to only
ground truth samples vs. CUUCB for different o with 7" = 50, 000, averaged across 40 runs.

In our second experiment, we study a task of trying to find the best language model (LLM) amongst
a set of large language models for a given set of prompts. Since the idea of a ”best” model can be
highly subjective, this task is normally accomplished by asking people to rank or score (prompt,
answer) pairs from each LLM to find the best model |Chiang et al.|(2024). This approach requires
potentially massive amounts of human annotations which can be too expensive to try in practice. To
overcome this problem, one emerging approach to LLM benchmarking is to simply ask a holdout
LLM to supply the scores—an emerging form of learning from Al feedback |Zhu et al.|(2024)) also
increasingly called the LLM-as-a-judge paradigm Gu et al.| (2025). Crucially—and as we show in our
experiments— one cannot simply rely on only Al feedback as the Al feedback can be misaligned and
fail to correctly capture human preferences. As such, a combination of human and Al feedback is
required to accurately benchmark LLMs to human preferences.

This problem fits neatly into our framework: the human annotations take the place of our ground-truth
measurements against which the algorithm’s performance will ultimately be benchmarked, while the
large language model annotations become the coarse measurement.

To simulate this problem we make use of the Nectar dataset of rankings of (prompt,answer) pairs
from [Zhu et al.|(2024)). This dataset comprises of 182,954 prompts, each answered by seven LLMs.
These answers are then scored by GPT-4 [Bubeck et al.| (2023)). To design this experiment, we extract
(prompt, answer) pairs for six chosen models from this dataset and use a pair of LLMs to score the
models. We treat the scores given by the more advanced LLLM as the ground-truth (i.e., proxies for
human labels) and those by the less advanced LLM as coarse feedback. By querying different LLMs,
we obtain two datasets—Dataset-A and Dataset-B, consisting of ground-truth and coarse scores of the
six models. The dataset generation details can be found in Appendix [C.3]

Given this setup, our experiment proceeds in two parts. First, we observe that the ground-truth and
coarse scores in Dataset-A are misaligned, i.e., the model with the best mean score differs for the
two models. Thus, an attempt to use a MAB algorithm like UCB-V with only coarse feedback
leads to linear regret when measured using the ground-truth means. We observe that CUUCB is
able to overcome the misalignment while using only a small fraction « of ground-truth samples, as
shown in Figure 2h. In the second part, we compare regrets of CUUCB and UCB-V on Dataset-B
while varying the parameter c as shown in Figure Zb. We consistently observe that our algorithm
outperforms and that the advantage is largest when the amount of ground truth data is most restricted.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our theoretical results, detailed proofs are provided in Appendix [A]and
Appendix [B] To ensure our experimental results are reproducible, we include experimental details
such as algorithm implementations and dataset generation in Appendix |[Cl Additionally, we have
submitted all of our code and important datasets as part of the supplementary materials.
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A SUPPORTING TECHNICAL RESULTS

Lemma A.1. [Adapted from Audibert] Let 6 € (0,1) and Z1,- -+ , Z,, be i.i.d. random variables with
values in [0,b]. Define Z, = 13" | Z;, Var,, = 1 3" | (Z; — 27,)2 and Var = E[(Z — E[Z])*].
With probability at least 1 — 6,

log(1/6
A/ Var, < vVVar+b M.
2n
We also have with probability at least 1 — § that:

log(3/6
v Var < 4/ Var,, + 1.8b M
n
Proof. First, we prove the high probability upper bound. For this, we note that we can bound:

Var,, = % Z(Zi —7,)% = % Z(Zi —E[Z])? — (Z, — E[Z])?

(Z; — E[Z])? 4

S|
=

<

=1

Noting that {(Z; — E[Z])?}!, are i.i.d. random variables lying almost surely in [0, b*], we use
Bennet’s inequality to obtain with probability at least 1 — ¢ that

% Zn](Zl —E[Z])? - Var < \/W n b? lo?g’gél/é)7 )

=1

12
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where V = E[(Z — E[Z])*] — Var? < b*E[(Z — E[Z])?] = b*Var. Substituting this bound in (3),
and combining with (@).], we obtain:

2b2Var log(1 % log(1
Var,, < Var + b*Var log(1/9) + b" log(1/9)

n 3n
2
2b2Var log(1/6 b2 log(1/8 log(1/6
< Vap 4 1|20 Varlog(1/6) | b?log(1/8) _ (mM og(1/ ))
n 2n 2n
Taking square root on both sides above gives us:
log(1/6
A/ Var,, < vVar + b M
2n
which proves the upper bound. The lower bound is taken from a result in the appendix of |Audibert;
et al. (2009). O

B PROOFS FOR COUPLED UNCERTAINTY UCB

To begin we prove the fact that the thresholding rule (2) maintains the ratio of coarse to ground truth
feedback to within the desired range.

Proof of Lemma We drop the index ¢ for brevity. At time ¢ let us consider the following:
1. Upper bound: Let us consider the latest time ¢; < ¢ when the decision to pull G was taken.

Then we must have had N — 1 = N < N < «N£. On dividing both sides by N,
this gives us:

1
at—ﬁéx(l—at)
t
< T N 1 +1—04
= < — ,
“Saro TaroN TN,

which proves the upper bound.

2. Lower bound: Let us similarly consider the latest time 2 < ¢ when the decision to pull C
was taken. Then we must have had (N — 1) = aN{ < N < NF. On dividing both
sides by Vi, this gives us:

= oy = i 1—i = 1—i
"7 (1+2) N, ) N, )’

which proves the lower bound.

B.1 PROOFS FOR THE UNBIASED MEAN ESTIMATOR

In this subsection, we present the proof of the concentration of the mean estimator Z}.

Proof of Lemma We drop the index ¢ for brevity. We apply Bennett’s inequality to

G C (@]

N (rj — Ar; ) AT
Zy = Z NG + Z NC
jETtG t jETtC t

by treating it as the sum of the N, independent random variables in the collection H =

G (¢} C
CE e
N jeTE N ) jere

13
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We use the fact that each random variable in H has a bounded support of length < B, where

b(L+A) bl _ (1+ )

B="Rg NG T T NE
when |A| < (== + nE Bennett’s inequality then gives us the following concentration result w.p. at least
1-9:
Blog(2/6 Blog(2/6
1z} — \/ 3 Var(X)log(2/6) + | Blos(/9) \/zvar(zg)log(z/a) 4 Bloe(2/0)
3 3
XeH
2V log(2/6) (1 + 7)b10g(2/5)
A

= |Zt —H | = NG + 3NG

where we use the fact that E[Z}] = u©. O

B.2 PROOFS FOR THE CONCENTRATION OF THE EMPIRICAL VARIANCE ESTIMATORS

In this subsection we present the proofs on the concentration of the empirical variance \7? (7).

Lemma B.1 (Concentration of VA( )). Given an arm i and fixing the number of its pulls
NE(i), NG (i), consider a fixed A € R satisfying |\| < (1 — a(i))y. Then the following con-
centration inequalities hold:

1. With probability at least 1 — §:

log (2/9)
AV <4/ V b(1
+ + v ZNG( )
2. With probability at least 1 — 0.

A/ VAE) < A/VA) + 1.8b(1 + log(G(/(;)

Proof of Lemma|B.1} We omit the index ¢ for brevity. Note that we can split ‘7t>‘ into two terms as
follows: . . .

V?‘ . VaI‘l 4 Var2

NE o ONg NS

where 1
Var; := Var®9\? — 2Covi A + Var& = el Z (TJG - /\rf)2
t j€77G
Varz )\2Vart NC 2 )\r
JETLE

We see that \//a\rl, \//z;rg are empirical estimators of the variances Vary, Vars (resp.) as defined below:
Var; = Var(r® — \r®) = Var®A? — 2CovA + Var®
Varg = Var(/\rc) = \Var®.

V)\
Also note that & = Varl + VMQ
t t

We now show the first concentration inequality by considering the following two concentration events:

[— log(4/0
& = { Var; < A/ Var; + b 1+ |/\| S](V(/; )}

14
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2NF

& = {\/VarQ \/Varz + b|\| 10g(4/§)}

From lemma [A.1] it follows that each of the above events occurs w.p. at least 1 — §/2, and so we
prove our result on £ N & which occurs w.p. at least 1 — J. First for the upper bound, we combine
the upper bounds in &1, &, to get:

NtG a NtG Ntc

1 Var;  (wq)? 1 Vary  (wy)?
< NitG (Varl + 2w, NtG + NtG + W Vary + 2wsq Ntc + Ntc

Var 1 Var2 w1 Var 1 Var2 w1 2 wa 2
=+ )+2(=c)\/~c +2 + +| =5
(o) =2 G )y 2 (e ) o+ () = (G
Vt w1 Wo Vt)\ w1 w2 ?
< 2 e + —= )4 -+ [ = + —=
Ne T (NF+NF)\/NF+ Ng TNE

where w; = 272b(1 + |\|)\/log(4/8), wy = 27Y2b|A|y/log(4/5). Taking sqaure root and
multiplying by 1/ NE on both sides gives us:

\/> \/ﬁ L (wn F ziwg) w1 + mtwg \/ﬁ b1+ 1o2g](\4[1é6)

where the last inequality above uses the assumption that (1 + x;)|A\| < ~. This proves the first
concentration result.
The second concentration result follows from repeating the same steps as above by starting with

‘/tx — Va,rl
NE

+ V“Z and upper bounding each term using the events &1, £} as defined below.

—— 1 5
- {\/\?rl <A/ Vary + 1.8b(1 + |A]) Og]\(fi{)}
h

— 1 4
& = { Vary < 4/ Vary + 1.8b|)| Ogj\(;ic/)}
t

&1, &} each holds w.p. at least 1 — §/2 from Lemma so the concentration result holds on their
intersection w.p. at least 1 — 4. O

B.3 CONSTRUCTING THE COUPLED UNCERTAINTY UPPER CONFIDENCE BOUND

This section develops the final proofs for the upper confidence bound used in CUUCB.

Lemma B.2 (Variance adaptive concentration of Z}*(i)). Given an arm i and fixing the number of
its pulls NF (i), NC (i), consider a fixed \ € R satisfying |\| < (1 — a4(i))7. Then the following
concentration inequality holds with probability at least 1 — §:

2V (i) log (%) N 3(1 + y)blog (5)
NE (i) NE ()

|2 (6) = p(3)] <

Proof of Lemma|B.2] We omit the index ¢ for brevity. Consider the following concentration events.

2V log(8/8) (1 + ~y)blog(8/4)
— Z)\ _,,G < t
{| T = NG + 3NC

€ = {\/7 <A/} +18b(1 4+~ 10%52/5)}

15



Under review as a conference paper at ICLR 2026

From lemma we have that P(£7) < % From lemma B.1| we have that P(£5) < 375. We thus
show the concentration result on the event &1 N & which holds w.p. at least 1 — 4.

We denote I5 = log(8/4) for simplicity. Combining the two inequalities, we have:

QV’\lg (1 + ’y)blg
Z)\ _,,G < t
|20 = u| Al NG + 3NG

123 123
< /2]\\/;(355 N 1.8v/2(1 + v)bls N (14 7)bls < 2V ) s . 3(1 +7)bl(;’
t

NG 3NG NG NG
which proves the result. O
Proof of Lemmal[5.2] Let us first fix the number of pulls NV;(¢) of the arm i. Note that because of
our deterministic decision rule for m;, N7 (i), NC (i) are also fixed upon fixing Ny (). Also, all the

estimators for arm ¢ are evaluated using the outcomes of these Ny (¢) pulls. In the following steps, we
omit the index ¢ for brevity.

Let us define 4" := (1 — a;)y. Note that our estimator A\; € [—7’,~'] by construction. Thus, we

define a grid on the interval [—7,~/] as follows: Define € := %’: We cover the interval [—v, 7]
using NV, e-width intervals {I; := [5;_1, 5] ;-Vztl, where 5, := —' + je.

We define 6, := 525. Note that 3, _; 0, = 53,1 7% < 0.

2n2 "

We have L; = log (8(%:2)) . Now, let us consider the following concentration events.
t

VAL, L 30+ b
N N

[oy* [ % | L
52,Nt _{ V?” < V?t +b(1+’)/) 2]\;61}
t

From lemma and a union bound, we have that P(£Y ) < %. From lemma and a

. ¢ oN N
union bound, we have that P(€5 v,) < 77,557 < v, 197

En, = 012:1 &i N, Then a union bound gives us P(£5, ) < dn,. We prove our bounds on the event
En, which occurs w.p. atleast 1 — §p,.

gl,Nt = |Zt)\ _MG| <

7VA € {/807517 ceey BNt}

Now, we consider the intersection event

First, we derive some useful inequalities. Given any A\, \' € [—7/,~/] satisfying |A — X| < e,we
have:

—C
14 @) Var, (|A] + |[N)A = N+ 2|A = N||Covy]

1
o+ Y ©)

t

V) =V < (
(@) —C (i)
< 2(7yVar, + |Covy|)e <

where in step (i) we have used the fact that |\|, |\'| < /. In step (i7) we have used the fact that

—C

Var < %, |Covy| < b?.

Now, consider an arbitrary A € [+, ~']. We derive an upper bound on | Z} — 1| For this, suppose

j € [IN¢] is such that A € I;. Then for X = 8;_1, 8; we have |\ — X'| < e. Also, for these values of

X, we have from event &; y;,:

2V} Ly L 3L+ )bLy
N N

12} — uC| <

(N
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From (6) and using /= + y < /2 + /y for z,y > 0, we also have:

Jir < \/V* 7+4 <O+ /7+4 <\ i L2 7+2

Using the above bound in (7)), we obtain the following for \' = 8,_1, 3;

V)L, L O+ 2)b\/2L L 3L+ )bLy

12) — €| <
f R v %

VAL, L 60 +7)bLs
NG NE ’

where the last inequality above uses the fact that L; > 1, which means v/L; < L;. Now we show the

concentration of Z} by noting that |Z}* — 1| is a convex function of A and since A € I;:

®)

~

, 2VAL,  6(1 bL
|1z} —pfl < max |z} —pf| < iy (1 +7)bL,

, 9
Ne(Bi1Bi) ¢ NS NG ©)

where we obtain the final bound from (). Since A € [—+,+'] was arbitrary, (9) holds for all
A € [—9,7']. In particular, since the random variable \; € [—7', 7], we have that:

2V L, L 60+ )Ly

1 Z} — S = |2 — ] <
! NE NE

(10)

A A A\ K
Since \; = argminye[_~/ . V7 and Af € [—7/,7'], we have VM < V;\t . Combining this with the
bound in event & y,, we obtain:

\/Vi?tS\/\A/tTf<\/V?+b(l+7)4/2ifig.

*
Plugging the above into and noting V;\ * = V¥ gives us the result in the lemma for a fixed
number of pulls N (4).

To show the anytime version, note that P (), &x) =1 -3, o P(ES) =1 -3, o, 6, > 1 0.
Therefore, the anytime concentration result holds w.p. at least 1 — §. This completes the proof. [

B.4 PROOFS FOR REGRET OF CUUCB

In this subsection we present the proof for Theorem [5.3] which bounds the regret of CUUCB.

Proof of Theorem We decompose the pseudo-regret as:

Regret(T) = Z Nr(i)As,
i€[K]:A;>0

where A; = max;e(x) 1u%(j) — p%(i) and Ny (i) is the total number of times arm i is pulled. We
denote 1*C := max e[ k] 1S (j). Let i* be an optimal arm, i.e., an arm satisfying u© (i*) = pu*

Let us fix a sub-optimal arm . We denote by &; the event

2V V() Le(g) , 6(1+7)bLe())
NE() NEG)

& =1 1Z5) — né ()| < < Dy(j), forj =4,i*

2VEG)Le(5) | T +7)bLi(4)

11
NE() NEG) (b
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From Lemma 5.2} the event &; occurs with at least 1 — 20 probability. On this event, we have that
pC(i*) < Uy(s%) for all times ¢. Thus, the sub-optimal arm i is not pulled at any time ¢ when
Ui (i) < uS(i*) < Uy(i*). We will use this upper bound the total number of pulls N ().

On event &;, we have:
Uy (i) < Zi(i) + Dy(i) < p© (i) + 2Dy (i)

Thus arm i is not pulled at any time ¢t when p@ (i) + 2D; (i) < p*% <= D,(i) < A;/2. Now, we
upper bound D (4).

From here on, we drop the index ¢, which denotes the sub-optimal arm under consideration. From
Lemma | we have 1 — oy = (1 — «) (1 - —) Noting V¥ = Var® — (1 — Oét)con we get

VarC’

Cov? Cov? ~2b?
Vi< Var® — (1 — 1-— <V
csVart = (=) le =g oy TNy

where the last step above uses |Cov| < nyar and Var® < b2 /4. Taking square root on both sides
in the above inequality, we get:

¥2b?
VVE <4 VE 4 < VV* + < VVHF 4 —— 12
4Nt \/Nt 4/NG (12)

Substituting (T2)) into (TT)), we obtain:

QV*Lt ’)/bx/ Lt 1 + ’}/ bLt

D, <
! NE NG

NE NE

where in the last step, we use L; > 1.

Thus, a sufficient condition for D; < A/2 is:

NG NG 2

_2VEL, AP 8(L+9)bL, _ A
- d _ < —
NG S T NG 1
NS [32vF 8201+
—_ X
L AT A

t

\

V

32 [V*
<=N§>A(A+(1+7)b> Ly

(@) 128 [V*

<a(Ne—1) = x (A +(1+ 'y)b) log(2T)
Implication () uses Lemma [4.1{which gives us N& = a;N; = a(1 — N; ) )N, = a(N; — 1). Tt
also uses the bound L; < log(165~1(N; + 1)3) < 4log(2T) for any t € [T']. Thus if
128 <V*

> - _
Ny AlAt (1 +7)b> log(2T) + 1,

then arm ¢ is not pulled. Reintroducing the index i, this means we obtain the following bound on the
number of pulls of arm ¢ when &; occurs:

128 [ V*(i)

Np(i) < +(1+ 7)b> log(2T) + 2 (13)
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Thus, we have
E[Nr(i)] = E[Nr (i) 1{&}] + E[N7 (1) 1{E7}]
- 128 (V*(z)

We obtain this inequality by using (I3)) on event &; along with the trivial bound N (i) < T on event
& Using P(EF) < 2/T gives us:

+(1+ v)b) log(2T) + 2 + TP(EF)

E[Ny(i)] < a(lf)i_ (VZ@ +(1+ 7)b> log(2T) + 4 (14)

Using (T4)), we can bound the expected regret of the algorithm as:

E[Regret(T)] = Z AE[Nr(i)]
€[ K]

128 (V*(q
< Y ( ( @ g 7)b> log(2T) + 4A,-)
A a(i) \ A
:A;>0
This gives us the instance-dependent regret bound. For the instance-independent regret bound,
consider some A > 0. While bounding the expected, we bound the constributions of arms i with
A; > A and arms ¢ with A; < A differently as follows (Note A; < b for any 4):

E[Regret(T)] < Z <128 (V*A(Z.) +(1+ ’y)b) log(2T) + 46) + Z AE[Nr(i)]

BA>A a(l) A A <A

o128 loAg(?T) (Z Y(E?) +AT + 132;a(i)’1(1 +7)blog(2T)

Choosing A = \/ 128 (Zl Va*(x)) % to minimize the upper bound gives us:

E[Regret(T)] < 2, | 128 (Z V;é?) Tlog(2T) + O(log(T))

10}

This completes the proof. O

i

<23 (2 VW)) Tlog(2T) + O(log(T))

Lemma B.3 (Regret bound for UCB-V). When UCB-V is implemented with the threshold rule (2)),
while using only ground-truth samples for decision making, then its expected regret satisfies the
following instance-independent bound:

E[Regret(T)] < O (Z VEZZ)(i)> TlogT

Proof of Lemma[B.3] When UCB-V is run using only ground-truth samples, then the estimated
upper-confidence bound for arm 4 at time ¢ by UCB-V (Audibert et al.,[2009) is given by (barring
constants, which do not affect the asymptotic order of regret):

oVar® (i)L;(i)  3bL,(7)
NSW | NOG)

Ul(i) = pg (i) +

where L} (7) is an exploration function typically taken to be growing as log t. We fix the arm ¢ drop

the index ¢ in the following analysis. Let us take §,, = 2% We see by taking A = 0,y = 0 in Lemma
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[B.2]and Lemma [B.T] and using union bound that the following concentration inequality holds after
N pulls:

2V9 log (10/5Ntc;) 3blog (10/5Ntc) 2V0 log (10/5Nt(}) 4blog (10/5N§)
|20-pC| < a + G < G * G
Nt Nt Nt Nt
— 0_ ,G yvo _ G 0 _ G
w.p. atleast 1 —dya /5 —46yc /5 =1 —dyc. We note that Z = pg*, Vy' = Vary” and Vi = Var™.
Since )., 6, < ¢, we have that the above inequality holds for all times w.p. at least 1 — §, which
gives us the following anytime concentration:

oVarS L, 3bL oVar® L, 4bL)
G_ G < t Mt t < t t 15
g — ] NG + NG A/ NG + NG (15)

Where we have set L, = log(20(N)?/5), and we will show the regret bound setting § = 1/T". This
choice of L} matches the log ¢ growth we want. On this event, we have that

U(i) < p®(i) + 2Dy (i)

4bL} (1)
IEON

2Var® (4) L, (3)
Ng (3)

for D (i) = +

Now, we proceed identically as in the regret proof of Lemma[5.3] by considering the event &; w.p. at
least 1 —2/T, when the anytime-concentration holds for the sub-optimal arm ¢ and some optimal
arm i*. On event &;, we bound the number of pulls after which Uy (i) < u®(i*), which happens if
D; (i) < A;/2. This is achieved at times ¢ such that:

NEG) > 32L)(3) (VarG(z') s b)

A; A;

< al) (Vi) —1) > Clsz (Var:i@ + b) ,

which follows from Lemma[4.1]and bounding L} (i) < C'log T, for an absolute constant C and T
sufficiently large. Thus, proceeding as in the derivation of (14),

G-
E[Nr(i)] < a@% (VarA‘(Z) + b) log(T) + 4 (16)

Using the same argument as in the derivation of the instance-independent regret bound in the proof of
Lemma[5.3] we obtain the following instance-independent bound for UCB-V

Q.
E[Regret(T)] < 2, |C (Z Vif(i)(Z)> T'log(T) + O(log(T))

which concludes the proof. O

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION OF ALGORITHMS

To make the comparison with other UCB variants more straightforward, we implement the upper
confidence bound U, (i) for CUUCB a little differently than described in the theoretical analysis
while preserving its main structure. The implemented expressions of Uy (%) for each arm i at time ¢
for each algorithm is given below:

) ) ¢1b2logt
UCB : = us 2=
Ui(i) = pg (i) + a0
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2Var®(i)logt by logt
NE (i) N (i)

UCB-V : Uy (i) = pu (i) +

2\7?@) (i)logt  bl3logt
N (i) N (i)

Here {(; }?:1 are tunable parameters. Moreover, we obtain the final upper confidence bound by taking
min{U;(7), b} in each case. Note that UCB and UCB-V use only ground-truth observations in their
confidence bounds. Thus, all algorithms use rule (2) to pick the set of ground-truth measurements
and choose arms for all 7" time steps. Also note that the implementation of UCB-V is different from
the one described above in the LLM-as-a-judge experiment on the mis-aligned Dataset-B, where we

run UCB-V using only coarse feedback at all time steps. So, in just this experiment, the expression
for Uy (i) for UCB-V is given by:

2VE(i)logt bl logt
Ni(i) Ni(i)

where

EO-5m O FO. VO-gm X 50— o)

jelt]ij=1 jelt]ij=1

are empirical mean and variance estimators of all the coarse measurements observed for arm ¢ at time
t.

In all of our experiments, we used ¢; = 1,3 = 0.5,{3 = 0.5. We also use a uniform target ratio
a(i) = « for all arms 7 in all our experiments.

C.2 DATA GENERATION

We describe the dataset generation methods used for our experiments. Our generated datasets are
always a collection of N 2-D vectors for each of the K arms. We refer to N as the size of the
dataset. When running algorithms on a generated dataset, the reward pair [ (i), " g)] for an arm 4
is generated by sampling uniformly from this dataset. Thus, the mean rewards [u% (i), u©(4)] are
taken to be the empirical means of the dataset.

C.2.1 SYNTHETIC

For the synthetic experiments, our dataset generation is parameterized by the correlation parameter p.
The generation of a (ground-truth, coarse) measurement pair for a give arm ¢ proceeds as follows:
1. Sample from a 2-D Gaussian with mean [y (7), p2(¢)] and covariance matrix C'(p).
2. Clip the values in the interval I.

5 4.5
We set C'(p) = [4.5p 4p]_

We fix the means 1 (¢) for ¢ = 1,...,4 as [0.5,0.7,0.8,0.2]. We then obtain p» (i) as a perturbed
version of p4(7) by uniformly sampling in the interval u; (¢) + 0.1 and then clipping in the interval
[0,1]. We also set [ = [—4, 6].

For each value of p, we generate the dataset by sampling N = 100, 000 datapoints as described
above for each arm i.

C.3 LLM-AS-A-JUDGE
We make use of the Nectar dataset of rankings of (prompt,answer) pairs from Zhu et al.|(2024) for

our dataset generation. This dataset comprises of 182,954 prompts, each answered by seven LLMs.
These answers are then scored by GPT-4 |Bubeck et al.| (2023).
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To generate our dataset, we extract a subset of the data having (prompt, answer) pairs for six chosen
models and use a pair of LLMs to score the models. Crucially, we make use of the same scoring
rubric and prompt while querying both LLMs. Details of the chosen models, exact prompt and rubrics
used can be found in the code attached in the supplementary material. We treat the scores given by
the more advanced LLM as the ground-truth (i.e., proxies for human labels which are costly to collect
at scale) and those by the less advanced LLM as coarse feedback.

By this method, we obtain Dataset-A of size 19,089 by querying LLama 3 3b (strong model) and
LLama 3 1B (weak model) for each of the six models. We similarly obtain Dataset-B of size 5000
using scores from Gemini 2.5-Flash (strong model) and Gemini 1.5-Flash (weak model). The datasets
can be found in the attached code.

C.4 ADDITIONAL EXPERIMENTAL RESULTS

C.4.1 SYNTHETIC

p=04 p=06 p=08

ucs uce uce
ucs-v ucBv ucB-v/
== Cuucs ~= Cuucse —= Cuucs

15,000

10,000

Regret

5,000

0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000
Time Time Time

Figure 3: Comparison of CUUCB, UCB and UCB-V on synthetically generated data for a fixed
value of av = 0.1 and different values of p with a time horizon of 100, 000 steps, averaged across 40
runs.

We also run the synthetic experiments with fixed « = 0.1 and varying p. We see from Figure
[3] that increasing p leads to an improvement in the performance of CUUCB, which matches our
expectations from theory. Since UCB and UCB-V only use ground-truth data, changing p does not
affect their performance.

C.4.2 LLM-AS-A-JUDGE

UCB-V (a = 0.1)

CUUCB (@ =0.1)
—— UCB-V (a = 0.25)
—= CUUCB (a = 0.25)
—— UCB-V (a = 0.5)
—~ CUUCB (a = 0.5)

T T T
0 20000 40000
time

Figure 4: LLM benchmarking regret plots on Dataset-A of UCB-V which has access to only ground
truth samples vs. CUUCB for different «, averaged across 40 runs.

We also run an experiment where we compare regrets of CUUCB and UCB-V on Dataset-A while
varying the parameter « as shown in Figured] We see that our algorithm CUUCB achieves only a
small improvement over UCB-V even for small «, while the improvement was more significant when
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Dataset-B was used, as seen from Figure 2b. This shows that the performance gains of CUUCB are
sensitive to the dataset instance.
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