
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAGMAN: STABILITY ANALYSIS OF GRAPH NEURAL
NETWORKS ON THE MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern graph neural networks (GNNs) can be sensitive to changes in the input
graph structure and node features, potentially resulting in unpredictable behavior
and degraded performance. In this work, we introduce a spectral framework known
as SAGMAN for examining the stability of GNNs. This framework assesses the
distance distortions that arise from the nonlinear mappings of GNNs between the
input and output manifolds: when two nearby nodes on the input manifold are
mapped (through a GNN model) to two distant ones on the output manifold, it
implies a large distance distortion and thus a poor GNN stability. We propose
a distance-preserving graph dimension reduction (GDR) approach that utilizes
spectral graph embedding and probabilistic graphical models (PGMs) to create low-
dimensional input/output graph-based manifolds for meaningful stability analysis.
Our empirical evaluations show that SAGMAN effectively assesses the stability
of each node when subjected to various edge or feature perturbations, offering
a scalable approach for evaluating the stability of GNNs, extending to applica-
tions within recommendation systems. Furthermore, we illustrate its utility in
downstream tasks, notably in enhancing GNN stability and facilitating adversarial
targeted attacks.

1 INTRODUCTION

The advent of Graph Neural Networks (GNNs) has sparked a significant shift in machine learning
(ML), particularly in the realm of graph-structured data (Keisler, 2022; Hu et al., 2020; Kipf &
Welling, 2016; Veličković et al., 2017; Zhou et al., 2020). By seamlessly integrating graph structure
and node features, GNNs yield low-dimensional embedding vectors that maximally preserve the
graph structural information (Grover & Leskovec, 2016). Such networks have been successfully
deployed in a broad spectrum of real-world applications, including but not limited to recommendation
systems (Fan et al., 2019), traffic flow prediction (Yu et al., 2017), chip placement (Mirhoseini
et al., 2021), and social network analysis (Ying et al., 2018). However, the enduring challenge in
the deployment of GNNs pertains to their stability, especially when subjected to perturbations in
the graph structure (Sun et al., 2020; Jin et al., 2020; Xu et al., 2019). Recent studies suggest that
even minor alterations to the graph structure (encompassing the addition, removal, or rearrangement
of edges) can have a pronounced impact on the performance of GNNs (Zügner et al., 2018; Xu
et al., 2019). This phenomenon is particularly prominent in tasks such as node classification (Yao
et al., 2019; Veličković et al., 2017; Bojchevski & Günnemann, 2019). The concept of stability here
transcends mere resistance to adversarial attacks, encompassing the network’s ability to maintain
consistent performance despite inevitable variations in the input data (graph structure and node
features).

In the literature, while there are studies primarily focused on developing more stable GNN architec-
tures (Wu et al., 2023; Zhao et al., 2024; Song et al., 2022; Gravina et al., 2022), a few attempts to
analyze GNN stability comprehensively. Specifically, (Keriven et al., 2020) first studied the stability
of graph convolutional networks (GCN) on random graphs under small deformation. Later, (Gama
et al., 2020) and (Kenlay et al., 2021) explored the robustness of various graph filters, which are then
used to measure the stabilities of the corresponding (spectral-based) GNNs. However, these prior
methods are limited to either synthetic graphs or specific GNN models. Recent survey papers, such
as (Dai et al., 2024), highlight the critical role of stability analysis in trustworthy GNNs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we present SAGMAN, a novel framework devised to quantify the stability of GNNs
through individual nodes. This is accomplished by assessing the resistance-distance distortions
incurred by the nonlinear map (GNN model) between low-dimensional input and output graph-based
manifolds. It is crucial to note that this study aims to offer significant insights for understanding
and enhancing the stability of GNNs. While most robustness techniques focus on enhancing overall
model robustness through architectural modifications or training strategies, they often lack fine-
grained, node-level stability assessments. In contrast, SAGMAN introduces a spectral framework that
quantifies stability at the individual node level, enabling targeted interventions such as precise attacks
or tailored stability enhancements. The key technical contributions of this work are outlined below:

• This study introduces a spectral framework (SAGMAN) for measuring the stability of GNN models
at the node level. This is achieved by effectively assessing the distance distortions caused by the
maps between the input and output smooth manifolds.

• To construct the input smooth manifold for stability analysis in SAGMAN, we introduce a nonlinear
graph dimension reduction (GDR) framework to transform the original input graph (with node
features) into a low-dimensional graph-based manifold that can well preserve the original graph’s
spectral properties, such as effective resistance distances between nodes.

• SAGMAN has been empirically evaluated and shown to be effective in assessing the stability of
individual nodes across various GNN models in realistic graph datasets. Moreover, SAGMAN allows
for more powerful adversarial targeting attacks and greatly improving the stability (robustness) of the
GNNs.

• SAGMAN has a near-linear time complexity and its data-centric nature allows it to operate across
various GNN variants, independent of label information, network architecture, and learned parameters,
demonstrating its wide applicability.

2 BACKGROUND

2.1 STABILITY ANALYSIS OF ML MODELS ON THE MANIFOLDS

The stability of a machine learning (ML) model refers to its ability to produce consistent outputs
despite small variations or noise in the input data (Szegedy et al., 2013). To assess this stability, we
utilize the Distance Mapping Distortion (DMD) metric (Cheng et al., 2021). For two input data
samples p and q, the DMD metric δM (p, q) is defined as the ratio of their distance on the output
manifold to the one on the input manifold:

δM (p, q)
def
=

dY (p, q)

dX(p, q)
. (1)

By evaluating δM (p, q) for each pair of data samples, we can assess the stability of the ML model.
Specifically, if two nearby data samples on the input manifold are mapped to distant points on the
output manifold, this indicates a large δM (p, q) or equivalently a large local Lipschitz constant, and
thus poor stability of the model near these samples; On the other hand, a small δM (p, q) implies that
the model is stable in that region.

2.2 PREVIOUS INVESTIGATIONS ON THE STABILITY OF GNNS

The stability of a GNN refers to its output stability in the presence of edge/node perturbations (Sun
et al., 2020). This includes maintaining the fidelity of predictions and outcomes when subjected to
changes such as edge alterations or feature attacks. A desired GNN model is expected to exhibit
good stability, wherein every predicted output or the graph embeddings do not change drastically in
response to the aforementioned minor perturbations (Jin et al., 2020; Zhu et al., 2019). Several recent
studies have underlined the importance of analyzing the stability of GNNs. For instance, Sharma
et al. (2023) examined the task and model-agnostic vulnerabilities of GNNs, demonstrating that these
networks remain susceptible to adversarial perturbations regardless of the specific downstream tasks.
Furthermore, Huang et al. (2023) investigated robust graph representation learning via predictive
coding, proposing a method that enhances GNN stability by reconstructing input data to mitigate the
effects of adversarial attacks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Moreover, while recent studies have investigated the stability issues of Graph Neural Networks
(GNNs) on synthetic graphs or specific models (Keriven et al., 2020; Kenlay et al., 2021), they have
not provided a unified framework for evaluating GNN stability. The latest state-of-the-art method
(Li et al., 2024) develops such a unified framework but does not consider feature perturbations. This
omission leaves a significant gap in understanding how GNNs respond to changes in node features,
which is crucial for applications where feature data may be noisy or subject to perturbations.

3 THE SAGMAN FRAMEWORK FOR STABILITY ANALYSIS OF GNNS

Challenges in Applying DMD Metrics to GNN Stability Analysis. When adopting the DMD
metric for the stability analysis of GNN models, a natural approach is to use graph-based manifolds
(details in Appendix A.1) for calculating DMDs. However, directly using the input graph structure
as the input graph-based manifold may not produce satisfactory results as shown in our empirical
results presented in Table 2 and Appendix A.8. This inadequacy stems from the fact that the original
input graph data (including node features) may not reside near a low-dimensional manifold (Bruna
et al., 2013), while meaningful DMD-based stability analysis requires both the input and output data
samples to lie near low-dimensional manifolds (Cheng et al., 2021). Therefore, a naive application of
DMD metrics on the original graph structure is insufficient for assessing the stability of GNNs.

3.1 OVERVIEW OF SAGMAN

Ph
as

e 2
Ma

nif
old

s C
on

str
uc

tio
n v

ia
PG

Ms

Ph
as

e 3
St

ab
ilit

y A
na

lys
is

on
 th

e M
an

ifo
lds

Spectral
Embedding

Input Graph
Topo. (Low-Dim)

Manifold Y

p

q𝑑!(𝑝, 𝑞
)

Manifold X

p q

𝑑"(𝑝, 𝑞)

𝜹 𝒑, 𝒒 =
𝒅𝒚 𝒑, 𝒒
𝒅𝒙(𝒑, 𝒒)

Node
Feature
(Input)

Output
Embedding

Orig. Graph
Topology
(Input)

Concat.
Embedding

PGM

Output Graph
Topo. (Low-Dim)

+

GNN
PGM

DMD Calculation

Ph
as

e 1
Em

be
dd

ing
 M

atr
ix

Co
ns

tru
cti

on
 fo

r G
DR

Spec. Emb.

Spec. Emb.

Figure 1: The proposed SAGMAN framework for stability analysis of GNNs on the manifolds.

To extend the applicability of the DMD metric to GNN settings, we introduce SAGMAN, a spectral
framework for stability analysis of GNNs. A key component of SAGMAN is a novel distance-
preserving Graph Dimensionality Reduction (GDR) algorithm that transforms the original input
graph data—including node features and graph topology, which may reside in high-dimensional
space—into a low-dimensional graph-based manifold.

As illustrated in Figure 1, the SAGMAN framework comprises three main phases:

• Phase 1: Creation of the input graph embedding matrix based on both node features and
spectral properties of the graph. This embedding matrix is essential for the subsequent GDR
step.

• Phase 2: Construction of low-dimensional input and output graph-based manifolds using a
Probabilistic Graphical Model (PGM) approach.

• Phase 3: Node stability evaluation using the DMD metric, leveraging a spectral graph
embedding scheme that utilizes generalized Laplacian eigenvalues and eigenvectors.

Detailed descriptions of each phase are provided in the following sections. The complete algorithmic
flow of SAGMAN is shown in Section 3.5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PHASE 1: EMBEDDING MATRIX CONSTRUCTION FOR GDR

The calculation of the DMD metric inherently relies on pairwise distances between nodes. For
graph-based manifolds, two widely used metrics for evaluating pairwise node distances are: (1) the
shortest-path distance and (2) the effective resistance distance. As discussed in Appendix A.1, the
effective resistance distance is more closely related to the graph’s structural (spectral) properties,
providing a more meaningful measure of connectivity between nodes. Moreover, previous studies
have demonstrated a significant correlation between effective resistance distances and the stability of
machine learning models (Cheng et al., 2021). Therefore, our focus is on performing dimensionality
reduction on the input graph while preserving its original effective resistance distances.

Graph Dimensionality Reduction via Laplacian Eigenmaps. To achieve dimensionality reduction
of the input graph, we utilize the widely recognized nonlinear dimensionality reduction algorithm,
Laplacian Eigenmaps (Belkin & Niyogi, 2003). The Laplacian Eigenmaps algorithm begins by
constructing an undirected graph where each node represents a high-dimensional data sample, and
edges encode the similarities between data samples. It then computes the eigenvectors corresponding
to the smallest eigenvalues of the graph Laplacian matrix, which are used to map each node into a
low-dimensional space while preserving the local relationships between the data samples.

Spectral Embedding with Eigengaps. For a graph with N nodes, a straightforward approach to
apply Laplacian Eigenmaps is to compute an N ×N spectral embedding matrix using the complete
set of graph Laplacian eigenvectors and eigenvalues (Ng et al., 2001), representing each node with
an N -dimensional vector. However, computing the full set of eigenvalues and eigenvectors is
computationally prohibitive for large graphs.

To address this issue, we leverage a theoretical result from spectral graph clustering (Peng et al., 2015),
which shows that the existence of a significant gap between consecutive eigenvalues—known as an
eigengap—implies that the graph can be well represented in a lower-dimensional space. Specifically,
the eigengap is defined as Υ(k) = λk+1

ρ(k) , where ρ(k) denotes the k-way expansion constant, and
λk+1 is the (k+1)-th smallest eigenvalue of the normalized Laplacian matrix. A significant eigengap
indicates the existence of a k-way partition where each cluster has low conductance, meaning the
graph is well-clustered. Based on this, we can approximate the spectral embedding using only the
first k eigenvalues and eigenvectors. We define the weighted spectral embedding matrix as follows:
Definition 3.1. For a connected graph G = (V,E,w) with its k smallest nonzero Laplacian eigen-
values denoted by 0 < λ1 ≤ λ2 ≤ . . . ≤ λk and corresponding eigenvectors u1, u2, . . . , uk, the
weighted spectral embedding matrix is defined as Uk =

[
u1√
λ1
, . . . , uk√

λk

]
∈ R|V |×k.

For a graph with a significant eigengap Υ(k), this embedding matrix allows us to represent each node
with a k-dimensional vector such that the effective resistance distance between any pair of nodes can
be well approximated by deff(p, q) ≈ ∥U⊤

k ep,q∥22, where ep ∈ R|V | is the standard basis vector with
a 1 at position p and zeros elsewhere, and ep,q = ep − eq .

Using Eigengaps for Graph Dimension Estimation. Determining the precise graph dimension
required to embed a graph into Euclidean space while preserving certain properties (e.g., unit edge
lengths) is an NP-hard problem (Erdös et al., 1965; Schaefer, 2012). However, the presence of
a significant eigengap Υ(k) suggests that the graph can be well represented in a k-dimensional
space (Peng et al., 2015), making k an approximate measure of the graph’s intrinsic dimensionality.
While computing the exact value of Υ(k) may be challenging in practice, we can use the identified
eigengap as an indicator of the suitability of SAGMAN for a given graph: graphs with significant
eigengaps are more suitable to our framework since they can be effectively represented in low-
dimensional spaces. Empirically, for datasets with c classes, we can approximate k as k ≈ 10c to
effectively capture significant eigengaps (Deng et al., 2022).

3.3 PHASE 2: MANIFOLD CONSTRUCTION VIA PGMS

The embedding matrix Uk, derived in Phase 1 as defined in Definition 3.1, serves as the foundation
for graph-based manifold construction in Phase 2. While the original Laplacian Eigenmaps algorithm
suggests constructing graph-based manifolds using k-nearest-neighbor graphs, we find that these

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

manifolds do not adequately preserve the original effective resistance distances. Consequently, they
are not suitable for GNN stability analysis, as empirically demonstrated in Appendix A.6.

Probabilistic Graphical Models (PGMs) for Graph-based Manifold Learning. PGMs, also
known as Markov Random Fields (MRFs), are powerful tools in machine learning and statistical
physics for representing complex systems with intricate dependency structures (Roy et al., 2009).
PGMs encode the conditional dependencies between random variables through an undirected graph
structure (see Appendix A.3 for more details). Recent studies have shown that the graph structure
learned through PGMs can have resistance distances that encode the Euclidean distances between
their corresponding data samples (Feng, 2021).

In our context, each column vector in the embedding matrix Uk (as defined in Definition 3.1)
corresponds to a data sample used for graph topology learning. By constructing the low-dimensional
graph-based manifold via PGMs, we can effectively preserve the resistance distances from the original
graph. Empirical evidence, detailed in Appendix A.6, supports that preserving these distances is
essential for distinguishing between stable and unstable nodes. Therefore, our methodology leverages
PGMs to maintain accurate effective resistance distances.

However, existing methods for learning PGMs may require numerous iterations to achieve conver-
gence (Feng, 2021), limiting their applicability to large graphs.

Scalable PGM via Spectral Sparsification. In the proposed SAGMAN framework, we employ
PGMs to create low-dimensional input graph-based manifold GX = (V,EX) using the embedding
matrix Uk from Definition 3.1, and output manifold GY = (V,EY) using the GNN’s post-softmax
vectors, as illustrated in Figure 1. Below, we detail the construction of the input manifold; the output
manifold can be constructed similarly. Given the input embedding matrix X = Uk ∈ R|V |×k, the
maximum likelihood estimation (MLE) of the precision matrix Θ (PGM) can be obtained by solving
the following convex optimization problem (see Appendix A.3 for more details) (Dong et al., 2019):

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr(X⊤ΘX), (2)

where Θ = L + 1
σ2 I , Tr(·) denotes the trace of a matrix, L is a valid Laplacian matrix, I is the

identity matrix, and σ2 > 0 is a prior feature variance. To solve this, we give the following theorem:

Theorem 3.2. Maximizing the objective function in Equation 2 can be achieved in nearly-linear
time via the following edge pruning strategy equivalent to spectral sparsification of the initial dense
nearest-neighbor graph. Specifically, edges with small distance ratios

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q d

eff(p, q)

are pruned, where deff(p, q) is the effective resistance distance between nodes p and q, ddat(p, q) =

∥Xp −Xq∥22 is the data distance between the embeddings of nodes p and q, and wp,q =
1

ddat(p, q)
is the weight of edge (p, q).

The proof for Theorem 3.2 is available in Appendix A.4.

Spectral Sparsification via Graph Decomposition. Computing the edge sampling probability
ρp,q for each edge (p, q) requires solving Laplacian matrices multiple times (Spielman & Srivastava,
2008), making the original sparsification method computationally expensive for large graphs. An
alternative approach employs a short-cycle graph decomposition scheme (Chu et al., 2020), which
partitions an unweighted graph G into multiple disjoint cycles by removing a fixed number of edges
while ensuring a bound on the length of each cycle. However, such methods are limited to unweighted
graphs.

Lemma 3.3. Spectral sparsification of an undirected graph G, with Laplacian LG, can be achieved by
leveraging a short-cycle decomposition algorithm that returns a sparsified graph H , with Laplacian
LH , such that for all real vectors x, x⊤LGx ≈ x⊤LHx (Chu et al., 2020).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To extend these methods to weighted graphs, we introduce an improved spectral sparsification algo-
rithm, illustrated in Figure 2. Our approach utilizes a low-resistance-diameter (LRD) decomposition
scheme to limit the length of each cycle as measured by the effective resistance metric. This method
is particularly effective for sparsifying weighted graphs.

(b)(a) (c) (d)

Figure 2: The proposed spectral sparsification algorithm. (a) The initial graph. (b) LRD decompo-
sition for graph clustering. (c) LSSTs for pruning non-critical edges within clusters. (d) The final
graph-based manifold with two inter-cluster edges.

The key idea is to efficiently compute the effective resistance of each edge (see Appendix A.9 for
details) and employ a multilevel framework to decompose the graph into several disjoint clusters
bounded by an effective resistance threshold. Importantly, the inter-cluster edges identified during
this process can be inserted back into the original graph to significantly enhance the stability of GNN
models, as demonstrated in Section 4.5.

3.4 PHASE 3: STABILITY ANALYSIS ON THE MANIFOLDS

In this phase, we analyze the stability of GNNs by quantifying the distortions between the input
and output graph-based manifolds constructed in Phase 2, utilizing the Distance Mapping Distortion
(DMD) metric.

DMD with Effective Resistance Distance Metric. Let M be the mapping function of a machine
learning model that transforms input data X into output data Y , i.e., Y = M(X). To assess the
stability of M , we employ the DMD metric, which measures how distances between data samples
are distorted by M . On the input and output graph-based manifolds, we use the effective resistance
distance as the metric between nodes. The effective resistance distance between nodes p and q on the
input manifold GX is computed as deffX (p, q) = e⊤p,qL

+
Xep,q, and similarly on the output manifold

GY as deffY (p, q) = e⊤p,qL
+
Y ep,q, where L+

X and L+
Y denote the Moore–Penrose pseudoinverses of the

Laplacian matrices LX and LY of the input and output manifolds, respectively, and ep,q = ep − eq
with ep being the standard basis vector corresponding to node p. The DMD between nodes p and q is
defined as the ratio of the output distance to the input distance:

δM (p, q) =
deffY (p, q)

deffX (p, q)
=

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
Xep,q

. (3)

To quantify the maximum distortion introduced by M , we consider the maximum DMD over all
pairs of distinct nodes: δMmax. According to Lemma A.2 in (Cheng et al., 2021), the optimal Lipschitz
constant K∗ of the mapping M is bounded by the largest eigenvalue of L+

Y LX and the maximum
DMD:

δMmax ≤ K∗ ≤ λmax(L
+
Y LX). (4)

This relationship allows us to assess the stability of M using spectral properties of the Laplacian
matrices.

Node Stability Score via Spectral Embedding. Building on the theoretical insights from (Cheng
et al., 2021), we utilize the largest generalized eigenvalues and their corresponding eigenvectors of
L+
Y LX to evaluate the stability of individual nodes in GNNs. We compute the weighted eigensubspace

matrix Vs ∈ R|V |×s for spectral embedding of the input manifold GX = (V,EX), where |V | is
the number of nodes. The matrix Vs is defined as: Vs =

[
v1
√
ζ1, v2

√
ζ2, . . . , vs

√
ζs
]
, where

ζ1 ≥ ζ2 ≥ · · · ≥ ζs are the largest s eigenvalues of L+
Y LX , and v1, v2, . . . , vs are the corresponding

eigenvectors. Using Vs, we embed the nodes of GX into an s-dimensional space by representing
each node p with the p-th row of Vs. The stability of an edge (p, q) ∈ EX can then be estimated by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

computing the spectral embedding distance between nodes p and q: |V ⊤
s ep,q∥22. To assess the stability

of individual nodes, we define the stability score of node p as the average embedding distance to its
neighbors in the input manifold:

score(p) =
1

|NX(p)|
∑

q∈NX(p)

∥V ⊤
s ep,q∥22, (5)

where NX(p) denotes the set of neighbors of node p in GX . Since ∥V ⊤
s ep,q∥22 is proportional to(

δM (p, q)
)3

, the node stability score effectively serves as a surrogate for the local Lipschitz constant,
analogous to ∥∇XM(p)∥ under the manifold setting (Cheng et al., 2021). For a more detailed
derivation and theoretical justification, please refer to Appendix A.11.
3.5 ALGORITHM FLOW OF SAGMAN

The Algorithm 1 shows the key steps in SAGMAN.

Algorithm 1 SAGMAN Algorithm
Input: Graph G = (V,E), node features X , GNN model
Output: Stability scores for all nodes

1. Compute Spectral Embeddings (GDR):
• Compute the spectral embedding matrix Uk of G using its weighted Laplacian.

2. Augment Node Features:
• Concatenate X and Uk to form the feature matrix FM = [Uk, X].

3. Construct Input Graph-based Manifold GX (PGM):
• Build a k-NN graph GX

dense using FM .
• Apply spectral sparsification to GX

dense to obtain GX .
4. Apply GNN Model:

• Compute output representations Y = GNN(GX , X).
5. Construct Output Graph-based Manifold GY (PGM):

• Build a k-NN graph GY
dense using Y .

• Apply spectral sparsification to GY
dense to obtain GY .

6. Compute Stability Scores (DMD):
• Compute Laplacians LX and LY of GX and GY .
• Solve the generalized eigenvalue problem LY Vk = λLXVk to obtain Vk.
• For each node p ∈ V :

– Compute the stability score: score(p) = 1
|NX(p)|

∑
q∈NX(p) ∥V ⊤

k (ep−eq)∥22 where
NX(p) are the neighbors of p in GX .

3.6 TIME COMPLEXITY OF SAGMAN

The proposed SAGMAN framework is designed to be efficient and scalable for large graphs. Below,
we analyze the time complexity of its key components. We utilize fast multilevel eigensolvers to
compute the first c Laplacian eigenvectors. These eigensolvers operate in nearly linear time, O(c|V |),
without loss of accuracy (Zhao et al., 2021), where |V | denotes the number of nodes in the graph. To
construct the initial graph for manifold learning, we employ the k-nearest neighbor algorithm, which
has a nearly linear computational complexity of O(|V | log |V |) (Malkov & Yashunin, 2018). The
spectral sparsification step, performed via Low-Resistance-Diameter (LRD) decomposition, has a
time complexity of O(|V |dm), where d is the average degree of the graph, and m is the order of the
Krylov subspace used in the computation. By leveraging fast generalized eigensolvers (Koutis et al.,
2010; Cucuringu et al., 2016), we can compute all DMD values in O(|E|) time, where |E| denotes
the number of edges in the graph. Importantly, we ignore d (average degree) because most real-world
graphs are sparse (Miao et al., 2019), with average degrees much smaller than the number of nodes.
In such cases, d can be treated as a constant or as growing slowly with |V |.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Overall, the dominant terms in the time complexity are nearly linear with respect to the size of the
graph. This near-linear scalability allows SAGMAN to handle large graph datasets efficiently. Results
for runtime scalability are available in Appendix A.13

4 EXPERIMENTS

We validate our proposed SAGMAN framework through comprehensive experiments. First, we
compare exact resistance distances from the original graph with their approximations derived from the
constructed manifold to demonstrate the manifold’s fidelity. Next, we present numerical experiments
showcasing the effectiveness of our metric in quantifying GNN stability. We then highlight the
efficacy of our SAGMAN-guided approach in executing graph adversarial attacks. Finally, we
demonstrate how leveraging the low-dimensional input manifold created by SAGMAN significantly
enhances GNN stability. Details of our experimental setup are provided in Appendix A.5. We define a
node as unstable if small perturbations in the input lead to significant changes in the output, indicated
by a high DMD value. Conversely, a stable node has a low DMD value, reflecting robustness to input
variations.

4.1 EVALUATION OF GRAPH DIMENSION REDUCTION (GDR)

A natural concern arises regarding how much the constructed input graph-based manifold might
change the original graph’s structure. To this end, we compare the exact resistance distances
calculated using the complete set of eigenpairs with approximate resistance distances estimated
using the embedding matrix Uk (as defined in Definition 3.1), considering various values of k as
shown in Table 1. Our empirical results demonstrate that using a small number of eigenpairs can
effectively approximate the original effective-resistance distances. Furthermore, Table 2 shows that
the SAGMAN-guided stability analysis with GDR consistently distinguishes between stable and
unstable nodes, whereas the analysis without GDR fails to do so. Additional related results for various
datasets and GNN architectures are provided in Appendix A.8.

Table 1: Resistance-distance preservation for the Cora graph, evaluating 100 randomly selected node
pairs. Larger correlation coefficients (CC) indicate more accurate estimations.

k 20 30 50 100 200 400 500

CC 0.69 0.78 0.82 0.87 0.93 0.97 0.99

Table 2: Cosine similarities between original and perturbed node embeddings for stable/unstable
nodes under Nettack adversarial attacks on the Cora dataset using GCN. Higher cosine similarities
for stable nodes and lower for unstable nodes indicate better distinction. Better results are in bold.

Nettack Level 1 2 3

w/o GDR 0.90/0.96 0.84/0.93 0.81/0.91
w/ GDR 0.99/0.90 0.98/0.84 0.97/0.81

Table 3: Comparison of Nettack/FGA error rates for 40 nodes selected using Nettack’s recommen-
dation, confidence ranking, and SAGMAN. All nodes chosen by SAGMAN-guided methods are
correctly classified before perturbation. Better results are highlighted in bold.

Selection Nettack’s default Confidence Ranking SAGMAN

Cora 0.725/0.850 0.925/0.775 0.975/0.975
Cora-ml 0.750/0.850 0.800/0.700 0.950/0.950
Citeseer 0.800/0.875 0.925/0.950 1.000/0.975
Pubmed 0.750/0.875 0.750/0.925 0.825/0.950

4.2 METRICS FOR GNN STABILITY EVALUATION
We empirically demonstrate SAGMAN’s ability to distinguish between stable and unstable samples
under DICE attack (Waniek et al., 2018) and Gaussian perturbation, as shown in Figure 3. Addi-
tional results on PGD attack, various datasets—including large-scale datasets—and different GNN
architectures under Nettack attacks (Zügner et al., 2018) are provided in Appendix A.10, further
illustrating the effectiveness of our metric. SAGMAN is most effective for GNNs that perform feature

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Error rates for the Cora and Citeseer datasets before/after Nettack and IG-attack evasion
attacks, with and without SAGMAN enhancement.‘Size’ indicates the fraction of the nodes selected.
Better results are highlighted in bold.

Nettack Attack Budget Size 1% 5% 10% 15% 20%

Cora w/o SAGMAN 0.00/0.79 0.01/0.86 0.01/0.90 0.02/0.93 0.02/0.92
w/ SAGMAN 0.00/0.00 0.00/0.00 0.01/0.01 0.06/0.06 0.08/0.08

Citeseer w/o SAGMAN 0.00/0.76 0.03/0.82 0.04/0.85 0.04/0.86 0.03/0.85
w/ SAGMAN 0.09/0.42 0.10/0.37 0.12/0.37 0.11/0.35 0.08/0.28

IG-attack Budget Size 1% 5% 10% 15% 20%

Citeseer w/o SAGMAN 0.00/0.76 0.02/0.74 0.02/0.74 0.02/0.72 0.02/0.75
w/ SAGMAN 0.00/0.05 0.02/0.07 0.02/0.07 0.02/0.04 0.02/0.09

Cora w/o SAGMAN 0.00/0.96 0.02/0.83 0.02/0.81 0.02/0.82 0.02/0.81
w/ SAGMAN 0.00/0.00 0.02/0.02 0.02/0.03 0.02/0.02 0.02/0.04

Table 5: Baseline and Perturbed error rates for the Citeseer dataset using GOOD-AT, SAGMAN, and
both. Our experiments’ attack method and backbone architecture follow those from Li et al. (2024).
The best results are marked in bold, and the second-best results are underlined.

Edge Attack Budget 25 109 219 302 410 550

GCN(baseline) 0.2968 0.3211 0.3590 0.3780 0.4064 0.4301
GOOD-AT 0.2808 0.2820 0.2850 0.2838 0.2855 0.2915
SAGMAN 0.2808 0.2802 0.2808 0.2820 0.2814 0.2838
GOOD-AT+SAGMAN 0.2684 0.2695 0.2684 0.2690 0.2690 0.2701

smoothing, common in homophilic graphs. However, for heterophilic graphs, we still observed
SAGMAN distinguish stable and unstable nodes, as shown in Figure 10

4.3 STABILITY OF GNN-BASED RECOMMENDATION SYSTEMS

We evaluate the stability of GNN-based recommendation systems using the PinSage framework (Ying
et al., 2018) on the MovieLens 1M dataset (Harper & Konstan, 2015). To construct the input graph,
we first homogenize the various node and edge types into a unified format. We then calculate the
weighted spectral embedding matrix Uk (as defined in Definition 3.1) and extract user-type samples
to build a low-dimensional input (user) graph-based manifold. For the output graph-based manifold,
we utilize PinSage’s final output, which includes the top-10 recommended items for each user. We
construct this output (user) graph-based manifold based on Jaccard similarity measures of these
recommendations. Table 6 demonstrates the effectiveness of SAGMAN in distinguishing between
stable and unstable users.

Table 6: Comparison of the mean Jaccard similarity (MJS) between SAGMAN-selected sta-
ble/unstable users at a perturbation level (l) ranging from 1 to 5 where each selected user is connected
to l randomly chosen new items. The MJS is computed over 20 iterations for each perturbation.

Perturbation Level 1 2 3 4 5

Stable Users 0.8513 0.8837 0.8295 0.8480 0.8473
Unstable Users 0.7885 0.7955 0.8167 0.8278 0.7794

4.4 SAGMAN-GUIDED ADVERSARIAL TARGETED ATTACK

We adapt our GNN training methodology from previous work (Jin et al., 2021). Using GCN as
our base model for the Citeseer, Cora, Cora-ML, and Pubmed datasets, we employ Nettack and
FGA (Chen et al., 2018) as benchmark attack methods. For target node selection, we compare Net-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: The horizontal axes, denoted by X , represent the perturbation applied. ‘Random EdgesPT’
refers to the DICE attack. ‘Random FeaturePT’ indicates the application of Gaussian noise perturba-
tion, expressed as Xη perturbation, where η represents Gaussian noise. SAGMAN Stable/Unstable
denotes the samples classified as stable or unstable by SAGMAN, respectively.

tack’s recommendation (Zügner et al., 2018), SAGMAN-guided strategies, and a heuristic confidence
ranking (Chang et al., 2017).

Table 3 presents the error rates after applying Nettack and FGA attacks. The results demonstrate that
SAGMAN-guided attacks outperform both Nettack’s recommendation and the confidence ranking,
leading to more effective adversarial attacks.

4.5 SAGMAN-GUIDED GNN STABILITY ENHANCEMENT

A naive approach to improving the stability of a GNN model is to replace the entire input graph with
the low-dimensional graph-based manifold for GNN predictions. However, due to the significantly
increased densities in the graph-based manifold, the GNN prediction accuracy may be adversely
affected. To achieve a flexible trade-off between model stability and prediction accuracy, we select
only the inter-cluster edges from the input graph-based manifold, as shown in Figure 2(d), and
insert them into the original graph. Since the inter-cluster (bridge-like) edges are typically spectrally
critical—with high sampling probabilities as defined in Theorem 3.2—adding them to the original
graph significantly alters its structural (spectral) properties.

Whereas previous work (Deng et al., 2022) focuses on improving the robustness of GNNs against
poisoning attacks, our work centers on enhancing robustness against evasion attacks. In Table 4, we
present the error rates for both the original and the enhanced graphs, where Nettack was employed to
perturb SAGMAN-selected most unstable samples within each graph. Table 5 shows the error rates for
the state-of-the-art GOOD-AT (Li et al., 2024) method and our proposed SAGMAN approach. Since
SAGMAN is a versatile plug-in method that can be combined with other robustness techniques, we
also report results for the combined application of GOOD-AT and SAGMAN. Notably, reintegrating
selected edges into the original graph significantly reduces the error rate when subjected to adversarial
evasion attacks. To further demonstrate SAGMAN’s effectiveness under poisoning attacks and in
comparison with Lipschitz-based methods, we present additional results in Appendix A.13.

5 CONCLUSIONS

In this work, we introduced SAGMAN, a novel framework for analyzing the stability of GNNs at
the individual node level by assessing the resistance-distance distortions between low-dimensional
input and output graph-based manifolds. A key component of SAGMAN is the proposed Graph
Dimensionality Reduction (GDR) approach for constructing resistance-preserving manifolds, which
enables effective stability analysis.

Our experimental results demonstrate that SAGMAN effectively quantifies GNN stability, leading to
significantly enhanced targeted adversarial attacks and improved GNN robustness. The current SAG-
MAN framework is particularly effective for graphs that can be well represented in low-dimensional
spaces and exhibit large eigengaps.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. Advances in Neural Information
Processing Systems, 30, 2017.

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast gradient
attack on network embedding. arXiv preprint arXiv:1809.02797, 2018.

Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, and Zhuo Feng. Spade:
A spectral method for black-box adversarial robustness evaluation. In International Conference on
Machine Learning, pp. 1814–1824. PMLR, 2021.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang. Graph
sparsification, spectral sketches, and faster resistance computation via short cycle decompositions.
SIAM Journal on Computing, (0):FOCS18–85, 2020.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng. Simple and
scalable constrained clustering: a generalized spectral method. In Artificial Intelligence and
Statistics, pp. 445–454. PMLR, 2016.

Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu, Jiliang Tang, and
Suhang Wang. A comprehensive survey on trustworthy graph neural networks: Privacy, robustness,
fairness, and explainability. Machine Intelligence Research, pp. 1–51, 2024.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Chenhui Deng, Xiuyu Li, Zhuo Feng, and Zhiru Zhang. Garnet: Reduced-rank topology learning for
robust and scalable graph neural networks. arXiv preprint arXiv:2201.12741, 2022.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. arXiv preprint arXiv:2403.01232, 2024.

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning graphs from data: A
signal representation perspective. IEEE Signal Processing Magazine, 36(3):44–63, 2019.

Paul Erdös, Frank Harary, and William T Tutte. On the dimension of a graph. Mathematika, 12(2):
118–122, 1965.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Zhuo Feng. Sgl: Spectral graph learning from measurements. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 727–732. IEEE, 2021.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2013.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture
for deep graph networks. arXiv preprint arXiv:2210.09789, 2022.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020.

Weizhe Hua, Yichi Zhang, Chuan Guo, Zhiru Zhang, and G Edward Suh. Bullettrain: Accelerating
robust neural network training via boundary example mining. Advances in Neural Information
Processing Systems, 34:18527–18538, 2021.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graph neural networks. arXiv preprint
arXiv:2310.02579, 2023.

Yaning Jia, Dongmian Zou, Hongfei Wang, and Hai Jin. Enhancing node-level adversarial defenses
by lipschitz regularization of graph neural networks. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 951–963, 2023.

Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on graphs:
A review and empirical study. arXiv preprint arXiv:2003.00653, 10(3447556.3447566), 2020.

Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adversarial
attacks and defenses on graphs. ACM SIGKDD Explorations Newsletter, 22(2):19–34, 2021.

Vassilis Kalofolias and Nathanaël Perraudin. Large scale graph learning from smooth signals.
International Conference on Learning Representations (ICLR 2019), 2019.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

Henry Kenlay, Dorina Thanou, and Xiaowen Dong. Interpretable stability bounds for spectral graph
filters. In International conference on machine learning, pp. 5388–5397. PMLR, 2021.

Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph convolutional
networks on large random graphs. Advances in Neural Information Processing Systems, 33:
21512–21523, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Douglas J Klein and H-Y Zhu. Distances and volumina for graphs. Journal of mathematical chemistry,
23(1):179–195, 1998.

Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for solving sdd linear
systems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pp.
235–244. IEEE, 2010.

Brenden Lake and Joshua Tenenbaum. Discovering structure by learning sparse graphs. 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

John M Lee. Smooth manifolds. Springer, 2012.

Kuan Li, YiWen Chen, Yang Liu, Jin Wang, Qing He, Minhao Cheng, and Xiang Ao. Boosting the
adversarial robustness of graph neural networks: An ood perspective. In The Twelfth International
Conference on Learning Representations, 2024.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824–836, 2018.

Jianyu Miao, Tiejun Yang, Junwei Jin, and Lingfeng Niu. Graph-based clustering via group sparsity
and manifold regularization. IEEE Access, 7:172123–172135, 2019.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology
for fast chip design. Nature, 594(7862):207–212, 2021.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! In Conference on learning theory, pp. 1423–1455. PMLR, 2015.

Édgar Roldán and Juan MR Parrondo. Entropy production and kullback-leibler divergence between
stationary trajectories of discrete systems. Physical Review E, 85(3):031129, 2012.

Sushmita Roy, Terran Lane, and Margaret Werner-Washburne. Learning structurally consistent
undirected probabilistic graphical models. In Proceedings of the 26th annual international
conference on machine learning, pp. 905–912, 2009.

Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric Graph Theory,
pp. 461–482. Springer, 2012.

Kartik Sharma, Samidha Verma, Sourav Medya, Arnab Bhattacharya, and Sayan Ranu. Task and
model agnostic adversarial attack on graph neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 15091–15099, 2023.

Martin Slawski and Matthias Hein. Estimation of positive definite m-matrices and structure learning
for attractive gaussian markov random fields. Linear Algebra and its Applications, 473:145–179,
2015.

Yang Song, Qiyu Kang, Sijie Wang, Kai Zhao, and Wee Peng Tay. On the robustness of graph neural
diffusion to topology perturbations. Advances in Neural Information Processing Systems, 35:
6384–6396, 2022.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Adversarial attacks
on graph neural networks via node injections: A hierarchical reinforcement learning approach. In
Proceedings of the Web Conference 2020, pp. 673–683, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding individuals
and communities in a social network. Nature Human Behaviour, 2(2):139–147, 2018.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 7370–7377, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Adversarial robustness
in graph neural networks: A hamiltonian approach. Advances in Neural Information Processing
Systems, 36, 2024.

Zhiqiang Zhao, Ying Zhang, and Zhuo Feng. Towards scalable spectral embedding and data visual-
ization via spectral coarsening. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, pp. 869–877, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 1399–1407, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

A APPENDIX

A.1 GRAPH-BASED MANIFOLDS AND DISTANCE METRICS

Graph-based Manifolds. A manifold is a topological space that locally resembles Euclidean space
near each point (Lee, 2012). In our work, we utilize graph-based manifolds to represent complex data
structures. Specifically, we represent each manifold as an undirected (connected) graph G = (V,E),
where V is the set of vertices corresponding to data points, and E is the set of edges encoding
relationships (e.g., conditional dependencies) between these points (Tenenbaum et al., 2000). This
representation is particularly effective when the underlying data structure can be approximated by
a network of discrete points, as is common in spectral clustering and manifold learning (Belkin &
Niyogi, 2003).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mappings Between Manifolds. Understanding the mappings between manifolds is essential for
transferring and comparing information across different data representations. In our context, these
mappings correspond to transformations between the input and output graph-based manifolds of
an ML model. Formally, a mapping φ : MX → MY from the input manifold MX to the output
manifold MY allows us to analyze how the model transforms data points and their relationships (Pan
& Yang, 2009). This is crucial for assessing the model’s stability with respect to small perturbations
in the input.

Distance Metrics on Manifolds. Measuring dissimilarities between points on manifolds requires
appropriate distance metrics. While geodesic distances, representing the shortest paths between
points on a manifold, are commonly used, they can be computationally intensive for large datasets
and may not capture global structural information due to their inherently local nature (Tenenbaum
et al., 2000).

Effective Resistance Distances on Graph-based Manifolds. To overcome these limitations, we
employ the effective resistance distance from electrical network theory. By modeling the undirected
graph as a resistive network, the effective resistance between two nodes captures both local relation-
ships and global structural properties of the graph. This metric effectively combines the advantages of
geodesic and global distances, providing a more comprehensive measure of similarity in graph-based
manifolds (Tenenbaum et al., 2000). Additionally, it is computationally efficient for large-scale
graphs (Klein & Zhu, 1998), making it practical for our analysis.

To illustrate the difference between geodesic distance and effective resistance distance, consider
the example in Figure 4. In all three graphs, nodes A and B have the same geodesic distance
(i.e., the shortest path length is identical). However, their effective resistance distances ΩAB vary
significantly due to differences in the global structure of each graph. This example demonstrates that
while geodesic distance only accounts for the shortest path, effective resistance distance incorporates
the overall connectivity and network topology, making it a more informative metric for assessing
similarities in graph-based manifolds.

Transfer to electrical networks

A B A B A B

G1 G2 G3

A B A B A B

Figure 4: Examples of three different graph structures with nodes A and B. Despite having the
same geodesic distance (shortest path length), the effective resistance distances ΩAB vary due to the
different global structures of the graphs.

By incorporating effective resistance distances into our stability analysis, we can more accurately
assess the distance distortions introduced by the mappings between the input and output manifolds
(as discussed in Section 2.1). This provides a solid foundation for evaluating the stability of ML

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

models on graph-based manifolds, enhancing both the theoretical rigor and practical applicability of
our approach.

A.2 SPECTRAL GRAPH THEORY

Spectral graph theory is a branch of mathematics that studies the properties of graphs through the
eigenvalues and eigenvectors of matrices associated with the graph (Chung, 1997). Let G = (V,E,w)
denote an undirected graph G, V denote a set of nodes (vertices), E denote a set of edges and w
denote the corresponding edge weights. The adjacency matrix can be defined as:

A(i, j) =

{
w(i, j) if (i, j) ∈ E

0 otherwise
(6)

The Laplacian matrix of G can be constructed by L = D −A, where D denotes the degree matrix.
Lemma A.1. (Courant-Fischer Minimax Theorem) The k-th largest eigenvalue of the Laplacian
matrix L ∈ R|V |×|V | can be computed as follows:

λk(L) = min
dim(U)=k

max
uk∈U
uk ̸=0

u⊤
k Luk

u⊤
k uk

(7)

Lemma A.1 is the Courant-Fischer Minimax Theorem (Golub & Van Loan, 2013) for solving the
eigenvalue problem: Luk = λkuk. The generalized Courant-Fischer Minimax Theorem for solving
generalized eigenvalue problem LXvk = λkLY vk can be expressed as follows:
Lemma A.2. (The Generalized Courant-Fischer Minimax Theorem) Given two Laplacian matri-
ces LX , LY ∈ R|V |×|V | such that null(LY) ⊆ null(LX), L+

Y denotes the Moore–Penrose pseu-
doinverse of LY , the k-th largest eigenvalue of L+

Y LX can be computed under the condition of
1 ≤ k ≤ rank(LY) by:

λk(L
+
Y LX) = min

dim(U)=k
U⊥null(LY)

max
vk∈U

v⊤k LXvk
v⊤k LY vk

. (8)

A.3 GRAPH-BASED MANIFOLD LEARNING VIA PGMS

Given M samples of N -dimensional vectors stored in a data matrix X ∈ RN×M , the recent
graph topology learning methods (Kalofolias & Perraudin, 2019; Dong et al., 2019) estimate graph
Laplacians from X for achieving the following desired characteristics:

Smoothness of Graph Signals. The graph signals corresponding to the real-world data should be
sufficiently smooth on the learned graph structure: the signal values will only change gradually across
connected neighboring nodes. The smoothness of a signal x over an undirected graph G = (V,E,w)

can be measured with the following Laplacian quadratic form: x⊤Lx =
∑

(p,q)∈E

wp,q(x (p)− x (q))
2,

where wp,q denotes the weight of edge (p, q), L = D −W denotes the Laplacian, D denotes the
diagonal (degree) matrix, and W denotes the adjacency matrix of G, respectively. The smaller
quadratic form implies the smoother signals across the edges in the graph. The smoothness (Q) of
a set of signals X over graph G is computed using the following matrix trace (Dong et al., 2019):
Q(X,L) = Tr(X⊤LX), where Tr(•) denotes the matrix trace.

Sparsity of the Estimated Graph. Graph sparsity is another critical consideration in graph learning.
One of the most important motivations of learning a graph is to use it for downstream computing
tasks. Therefore, more desired graph topology learning algorithms should allow better capturing
and understanding the global structure (manifold) of the data set, while producing sufficiently sparse
graphs that can be easily stored and efficiently manipulated in the downstream algorithms, such as
circuit simulations, network partitioning, dimensionality reduction, data visualization, etc.

Problem Formulation. Consider a random vector x ∼ N(0,Σ) with probability density function:

f(x) =
exp

(
− 1

2x
⊤Σ−1x

)
(2π)N/2 det(Σ)(1/2)

∝ det(Θ)1/2 exp

(
−1

2
x⊤Θx

)
, (9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where Σ = E[xx⊤] ≻ 0 denotes the covariance matrix, and Θ = Σ−1 denotes the precision matrix
(inverse covariance matrix). Prior graph topology learning methods aim at estimating sparse precision
matrix Θ from potentially high-dimensional input data, which fall into the following two categories:

(A) The graphical Lasso method aims at estimating a sparse precision matrix Θ using convex
optimization to maximize the log-likelihood of f(x) (Friedman et al., 2008):

max
Θ

: log det(Θ)− Tr(ΘS)− β∥Θ∥1, (10)

where Θ denotes a non-negative definite precision matrix, S denotes a sample covariance matrix,
and β denotes a regularization parameter. The first two terms together can be interpreted as the
log-likelihood under a Gaussian Markov Random Field (GMRF). ∥•∥ denotes the entry-wise ℓ1 norm,
so β∥Θ∥1 becomes the sparsity promoting regularization term. This model learns the graph structure
by maximizing the penalized log-likelihood. When the sample covariance matrix S is obtained from
M i.i.d (independent and identically distributed) samples X = [x1, ..., xM] where X ∼ N(0, S) has
an N -dimensional Gaussian distribution with zero mean, each element in the precision matrix Θi,j

encodes the conditional dependence between variables Xi and Xj . For example, Θi,j = 0 implies
that variables Xi and Xj are conditionally independent, given the rest.

(B) The Laplacian estimation methods have been recently introduced for more efficiently solving
the following convex problem (Dong et al., 2019; Lake & Tenenbaum, 2010):

max
Θ

: F (Θ) = log det(Θ)− 1

M
Tr(X⊤ΘX)− β∥Θ∥1, (11)

where Θ = L + 1
σ2 I , L denotes the set of valid graph Laplacian matrices, I denotes the identity

matrix, and σ2 > 0 denotes prior feature variance. It can be shown that the three terms in (11) are
corresponding to log det(Θ), Tr(ΘS) and β∥Θ∥1 in (10), respectively. Note that the second term
also promotes graph sparsity, so the β∥Θ∥1 can be dropped without impacting the final solution. Since
Θ = L+ 1

σ2 I correspond to symmetric and positive definite (PSD) matrices (or M matrices) with
non-positive off-diagonal entries, this formulation will lead to the estimation of attractive GMRFs
(Dong et al., 2019; Slawski & Hein, 2015). In case X is non-Gaussian, formulation (11) can be
understood as Laplacian estimation based on minimizing the Bregman divergence between positive
definite matrices induced by the function Θ 7→ − log det(Θ) (Slawski & Hein, 2015).

A.4 PROOF FOR THEOREM 3.2

In the SAGMAN framework, we aim to construct low-dimensional manifolds for both the input
and output of a GNN. For the input manifold, we use the embedding matrix X = Uk ∈ R|V |×k (as
defined in Definition 3.1), where |V | is the number of nodes in the graph and k is the dimensionality
of the embedding space. The goal is to learn a precision matrix Θ that captures the underlying graph
structure reflected in the embeddings.

Maximum Likelihood Estimation (MLE) of the PGM (Precision Matrix). We start by formulat-
ing the MLE of the precision matrix Θ as a convex optimization problem (Dong et al., 2019):

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr(X⊤ΘX), (12)

where:

• Θ = L+ 1
σ2 I ,

• L is the graph Laplacian matrix,

• I is the identity matrix,

• σ2 > 0 is a prior variance term,

• Tr(·) denotes the trace of a matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Expanding the Laplacian Matrix. The graph Laplacian matrix L can be decomposed as:

L =
∑

(p,q)∈E

wp,qep,qe
⊤
p,q, (13)

where:

• E is the set of edges in the graph,

• wp,q is the weight of edge (p, q),

• ep,q = ep − eq , with ep being the standard basis vector corresponding to node p.

The edge weights are defined as:

wp,q =
1

∥X⊤ep,q∥22
=

1

∥Xp −Xq∥22
, (14)

where Xp and Xq are the embeddings of nodes p and q, respectively.

Expressing the Objective Function. Substituting Θ and L into the objective function, we can split
F (Θ) into two parts:

F = F1 −
1

k
F2, (15)

where:

1. First Term (F1):

F1 = log det(Θ) =

|V |∑
i=1

log

(
λi +

1

σ2

)
, (16)

with λi being the i-th eigenvalue of the Laplacian L.

2. Second Term (F2):

F2 = Tr(X⊤ΘX) =
Tr(X⊤X)

σ2
+

∑
(p,q)∈E

wp,q∥X⊤ep,q∥22. (17)

The term Tr(X⊤X)
σ2 is constant with respect to wp,q and can be ignored for optimization over

wp,q .

Computing Partial Derivatives. To optimize F with respect to the edge weights wp,q , we compute
the partial derivatives of F1 and F2:

Derivative of F1 with respect to edge weight:

∂F1

∂wp,q
=

|V |∑
i=1

1

λi +
1
σ2

∂λi

∂wp,q
. (18)

Since ∂λi

∂wp,q
= v⊤i

∂L
∂wp,q

vi, where vi is the eigenvector corresponding to λi, and ∂L
∂wp,q

= ep,qe
⊤
p,q,

we have:

∂F1

∂wp,q
=

|V |∑
i=1

(v⊤i ep,q)
2

λi +
1
σ2

. (19)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

When σ approaches infinity, this expression is known as the effective resistance distance between
nodes p and q:

deff(p, q) = e⊤p,qΘ
−1ep,q. (20)

So,

∂F1

∂wp,q
= deff(p, q). (21)

Derivative of F2 with respect to edge weight:

∂F2

∂wp,q
= ∥X⊤ep,q∥22 = ∥Xp −Xq∥22. (22)

This is the data distance between nodes p and q:

ddat(p, q) = ∥Xp −Xq∥22 =
1

wp,q
. (23)

Since wp,q = 1
ddat(p,q)

, we have:

∂F2

∂wp,q
=

1

wp,q
. (24)

Optimization Strategy. The gradient of F with respect to wp,q is:

∂F

∂wp,q
=

∂F1

∂wp,q
− 1

k

∂F2

∂wp,q
= deff(p, q)− 1

k

1

wp,q
. (25)

To maximize F , we can:

• Increase wp,q when deff(p, q) >
1

k

1

wp,q
.

• Decrease wp,q when deff(p, q) <
1

k

1

wp,q
.

However, since wp,q ≥ 0, decreasing wp,q effectively means pruning the edge (p, q).

Edge Pruning Strategy. We aim to prune edges where:

• Effective Resistance Distance is Small (deff(p, q) is small): The nodes are well-connected
in terms of the graph structure.

• Data Distance is Large (ddat(p, q) is large): The embeddings of the nodes are far apart.

This leads us to consider the distance ratio ρp,q:

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q d

eff(p, q). (26)

Edges with small ρp,q are candidates for pruning because they contribute less to maximizing F . By
pruning such edges, we focus on retaining edges that have a significant impact on the graph’s spectral
properties.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Connection to Spectral Graph Sparsification. The ratio ρp,q corresponds to the edge sampling
probability used in spectral graph sparsification (Spielman & Teng, 2011). Spectral sparsification
aims to approximate the original graph with a sparser graph that preserves its spectral (Laplacian)
properties.

In spectral sparsification:

• Edges are sampled with probability proportional to wp,qd
eff(p, q).

• Edges with higher ρp,q are more likely to be included in the sparsified graph.

Therefore, our edge pruning strategy—performing spectral sparsification on the initial graph—is
equivalent to maximize the objective function in Equation 2. This ensures that the essential structural
properties of the graph are maintained while reducing complexity.

A.5 EXPERIMENTAL SETUP

See Appendix A.10 for detailed descriptions of all graph datasets used in this work. We employ the
most popular backbone GNN models including GCN (Kipf & Welling, 2016), GPRGNN (Chien
et al., 2020), GAT (Veličković et al., 2017), APPNP (Gasteiger et al., 2018), ChebNet (Defferrard
et al., 2016), and Polynormer (Deng et al., 2024). The recommendation system is based on Pin-
Sage (Ying et al., 2018). Perturbations include Gaussian noise evasion attacks and adversarial attacks
(DICE (Waniek et al., 2018), Nettack (Zügner et al., 2018), and FGA (Chen et al., 2018)). The input
graph-based manifolds are constructed using graph adjacency and node features, while the output
graph-based manifold is created using post-softmax vectors. To showcase SAGMAN’s effectiveness
in differentiating stable from unstable nodes, we apply SAGMAN to select 1% of the entire dataset as
stable nodes, and another 1% as unstable nodes. This decision stems from that only a portion of the
dataset significantly impacts model stability (Cheng et al., 2021; Hua et al., 2021; Chang et al., 2017).
Additional evaluation results on the entire dataset can be found in Appendix A.12. We quantify output
perturbations using cosine similarity and Kullback-Leibler divergence (KLD). Additional insights
on cosine similarity, KLD, and accuracy can be found in Appendix A.7. For a large-scale dataset
“ogbn-arxiv", due to its higher output dimensionality, we focus exclusively on accuracy comparisons.
This decision is informed by the KLD estimator’s n− 1

d convergence rate (Roldán & Parrondo, 2012),
where n is the number of samples and d is the dimension. In this paper, our spectral embedding
method consistently utilizes the smallest 50 eigenpairs for all experiments, unless explicitly stated
otherwise.

A.6 MEASURE DMD WITHOUT PGMS

Attack Embedded Matrix Cosine Similarity
(Stable / Unstable)

DICE level 1 0.89 / 0.89

Gaussian noise 1.0 0.96 / 0.96

Table 7: The stable (unstable) nodes identified based on traditional graph-based manifolds (Belkin &
Niyogi, 2003)

.

As shown in Table 7, we cannot obtain meaningful DMDs with traditional graph-based manifolds
(kNN graphs) adopted in the Laplacian Eigenmaps framework (Belkin & Niyogi, 2003).

A.7 METRICS FOR ASSESSING GNN STABILITY

In the context of single-label classification in graph nodes, consider an output vector y =
[y1, y2, ..., yk] corresponding to an input x, where k represents the total number of classes. The
model’s predicted class is denoted as ŷ = argmaxi(yi). Now, let’s assume that the output vector
transforms to y′ = [y′1, y

′
2, ..., y

′
k], while preserving the ordinality of the elements, i.e., if yi > yj ,

then y′i > y′j . This condition ensures that ŷ′ = argmaxi(y
′
i) = ŷ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Relying solely on model accuracy can be deceptive, as it is contingent upon the preservation of
the ordinality of the output vector elements, even when the vector itself undergoes significant
transformations. This implies that the model’s accuracy remains ostensibly unaffected as long as the
ranking of the elements within the output vector is conserved. However, this perspective neglects
potential alterations in the model’s prediction confidence levels.

In contrast, the cosine similarity provides a more holistic measure as it quantifies the angle between
two vectors, thereby indicating the extent of modification in the output direction. This method offers
a more granular insight into the impact of adversarial attacks on the model’s predictions.

Moreover, it is crucial to consider the nature of the output space, Y . In situations where Y forms a
probability distribution, a common occurrence in classification problems, the application of a distribu-
tion distance measure such as the Kullback-Leibler (KL) divergence is typically more suitable. Unlike
the oversimplified perspective of accuracy, these measures can provide a nuanced understanding
of the degree of perturbation introduced in the predicted probability distribution by an adversarial
attack. This additional granularity can expose subtle modifications in the model’s output that might
be missed when solely relying on accuracy as a performance metric.

A.8 GNN STABILITY ANALYSIS WITHOUT GDR

In this study, we present the outcomes of stability quantification using original input and output
graphs, as depicted in Figure 5. Our experimental findings underscore a key observation: SAGMAN
without GDR does not allow for meaningful estimations of the GNN stability.

Figure 5: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘Stable/Unstable’ denotes the samples that are classified as stable or unstable without GDR,
respectively.

A.9 FAST EFFECTIVE-RESISTANCE ESTIMATION FOR LRD-BASED GRAPH DECOMPOSITION

The effective-resistance between nodes (p, q) ∈ |V | can be computed using the following equation:

deff (p, q) =

N∑
i=2

(u⊤
i ep,q)

2

u⊤
i LGui

, (27)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 6: Graph decomposition results with respect to effective-resistance (ER) diameter

where ui represents the eigenvector corresponding to σi eigenvalue of LG and ep,q = ep − eq. To
avoid the computational complexity associated with computing eigenvalues/eigenvectors, we leverage
a scalable algorithm that approximates the eigenvectors by exploiting the Krylov subspace. In this
context, given a nonsingular matrix AN×N and a vector c ̸= 0 ∈ RN , the order-(m) Krylov subspace
generated by A from c is defined as:

κm(A, c) := span(c, Ac,A2c, ..., Am−1c), (28)

where c denotes a random vector, and A denotes the adjacency matrix of graph G. We compute a
new set of vectors denoted as x(1), x(2), ..., x(m) by ensuring that the Krylov subspace vectors are
mutually orthogonal with unit length. We estimate the effective-resistance between node p and q
using Equation 27 by exploring the eigenspace of LG and selecting the vectors that capture various
spectral properties of G:

deff (p, q) ≈
m∑
i=1

(x(i)⊤ep,q)
2

x(i)⊤LGx(i)
, (29)

We control the diameter of each cycle by propagating effective resistances across multiple levels.
Let G = (V,E) represent the graph at the δ-th level, and let the edge (p, q) ∈ E be a contracted
edge that creates a supernode ϑ ∈ V (δ+1) at level δ + 1. We denote the vector of node weights as
η(δ) ∈ RV (δ)

≥0 , which is initially set to all zeros for the original graph. The update of η at level δ+1 is
defined as follows:

ηϑ := η(p(δ)) + η(q(δ)) + d
(δ)
eff (p, q). (30)

Consequently, the effective-resistance diameter of each cycle is influenced not only by the computed
effective-resistance (d(δ)eff) at the current level but also by the clustering information acquired from
previous levels.

The graph decomposition results with respect to effective-resistance (ER) diameter are illustrated in
Figure 6. The figure demonstrates that selecting a larger ER diameter leads to the decomposition of
the graph into a smaller number of partitions, with more nodes included in each cluster. On the left
side of the figure, the graph is decomposed into seven partitions: P1, ..., P7, by choosing a smaller
ER diameter. Conversely, increasing the ER diameter on the right side of the figure results in the
graph being partitioned into three clusters: P1, P2, and P3.

A.10 ADDITIONAL RESULTS FOR GNN STABILITY EVALUATION AND STATISTICS OF
DATASETS

We present the additional results in Figure 8, Figure 9, Figure 10, Figure 7, Table 8, and Table 9.
Table 10 summarizes the datasets utilized.

Table 8: Robustness Evaluation of GAT under PGD Attack on Cora
PGD Perturbation 0.05 0.10 0.15

Robust Accuracy 1.0000 1.0000 1.0000
Non-Robust Accuracy 0.9630 0.8889 0.8148

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 7: SAGMAN-selected stable/unstable samples for the "ogbn-arxiv" dataset. We report the
GCN prediction accuracies under different levels of Gaussian Noise Perturbation FM +Xη, where
FM denotes the feature matrix, η represents Gaussian noise, and X is the noise perturbation level.

Table 9: Nettack adversarial attack targeting selected Cora samples in GCN

Nettack Level Cosine Similarities:
Stable/Unstable

1 0.99/0.90
2 0.98/0.84
3 0.97/0.81

A.11 WHY GENERALIZED EIGENPAIRS ASSOCIATE WITH DMD

(Cheng et al., 2021) propose a method to estimate the maximum distance mapping distortion (DMD),
denoted as δMmax, by solving the following combinatorial optimization problem:

max δM = max
∀p,q∈V

p ̸=q

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
Xep,q

(31)

When computing δMmax via effective-resistance distance, the stability score is an upper bound of
δMmax (Cheng et al., 2021).

A function Y = M(X) is called Lipschitz continuous if there exists a real constant K ≥ 0 such that
for all xi, xj ∈ X:

distY (M(xi),M(xj)) ≤ KdistX(xi, xj), (32)

where K is the Lipschitz constant for the function M . The smallest Lipschitz constant, denoted
by K∗, is called the best Lipschitz constant. Let the resistance distance be the distance metric,
then (Cheng et al., 2021):

λmax(L
+
Y LX) ≥ K∗ ≥ δMmax. (33)

Equation 33 indicates that the λmax(L
+
Y LX) is also an upper bound of the best Lipschitz constant

K∗ under the low dimensional manifold setting. A greater λmax(L
+
Y LX) of a function (model)

implies worse stability since the output will be more sensitive to small input perturbations. A node
pair (p, q) is deemed non-robust if it exhibits a large DMD, i.e., δM (p, q) ≈ δMmax. This suggests
that a non-robust node pair consists of nodes that are adjacent in the GX but distant in the GY .
To effectively identify such non-robust node pairs, the Cut Mapping Distortion (CMD) metric was

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 10: Summary of datasets used in our experiments
Dataset Type Nodes Edges Classes Features

Cora Homophily 2,485 5,069 7 1,433
Cora-ML Homophily 2,810 7,981 7 2,879
Pubmed Homophily 19,717 44,324 3 500
Citeseer Homophily 2,110 3,668 6 3,703

Chameleon Heterophily 2,277 62,792 5 2,325
Squirrel Heterophily 5,201 396,846 5 2,089

ogbn-arxiv Homophily 169,343 1,166,243 40 128

introduced. For two graphs GX and GY sharing the same node set V , let S ⊂ V denote a node
subset and S̄ denote its complement. Also, let cutG(S, S̄) denote the number of edges crossing S
and S̄ in graph G. The CMD ζ(S) of node subset S is defined as (Cheng et al., 2021):

ζ(S)
def
=

cutGY
(S, S̄)

cutGX
(S, S̄)

. (34)

A small CMD score indicates that node pairs crossing the boundary of S are likely to have small
distances in GX but large distances in GY .

Given the Laplacian matrices LX and LY of input and output graphs, respectively, the minimum
CMD ζmin satisfies the following inequality:

ζmin = min
∀S⊂V

ζ(S) ≥ 1

σmax(L
+
Y LX)

(35)

Equation 35 establishes a connection between the maximum generalized eigenvalue σmax(L
+
Y LX)

and ζmin, indicating the ability to exploit the largest generalized eigenvalues and their corresponding
eigenvectors to measure the stability of node pairs. Embedding GX with generalized eigenpairs. We
first compute the weighted eigensubspace matrix Vs ∈ RN×s for spectral embedding on GX with N
nodes:

Vs
def
= [v1

√
σ1, ..., vs

√
σs] , (36)

where σ1, σ2, ..., σs represent the first s largest eigenvalues of L+
Y LX and v1, v2, ..., vs are the

corresponding eigenvectors. Consequently, the input graph GX can be embedded using Vs, so each
node is associated with an s-dimensional embedding vector. We can then quantify the stability of
an edge (p, q) ∈ EX by measuring the spectral embedding distance of its two end nodes p and q.
Formally, we have the edge stability score defined for any edge (p, q) ∈ EX as stabilityM (p, q)

def
=

∥V ⊤
s ep,q∥22 Let u1, u2, ..., us denote the first s dominant generalized eigenvectors of LXL+

Y . If an
edge (p, q) is dominantly aligned with one dominant eigenvector uk, where 1 ≤ k ≤ r, the following
holds:

(u⊤
i ep,q)

2 ≈
{
α2
k ≫ 0 if (i = k)

0 if (i ̸= k).
(37)

Then its edge stability score has the following connection with its DMD computed using effective-
resistance distances (Cheng et al., 2021):

∥V ⊤
s ep,q∥22 ∝

(
δM (p, q)

)3
. (38)

The stability score of an edge (p, q) ∈ EX can be regarded as a surrogate for the directional derivative
∥∇vM(x)∥ under the manifold setting, where v = ±(xp − xq). An edge with a larger stability score
is considered more non-robust and can be more vulnerable to attacks along the directions formed by
its end nodes.

Last, the node stability score can be calculated for any node (data sample) p ∈ V as follows:

score(p) =
1

|NX(p)|
∑

qi∈NX(p)

(
∥V ⊤

s ep,q∥22)
)
∝ 1

|NX(p)|
∑

qi∈NX(p)

(
δM (p, qi)

)3
(39)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where qi ∈ NX(p) denotes the i-th neighbor of node p in graph GX , and NX(p) ∈ V denotes the
node set including all the neighbors of p. The DMD score of a node (data sample) p can be regarded
as a surrogate for the function gradient ∥∇xM(p)∥ where x is near p under the manifold setting. A
node with a larger stability score implies it is likely more vulnerable to adversarial attacks.

A.12 VARIOUS SAMPLING SCHEMES FOR SAGMAN-GUIDED PERTURBATIONS

Previous works (Cheng et al., 2021; Hua et al., 2021; Chang et al., 2017) highlighted that only
part of the dataset plays a crucial role in model stability, so we want to focus on the difference
between the most "stable" and "unstable" parts. However, it is certainly feasible to evaluate the entire
graph. Table 11 shows the result regarding the Pubmed dataset in GPRGNN under Gaussian noise
perturbation. Samples were segmented based on SAGMAN ranking, with the bottom 20% being the
most "stable", the middle 60% as intermediate, and the top 20% representing the most "unstable". As
anticipated, the "stable" category (representing the bottom 20%) should exhibit the lowest average
KL divergences. This is followed by the intermediate category (covering the mid 60%), and finally,
the "unstable" category (comprising the top 20%) should display the highest divergences.

Table 11: KLD across varying Gaussian noise perturbations, expressed as FM +Xη, where FM
denotes the feature matrix, η represents Gaussian noise, and X denotes the perturbation level. The
dataset is divided into three segments based on the stability ranking of nodes as determined by
SAGMAN.

Perturbation Level KL divergence
(bottom 20%)

KL divergence
(mid 60%)

KL divergence
(top 20%)

0.4 0.01 0.03 0.03
0.8 0.09 0.16 0.19
1.2 0.43 0.56 0.59

A.13 SAGMAN’S RUNTIME ACROSS DATASETS

Figure 11 demonstrates the high efficiency of SAGMAN in processing large graphs, attributing its
performance to the near-linear time complexity of its components.

A.14 HYPERPARAMETER STUDY OF SAGMAN

In this section, we present a hyperparameter study of the SAGMAN framework to evaluate the impact
of key parameters on its performance. Specifically, we analyze how varying the number of nearest
neighbors k used to construct the initial graph and the sparsification parameter sparse_numer affect
the stability assessment and robustness of GNNs.

A.14.1 IMPACT OF k AND sparse_numer

The hyperparameter k determines the number of nearest neighbors in the k-nearest neighbor (KNN)
algorithm used to construct the initial graph for the manifold. The parameter sparse_numer controls
the level of sparsification during graph pruning, influencing the density and connectivity of the
resulting graph.

To assess the effects of these hyperparameters, we conducted experiments on the Cora dataset using a
GCN model. We varied k and sparse_numer while measuring the following metrics:

• PGD Attack Accuracy (Stable Nodes): The classification accuracy on stable nodes after
applying a PGD attack.

• PGD Attack Accuracy (Unstable Nodes): The classification accuracy on unstable nodes
after applying a PGD attack.

• Cosine Similarity (Stable Nodes): The average cosine similarity between the original and
perturbed embeddings of stable nodes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Cosine Similarity (Unstable Nodes): The average cosine similarity between the original
and perturbed embeddings of unstable nodes.

A.14.2 RESULTS AND DISCUSSION

Table 12 summarizes the results of our experiments. We varied k from 10 to 80 and sparse_numer
from 2 to 5.

Table 12: Impact of k and sparse_numer on SAGMAN’s performance. ’NC’ denotes configurations
where ARPACK did not converge.

k sparse_numer PGD Acc. (Stable) PGD Acc. (Unstable) Cosine Sim. Diff.

10 2 1.00 0.74 0.99998 / 0.98302
10 3 1.00 0.96 0.99985 / 0.99983
10 4 0.89 1.00 0.99985 / 0.99987
30 2 1.00 0.74 0.99996 / 0.98636
30 3 1.00 0.81 0.99998 / 0.98579
30 4 1.00 0.74 0.99993 / 0.98528
50 3 1.00 0.81 0.99964 / 0.99986
50 4 0.93 0.81 0.99313 / 0.99965
50 5 1.00 0.89 0.99980 / 0.99979
80 2 0.96 0.89 0.99998 / 0.99722
80 3 0.96 0.81 0.99999 / 0.99809
80 4 1.00 0.74 0.99968 / 0.99678

Effect of k: - When k is small (e.g., k = 10), the initial graph captures local relationships but may
miss some global structural information. - As k increases to 30 and 50, the performance on stable
nodes remains high, and the cosine similarity between original and perturbed embeddings for stable
nodes remains close to 1.0, indicating robustness. - A larger k (e.g., k = 80) does not necessarily
lead to better performance and may cause computational challenges, as indicated by non-converging
configurations (not shown in the table).

Effect of sparse_numer: - Lower values of sparse_numer (e.g., 2 or 3) result in sparser graphs after
pruning, which helps in maintaining high classification accuracy and robustness on stable nodes. -
Increasing sparse_numer to 4 or 5 leads to denser graphs, which may capture more complex structures
but can also introduce noise, potentially affecting stability. - Configurations with sparse_numer = 5
sometimes led to convergence issues during eigenvalue computations, suggesting that overly dense
graphs may pose computational difficulties.

Cosine Similarity Analysis: - The cosine similarity between the original and perturbed embeddings
is consistently higher for stable nodes compared to unstable nodes. - For example, with k = 10 and
sparse_numer = 2, the cosine similarity is 0.99998 for stable nodes and 0.98302 for unstable nodes,
highlighting SAGMAN’s ability to distinguish between stable and unstable nodes.

A.15 ROBUSTNESS UNDER POISONING ATTACKS AND COMPARISON WITH LIPSCHITZ-BASED
METHODS

In this section, we compare the robustness of SAGMAN with a Lipschitz-based stability method,
specifically the LipReLU method (Jia et al., 2023), under poisoning attacks. While previous work (Jia
et al., 2023) focuses exclusively on poisoning attacks, SAGMAN is primarily designed for evasion
attacks. However, due to its versatility, SAGMAN can be deployed in poisoning scenarios and
combined with other robustness techniques.

To demonstrate this, we conducted experiments using the DICE poisoning attack on the Cora dataset
with a GCN model. We evaluated the robustness improvement provided by SAGMAN, LipReLU,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

and a combination of both methods. The results highlight the accuracy improvement on the 10%
most unstable samples, as identified by SAGMAN.

Table 13: Accuracy comparison under DICE poisoning attack for different numbers of edge perturba-
tions. Best results are highlighted in bold.

Method 1 Edge 10 Edges 50 Edges 100 Edges

LipReLU 0.7862 0.7903 0.7782 0.7822
SAGMAN 0.8588 0.8427 0.8508 0.8548
LipReLU + SAGMAN 0.8468 0.8467 0.8467 0.8427

The results in Table 13 demonstrate that SAGMAN outperforms the Lipschitz-based method LipReLU
in most cases, particularly as the number of edge perturbations increases. Combining SAGMAN
with LipReLU also yields competitive results, indicating that SAGMAN can enhance the robustness
provided by Lipschitz-based methods. This suggests that SAGMAN is a versatile plug-in that can be
effectively integrated with existing robustness techniques to improve GNN resilience under poisoning
attacks.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 8: Figures represent cosine similarities and KL divergence. "Random EdgesPT" corresponds
to the DICE edge evasion attack. "Random FeaturePT" refers to Gaussian noise evasion perturbation
X + ξη, where X is feature matrix, η is Gaussian noise, ξ is noise level controls

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 9: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘SAGMAN Stable/Unstable’ denotes the samples that are classified as stable or unstable by
SAGMAN, respectively.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘SAGMAN Stable/Unstable’ denotes the samples that are classified as stable or unstable by
SAGMAN, respectively.

Figure 11: SAGMAN’s runtime across datasets

30

	Introduction
	Background
	Stability Analysis of ML Models on the Manifolds
	Previous Investigations on the Stability of GNNs

	The SAGMAN Framework for Stability Analysis of GNNs
	Overview of SAGMAN
	Phase 1: Embedding Matrix Construction for GDR
	Phase 2: Manifold Construction via PGMs
	Phase 3: Stability Analysis on the Manifolds
	Algorithm Flow of SAGMAN
	Time Complexity of SAGMAN

	Experiments
	Evaluation of Graph Dimension Reduction (GDR)
	Metrics for GNN Stability Evaluation
	Stability of GNN-based Recommendation Systems
	SAGMAN-guided Adversarial Targeted Attack
	SAGMAN-guided GNN Stability Enhancement

	Conclusions
	Appendix
	Graph-based Manifolds and Distance Metrics
	Spectral Graph Theory
	Graph-based Manifold Learning via PGMs
	Proof for Theorem 3.2
	Experimental Setup
	Measure DMD without PGMs
	Metrics for Assessing GNN Stability
	GNN Stability Analysis without GDR
	Fast Effective-Resistance Estimation for LRD-based Graph Decomposition
	Additional Results for GNN Stability Evaluation and Statistics of Datasets
	Why Generalized Eigenpairs Associate with DMD
	Various Sampling Schemes for SAGMAN-guided Perturbations
	SAGMAN's Runtime Across Datasets
	Hyperparameter Study of SAGMAN
	Impact of k and sparse_numer
	Results and Discussion

	Robustness under Poisoning Attacks and Comparison with Lipschitz-based Methods

