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ABSTRACT

Modern graph neural networks (GNNs) can be sensitive to changes in the input
graph structure and node features, potentially resulting in unpredictable behavior
and degraded performance. In this work, we introduce a spectral framework known
as SAGMAN for examining the stability of GNNs. This framework assesses the
distance distortions that arise from the nonlinear mappings of GNNs between the
input and output manifolds: when two nearby nodes on the input manifold are
mapped (through a GNN model) to two distant ones on the output manifold, it
implies a large distance distortion and thus a poor GNN stability. We propose
a distance-preserving graph dimension reduction (GDR) approach that utilizes
spectral graph embedding and probabilistic graphical models (PGMs) to create low-
dimensional input/output graph-based manifolds for meaningful stability analysis.
Our empirical evaluations show that SAGMAN effectively assesses the stability
of each node when subjected to various edge or feature perturbations, offering
a scalable approach for evaluating the stability of GNNs, extending to applica-
tions within recommendation systems. Furthermore, we illustrate its utility in
downstream tasks, notably in enhancing GNN stability and facilitating adversarial
targeted attacks.

1 INTRODUCTION

The advent of Graph Neural Networks (GNNs) has sparked a significant shift in machine learning
(ML), particularly in the realm of graph-structured data (Keisler, 2022; Hu et al., 2020; Kipf &
Welling, 2016; Veličković et al., 2017; Zhou et al., 2020). By seamlessly integrating graph structure
and node features, GNNs yield low-dimensional embedding vectors that maximally preserve the
graph structural information (Grover & Leskovec, 2016). Such networks have been successfully
deployed in a broad spectrum of real-world applications, including but not limited to recommendation
systems (Fan et al., 2019), traffic flow prediction (Yu et al., 2017), chip placement (Mirhoseini
et al., 2021), and social network analysis (Ying et al., 2018). However, the enduring challenge in
the deployment of GNNs pertains to their stability, especially when subjected to perturbations in
the graph structure (Sun et al., 2020; Jin et al., 2020; Xu et al., 2019). Recent studies suggest that
even minor alterations to the graph structure (encompassing the addition, removal, or rearrangement
of edges) can have a pronounced impact on the performance of GNNs (Zügner et al., 2018; Xu
et al., 2019). This phenomenon is particularly prominent in tasks such as node classification (Yao
et al., 2019; Veličković et al., 2017; Bojchevski & Günnemann, 2019). The concept of stability here
transcends mere resistance to adversarial attacks, encompassing the network’s ability to maintain
consistent performance despite inevitable variations in the input data (graph structure and node
features).

In the literature, while there are studies primarily focused on developing more stable GNN architec-
tures (Wu et al., 2023; Zhao et al., 2024; Song et al., 2022; Gravina et al., 2022), a few attempts to
analyze GNN stability comprehensively. Specifically, (Keriven et al., 2020) first studied the stability
of graph convolutional networks (GCN) on random graphs under small deformation. Later, (Gama
et al., 2020) and (Kenlay et al., 2021) explored the robustness of various graph filters, which are then
used to measure the stabilities of the corresponding (spectral-based) GNNs. However, these prior
methods are limited to either synthetic graphs or specific GNN models. Recent survey papers, such
as (Dai et al., 2024), highlight the critical role of stability analysis in trustworthy GNNs.
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In this work, we present SAGMAN, a novel framework devised to quantify the stability of GNNs
through individual nodes. This is accomplished by assessing the resistance-distance distortions
incurred by the nonlinear map (GNN model) between low-dimensional input and output graph-based
manifolds. It is crucial to note that this study aims to offer significant insights for understanding
and enhancing the stability of GNNs. While most robustness techniques focus on enhancing overall
model robustness through architectural modifications or training strategies, they often lack fine-
grained, node-level stability assessments. In contrast, SAGMAN introduces a spectral framework that
quantifies stability at the individual node level, enabling targeted interventions such as precise attacks
or tailored stability enhancements. The key technical contributions of this work are outlined below:

• This study introduces a spectral framework (SAGMAN) for measuring the stability of GNN models
at the node level. This is achieved by effectively assessing the distance distortions caused by the
maps between the input and output smooth manifolds.

• To construct the input smooth manifold for stability analysis in SAGMAN, we introduce a nonlinear
graph dimension reduction (GDR) framework to transform the original input graph (with node
features) into a low-dimensional graph-based manifold that can well preserve the original graph’s
spectral properties, such as effective resistance distances between nodes.

• SAGMAN has been empirically evaluated and shown to be effective in assessing the stability of
individual nodes across various GNN models in realistic graph datasets. Moreover, SAGMAN allows
for more powerful adversarial targeting attacks and greatly improving the stability (robustness) of the
GNNs.

• SAGMAN has a near-linear time complexity and its data-centric nature allows it to operate across
various GNN variants, independent of label information, network architecture, and learned parameters,
demonstrating its wide applicability.

2 BACKGROUND

2.1 STABILITY ANALYSIS OF ML MODELS ON THE MANIFOLDS

The stability of a machine learning (ML) model refers to its ability to produce consistent outputs
despite small variations or noise in the input data (Szegedy et al., 2013). To assess this stability, we
utilize the Distance Mapping Distortion (DMD) metric (Cheng et al., 2021). For two input data
samples p and q, the DMD metric δM (p, q) is defined as the ratio of their distance on the output
manifold to the one on the input manifold:

δM (p, q)
def
=

dY (p, q)

dX(p, q)
. (1)

By evaluating δM (p, q) for each pair of data samples, we can assess the stability of the ML model.
Specifically, if two nearby data samples on the input manifold are mapped to distant points on the
output manifold, this indicates a large δM (p, q) or equivalently a large local Lipschitz constant, and
thus poor stability of the model near these samples; On the other hand, a small δM (p, q) implies that
the model is stable in that region.

2.2 PREVIOUS INVESTIGATIONS ON THE STABILITY OF GNNS

The stability of a GNN refers to its output stability in the presence of edge/node perturbations (Sun
et al., 2020). This includes maintaining the fidelity of predictions and outcomes when subjected to
changes such as edge alterations or feature attacks. A desired GNN model is expected to exhibit
good stability, wherein every predicted output or the graph embeddings do not change drastically in
response to the aforementioned minor perturbations (Jin et al., 2020; Zhu et al., 2019). Several recent
studies have underlined the importance of analyzing the stability of GNNs. For instance, Sharma
et al. (2023) examined the task and model-agnostic vulnerabilities of GNNs, demonstrating that these
networks remain susceptible to adversarial perturbations regardless of the specific downstream tasks.
Furthermore, Huang et al. (2023) investigated robust graph representation learning via predictive
coding, proposing a method that enhances GNN stability by reconstructing input data to mitigate the
effects of adversarial attacks.
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Moreover, while recent studies have investigated the stability issues of Graph Neural Networks
(GNNs) on synthetic graphs or specific models (Keriven et al., 2020; Kenlay et al., 2021), they have
not provided a unified framework for evaluating GNN stability. The latest state-of-the-art method
(Li et al., 2024) develops such a unified framework but does not consider feature perturbations. This
omission leaves a significant gap in understanding how GNNs respond to changes in node features,
which is crucial for applications where feature data may be noisy or subject to perturbations.

3 THE SAGMAN FRAMEWORK FOR STABILITY ANALYSIS OF GNNS

Challenges in Applying DMD Metrics to GNN Stability Analysis. When adopting the DMD
metric for the stability analysis of GNN models, a natural approach is to use graph-based manifolds
(details in Appendix A.1) for calculating DMDs. However, directly using the input graph structure
as the input graph-based manifold may not produce satisfactory results as shown in our empirical
results presented in Table 2 and Appendix A.8. This inadequacy stems from the fact that the original
input graph data (including node features) may not reside near a low-dimensional manifold (Bruna
et al., 2013), while meaningful DMD-based stability analysis requires both the input and output data
samples to lie near low-dimensional manifolds (Cheng et al., 2021). Therefore, a naive application of
DMD metrics on the original graph structure is insufficient for assessing the stability of GNNs.

3.1 OVERVIEW OF SAGMAN
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Figure 1: The proposed SAGMAN framework for stability analysis of GNNs on the manifolds.

To extend the applicability of the DMD metric to GNN settings, we introduce SAGMAN, a spectral
framework for stability analysis of GNNs. A key component of SAGMAN is a novel distance-
preserving Graph Dimensionality Reduction (GDR) algorithm that transforms the original input
graph data—including node features and graph topology, which may reside in high-dimensional
space—into a low-dimensional graph-based manifold.

As illustrated in Figure 1, the SAGMAN framework comprises three main phases:

• Phase 1: Creation of the input graph embedding matrix based on both node features and
spectral properties of the graph. This embedding matrix is essential for the subsequent GDR
step.

• Phase 2: Construction of low-dimensional input and output graph-based manifolds using a
Probabilistic Graphical Model (PGM) approach.

• Phase 3: Node stability evaluation using the DMD metric, leveraging a spectral graph
embedding scheme that utilizes generalized Laplacian eigenvalues and eigenvectors.

Detailed descriptions of each phase are provided in the following sections. The complete algorithmic
flow of SAGMAN is shown in Section 3.5.
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3.2 PHASE 1: EMBEDDING MATRIX CONSTRUCTION FOR GDR

The calculation of the DMD metric inherently relies on pairwise distances between nodes. For
graph-based manifolds, two widely used metrics for evaluating pairwise node distances are: (1) the
shortest-path distance and (2) the effective resistance distance. As discussed in Appendix A.1, the
effective resistance distance is more closely related to the graph’s structural (spectral) properties,
providing a more meaningful measure of connectivity between nodes. Moreover, previous studies
have demonstrated a significant correlation between effective resistance distances and the stability of
machine learning models (Cheng et al., 2021). Therefore, our focus is on performing dimensionality
reduction on the input graph while preserving its original effective resistance distances.

Graph Dimensionality Reduction via Laplacian Eigenmaps. To achieve dimensionality reduction
of the input graph, we utilize the widely recognized nonlinear dimensionality reduction algorithm,
Laplacian Eigenmaps (Belkin & Niyogi, 2003). The Laplacian Eigenmaps algorithm begins by
constructing an undirected graph where each node represents a high-dimensional data sample, and
edges encode the similarities between data samples. It then computes the eigenvectors corresponding
to the smallest eigenvalues of the graph Laplacian matrix, which are used to map each node into a
low-dimensional space while preserving the local relationships between the data samples.

Spectral Embedding with Eigengaps. For a graph with N nodes, a straightforward approach to
apply Laplacian Eigenmaps is to compute an N ×N spectral embedding matrix using the complete
set of graph Laplacian eigenvectors and eigenvalues (Ng et al., 2001), representing each node with
an N -dimensional vector. However, computing the full set of eigenvalues and eigenvectors is
computationally prohibitive for large graphs.

To address this issue, we leverage a theoretical result from spectral graph clustering (Peng et al., 2015),
which shows that the existence of a significant gap between consecutive eigenvalues—known as an
eigengap—implies that the graph can be well represented in a lower-dimensional space. Specifically,
the eigengap is defined as Υ(k) = λk+1

ρ(k) , where ρ(k) denotes the k-way expansion constant, and
λk+1 is the (k+1)-th smallest eigenvalue of the normalized Laplacian matrix. A significant eigengap
indicates the existence of a k-way partition where each cluster has low conductance, meaning the
graph is well-clustered. Based on this, we can approximate the spectral embedding using only the
first k eigenvalues and eigenvectors. We define the weighted spectral embedding matrix as follows:
Definition 3.1. For a connected graph G = (V,E,w) with its k smallest nonzero Laplacian eigen-
values denoted by 0 < λ1 ≤ λ2 ≤ . . . ≤ λk and corresponding eigenvectors u1, u2, . . . , uk, the
weighted spectral embedding matrix is defined as Uk =

[
u1√
λ1
, . . . , uk√

λk

]
∈ R|V |×k.

For a graph with a significant eigengap Υ(k), this embedding matrix allows us to represent each node
with a k-dimensional vector such that the effective resistance distance between any pair of nodes can
be well approximated by deff(p, q) ≈ ∥U⊤

k ep,q∥22, where ep ∈ R|V | is the standard basis vector with
a 1 at position p and zeros elsewhere, and ep,q = ep − eq .

Using Eigengaps for Graph Dimension Estimation. Determining the precise graph dimension
required to embed a graph into Euclidean space while preserving certain properties (e.g., unit edge
lengths) is an NP-hard problem (Erdös et al., 1965; Schaefer, 2012). However, the presence of
a significant eigengap Υ(k) suggests that the graph can be well represented in a k-dimensional
space (Peng et al., 2015), making k an approximate measure of the graph’s intrinsic dimensionality.
While computing the exact value of Υ(k) may be challenging in practice, we can use the identified
eigengap as an indicator of the suitability of SAGMAN for a given graph: graphs with significant
eigengaps are more suitable to our framework since they can be effectively represented in low-
dimensional spaces. Empirically, for datasets with c classes, we can approximate k as k ≈ 10c to
effectively capture significant eigengaps (Deng et al., 2022).

3.3 PHASE 2: MANIFOLD CONSTRUCTION VIA PGMS

The embedding matrix Uk, derived in Phase 1 as defined in Definition 3.1, serves as the foundation
for graph-based manifold construction in Phase 2. While the original Laplacian Eigenmaps algorithm
suggests constructing graph-based manifolds using k-nearest-neighbor graphs, we find that these
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manifolds do not adequately preserve the original effective resistance distances. Consequently, they
are not suitable for GNN stability analysis, as empirically demonstrated in Appendix A.6.

Probabilistic Graphical Models (PGMs) for Graph-based Manifold Learning. PGMs, also
known as Markov Random Fields (MRFs), are powerful tools in machine learning and statistical
physics for representing complex systems with intricate dependency structures (Roy et al., 2009).
PGMs encode the conditional dependencies between random variables through an undirected graph
structure (see Appendix A.3 for more details). Recent studies have shown that the graph structure
learned through PGMs can have resistance distances that encode the Euclidean distances between
their corresponding data samples (Feng, 2021).

In our context, each column vector in the embedding matrix Uk (as defined in Definition 3.1)
corresponds to a data sample used for graph topology learning. By constructing the low-dimensional
graph-based manifold via PGMs, we can effectively preserve the resistance distances from the original
graph. Empirical evidence, detailed in Appendix A.6, supports that preserving these distances is
essential for distinguishing between stable and unstable nodes. Therefore, our methodology leverages
PGMs to maintain accurate effective resistance distances.

However, existing methods for learning PGMs may require numerous iterations to achieve conver-
gence (Feng, 2021), limiting their applicability to large graphs.

Scalable PGM via Spectral Sparsification. In the proposed SAGMAN framework, we employ
PGMs to create low-dimensional input graph-based manifold GX = (V,EX) using the embedding
matrix Uk from Definition 3.1, and output manifold GY = (V,EY ) using the GNN’s post-softmax
vectors, as illustrated in Figure 1. Below, we detail the construction of the input manifold; the output
manifold can be constructed similarly. Given the input embedding matrix X = Uk ∈ R|V |×k, the
maximum likelihood estimation (MLE) of the precision matrix Θ (PGM) can be obtained by solving
the following convex optimization problem (see Appendix A.3 for more details) (Dong et al., 2019):

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr(X⊤ΘX), (2)

where Θ = L + 1
σ2 I , Tr(·) denotes the trace of a matrix, L is a valid Laplacian matrix, I is the

identity matrix, and σ2 > 0 is a prior feature variance. To solve this, we give the following theorem:

Theorem 3.2. Maximizing the objective function in Equation 2 can be achieved in nearly-linear
time via the following edge pruning strategy equivalent to spectral sparsification of the initial dense
nearest-neighbor graph. Specifically, edges with small distance ratios

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q d

eff(p, q)

are pruned, where deff(p, q) is the effective resistance distance between nodes p and q, ddat(p, q) =

∥Xp −Xq∥22 is the data distance between the embeddings of nodes p and q, and wp,q =
1

ddat(p, q)
is the weight of edge (p, q).

The proof for Theorem 3.2 is available in Appendix A.4.

Spectral Sparsification via Graph Decomposition. Computing the edge sampling probability
ρp,q for each edge (p, q) requires solving Laplacian matrices multiple times (Spielman & Srivastava,
2008), making the original sparsification method computationally expensive for large graphs. An
alternative approach employs a short-cycle graph decomposition scheme (Chu et al., 2020), which
partitions an unweighted graph G into multiple disjoint cycles by removing a fixed number of edges
while ensuring a bound on the length of each cycle. However, such methods are limited to unweighted
graphs.

Lemma 3.3. Spectral sparsification of an undirected graph G, with Laplacian LG, can be achieved by
leveraging a short-cycle decomposition algorithm that returns a sparsified graph H , with Laplacian
LH , such that for all real vectors x, x⊤LGx ≈ x⊤LHx (Chu et al., 2020).
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To extend these methods to weighted graphs, we introduce an improved spectral sparsification algo-
rithm, illustrated in Figure 2. Our approach utilizes a low-resistance-diameter (LRD) decomposition
scheme to limit the length of each cycle as measured by the effective resistance metric. This method
is particularly effective for sparsifying weighted graphs.

(b)(a) (c) (d)

Figure 2: The proposed spectral sparsification algorithm. (a) The initial graph. (b) LRD decompo-
sition for graph clustering. (c) LSSTs for pruning non-critical edges within clusters. (d) The final
graph-based manifold with two inter-cluster edges.

The key idea is to efficiently compute the effective resistance of each edge (see Appendix A.9 for
details) and employ a multilevel framework to decompose the graph into several disjoint clusters
bounded by an effective resistance threshold. Importantly, the inter-cluster edges identified during
this process can be inserted back into the original graph to significantly enhance the stability of GNN
models, as demonstrated in Section 4.5.

3.4 PHASE 3: STABILITY ANALYSIS ON THE MANIFOLDS

In this phase, we analyze the stability of GNNs by quantifying the distortions between the input
and output graph-based manifolds constructed in Phase 2, utilizing the Distance Mapping Distortion
(DMD) metric.

DMD with Effective Resistance Distance Metric. Let M be the mapping function of a machine
learning model that transforms input data X into output data Y , i.e., Y = M(X). To assess the
stability of M , we employ the DMD metric, which measures how distances between data samples
are distorted by M . On the input and output graph-based manifolds, we use the effective resistance
distance as the metric between nodes. The effective resistance distance between nodes p and q on the
input manifold GX is computed as deffX (p, q) = e⊤p,qL

+
Xep,q, and similarly on the output manifold

GY as deffY (p, q) = e⊤p,qL
+
Y ep,q, where L+

X and L+
Y denote the Moore–Penrose pseudoinverses of the

Laplacian matrices LX and LY of the input and output manifolds, respectively, and ep,q = ep − eq
with ep being the standard basis vector corresponding to node p. The DMD between nodes p and q is
defined as the ratio of the output distance to the input distance:

δM (p, q) =
deffY (p, q)

deffX (p, q)
=

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
Xep,q

. (3)

To quantify the maximum distortion introduced by M , we consider the maximum DMD over all
pairs of distinct nodes: δMmax. According to Lemma A.2 in (Cheng et al., 2021), the optimal Lipschitz
constant K∗ of the mapping M is bounded by the largest eigenvalue of L+

Y LX and the maximum
DMD:

δMmax ≤ K∗ ≤ λmax(L
+
Y LX). (4)

This relationship allows us to assess the stability of M using spectral properties of the Laplacian
matrices.

Node Stability Score via Spectral Embedding. Building on the theoretical insights from (Cheng
et al., 2021), we utilize the largest generalized eigenvalues and their corresponding eigenvectors of
L+
Y LX to evaluate the stability of individual nodes in GNNs. We compute the weighted eigensubspace

matrix Vs ∈ R|V |×s for spectral embedding of the input manifold GX = (V,EX), where |V | is
the number of nodes. The matrix Vs is defined as: Vs =

[
v1
√
ζ1, v2

√
ζ2, . . . , vs

√
ζs
]
, where

ζ1 ≥ ζ2 ≥ · · · ≥ ζs are the largest s eigenvalues of L+
Y LX , and v1, v2, . . . , vs are the corresponding

eigenvectors. Using Vs, we embed the nodes of GX into an s-dimensional space by representing
each node p with the p-th row of Vs. The stability of an edge (p, q) ∈ EX can then be estimated by

6
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computing the spectral embedding distance between nodes p and q: |V ⊤
s ep,q∥22. To assess the stability

of individual nodes, we define the stability score of node p as the average embedding distance to its
neighbors in the input manifold:

score(p) =
1

|NX(p)|
∑

q∈NX(p)

∥V ⊤
s ep,q∥22, (5)

where NX(p) denotes the set of neighbors of node p in GX . Since ∥V ⊤
s ep,q∥22 is proportional to(

δM (p, q)
)3

, the node stability score effectively serves as a surrogate for the local Lipschitz constant,
analogous to ∥∇XM(p)∥ under the manifold setting (Cheng et al., 2021). For a more detailed
derivation and theoretical justification, please refer to Appendix A.11.
3.5 ALGORITHM FLOW OF SAGMAN

The Algorithm 1 shows the key steps in SAGMAN.

Algorithm 1 SAGMAN Algorithm
Input: Graph G = (V,E), node features X , GNN model
Output: Stability scores for all nodes

1. Compute Spectral Embeddings (GDR):
• Compute the spectral embedding matrix Uk of G using its weighted Laplacian.

2. Augment Node Features:
• Concatenate X and Uk to form the feature matrix FM = [Uk, X].

3. Construct Input Graph-based Manifold GX (PGM):
• Build a k-NN graph GX

dense using FM .
• Apply spectral sparsification to GX

dense to obtain GX .
4. Apply GNN Model:

• Compute output representations Y = GNN(GX , X).
5. Construct Output Graph-based Manifold GY (PGM):

• Build a k-NN graph GY
dense using Y .

• Apply spectral sparsification to GY
dense to obtain GY .

6. Compute Stability Scores (DMD):
• Compute Laplacians LX and LY of GX and GY .
• Solve the generalized eigenvalue problem LY Vk = λLXVk to obtain Vk.
• For each node p ∈ V :

– Compute the stability score: score(p) = 1
|NX(p)|

∑
q∈NX(p) ∥V ⊤

k (ep−eq)∥22 where
NX(p) are the neighbors of p in GX .

3.6 TIME COMPLEXITY OF SAGMAN

The proposed SAGMAN framework is designed to be efficient and scalable for large graphs. Below,
we analyze the time complexity of its key components. We utilize fast multilevel eigensolvers to
compute the first c Laplacian eigenvectors. These eigensolvers operate in nearly linear time, O(c|V |),
without loss of accuracy (Zhao et al., 2021), where |V | denotes the number of nodes in the graph. To
construct the initial graph for manifold learning, we employ the k-nearest neighbor algorithm, which
has a nearly linear computational complexity of O(|V | log |V |) (Malkov & Yashunin, 2018). The
spectral sparsification step, performed via Low-Resistance-Diameter (LRD) decomposition, has a
time complexity of O(|V |dm), where d is the average degree of the graph, and m is the order of the
Krylov subspace used in the computation. By leveraging fast generalized eigensolvers (Koutis et al.,
2010; Cucuringu et al., 2016), we can compute all DMD values in O(|E|) time, where |E| denotes
the number of edges in the graph. Importantly, we ignore d (average degree) because most real-world
graphs are sparse (Miao et al., 2019), with average degrees much smaller than the number of nodes.
In such cases, d can be treated as a constant or as growing slowly with |V |.
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Overall, the dominant terms in the time complexity are nearly linear with respect to the size of the
graph. This near-linear scalability allows SAGMAN to handle large graph datasets efficiently. Results
for runtime scalability are available in Appendix A.13

4 EXPERIMENTS

We validate our proposed SAGMAN framework through comprehensive experiments. First, we
compare exact resistance distances from the original graph with their approximations derived from the
constructed manifold to demonstrate the manifold’s fidelity. Next, we present numerical experiments
showcasing the effectiveness of our metric in quantifying GNN stability. We then highlight the
efficacy of our SAGMAN-guided approach in executing graph adversarial attacks. Finally, we
demonstrate how leveraging the low-dimensional input manifold created by SAGMAN significantly
enhances GNN stability. Details of our experimental setup are provided in Appendix A.5. We define a
node as unstable if small perturbations in the input lead to significant changes in the output, indicated
by a high DMD value. Conversely, a stable node has a low DMD value, reflecting robustness to input
variations.

4.1 EVALUATION OF GRAPH DIMENSION REDUCTION (GDR)

A natural concern arises regarding how much the constructed input graph-based manifold might
change the original graph’s structure. To this end, we compare the exact resistance distances
calculated using the complete set of eigenpairs with approximate resistance distances estimated
using the embedding matrix Uk (as defined in Definition 3.1), considering various values of k as
shown in Table 1. Our empirical results demonstrate that using a small number of eigenpairs can
effectively approximate the original effective-resistance distances. Furthermore, Table 2 shows that
the SAGMAN-guided stability analysis with GDR consistently distinguishes between stable and
unstable nodes, whereas the analysis without GDR fails to do so. Additional related results for various
datasets and GNN architectures are provided in Appendix A.8.

Table 1: Resistance-distance preservation for the Cora graph, evaluating 100 randomly selected node
pairs. Larger correlation coefficients (CC) indicate more accurate estimations.

k 20 30 50 100 200 400 500

CC 0.69 0.78 0.82 0.87 0.93 0.97 0.99

Table 2: Cosine similarities between original and perturbed node embeddings for stable/unstable
nodes under Nettack adversarial attacks on the Cora dataset using GCN. Higher cosine similarities
for stable nodes and lower for unstable nodes indicate better distinction. Better results are in bold.

Nettack Level 1 2 3

w/o GDR 0.90/0.96 0.84/0.93 0.81/0.91
w/ GDR 0.99/0.90 0.98/0.84 0.97/0.81

Table 3: Comparison of Nettack/FGA error rates for 40 nodes selected using Nettack’s recommen-
dation, confidence ranking, and SAGMAN. All nodes chosen by SAGMAN-guided methods are
correctly classified before perturbation. Better results are highlighted in bold.

Selection Nettack’s default Confidence Ranking SAGMAN

Cora 0.725/0.850 0.925/0.775 0.975/0.975
Cora-ml 0.750/0.850 0.800/0.700 0.950/0.950
Citeseer 0.800/0.875 0.925/0.950 1.000/0.975
Pubmed 0.750/0.875 0.750/0.925 0.825/0.950

4.2 METRICS FOR GNN STABILITY EVALUATION
We empirically demonstrate SAGMAN’s ability to distinguish between stable and unstable samples
under DICE attack (Waniek et al., 2018) and Gaussian perturbation, as shown in Figure 3. Addi-
tional results on PGD attack, various datasets—including large-scale datasets—and different GNN
architectures under Nettack attacks (Zügner et al., 2018) are provided in Appendix A.10, further
illustrating the effectiveness of our metric. SAGMAN is most effective for GNNs that perform feature
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Table 4: Error rates for the Cora and Citeseer datasets before/after Nettack and IG-attack evasion
attacks, with and without SAGMAN enhancement.‘Size’ indicates the fraction of the nodes selected.
Better results are highlighted in bold.

Nettack Attack Budget Size 1% 5% 10% 15% 20%

Cora w/o SAGMAN 0.00/0.79 0.01/0.86 0.01/0.90 0.02/0.93 0.02/0.92
w/ SAGMAN 0.00/0.00 0.00/0.00 0.01/0.01 0.06/0.06 0.08/0.08

Citeseer w/o SAGMAN 0.00/0.76 0.03/0.82 0.04/0.85 0.04/0.86 0.03/0.85
w/ SAGMAN 0.09/0.42 0.10/0.37 0.12/0.37 0.11/0.35 0.08/0.28

IG-attack Budget Size 1% 5% 10% 15% 20%

Citeseer w/o SAGMAN 0.00/0.76 0.02/0.74 0.02/0.74 0.02/0.72 0.02/0.75
w/ SAGMAN 0.00/0.05 0.02/0.07 0.02/0.07 0.02/0.04 0.02/0.09

Cora w/o SAGMAN 0.00/0.96 0.02/0.83 0.02/0.81 0.02/0.82 0.02/0.81
w/ SAGMAN 0.00/0.00 0.02/0.02 0.02/0.03 0.02/0.02 0.02/0.04

Table 5: Baseline and Perturbed error rates for the Citeseer dataset using GOOD-AT, SAGMAN, and
both. Our experiments’ attack method and backbone architecture follow those from Li et al. (2024).
The best results are marked in bold, and the second-best results are underlined.

Edge Attack Budget 25 109 219 302 410 550

GCN(baseline) 0.2968 0.3211 0.3590 0.3780 0.4064 0.4301
GOOD-AT 0.2808 0.2820 0.2850 0.2838 0.2855 0.2915
SAGMAN 0.2808 0.2802 0.2808 0.2820 0.2814 0.2838
GOOD-AT+SAGMAN 0.2684 0.2695 0.2684 0.2690 0.2690 0.2701

smoothing, common in homophilic graphs. However, for heterophilic graphs, we still observed
SAGMAN distinguish stable and unstable nodes, as shown in Figure 10

4.3 STABILITY OF GNN-BASED RECOMMENDATION SYSTEMS

We evaluate the stability of GNN-based recommendation systems using the PinSage framework (Ying
et al., 2018) on the MovieLens 1M dataset (Harper & Konstan, 2015). To construct the input graph,
we first homogenize the various node and edge types into a unified format. We then calculate the
weighted spectral embedding matrix Uk (as defined in Definition 3.1) and extract user-type samples
to build a low-dimensional input (user) graph-based manifold. For the output graph-based manifold,
we utilize PinSage’s final output, which includes the top-10 recommended items for each user. We
construct this output (user) graph-based manifold based on Jaccard similarity measures of these
recommendations. Table 6 demonstrates the effectiveness of SAGMAN in distinguishing between
stable and unstable users.

Table 6: Comparison of the mean Jaccard similarity (MJS) between SAGMAN-selected sta-
ble/unstable users at a perturbation level (l) ranging from 1 to 5 where each selected user is connected
to l randomly chosen new items. The MJS is computed over 20 iterations for each perturbation.

Perturbation Level 1 2 3 4 5

Stable Users 0.8513 0.8837 0.8295 0.8480 0.8473
Unstable Users 0.7885 0.7955 0.8167 0.8278 0.7794

4.4 SAGMAN-GUIDED ADVERSARIAL TARGETED ATTACK

We adapt our GNN training methodology from previous work (Jin et al., 2021). Using GCN as
our base model for the Citeseer, Cora, Cora-ML, and Pubmed datasets, we employ Nettack and
FGA (Chen et al., 2018) as benchmark attack methods. For target node selection, we compare Net-
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Figure 3: The horizontal axes, denoted by X , represent the perturbation applied. ‘Random EdgesPT’
refers to the DICE attack. ‘Random FeaturePT’ indicates the application of Gaussian noise perturba-
tion, expressed as Xη perturbation, where η represents Gaussian noise. SAGMAN Stable/Unstable
denotes the samples classified as stable or unstable by SAGMAN, respectively.

tack’s recommendation (Zügner et al., 2018), SAGMAN-guided strategies, and a heuristic confidence
ranking (Chang et al., 2017).

Table 3 presents the error rates after applying Nettack and FGA attacks. The results demonstrate that
SAGMAN-guided attacks outperform both Nettack’s recommendation and the confidence ranking,
leading to more effective adversarial attacks.

4.5 SAGMAN-GUIDED GNN STABILITY ENHANCEMENT

A naive approach to improving the stability of a GNN model is to replace the entire input graph with
the low-dimensional graph-based manifold for GNN predictions. However, due to the significantly
increased densities in the graph-based manifold, the GNN prediction accuracy may be adversely
affected. To achieve a flexible trade-off between model stability and prediction accuracy, we select
only the inter-cluster edges from the input graph-based manifold, as shown in Figure 2(d), and
insert them into the original graph. Since the inter-cluster (bridge-like) edges are typically spectrally
critical—with high sampling probabilities as defined in Theorem 3.2—adding them to the original
graph significantly alters its structural (spectral) properties.

Whereas previous work (Deng et al., 2022) focuses on improving the robustness of GNNs against
poisoning attacks, our work centers on enhancing robustness against evasion attacks. In Table 4, we
present the error rates for both the original and the enhanced graphs, where Nettack was employed to
perturb SAGMAN-selected most unstable samples within each graph. Table 5 shows the error rates for
the state-of-the-art GOOD-AT (Li et al., 2024) method and our proposed SAGMAN approach. Since
SAGMAN is a versatile plug-in method that can be combined with other robustness techniques, we
also report results for the combined application of GOOD-AT and SAGMAN. Notably, reintegrating
selected edges into the original graph significantly reduces the error rate when subjected to adversarial
evasion attacks. To further demonstrate SAGMAN’s effectiveness under poisoning attacks and in
comparison with Lipschitz-based methods, we present additional results in Appendix A.13.

5 CONCLUSIONS

In this work, we introduced SAGMAN, a novel framework for analyzing the stability of GNNs at
the individual node level by assessing the resistance-distance distortions between low-dimensional
input and output graph-based manifolds. A key component of SAGMAN is the proposed Graph
Dimensionality Reduction (GDR) approach for constructing resistance-preserving manifolds, which
enables effective stability analysis.

Our experimental results demonstrate that SAGMAN effectively quantifies GNN stability, leading to
significantly enhanced targeted adversarial attacks and improved GNN robustness. The current SAG-
MAN framework is particularly effective for graphs that can be well represented in low-dimensional
spaces and exhibit large eigengaps.
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A APPENDIX

A.1 GRAPH-BASED MANIFOLDS AND DISTANCE METRICS

Graph-based Manifolds. A manifold is a topological space that locally resembles Euclidean space
near each point (Lee, 2012). In our work, we utilize graph-based manifolds to represent complex data
structures. Specifically, we represent each manifold as an undirected (connected) graph G = (V,E),
where V is the set of vertices corresponding to data points, and E is the set of edges encoding
relationships (e.g., conditional dependencies) between these points (Tenenbaum et al., 2000). This
representation is particularly effective when the underlying data structure can be approximated by
a network of discrete points, as is common in spectral clustering and manifold learning (Belkin &
Niyogi, 2003).
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Mappings Between Manifolds. Understanding the mappings between manifolds is essential for
transferring and comparing information across different data representations. In our context, these
mappings correspond to transformations between the input and output graph-based manifolds of
an ML model. Formally, a mapping φ : MX → MY from the input manifold MX to the output
manifold MY allows us to analyze how the model transforms data points and their relationships (Pan
& Yang, 2009). This is crucial for assessing the model’s stability with respect to small perturbations
in the input.

Distance Metrics on Manifolds. Measuring dissimilarities between points on manifolds requires
appropriate distance metrics. While geodesic distances, representing the shortest paths between
points on a manifold, are commonly used, they can be computationally intensive for large datasets
and may not capture global structural information due to their inherently local nature (Tenenbaum
et al., 2000).

Effective Resistance Distances on Graph-based Manifolds. To overcome these limitations, we
employ the effective resistance distance from electrical network theory. By modeling the undirected
graph as a resistive network, the effective resistance between two nodes captures both local relation-
ships and global structural properties of the graph. This metric effectively combines the advantages of
geodesic and global distances, providing a more comprehensive measure of similarity in graph-based
manifolds (Tenenbaum et al., 2000). Additionally, it is computationally efficient for large-scale
graphs (Klein & Zhu, 1998), making it practical for our analysis.

To illustrate the difference between geodesic distance and effective resistance distance, consider
the example in Figure 4. In all three graphs, nodes A and B have the same geodesic distance
(i.e., the shortest path length is identical). However, their effective resistance distances ΩAB vary
significantly due to differences in the global structure of each graph. This example demonstrates that
while geodesic distance only accounts for the shortest path, effective resistance distance incorporates
the overall connectivity and network topology, making it a more informative metric for assessing
similarities in graph-based manifolds.

Transfer to electrical networks

A B A B A B

G1 G2 G3

A B A B A B

Figure 4: Examples of three different graph structures with nodes A and B. Despite having the
same geodesic distance (shortest path length), the effective resistance distances ΩAB vary due to the
different global structures of the graphs.

By incorporating effective resistance distances into our stability analysis, we can more accurately
assess the distance distortions introduced by the mappings between the input and output manifolds
(as discussed in Section 2.1). This provides a solid foundation for evaluating the stability of ML
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models on graph-based manifolds, enhancing both the theoretical rigor and practical applicability of
our approach.

A.2 SPECTRAL GRAPH THEORY

Spectral graph theory is a branch of mathematics that studies the properties of graphs through the
eigenvalues and eigenvectors of matrices associated with the graph (Chung, 1997). Let G = (V,E,w)
denote an undirected graph G, V denote a set of nodes (vertices), E denote a set of edges and w
denote the corresponding edge weights. The adjacency matrix can be defined as:

A(i, j) =

{
w(i, j) if (i, j) ∈ E

0 otherwise
(6)

The Laplacian matrix of G can be constructed by L = D −A, where D denotes the degree matrix.
Lemma A.1. (Courant-Fischer Minimax Theorem) The k-th largest eigenvalue of the Laplacian
matrix L ∈ R|V |×|V | can be computed as follows:

λk(L) = min
dim(U)=k

max
uk∈U
uk ̸=0

u⊤
k Luk

u⊤
k uk

(7)

Lemma A.1 is the Courant-Fischer Minimax Theorem (Golub & Van Loan, 2013) for solving the
eigenvalue problem: Luk = λkuk. The generalized Courant-Fischer Minimax Theorem for solving
generalized eigenvalue problem LXvk = λkLY vk can be expressed as follows:
Lemma A.2. (The Generalized Courant-Fischer Minimax Theorem) Given two Laplacian matri-
ces LX , LY ∈ R|V |×|V | such that null(LY ) ⊆ null(LX), L+

Y denotes the Moore–Penrose pseu-
doinverse of LY , the k-th largest eigenvalue of L+

Y LX can be computed under the condition of
1 ≤ k ≤ rank(LY ) by:

λk(L
+
Y LX) = min

dim(U)=k
U⊥null(LY )

max
vk∈U

v⊤k LXvk
v⊤k LY vk

. (8)

A.3 GRAPH-BASED MANIFOLD LEARNING VIA PGMS

Given M samples of N -dimensional vectors stored in a data matrix X ∈ RN×M , the recent
graph topology learning methods (Kalofolias & Perraudin, 2019; Dong et al., 2019) estimate graph
Laplacians from X for achieving the following desired characteristics:

Smoothness of Graph Signals. The graph signals corresponding to the real-world data should be
sufficiently smooth on the learned graph structure: the signal values will only change gradually across
connected neighboring nodes. The smoothness of a signal x over an undirected graph G = (V,E,w)

can be measured with the following Laplacian quadratic form: x⊤Lx =
∑

(p,q)∈E

wp,q(x (p)− x (q))
2,

where wp,q denotes the weight of edge (p, q), L = D −W denotes the Laplacian, D denotes the
diagonal (degree) matrix, and W denotes the adjacency matrix of G, respectively. The smaller
quadratic form implies the smoother signals across the edges in the graph. The smoothness (Q) of
a set of signals X over graph G is computed using the following matrix trace (Dong et al., 2019):
Q(X,L) = Tr(X⊤LX), where Tr(•) denotes the matrix trace.

Sparsity of the Estimated Graph. Graph sparsity is another critical consideration in graph learning.
One of the most important motivations of learning a graph is to use it for downstream computing
tasks. Therefore, more desired graph topology learning algorithms should allow better capturing
and understanding the global structure (manifold) of the data set, while producing sufficiently sparse
graphs that can be easily stored and efficiently manipulated in the downstream algorithms, such as
circuit simulations, network partitioning, dimensionality reduction, data visualization, etc.

Problem Formulation. Consider a random vector x ∼ N(0,Σ) with probability density function:

f(x) =
exp

(
− 1

2x
⊤Σ−1x

)
(2π)N/2 det(Σ)(1/2)

∝ det(Θ)1/2 exp

(
−1

2
x⊤Θx

)
, (9)
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where Σ = E[xx⊤] ≻ 0 denotes the covariance matrix, and Θ = Σ−1 denotes the precision matrix
(inverse covariance matrix). Prior graph topology learning methods aim at estimating sparse precision
matrix Θ from potentially high-dimensional input data, which fall into the following two categories:

(A) The graphical Lasso method aims at estimating a sparse precision matrix Θ using convex
optimization to maximize the log-likelihood of f(x) (Friedman et al., 2008):

max
Θ

: log det(Θ)− Tr(ΘS)− β∥Θ∥1, (10)

where Θ denotes a non-negative definite precision matrix, S denotes a sample covariance matrix,
and β denotes a regularization parameter. The first two terms together can be interpreted as the
log-likelihood under a Gaussian Markov Random Field (GMRF). ∥•∥ denotes the entry-wise ℓ1 norm,
so β∥Θ∥1 becomes the sparsity promoting regularization term. This model learns the graph structure
by maximizing the penalized log-likelihood. When the sample covariance matrix S is obtained from
M i.i.d (independent and identically distributed) samples X = [x1, ..., xM ] where X ∼ N(0, S) has
an N -dimensional Gaussian distribution with zero mean, each element in the precision matrix Θi,j

encodes the conditional dependence between variables Xi and Xj . For example, Θi,j = 0 implies
that variables Xi and Xj are conditionally independent, given the rest.

(B) The Laplacian estimation methods have been recently introduced for more efficiently solving
the following convex problem (Dong et al., 2019; Lake & Tenenbaum, 2010):

max
Θ

: F (Θ) = log det(Θ)− 1

M
Tr(X⊤ΘX)− β∥Θ∥1, (11)

where Θ = L + 1
σ2 I , L denotes the set of valid graph Laplacian matrices, I denotes the identity

matrix, and σ2 > 0 denotes prior feature variance. It can be shown that the three terms in (11) are
corresponding to log det(Θ), Tr(ΘS) and β∥Θ∥1 in (10), respectively. Note that the second term
also promotes graph sparsity, so the β∥Θ∥1 can be dropped without impacting the final solution. Since
Θ = L+ 1

σ2 I correspond to symmetric and positive definite (PSD) matrices (or M matrices) with
non-positive off-diagonal entries, this formulation will lead to the estimation of attractive GMRFs
(Dong et al., 2019; Slawski & Hein, 2015). In case X is non-Gaussian, formulation (11) can be
understood as Laplacian estimation based on minimizing the Bregman divergence between positive
definite matrices induced by the function Θ 7→ − log det(Θ) (Slawski & Hein, 2015).

A.4 PROOF FOR THEOREM 3.2

In the SAGMAN framework, we aim to construct low-dimensional manifolds for both the input
and output of a GNN. For the input manifold, we use the embedding matrix X = Uk ∈ R|V |×k (as
defined in Definition 3.1), where |V | is the number of nodes in the graph and k is the dimensionality
of the embedding space. The goal is to learn a precision matrix Θ that captures the underlying graph
structure reflected in the embeddings.

Maximum Likelihood Estimation (MLE) of the PGM (Precision Matrix). We start by formulat-
ing the MLE of the precision matrix Θ as a convex optimization problem (Dong et al., 2019):

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr(X⊤ΘX), (12)

where:

• Θ = L+ 1
σ2 I ,

• L is the graph Laplacian matrix,

• I is the identity matrix,

• σ2 > 0 is a prior variance term,

• Tr(·) denotes the trace of a matrix.
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Expanding the Laplacian Matrix. The graph Laplacian matrix L can be decomposed as:

L =
∑

(p,q)∈E

wp,qep,qe
⊤
p,q, (13)

where:

• E is the set of edges in the graph,

• wp,q is the weight of edge (p, q),

• ep,q = ep − eq , with ep being the standard basis vector corresponding to node p.

The edge weights are defined as:

wp,q =
1

∥X⊤ep,q∥22
=

1

∥Xp −Xq∥22
, (14)

where Xp and Xq are the embeddings of nodes p and q, respectively.

Expressing the Objective Function. Substituting Θ and L into the objective function, we can split
F (Θ) into two parts:

F = F1 −
1

k
F2, (15)

where:

1. First Term (F1):

F1 = log det(Θ) =

|V |∑
i=1

log

(
λi +

1

σ2

)
, (16)

with λi being the i-th eigenvalue of the Laplacian L.

2. Second Term (F2):

F2 = Tr(X⊤ΘX) =
Tr(X⊤X)

σ2
+

∑
(p,q)∈E

wp,q∥X⊤ep,q∥22. (17)

The term Tr(X⊤X)
σ2 is constant with respect to wp,q and can be ignored for optimization over

wp,q .

Computing Partial Derivatives. To optimize F with respect to the edge weights wp,q , we compute
the partial derivatives of F1 and F2:

Derivative of F1 with respect to edge weight:

∂F1

∂wp,q
=

|V |∑
i=1

1

λi +
1
σ2

∂λi

∂wp,q
. (18)

Since ∂λi

∂wp,q
= v⊤i

∂L
∂wp,q

vi, where vi is the eigenvector corresponding to λi, and ∂L
∂wp,q

= ep,qe
⊤
p,q,

we have:

∂F1

∂wp,q
=

|V |∑
i=1

(v⊤i ep,q)
2

λi +
1
σ2

. (19)
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When σ approaches infinity, this expression is known as the effective resistance distance between
nodes p and q:

deff(p, q) = e⊤p,qΘ
−1ep,q. (20)

So,

∂F1

∂wp,q
= deff(p, q). (21)

Derivative of F2 with respect to edge weight:

∂F2

∂wp,q
= ∥X⊤ep,q∥22 = ∥Xp −Xq∥22. (22)

This is the data distance between nodes p and q:

ddat(p, q) = ∥Xp −Xq∥22 =
1

wp,q
. (23)

Since wp,q = 1
ddat(p,q)

, we have:

∂F2

∂wp,q
=

1

wp,q
. (24)

Optimization Strategy. The gradient of F with respect to wp,q is:

∂F

∂wp,q
=

∂F1

∂wp,q
− 1

k

∂F2

∂wp,q
= deff(p, q)− 1

k

1

wp,q
. (25)

To maximize F , we can:

• Increase wp,q when deff(p, q) >
1

k

1

wp,q
.

• Decrease wp,q when deff(p, q) <
1

k

1

wp,q
.

However, since wp,q ≥ 0, decreasing wp,q effectively means pruning the edge (p, q).

Edge Pruning Strategy. We aim to prune edges where:

• Effective Resistance Distance is Small (deff(p, q) is small): The nodes are well-connected
in terms of the graph structure.

• Data Distance is Large (ddat(p, q) is large): The embeddings of the nodes are far apart.

This leads us to consider the distance ratio ρp,q:

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q d

eff(p, q). (26)

Edges with small ρp,q are candidates for pruning because they contribute less to maximizing F . By
pruning such edges, we focus on retaining edges that have a significant impact on the graph’s spectral
properties.
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Connection to Spectral Graph Sparsification. The ratio ρp,q corresponds to the edge sampling
probability used in spectral graph sparsification (Spielman & Teng, 2011). Spectral sparsification
aims to approximate the original graph with a sparser graph that preserves its spectral (Laplacian)
properties.

In spectral sparsification:

• Edges are sampled with probability proportional to wp,qd
eff(p, q).

• Edges with higher ρp,q are more likely to be included in the sparsified graph.

Therefore, our edge pruning strategy—performing spectral sparsification on the initial graph—is
equivalent to maximize the objective function in Equation 2. This ensures that the essential structural
properties of the graph are maintained while reducing complexity.

A.5 EXPERIMENTAL SETUP

See Appendix A.10 for detailed descriptions of all graph datasets used in this work. We employ the
most popular backbone GNN models including GCN (Kipf & Welling, 2016), GPRGNN (Chien
et al., 2020), GAT (Veličković et al., 2017), APPNP (Gasteiger et al., 2018), ChebNet (Defferrard
et al., 2016), and Polynormer (Deng et al., 2024). The recommendation system is based on Pin-
Sage (Ying et al., 2018). Perturbations include Gaussian noise evasion attacks and adversarial attacks
(DICE (Waniek et al., 2018), Nettack (Zügner et al., 2018), and FGA (Chen et al., 2018)). The input
graph-based manifolds are constructed using graph adjacency and node features, while the output
graph-based manifold is created using post-softmax vectors. To showcase SAGMAN’s effectiveness
in differentiating stable from unstable nodes, we apply SAGMAN to select 1% of the entire dataset as
stable nodes, and another 1% as unstable nodes. This decision stems from that only a portion of the
dataset significantly impacts model stability (Cheng et al., 2021; Hua et al., 2021; Chang et al., 2017).
Additional evaluation results on the entire dataset can be found in Appendix A.12. We quantify output
perturbations using cosine similarity and Kullback-Leibler divergence (KLD). Additional insights
on cosine similarity, KLD, and accuracy can be found in Appendix A.7. For a large-scale dataset
“ogbn-arxiv", due to its higher output dimensionality, we focus exclusively on accuracy comparisons.
This decision is informed by the KLD estimator’s n− 1

d convergence rate (Roldán & Parrondo, 2012),
where n is the number of samples and d is the dimension. In this paper, our spectral embedding
method consistently utilizes the smallest 50 eigenpairs for all experiments, unless explicitly stated
otherwise.

A.6 MEASURE DMD WITHOUT PGMS

Attack Embedded Matrix Cosine Similarity
(Stable / Unstable)

DICE level 1 0.89 / 0.89

Gaussian noise 1.0 0.96 / 0.96

Table 7: The stable (unstable) nodes identified based on traditional graph-based manifolds (Belkin &
Niyogi, 2003)

.

As shown in Table 7, we cannot obtain meaningful DMDs with traditional graph-based manifolds
(kNN graphs) adopted in the Laplacian Eigenmaps framework (Belkin & Niyogi, 2003).

A.7 METRICS FOR ASSESSING GNN STABILITY

In the context of single-label classification in graph nodes, consider an output vector y =
[y1, y2, ..., yk] corresponding to an input x, where k represents the total number of classes. The
model’s predicted class is denoted as ŷ = argmaxi(yi). Now, let’s assume that the output vector
transforms to y′ = [y′1, y

′
2, ..., y

′
k], while preserving the ordinality of the elements, i.e., if yi > yj ,

then y′i > y′j . This condition ensures that ŷ′ = argmaxi(y
′
i) = ŷ.
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Relying solely on model accuracy can be deceptive, as it is contingent upon the preservation of
the ordinality of the output vector elements, even when the vector itself undergoes significant
transformations. This implies that the model’s accuracy remains ostensibly unaffected as long as the
ranking of the elements within the output vector is conserved. However, this perspective neglects
potential alterations in the model’s prediction confidence levels.

In contrast, the cosine similarity provides a more holistic measure as it quantifies the angle between
two vectors, thereby indicating the extent of modification in the output direction. This method offers
a more granular insight into the impact of adversarial attacks on the model’s predictions.

Moreover, it is crucial to consider the nature of the output space, Y . In situations where Y forms a
probability distribution, a common occurrence in classification problems, the application of a distribu-
tion distance measure such as the Kullback-Leibler (KL) divergence is typically more suitable. Unlike
the oversimplified perspective of accuracy, these measures can provide a nuanced understanding
of the degree of perturbation introduced in the predicted probability distribution by an adversarial
attack. This additional granularity can expose subtle modifications in the model’s output that might
be missed when solely relying on accuracy as a performance metric.

A.8 GNN STABILITY ANALYSIS WITHOUT GDR

In this study, we present the outcomes of stability quantification using original input and output
graphs, as depicted in Figure 5. Our experimental findings underscore a key observation: SAGMAN
without GDR does not allow for meaningful estimations of the GNN stability.

Figure 5: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘Stable/Unstable’ denotes the samples that are classified as stable or unstable without GDR,
respectively.

A.9 FAST EFFECTIVE-RESISTANCE ESTIMATION FOR LRD-BASED GRAPH DECOMPOSITION

The effective-resistance between nodes (p, q) ∈ |V | can be computed using the following equation:

deff (p, q) =

N∑
i=2

(u⊤
i ep,q)

2

u⊤
i LGui

, (27)
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Figure 6: Graph decomposition results with respect to effective-resistance (ER) diameter

where ui represents the eigenvector corresponding to σi eigenvalue of LG and ep,q = ep − eq. To
avoid the computational complexity associated with computing eigenvalues/eigenvectors, we leverage
a scalable algorithm that approximates the eigenvectors by exploiting the Krylov subspace. In this
context, given a nonsingular matrix AN×N and a vector c ̸= 0 ∈ RN , the order-(m) Krylov subspace
generated by A from c is defined as:

κm(A, c) := span(c, Ac,A2c, ..., Am−1c), (28)

where c denotes a random vector, and A denotes the adjacency matrix of graph G. We compute a
new set of vectors denoted as x(1), x(2), ..., x(m) by ensuring that the Krylov subspace vectors are
mutually orthogonal with unit length. We estimate the effective-resistance between node p and q
using Equation 27 by exploring the eigenspace of LG and selecting the vectors that capture various
spectral properties of G:

deff (p, q) ≈
m∑
i=1

(x(i)⊤ep,q)
2

x(i)⊤LGx(i)
, (29)

We control the diameter of each cycle by propagating effective resistances across multiple levels.
Let G = (V,E) represent the graph at the δ-th level, and let the edge (p, q) ∈ E be a contracted
edge that creates a supernode ϑ ∈ V (δ+1) at level δ + 1. We denote the vector of node weights as
η(δ) ∈ RV (δ)

≥0 , which is initially set to all zeros for the original graph. The update of η at level δ+1 is
defined as follows:

ηϑ := η(p(δ)) + η(q(δ)) + d
(δ)
eff (p, q). (30)

Consequently, the effective-resistance diameter of each cycle is influenced not only by the computed
effective-resistance (d(δ)eff ) at the current level but also by the clustering information acquired from
previous levels.

The graph decomposition results with respect to effective-resistance (ER) diameter are illustrated in
Figure 6. The figure demonstrates that selecting a larger ER diameter leads to the decomposition of
the graph into a smaller number of partitions, with more nodes included in each cluster. On the left
side of the figure, the graph is decomposed into seven partitions: P1, ..., P7, by choosing a smaller
ER diameter. Conversely, increasing the ER diameter on the right side of the figure results in the
graph being partitioned into three clusters: P1, P2, and P3.

A.10 ADDITIONAL RESULTS FOR GNN STABILITY EVALUATION AND STATISTICS OF
DATASETS

We present the additional results in Figure 8, Figure 9, Figure 10, Figure 7, Table 8, and Table 9.
Table 10 summarizes the datasets utilized.

Table 8: Robustness Evaluation of GAT under PGD Attack on Cora
PGD Perturbation 0.05 0.10 0.15

Robust Accuracy 1.0000 1.0000 1.0000
Non-Robust Accuracy 0.9630 0.8889 0.8148
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Figure 7: SAGMAN-selected stable/unstable samples for the "ogbn-arxiv" dataset. We report the
GCN prediction accuracies under different levels of Gaussian Noise Perturbation FM +Xη, where
FM denotes the feature matrix, η represents Gaussian noise, and X is the noise perturbation level.

Table 9: Nettack adversarial attack targeting selected Cora samples in GCN

Nettack Level Cosine Similarities:
Stable/Unstable

1 0.99/0.90
2 0.98/0.84
3 0.97/0.81

A.11 WHY GENERALIZED EIGENPAIRS ASSOCIATE WITH DMD

(Cheng et al., 2021) propose a method to estimate the maximum distance mapping distortion (DMD),
denoted as δMmax, by solving the following combinatorial optimization problem:

max δM = max
∀p,q∈V

p ̸=q

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
Xep,q

(31)

When computing δMmax via effective-resistance distance, the stability score is an upper bound of
δMmax (Cheng et al., 2021).

A function Y = M(X) is called Lipschitz continuous if there exists a real constant K ≥ 0 such that
for all xi, xj ∈ X:

distY (M(xi),M(xj)) ≤ KdistX(xi, xj), (32)

where K is the Lipschitz constant for the function M . The smallest Lipschitz constant, denoted
by K∗, is called the best Lipschitz constant. Let the resistance distance be the distance metric,
then (Cheng et al., 2021):

λmax(L
+
Y LX) ≥ K∗ ≥ δMmax. (33)

Equation 33 indicates that the λmax(L
+
Y LX) is also an upper bound of the best Lipschitz constant

K∗ under the low dimensional manifold setting. A greater λmax(L
+
Y LX) of a function (model)

implies worse stability since the output will be more sensitive to small input perturbations. A node
pair (p, q) is deemed non-robust if it exhibits a large DMD, i.e., δM (p, q) ≈ δMmax. This suggests
that a non-robust node pair consists of nodes that are adjacent in the GX but distant in the GY .
To effectively identify such non-robust node pairs, the Cut Mapping Distortion (CMD) metric was
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Table 10: Summary of datasets used in our experiments
Dataset Type Nodes Edges Classes Features

Cora Homophily 2,485 5,069 7 1,433
Cora-ML Homophily 2,810 7,981 7 2,879
Pubmed Homophily 19,717 44,324 3 500
Citeseer Homophily 2,110 3,668 6 3,703

Chameleon Heterophily 2,277 62,792 5 2,325
Squirrel Heterophily 5,201 396,846 5 2,089

ogbn-arxiv Homophily 169,343 1,166,243 40 128

introduced. For two graphs GX and GY sharing the same node set V , let S ⊂ V denote a node
subset and S̄ denote its complement. Also, let cutG(S, S̄) denote the number of edges crossing S
and S̄ in graph G. The CMD ζ(S) of node subset S is defined as (Cheng et al., 2021):

ζ(S)
def
=

cutGY
(S, S̄)

cutGX
(S, S̄)

. (34)

A small CMD score indicates that node pairs crossing the boundary of S are likely to have small
distances in GX but large distances in GY .

Given the Laplacian matrices LX and LY of input and output graphs, respectively, the minimum
CMD ζmin satisfies the following inequality:

ζmin = min
∀S⊂V

ζ(S) ≥ 1

σmax(L
+
Y LX)

(35)

Equation 35 establishes a connection between the maximum generalized eigenvalue σmax(L
+
Y LX)

and ζmin, indicating the ability to exploit the largest generalized eigenvalues and their corresponding
eigenvectors to measure the stability of node pairs. Embedding GX with generalized eigenpairs. We
first compute the weighted eigensubspace matrix Vs ∈ RN×s for spectral embedding on GX with N
nodes:

Vs
def
= [v1

√
σ1, ..., vs

√
σs] , (36)

where σ1, σ2, ..., σs represent the first s largest eigenvalues of L+
Y LX and v1, v2, ..., vs are the

corresponding eigenvectors. Consequently, the input graph GX can be embedded using Vs, so each
node is associated with an s-dimensional embedding vector. We can then quantify the stability of
an edge (p, q) ∈ EX by measuring the spectral embedding distance of its two end nodes p and q.
Formally, we have the edge stability score defined for any edge (p, q) ∈ EX as stabilityM (p, q)

def
=

∥V ⊤
s ep,q∥22 Let u1, u2, ..., us denote the first s dominant generalized eigenvectors of LXL+

Y . If an
edge (p, q) is dominantly aligned with one dominant eigenvector uk, where 1 ≤ k ≤ r, the following
holds:

(u⊤
i ep,q)

2 ≈
{
α2
k ≫ 0 if (i = k)

0 if (i ̸= k).
(37)

Then its edge stability score has the following connection with its DMD computed using effective-
resistance distances (Cheng et al., 2021):

∥V ⊤
s ep,q∥22 ∝

(
δM (p, q)

)3
. (38)

The stability score of an edge (p, q) ∈ EX can be regarded as a surrogate for the directional derivative
∥∇vM(x)∥ under the manifold setting, where v = ±(xp − xq). An edge with a larger stability score
is considered more non-robust and can be more vulnerable to attacks along the directions formed by
its end nodes.

Last, the node stability score can be calculated for any node (data sample) p ∈ V as follows:

score(p) =
1

|NX(p)|
∑

qi∈NX(p)

(
∥V ⊤

s ep,q∥22)
)
∝ 1

|NX(p)|
∑

qi∈NX(p)

(
δM (p, qi)

)3
(39)
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where qi ∈ NX(p) denotes the i-th neighbor of node p in graph GX , and NX(p) ∈ V denotes the
node set including all the neighbors of p. The DMD score of a node (data sample) p can be regarded
as a surrogate for the function gradient ∥∇xM(p)∥ where x is near p under the manifold setting. A
node with a larger stability score implies it is likely more vulnerable to adversarial attacks.

A.12 VARIOUS SAMPLING SCHEMES FOR SAGMAN-GUIDED PERTURBATIONS

Previous works (Cheng et al., 2021; Hua et al., 2021; Chang et al., 2017) highlighted that only
part of the dataset plays a crucial role in model stability, so we want to focus on the difference
between the most "stable" and "unstable" parts. However, it is certainly feasible to evaluate the entire
graph. Table 11 shows the result regarding the Pubmed dataset in GPRGNN under Gaussian noise
perturbation. Samples were segmented based on SAGMAN ranking, with the bottom 20% being the
most "stable", the middle 60% as intermediate, and the top 20% representing the most "unstable". As
anticipated, the "stable" category (representing the bottom 20%) should exhibit the lowest average
KL divergences. This is followed by the intermediate category (covering the mid 60%), and finally,
the "unstable" category (comprising the top 20%) should display the highest divergences.

Table 11: KLD across varying Gaussian noise perturbations, expressed as FM +Xη, where FM
denotes the feature matrix, η represents Gaussian noise, and X denotes the perturbation level. The
dataset is divided into three segments based on the stability ranking of nodes as determined by
SAGMAN.

Perturbation Level KL divergence
(bottom 20%)

KL divergence
(mid 60%)

KL divergence
(top 20%)

0.4 0.01 0.03 0.03
0.8 0.09 0.16 0.19
1.2 0.43 0.56 0.59

A.13 SAGMAN’S RUNTIME ACROSS DATASETS

Figure 11 demonstrates the high efficiency of SAGMAN in processing large graphs, attributing its
performance to the near-linear time complexity of its components.

A.14 HYPERPARAMETER STUDY OF SAGMAN

In this section, we present a hyperparameter study of the SAGMAN framework to evaluate the impact
of key parameters on its performance. Specifically, we analyze how varying the number of nearest
neighbors k used to construct the initial graph and the sparsification parameter sparse_numer affect
the stability assessment and robustness of GNNs.

A.14.1 IMPACT OF k AND sparse_numer

The hyperparameter k determines the number of nearest neighbors in the k-nearest neighbor (KNN)
algorithm used to construct the initial graph for the manifold. The parameter sparse_numer controls
the level of sparsification during graph pruning, influencing the density and connectivity of the
resulting graph.

To assess the effects of these hyperparameters, we conducted experiments on the Cora dataset using a
GCN model. We varied k and sparse_numer while measuring the following metrics:

• PGD Attack Accuracy (Stable Nodes): The classification accuracy on stable nodes after
applying a PGD attack.

• PGD Attack Accuracy (Unstable Nodes): The classification accuracy on unstable nodes
after applying a PGD attack.

• Cosine Similarity (Stable Nodes): The average cosine similarity between the original and
perturbed embeddings of stable nodes.
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• Cosine Similarity (Unstable Nodes): The average cosine similarity between the original
and perturbed embeddings of unstable nodes.

A.14.2 RESULTS AND DISCUSSION

Table 12 summarizes the results of our experiments. We varied k from 10 to 80 and sparse_numer
from 2 to 5.

Table 12: Impact of k and sparse_numer on SAGMAN’s performance. ’NC’ denotes configurations
where ARPACK did not converge.

k sparse_numer PGD Acc. (Stable) PGD Acc. (Unstable) Cosine Sim. Diff.

10 2 1.00 0.74 0.99998 / 0.98302
10 3 1.00 0.96 0.99985 / 0.99983
10 4 0.89 1.00 0.99985 / 0.99987
30 2 1.00 0.74 0.99996 / 0.98636
30 3 1.00 0.81 0.99998 / 0.98579
30 4 1.00 0.74 0.99993 / 0.98528
50 3 1.00 0.81 0.99964 / 0.99986
50 4 0.93 0.81 0.99313 / 0.99965
50 5 1.00 0.89 0.99980 / 0.99979
80 2 0.96 0.89 0.99998 / 0.99722
80 3 0.96 0.81 0.99999 / 0.99809
80 4 1.00 0.74 0.99968 / 0.99678

Effect of k: - When k is small (e.g., k = 10), the initial graph captures local relationships but may
miss some global structural information. - As k increases to 30 and 50, the performance on stable
nodes remains high, and the cosine similarity between original and perturbed embeddings for stable
nodes remains close to 1.0, indicating robustness. - A larger k (e.g., k = 80) does not necessarily
lead to better performance and may cause computational challenges, as indicated by non-converging
configurations (not shown in the table).

Effect of sparse_numer: - Lower values of sparse_numer (e.g., 2 or 3) result in sparser graphs after
pruning, which helps in maintaining high classification accuracy and robustness on stable nodes. -
Increasing sparse_numer to 4 or 5 leads to denser graphs, which may capture more complex structures
but can also introduce noise, potentially affecting stability. - Configurations with sparse_numer = 5
sometimes led to convergence issues during eigenvalue computations, suggesting that overly dense
graphs may pose computational difficulties.

Cosine Similarity Analysis: - The cosine similarity between the original and perturbed embeddings
is consistently higher for stable nodes compared to unstable nodes. - For example, with k = 10 and
sparse_numer = 2, the cosine similarity is 0.99998 for stable nodes and 0.98302 for unstable nodes,
highlighting SAGMAN’s ability to distinguish between stable and unstable nodes.

A.15 ROBUSTNESS UNDER POISONING ATTACKS AND COMPARISON WITH LIPSCHITZ-BASED
METHODS

In this section, we compare the robustness of SAGMAN with a Lipschitz-based stability method,
specifically the LipReLU method (Jia et al., 2023), under poisoning attacks. While previous work (Jia
et al., 2023) focuses exclusively on poisoning attacks, SAGMAN is primarily designed for evasion
attacks. However, due to its versatility, SAGMAN can be deployed in poisoning scenarios and
combined with other robustness techniques.

To demonstrate this, we conducted experiments using the DICE poisoning attack on the Cora dataset
with a GCN model. We evaluated the robustness improvement provided by SAGMAN, LipReLU,
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and a combination of both methods. The results highlight the accuracy improvement on the 10%
most unstable samples, as identified by SAGMAN.

Table 13: Accuracy comparison under DICE poisoning attack for different numbers of edge perturba-
tions. Best results are highlighted in bold.

Method 1 Edge 10 Edges 50 Edges 100 Edges

LipReLU 0.7862 0.7903 0.7782 0.7822
SAGMAN 0.8588 0.8427 0.8508 0.8548
LipReLU + SAGMAN 0.8468 0.8467 0.8467 0.8427

The results in Table 13 demonstrate that SAGMAN outperforms the Lipschitz-based method LipReLU
in most cases, particularly as the number of edge perturbations increases. Combining SAGMAN
with LipReLU also yields competitive results, indicating that SAGMAN can enhance the robustness
provided by Lipschitz-based methods. This suggests that SAGMAN is a versatile plug-in that can be
effectively integrated with existing robustness techniques to improve GNN resilience under poisoning
attacks.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 8: Figures represent cosine similarities and KL divergence. "Random EdgesPT" corresponds
to the DICE edge evasion attack. "Random FeaturePT" refers to Gaussian noise evasion perturbation
X + ξη, where X is feature matrix, η is Gaussian noise, ξ is noise level controls
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Figure 9: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘SAGMAN Stable/Unstable’ denotes the samples that are classified as stable or unstable by
SAGMAN, respectively.
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Figure 10: The horizontal axes, denoted by X , represent the magnitude of perturbation applied.
‘Random EdgesPT’ refers to the DICE adversarial attack scenario, in which pairs of nodes with
different labels are connected and pairs with the same label are disconnected, with the number of
pairs being equal to X . ‘Random FeaturePT’ indicates the application of Gaussian noise perturbation,
expressed as FM + Xη, where FM denotes the feature matrix and η represents Gaussian noise.
The upper and lower subfigures illustrate the cosine similarity and the Kullback–Leibler Divergence
(KLD). ‘SAGMAN Stable/Unstable’ denotes the samples that are classified as stable or unstable by
SAGMAN, respectively.

Figure 11: SAGMAN’s runtime across datasets
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