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ABSTRACT

Sparse tensor principal component analysis (STPCA) seeks interpretable low-
dimensional representations of high-order data by enforcing sparsity across tensor
modes. However, the resulting optimization is highly nonconvex and computa-
tionally demanding, particularly in high-dimensional and unbalanced settings. We
introduce GP-STPCA, a unified framework that reformulates STPCA into struc-
tured sparse PCA subproblems solvable via the generalized power method. Our
approach accommodates both ℓ0- and ℓ1-penalties, in single-unit and block formu-
lations, enabling efficient extraction of multiple sparse components. We provide
theoretical guarantees by proving equivalence with the original sparse objective
and analyzing convergence. Algorithmically, GP-STPCA further leverages effi-
cient pattern-finding and post-processing to shrink the search space in column-
dominant settings. Extensive experiments on synthetic recovery tasks, ImageNet
reconstruction, and brain connectome analysis demonstrate that GP-STPCA con-
sistently outperforms the SOTA sparseGeoHOPCA in terms of accuracy, sparsity
control, interpretability, and computational efficiency.

1 INTRODUCTION

In this paper, we study the sparse tensor principal component analysis (STPCA) problem. Tensor
PCA (TPCA) extends classical PCA to tensor-structured data for dimensionality reduction and pat-
tern discovery (Kolda & Bader, 2009; Lu et al., 2008). In high-dimensional settings, sparsity plays a
crucial role: it enhances interpretability, enables feature selection, improves statistical stability, and
preserves tensor structure for applications such as multimodal learning (Sun et al., 2022), biomedical
analysis (Allen, 2012), and recommender systems (Frolov & Oseledets, 2017).

However, introducing sparsity makes TPCA a non-convex and generally NP-hard problem (Hillar
& Lim, 2013). Approximate algorithms have therefore been proposed: early work on multilinear
PCA (Lu et al., 2006) laid the foundation for tensor analysis, while sparse HOSVD and sparse
CP (Allen, 2012) incorporated sparsity-inducing penalties to recover interpretable low-rank struc-
tures. More recently, Xu et al. (2025) proposed sparseGeoHOPCA, a geometry-inspired framework
that reformulates sparse higher-order PCA into binary optimization problems, improving both inter-
pretability and efficiency. Further developments such as multilinear sparse PCA (Lai et al., 2014)
have demonstrated effectiveness in image and video analysis (Liu et al., 2018), brain signal process-
ing (Zhang et al., 2019), and biomedical data interpretation (Zhou et al., 2016). In contrast, within
the conventional STPCA formulation, the resulting subproblems often involve far more columns
than rows, a special case of sparse PCA that requires tailored algorithms for efficiency and accuracy.

We propose GP-STPCA, a unified and efficient method for solving the STPCA problem. For the
matrix subproblems, we formulate four sparse PCA models under ℓ0- and ℓ1-constraints, in both
single-unit and block forms, enabling the extraction of either a single dominant component or mul-
tiple components simultaneously.

As shown in Figure 1, the framework proceeds in three stages: (i) Tensor preparation: unfolding the
input tensor along each mode to form sparse matrix PCA subproblems; (ii) Sparse PCA subprob-
lem: applying the generalized power method to identify sparse patterns with convergence guarantees
quickly; (iii) Solution construction: compressing the data via the identified patterns and assembling
factor matrices with the core tensor to obtain a sparse multilinear decomposition. The method re-
duces the search space in column-dominant subproblems and ensures theoretical convergence.
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Figure 1: Illustration of the proposed GP-STPCA workflow on a third-order tensor. (i) The tensor
X is unfolded mode by mode into matrices X1, X2, X3. (ii) Sparse PCA subproblems are solved on
each unfolding to identify sparsity patterns P1, P2, P3. (iii) Based on these patterns, factor matrices
U1, U2, U3 and the core tensor G are constructed to yield a sparse multilinear decomposition.

Main Contributions. The key contributions of this work are summarized as follows:

• Unified modeling: We propose GP-STPCA, a generalized power method that reformulates
sparse tensor PCA into a sequence of sparse matrix PCA subproblems, handling both ℓ0- and
ℓ1-constraints penalties and single-unit or block formulations.

• Dimensionality reduction and convex reformulation: We reformulate each mode-wise opti-
mization as a convex maximization problem over the Stiefel manifold, allowing sparse right fac-
tors to be identified first and orthogonal left factors obtained via SVD, thereby reducing the search
dimension substantially.

• Algorithmic framework: We develop the overall STPCA algorithm together with efficient
pattern-finding and post-processing schemes based on generalized power iterations, which iden-
tify sparse supports and maximize explained variance on the selected patterns.

• Convergence properties: We analyze the method as a generalized gradient scheme for convex
maximization, and establish step-size convergence guarantees under strong convexity of either the
function or the feasible set.

• Empirical validation: Through extensive experiments on synthetic support recovery, large-scale
ImageNet image reconstruction, and brain connectome analysis, GP-STPCA consistently outper-
forms baselines in terms of accuracy, runtime efficiency, and interpretability.

2 PRELIMINARIES

We summarize the notations and review key results on sparse PCA and Tucker-based tensor PCA,
which form the basis of our framework.

2.1 NOTATIONS AND DEFINITIONS

Unless stated otherwise, we adopt the following notation: scalars are denoted by lowercase letters
(e.g., a, b), vectors by bold lowercase letters (e.g., v), matrices by uppercase letters (e.g., M ), and
tensors by calligraphic letters (e.g., T ).

Let X ∈ RJ1×J2×···×JN be an N -th order tensor. Its mode-n matricization, denoted by
X(n) ∈ RJn×

∏
i̸=n Ji , rearranges the mode-n fibers of X into columns via the unfolding op-

erator unfoldn(X ). The inverse operation foldn(·) reconstructs the tensor from its matricized

2
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form, satisfying X = foldn(X(n)). The mode-k product (also known as the Tucker product)
of X with a matrix Uk ∈ RJk×Rk is denoted by Y = X ×k Uk, and produces a tensor of size
RJ1×···×Jk−1×Rk×Jk+1×···×JN . This transformation projects the mode-k fibers of X onto a lower-
dimensional subspace, and its matrix representation is given by: Y(k) = UkX(k), where Y(k) is the
mode-k matricization of the resulting tensor Y .

The Stiefel manifold is the set of n×m matrices with orthonormal columns, Sn
m = {X ∈ Rn×m |

X⊤X = Im}. For t ∈ R, we denote sign(t) as its sign and t+ = max{0, t}. The operator Polar(X)
denotes the orthogonal factor in the polar decomposition of X .

2.2 SPARSE PRINCIPAL COMPONENT ANALYSIS VIA THE GENERALIZED POWER METHOD

A widely used formulation of sparse PCA introduces a sparsity-inducing penalty to promote sparsity
in the loading vector. Given a data matrix X ∈ Rn×p, the single-unit problem is written as

ŵ = arg max
∥w∥2=1

∥Xw∥22 − λ∥w∥ζ , (1)

where λ > 0 controls the sparsity level and ∥ · ∥ζ denotes a general sparsity measure. Here
ζ = 1 gives the lasso penalty, while ζ = 0 corresponds to the cardinality penalty. To ad-
dress Problem (1), Journée et al. (2010) proposed the generalized power method, a gradient-based
scheme specifically designed for sparse PCA. This method reformulates the optimization as ẑ =
argmax∥z∥2=1 ∥S(X⊤z, λ)∥2, where the soft-thresholding operator S(X⊤z, λ) is applied entry-
wise. After obtaining ẑ, the sparse loading vector is recovered as ŵ = S(X⊤ẑ, λ)/∥S(X⊤ẑ, λ)∥,
so that the nonzero support of ŵ is directly determined by the thresholded pattern. The component
weights are then obtained by applying PCA to the reduced matrix after discarding zeroed variables
in ŵ. Thus, the original p-dimensional problem is reformulated as an n-dimensional one, which is
advantageous when p≫ n.

2.3 TUCKER-BASED TENSOR PRINCIPAL COMPONENT ANALYSIS

Tucker-based tensor PCA generalizes classical PCA to higher-order data by exploiting the Tucker
decomposition. For an N th-order tensor X ∈ RJ1×···×JN , the model is

X ≈ G ×1 U1 ×2 U2 · · · ×N UN , (2)

where G ∈ RR1×···×RN is the core tensor and Un ∈ RJn×Rn are orthonormal factor matrices. In
element-wise form: X (i1, . . . , iN ) ≈

∑R1

α1=1 · · ·
∑RN

αN=1 G(α1, . . . , αN )
∏N

n=1 Un(in, αn). This
multilinear form reduces storage fromO(J1 · · · JN ) toO(R1 · · ·RN +

∑N
n=1 JnRn), and methods

such as higher-order SVD or alternating least squares are commonly used to compute the resulting
interpretable components.

3 TUCKER-BASED SPARSE TENSOR PRINCIPAL COMPONENT ANALYSIS

In this section, we develop a Tucker-based framework for sparse tensor principal component analysis
(STPCA). By unfolding the tensor along each mode, the problem is transformed into sparse matrix
PCA subproblems with different sparsity-inducing formulations. Building upon this reformulation,
we introduce the proposed GP-STPCA algorithm and establish its theoretical foundations.

3.1 PROBLEM FORMULATION

To enhance interpretability and robustness in multilinear data analysis, Tucker-based tensor PCA
can be extended with sparsity constraints, leading to the Tucker-based sparse tensor PCA (STPCA).
Let X ∈ RJ1×···×JN be the data tensor and Un ∈ RJn×Rn the projection matrix for each mode.
The objective is to minimize the projection error while enforcing sparsity and orthogonality, so the
STPCA problem is thus formalized as:

minimize
U1,...,UN

∥X − X ×1 U1U
⊤
1 · · · ×N UNU

⊤
N ∥2F

subject to ∥X ×1 U1 · · · ×N UN∥ζ ≤ k, Un ∈ SJn

Rn
, for n = 1, . . . , N,

(3)
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where k > 0 control the sparsity of core tensor and ∥ · ∥ζ denotes a sparsity measure, with ζ = 1
(lasso) or ζ = 0 (cardinality). This formulation yields low-dimensional multilinear projections with
sparse and interpretable factors across modes. The STPCA problem is inherently challenging due to
its non-convex nature and lack of a closed-form solution.

3.2 DECOMPOSITION INTO MODE-WISE SUBPROBLEMS

Inspired by the alternating optimization strategy in Tucker decomposition, we decompose the prob-
lem into N independent subproblems.

Theorem 3.1 Let (U1, . . . , Un−1, Un+1, . . . , UN ) be fixed. Then the optimization of Un in (3) re-
duces to the sparse matrix approximation problem

min
Un

∥Xn − UnU
⊤
n Xn∥2F s.t. ∥X ×j ̸=n Uj∥ζ ≤ kn, Un ∈ SJn

Rn
. (4)

where Xn = unfoldn(X ×j ̸=n UjU
⊤
j ), and kn denotes the sparsity level adapted to mode n.

Proof. See Appendix A. □

Remark 3.1 Note that the conclusion in (4) is derived under the setting where the factor matrix
Un is updated iteratively. If Un is instead generated in a single step, or when no initialization is
provided, then Xn should be directly taken as X(n).

3.3 OVERALL STPCA FRAMEWORK

Based on the preceding analysis, we now present the basic algorithmic framework for solving
STPCA, as summarized in Algorithm 1 (See Appendix B).

3.4 REFORMULATION AS SPARSE PCA SUBPROBLEM

To solve this subproblem, we begin with the mode-n subproblem formulated as (4). Since UnU
⊤
n is

an orthogonal projector, the Pythagorean identity gives ∥Xn∥2F = ∥Xn−UnU
⊤
n Xn∥2F+∥U⊤

n Xn∥2F ,
hence (4) is equivalent to

max
Un

∥U⊤
n Xn∥2F s.t. ∥X ×j ̸=n Uj∥ζ ≤ kn, Un ∈ SJn

Rn
. (5)

Since Xn has far more columns than rows, it is natural to seek a right sparse factor Vn; computing
the SVD of the compressed matrix XnVn then yields Un. Thus, the problem reduces to finding a
sparse right factorization of Xn. For clarity, we focus on the case ζ = 1, while the case ζ = 0
is deferred to Appendix C. Following the generalized power method introduced in Section 2.2, we
adopt two strategies for multiple sparse components: (i) the single-unit approach with sequential
deflation, and (ii) the block sparse approach computing multiple components jointly.

3.5 SPARSE PCA FORMULATIONS VIA ℓ1PENALTY

We first consider the ℓ1-penalized setting, which promotes sparsity through soft thresholding.

3.5.1 SINGLE-UNIT SPARSE PCA VIA ℓ1PENALTY

We first consider the single-unit case, where one sparse vector is extracted at a time. The ℓ1-
penalized formulation reads

ϕnℓ1(γ
n)

def
= max

v⊤
n vn≤1

∥Xnvn∥2 − γn∥vn∥1. (6)

Noticing that ∥Xnvn∥2 = maxz∈SJn
1
z⊤Xnvn, we can reformulate the problem as

ϕnℓ1(γ
n) = max

z∈SJn
1

max
vn

z⊤Xnvn − γn∥vn∥1. (7)

4
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For fixed z, the inner maximization over vn admits a closed-form solution:

vn(i)
∗(γn) =

sign(Xn(:, i)
⊤z) [ |Xn(:, i)

⊤z| − γn ]+√∑∏
p̸=n Jp

k=1 [ |Xn(:, k)⊤z| − γn ]2+
, i = 1, . . . ,

∏
k ̸=n

Jk. (8)

Substituting this expression back yields a reformulated objective:

ϕnℓ1
2(γn) = max

z∈SJn
1

∏
k ̸=n Jk∑
i=1

[ |Xn(:, i)
⊤z| − γn ]2+ , (9)

which is a smooth objective defined on the Stiefel manifold SJn
1 and is more efficient to optimize

than the original formulation.

Deflation Scheme To obtain multiple sparse components from the single-unit method, we adopt
the classical deflation strategy (d’Aspremont et al., 2007). Given a unit-norm sparse vector v ∈ Rn

of X ∈ Rp×n, let z = Xv be the associated score that solves minz∈Rp ∥X − zv⊤∥F . Subsequent
directions are extracted from the residual X − zv⊤, thereby removing explained variance and en-
forcing complementarity. Refined deflation variants (Mackey, 2008) further enhance stability and
orthogonality.

3.5.2 BLOCK SPARSE PCA VIA ℓ1PENALTY

The block formulation extends the single-unit case to extract multiple components simultaneously.
Using Lagrange multipliers, Problem (4) can be reformulated as the ℓ1-penalized block problem

ψn
ℓ1,Rn

(γn)
def
= max

Z∈SJn
Rn

, diag(V ⊤
n Vn)=IRn

Tr(Z⊤XnVnN
n)−

Rn∑
j=1

γnj

∏
k ̸=n Jk∑
i=1

|Vn(i, j)|, (10)

where γn = [γn1 , . . . , γ
n
Rn

]⊤ ≥ 0 and Nn = diag(µn
1 , . . . , µ

n
Rn

) with positive entries, represent-
ing relative weights associated with different principal components. Since the columns of Vn are
independent, Problem (10) decouples as

ψn
ℓ1,Rn

(γn) = max
Z∈SJn

Rn

Rn∑
j=1

max
∥Vn(:,j)∥2=1

µn
j Z(:, j)

⊤XnVn(:, j)− γnj ∥Vn(:, j)∥1. (11)

The optimal Vn columns admit the closed form

Vn(i, j)
∗ =

sign(Xn(:, i)
⊤Z(:, j)) [µn

j |Xn(:, i)
⊤Z(:, j)| − γnj ]+√∑∏

p̸=n Jp

k=1 [µn
j |Xn(:, k)⊤Z(:, j)| − γnj ]2+

. (12)

Substituting back yields the equivalent formulation

ψn
ℓ1,Rn

2(γn) = max
Z∈SJn

Rn

Rn∑
j=1

∏
k ̸=n Jk∑
i=1

[µn
j |Xn(:, i)

⊤Z(:, j)| − γnj ]2+ , (13)

which maximizes a convex function f : RJn×Rn → R on on the Stiefel manifold SJn

Rn
. Both the

single-unit (9) and block (13) formulations (as well as their ℓ0 counterparts) fall within a unified
optimization framework. They can be efficiently solved using the generalized power method, which
applies a gradient-based scheme to maximize convex functions over compact feasible sets. For
completeness, we next describe this scheme and its stepsize convergence properties.

3.6 STEPSIZE CONVERGENCE OF THE GRADIENT SCHEME

We analyze the convergence of the generalized gradient scheme for sparse PCA subproblems. Let
f : E → R be a convex function on a finite-dimensional space E, and consider

f∗ = max
x∈Q

f(x), (14)

5
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with Q ⊆ E compact. Here f ′(x) denotes any subgradient and ∂f(x) its subdifferential. We solve
this problem using Algorithm 2 (See Appendix D), which can be viewed as a generalized power
method cast as a gradient scheme for convex maximization. Convergence requires mild structural
conditions: either strong convexity of f or strong convexity of Conv(Q).

Assumption 1 The subgradient norms of f are uniformly bounded away from zero on Q, which
means δf = minx∈Q, f ′(x)∈∂f(x) ∥f ′(x)∥∗ > 0, where ∥ · ∥∗ is the dual norm.

Assumption 2 f is strongly convex: there exists σf > 0 such that for all x, y ∈ E, f(y) ≥
f(x) + ⟨f ′(x), y − x⟩+ σf

2 ∥y − x∥
2.

Assumption 3 The convex hull Conv(Q) is strongly convex, i.e., for any x, y ∈ Conv(Q) and
α ∈ [0, 1], αx+ (1− α)y + σQ

2 α∥x− y∥
2S ⊂ Conv(Q), where S is the unit ball in E.

Theorem 3.2 (Stepsize Convergence) Let f be convex, and let either Assumption 2 or Assumption 1
and 3 be satisfied. If {xk}k≥0 is the sequence of points generated by the Algorithm 2, then

∞∑
k=0

∥xk+1 − xk∥2 ≤
2(f∗ − f(x0))
σQδf + σf

. (15)

Proof. See Appendix E. □

Remark 3.2 Theorem 3.2 shows that for the gradient method scheme in Algorithm 2, in order to
produce an iterate satisfying min0≤i≤k ∥xi+1−xi∥ ≤ ϵ , we require at most k = O(ϵ−2) iterations.
This iteration bound aligns with the global complexity of standard first-order methods.

3.7 ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ1PENALTY

The sparse PCA formulations in Section 3.5 produce locally optimal sparsity patterns, either in the
single-unit or block setting. While penalty terms enforce sparsity, they may also distort the values of
active entries. Thus, an effective algorithm consists of two stages: (i) identifying a sparsity pattern,
and (ii) estimating the active entries to maximize explained variance. In the following, we focus on
the ℓ1-penalized formulations, while the ℓ0 counterparts are deferred to Appendix G. We present the
general block formulation here, which reduces to the single-unit case when Rn = 1.

3.7.1 PATTERN-FINDING

Applying the gradient scheme (Algorithm 2) to the optimization Problems (9), and (13), yields Algo-
rithms 3 and 4 (both in Appendix F), which determine a binary sparsity mask P ∈ {0, 1}

∏
i̸=n Ji×Rn .

Here P (i, j) = 1 indicates that coefficient Vn(i, j) is active, and P (i, j) = 0 otherwise. The per-
iteration cost of the single-unit methods (Algorithms 3) is O(

∏N
n=1 Jn), while the block methods

(Algorithms 4) require O(Rn

∏N
n=1 Jn) operations. Thresholds γn are chosen below natural upper

bounds: γn ≤ maxi ∥Xn(:, i)∥2 for ℓ1 single-unit, and γnj ≤ maxi µ
n
j ∥Xn(:, i)∥2 for ℓ1 block.

3.7.2 POST-PROCESSING

With pattern P fixed, the active entries of Vn are refined to maximize variance. We solve

(Z∗, V ∗
n )

def
= max

Z∈SJn
Rn

;diag(V ⊤
n Vn)=IRn ;Vn|P ′=0

Tr(Z⊤XnVnN
n). (16)

where P ′ is the complement of P . In the single-unit case, the solution is the leading SVD of Xn|P :

Z∗ = u, V ∗
n |P = v, V ∗

n |P ′ = 0, (17)

where σuv⊤ is a rank-one decomposition of Xn|P . This coincides with the variational renormaliza-
tion in Moghaddam et al. (2005). In the block case, (16) is solved by alternating optimization:

6
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Theorem 3.3 Consider the optimization problem

max
Z,Vn

Tr(Z⊤XnVnN
n), s.t. Z ∈ SJn

Rn
; diag(V ⊤

n Vn) = IRn
;Vn|P ′ = 0. (18)

For a fixed Vn, the optimal Z∗ is given by the U factor of the polar decomposition of
XnVnN

n. Conversely, for a fixed Z ∈ SJn

Rn
, the optimal V ∗

n is characterized by Vn|∗P =

(X⊤
n ZN

nD)|P , Vn|∗P ′ = 0 where D is a positive diagonal matrix that normalizes each column
of V ∗

n to unit norm, that is, D = diag(NnZ⊤XnX
⊤
n ZN

n)−
1
2 .

Proof. See Appendix H. □

The alternating optimization scheme is summarized in Algorithm 7 (See Appendix I), initialized by
an accumulation point of the pattern-finding step (Algorithms 4 and 6). This postprocessing heuristic
is strictly required only for the ℓ1 block case. For ℓ0 formulations, since the penalty depends only
on the sparsity pattern P and not on the values of Vn|P , the solutions of Algorithms 5 or 6 already
serve as local maximizers of (16), providing a direct alternative to Algorithm 7. In the single-unit ℓ1
case (Algorithm 3), the solution (17) is available.

Remark 3.3 We have introduced all necessary technical tools. Here we summarize the four variants
of GP-STPCA (single/block with ℓ0- or ℓ1-penalty) and describe the initialization of hyperparame-
ters. Detailed settings can be found in Appendix J.

4 EMPIRICAL RESULTS

This section reports synthetic and real-data experiments evaluating the proposed GP-STPCA frame-
work. We first evaluate sparse support recovery in controlled simulations, then test image recon-
struction on ImageNet, and finally analyze brain connectomes, where GP-STPCA consistently out-
performs baselines in accuracy, efficiency, and interpretability. All experiments were run on a work-
station with an Intel i7-10700 CPU (2.90GHz), NVIDIA RTX 4070 Super GPU, and 64GB RAM.
Hyperparameter initialization is given in Remark 3.3.

Figure 2: ROC curves for mode-u1 in Scenarios 1 and 2, where it is the only sparse mode. Results are
averaged over fifty replicates. Across both settings, GP-STPCA variants achieve consistently high
true positive rates and large AUC values (up to 0.98), demonstrating accurate and stable support
recovery. As further shown in the runtime comparison of Appendix K.3, GP-STPCA achieves 50–
100× speedup over existing baselines.

4.1 SYNTHETIC EXPERIMENTS ON SPARSE SUPPORT RECOVERY

We evaluate the support recovery performance of four variants of GP-STPCA (different penalties
and block choices) using synthetic low-rank third-order tensor models under varying sparsity and

7
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dimensionality. The observed tensor is generated as

X =

K∑
k=1

dk uk ◦ vk ◦wk + E , Ei,j,l
iid∼ N (0, 1), (19)

with K = 1 and d1 = 100. We compare against both the classical HOPCA, to illustrate the benefit
of incorporating sparsity, and the state-of-the-art sparseGeoHOPCA (Xu et al., 2025). Four scenar-
ios with different tensor sizes and sparsity patterns are considered (details in Appendix K.1). Results
show that the block variants of GP-STPCA achieve consistently better recovery, while differences
between ℓ0 and ℓ1 penalties are minor. Overall recovery accuracy is comparable to sparseGeo-
HOPCA, but our method is significantly faster. Figure 2 reports ROC curves averaged over 50 trials
in both balanced and unbalanced settings (with sparsity only on u1), demonstrating strong recovery
performance.

Appendix K.2 presents ROC curves for Scenarios 3 and 4, and Appendix K.3 reports comparisons
of true/false positive rates and computational efficiency among HOPCA, sparseGeoHOPCA, and
the proposed GP-STPCA variants.

4.2 IMAGE RECONSTRUCTION

Figure 3: Visual comparison of ImageNet reconstructions for three representative examples (from
top to bottom: Image1, Image2, and Image3). From left to right: original image, sparseGeo-
HOPCA, GP-STPCA(ℓ0), GP-STPCA(ℓ0, block), GP-STPCA(ℓ1), and GP-STPCA(ℓ1, block). The
GP-STPCA variants consistently enhance reconstruction quality: ℓ0-based methods effectively pre-
serve salient object shapes, block extensions further improve color uniformity, and ℓ1-based methods
achieve sharper edge recovery and finer texture details. Overall, GP-STPCA demonstrates superior
balance between structural preservation and visual clarity across diverse images.

We further examine the effectiveness of the proposed GP-STPCA framework by testing its four
variants (different penalties and block choices) on random ImageNet samples (Russakovsky et al.,
2015). After extracting a fixed number of sparse components, the original images are reconstructed
to evaluate visual fidelity and quantitative performance. Figure 3 presents representative results.

Table 1: PSNR (dB) comparison on Image1–3 in Figure 3.

Method Image1 Image2 Image3
sparseGeoHOPCA 21.491 20.965 27.720
GP-STPCA (ℓ0) 26.412 22.949 31.438
GP-STPCA (ℓ0, block) 27.692 22.243 30.765
GP-STPCA (ℓ1) 26.419 22.816 31.660
GP-STPCA (ℓ1, block) 26.263 23.054 31.727

Across all samples, GP-STPCA variants achieve sharper textures and fewer directional artifacts
compared to the baseline sparseGeoHOPCA, which tends to produce blurrier reconstructions. Ta-
ble 1 further confirms these observations: block-based variants consistently yield higher PSNR, with
GP-STPCA (ℓ1, block) delivering the best overall reconstruction quality.
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See Appendix L for preprocessing, settings, and additional results.

4.3 CONNECTOME-BASED ANALYSIS OF BRAIN NETWORK

Figure 4: Chord diagram illustrating connectivity differences between high- and low-reading groups.
Nodes are cortical regions (left hemisphere: indices 23–30; right hemisphere: indices 57–64),
with labels from the Desikan–Killiany atlas. Colored chords represent inter- and intra-hemispheric
connectivity differences, with line thickness denoting magnitude and color encoding direction
(red/yellow vs. blue). Highlighted regions (precentral, precuneus, superiorfrontal, supramarginal)
show consistent alterations in structural connectivity associated with reading performance.

As an application, we study the relationship between structural connectomes and the age-adjusted
English reading score using HCP data (Van Essen et al., 2013). Structural connectomes were derived
from 200 extreme subjects of the Human Connectome Project, yielding 68 × 68 × 200 adjacency
tensors based on the Desikan–Killiany atlas (Desikan et al., 2006) parcellation. GP-STPCA extracts
discriminative cross-hemispheric fronto-parietal connections, indicating that higher reading ability
is associated with stronger inter-hemispheric integration. Figure 4 visualizes the top-50 discrimi-
native edges, where warm colors (red–yellow) highlight stronger connections in the high-reading
group and cool colors (blue) indicate stronger connections in the low-reading group. Details on the
experiments are provided in Appendix M.

5 CONCLUSION

In this work, we proposed GP-STPCA, a unified framework for sparse tensor principal compo-
nent analysis. By reformulating the original nonconvex problem into structured sparse matrix PCA
subproblems and solving them via the generalized power method, GP-STPCA accommodates both
ℓ0- and ℓ1-penalties under single-unit and block formulations. Our framework offers theoretical
guarantees through equivalence with the original sparse objective and convergence analysis, while
algorithmically exploiting pattern-finding and post-processing to reduce the search space in column-
dominant settings.

Extensive experiments on synthetic recovery, large-scale ImageNet reconstruction, and brain con-
nectome analysis demonstrate clear advantages in accuracy, sparsity control, interpretability, and
computational efficiency over existing approaches such as sparseGeoHOPCA. These results high-
light the potential of GP-STPCA as a versatile and scalable tool for high-dimensional tensor data
analysis.
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A PROOF OF THEOREM 3.1

This appendix provides the detailed proof of Theorem 3.1.

Proof. Let {Ui}Ni=1, i ̸=n denote the collection of all mode-i projection matrices excluding mode
n, i.e., (U1, . . . , Un−1, Un+1, . . . , UN ). We denote the objective function in (3) as f(Un) when all
other Ui’s are fixed. Assume that each Ui is column-orthonormal.

By properties of mode-wise tensor projections and the orthogonality of UiU
⊤
i , we have:

f(Un) =
∥∥X − X ×1 U1U

⊤
1 · · · ×N UNU

⊤
N

∥∥2
F

=
∥∥X ×N UNU

⊤
N −X ×1 U1U

⊤
1 · · · ×N UNU

⊤
N

∥∥2
F

+
∥∥X − X ×N UNU

⊤
N

∥∥2
F

...

=
∥∥X ×j ̸=n UjU

⊤
j −X ×j ̸=n UjU

⊤
j ×n UnU

⊤
n

∥∥2
F

+
∥∥X − X ×j ̸=n UjU

⊤
j

∥∥2
F
,

(20)

where×j ̸=n denotes the sequence of mode-j projections over all j ∈ {1, . . . , N}\{n}. Noting that
the second term in the final expression is independent of Un, the optimization reduces to minimizing∥∥X ×j ̸=n U

⊤
j −X ×j ̸=n U

⊤
j ×n UnU

⊤
n

∥∥2
F

. Let Xn = unfoldn(X ×j ̸=n UjU
⊤
j ) and this is equiv-

alent to minimizing the matrix-form objective
∥∥Xn − UnU

⊤
n Xn

∥∥2
F

, which corresponds precisely to
Problem (3) in the main text, where kn denotes the sparsity level adapted to mode n. This completes
the proof. □

B ALGORITHM FOR STPCA FRAMEWORK

Algorithm 1: STPCA framework

Input: Tensor X ∈ RJ1×J2×···×JN ; target ranks (R1, . . . , RN ); sparsity levels {kn}Nn=1.
Output: Factor matrices {Un}Nn=1 and core tensor G.

1 for n = 1 to N do
2 Compute Xn = X(n) ∈ RJn×

∏
i̸=n Ji ;

3 Solve mode-n sparse matrix subproblem:

min
Un

∥Xn − UnU
⊤
n Xn∥2F s.t. ∥X ×j ̸=n Uj∥ζ ≤ kn, Un ∈ SJn

Rn
.

4 Set Un ∈ RJn×Rn as the final solution for mode n;

5 Compute the core tensor as:G = X ×1 U
⊤
1 ×2 U

⊤
2 · · · ×N U⊤

N .

C SPARSE PCA FORMULATIONS VIA ℓ0PENALTY

This appendix provides the sparse PCA formulations via ℓ0-penalty.

C.1 SINGLE-UNIT SPARSE PCA VIA ℓ0PENALTY

We consider the cardinality-penalized formulation, which directly enforces sparsity by penalizing
the number of nonzero loadings. The single-unit case is given by

ϕnℓ0(γ
n)

def
= max

v⊤
n vn≤1

∥Xnvn∥22 − γn∥vn∥0. (21)

Since ∥Xnvn∥22 = maxz∈SJn
1

(z⊤Xnvn)
2, the problem can be rewritten as

ϕnℓ0(γ
n) = max

z∈SJn
1

max
vn

(z⊤Xnvn)
2 − γn∥vn∥0. (22)

12
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For fixed z, the inner maximization has the explicit solution

vn(i)
∗(γn) =

[sign((Xn(:, i)
⊤z)2 − γn)]+Xn(:, i)

⊤z√∑∏
p̸=n Jp

k=1 [sign((Xn(:, i)⊤z)2 − γn)]+(Xn(:, i)⊤z)2
, i = 1, . . . ,

∏
k ̸=n

Jk.

(23)
Substituting back yields the simplified objective

ϕnℓ0(γ
n) = max

z∈SJn
1

∏
k ̸=n Jk∑
i=1

[ (Xn(:, i)
⊤z)2 − γn ]+ , (24)

which defines a smooth problem on the Stiefel manifold SJn
1 , more tractable than the original non-

convex form.

Deflation Scheme As in the ℓ1 case, multiple components can be obtained by defla-
tion (d’Aspremont et al., 2007). Given a sparse loading v, its score z = Xv that solves
minz∈Rp ∥X − zv⊤∥F is computed, and subsequent directions are extracted from the residual
X − zv⊤. This sequential removal of explained variance ensures complementary components. Re-
fined deflation methods (Mackey, 2008) improve stability and orthogonality.

C.2 BLOCK SPARSE PCA VIA ℓ0PENALTY

Extending to the block setting with multiple components, the ℓ0-penalized formulation reads

ψn
ℓ0,Rn

(γn)
def
= max

Z∈SJn
Rn

,diag(Vn
⊤Vn)=IRn

Tr
(
diag(Z⊤XnVnN

n)2
)
−

Rn∑
j=1

γnj ∥Vn(:, j)∥0. (25)

where γn = [γn1 , . . . , γ
n
Rn

]⊤≥ 0 controls sparsity and Nn = diag(µn
1 , . . . , µ

n
Rn

) is positive diago-
nal, representing relative weights associated with different principal components. Since the problem
decouples across columns of Vn, we obtain

ψn
l0,Rn

(γn) = max
Z∈SJn

Rn

Rn∑
j=1

max
∥Vn(:,j)∥2=1

(µn
j Z(:, j)

⊤XnVn(:, j))
2 − γnj ∥Vn(:, j)∥0 (26)

Thus, each column Vn(:, j) admits the closed-form solution

Vn(i, j)
∗ =

[sign((µn
jXn(:, i)

⊤Z(:, j))2 − γnj )]+ µn
jXn(:, i)

⊤Z(:, j)√∑∏
p̸=n Jp

k=1 [sign((µn
jXn(:, k)⊤Z(:, j))2 − γnj )]+(µn

jXn(:, k)⊤Z(:, j))2
. (27)

The final block reformulation is therefore

ψn
ℓ0,Rn

(γn) = max
Z∈SJn

Rn

Rn∑
j=1

∏
k ̸=n Jk∑
i=1

[(µn
jXn(:, i)

⊤Z(:, j))2 − γnj ]+ , (28)

which, like the ℓ1 case, maximizes a convex function on the Stiefel manifold SJn

Rn
and admits effi-

cient optimization within the generalized power method framework.

D ALGORITHM FOR GENERALIZED GRADIENT SCHEME

A reasonable stopping criterion for Algorithm 2 is to terminate either when the relative change of
the objective function becomes sufficiently small,

f(xk+1)− f(xk)
f(xk)

≤ ϵ, (29)

or when the maximum number of iterations kmax is reached.

13
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Algorithm 2: Generalized gradient scheme for convex maximization
Input: Initial iterate x0 ∈ Q.
Output: Iterates {xk} approximating the solution of (14).

1 while stopping criterion not met do
2 xk+1 ← argmaxy∈Q{f(xk) + ⟨f ′(xk), y − xk⟩};

E PROOF OF THEOREM 3.2

This appendix provides the detailed proof of Theorem 3.2.

Proof. Let ∆(x)
def
= maxy∈Q⟨f

′
(x), y − x⟩. We first establish the estimate

∆(xk) ≥ σQ

2 ∥f
′
(xk)∥∗ ∥xk+1 − xk∥2. (30)

Since f is convex, ∆(xk) ≥ 0. Thus we focus on the case σQ > 0 and f
′
(xk) ̸= 0. By optimality

of xk+1 we have
⟨f

′
(xk), y − xk+1⟩ ≥ 0 for all y ∈ Conv(Q). (31)

Choosing

y = yα
def
= xk + α(xk+1 − xk) + σQ

2 α(1− α)∥xk+1 − xk∥2
G−1f

′
(xk)

∥f ′(xk)∥∗
, α ∈ [0, 1], (32)

and using the definition of strong convexity of Conv(Q) (Assumption 3), we obtain

0 ≥ ⟨f
′
(xk), yα− xk+1⟩ = (1−α)⟨f

′
(xk), xk − xk+1⟩+ σQ

2 α(1−α)∥xk+1− xk∥2 ∥f
′
(xk)∥∗.

(33)
Since α is arbitrary in [0, 1], the estimate follows. Here G−1 denotes the inverse of the Riesz map
associated with the chosen norm, which maps subgradients from the dual space back into E; in the
Euclidean case, this reduces to identity, G = I , and thus G−1 = I .

Finally,

f(xk+1)− f(xk) ≥ ∆(xk) +
σf

2 ∥xk+1 − xk∥2 ≥ σQδf+σf

2 ∥xk+1 − xk∥2, (34)
and the additional assumptions ensure σQδf + σf > 0. Summing over k ≥ 0 completes the proof.

□

F ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ1PENALTY

Algorithm 3: ℓ1 single-unit pattern finding

Input: Xn ∈ RJn×
∏

i̸=n Ji ; parameter γn ≥ 0; initial z ∈ SJn
1 .

Output: Locally optimal sparsity pattern P .
1 while stopping criterion not met do
2 z ←

∑∏
k ̸=n Jk

i=1 [ |Xn(:, i)
⊤z| − γn ]+ sign(Xn(:, i)

⊤z)Xn(:, i);
3 z ← z/∥z∥2;

4 Construct P ∈ {0, 1}
∏

i̸=n Ji with P (i) = 1 if |Xn(:, i)
⊤z| > γn, else 0;

At each iteration, Algorithm 2 requires maximizing a convex function over the Stiefel manifold.
As introduced in Section 2.1, we denote by Polar(A) the U factor in the polar decomposition of a
matrix A ∈ Rp×m,

A = UP, (35)
where U ∈ Sp

m and P ∈ Rm×m is positive semi-definite. The polar decomposition has complexity
O(pm2) for p ≥ m. By part of the Theorem 3.3, the main step of Algorithm 2 can be expressed as

xk+1 = Polar
(
f ′(xk)

)
. (36)

This formulation directly yields Algorithm 3 and Algorithm 4.

For Algorithms 3 and 4, the stopping criterion is adopted from Appendix D.
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Algorithm 4: ℓ1 block pattern finding

Input: Xn ∈ RJn×
∏

i̸=n Ji ; parameters γnj ≥ 0, µn
j > 0; initial Z ∈ SJn

Rn
.

Output: Locally optimal sparsity pattern P .
1 while stopping criterion not met do
2 for j = 1 to Rn do
3 Z(:, j)←

∑∏
k ̸=n Jk

i=1 µn
j [µ

n
j |Xn(:, i)

⊤Z(:, j)| − γnj ]+ sign(Xn(:, i)
⊤Z(:, j))Xn(:, i);

4 Z ← Polar(Z);

5 Construct P ∈ {0, 1}
∏

i̸=n Ji×Rn with P (i, j) = 1 if µn
j |Xn(:, i)

⊤Z(:, j)| > γnj , else 0;

G ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ0PENALTY

The ℓ0-penalized counterparts of the algorithms in Section 3.7 are summarized below. These fol-
low the same two-stage structure of pattern-finding and post-processing, but enforce sparsity di-
rectly through cardinality penalties. For parameter selection, the thresholds are chosen below
the following natural upper bounds: γn ≤ maxi ∥Xn(:, i)∥22 for the single-unit case, and
γnj ≤ maxi(µ

n
j )

2∥Xn(:, i)∥22 for the block case.

The computational complexity remains the same order as in the ℓ1 case: the single-unit algorithms
(Algorithms 5) require O

(∏N
n=1 Jn

)
operations per iteration, while the block algorithms (Algo-

rithms 6) require O
(
Rn

∏N
n=1 Jn

)
operations.

Algorithm 5: ℓ0 single-unit pattern finding

Input: Xn ∈ RJn×
∏

i̸=n Ji ; parameter γn ≥ 0; initial z ∈ SJn
1 .

Output: Locally optimal sparsity pattern P .
1 while stopping criterion not met do
2 z ←

∑∏
k ̸=n Jk

i=1 [ sign(Xn(:, i)
⊤z)2 − γn ]+Xn(:, i)

⊤z Xn(:, i);
3 z ← z/∥z∥2;

4 Construct P ∈ {0, 1}
∏

i̸=n Ji with P (i) = 1 if (Xn(:, i)
⊤z)2 > γn, else 0;

Following the discussion for the ℓ1-penalized case, the gradient-scheme update under ℓ0 penalties is
also performed via the polar decomposition. In particular, the main iteration can be expressed as

xk+1 = Polar
(
f ′(xk)

)
, (37)

This formulation naturally extends the ℓ1 setting and directly leads to Algorithm 5 and Algorithm 6.

Algorithm 6: ℓ0 block pattern finding

Input: Xn ∈ RJn×
∏

i̸=n Ji ; parameters γnj ≥ 0, µn
j > 0; initial Z ∈ SJn

Rn
.

Output: Locally optimal sparsity pattern P .
1 while stopping criterion not met do
2 for j = 1 to Rn do
3 Z(:, j)←

∑∏
k ̸=n Jk

i=1 (µn
j )

2[ sign(µn
jXn(:, i)

⊤Z(:, j))2 − γnj ]+Xn(:, i)
⊤Z(:, j)Xn(:

, i);
4 Z ← Polar(Z);

5 Construct P ∈ {0, 1}
∏

i̸=n Ji×Rn with P (i, j) = 1 if (µn
jXn(:, i)

⊤Z(:, j))2 > γnj , else 0;

For Algorithms 5 and 6, the stopping criterion is adopted from Appendix D.
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H PROOF OF THEOREM 3.3

This appendix provides the detailed proof of Theorem 3.3.

Proof. Step 1. Fixed Vn. For diag(Vn⊤Vn) = IRn
, Problem (18) reduces to

max
Z∈SJn

Rn

Tr(Z⊤XnVnN
n) = max

Z∈SJn
Rn

⟨Z,XnVnN
n⟩. (38)

LetXnVnN
n = UΣW⊤ be the singular value decomposition (SVD), where U is Jn×Jn orthonor-

mal, W is Rn ×Rn orthonormal, and Σ is diagonal with entries {σi}Rn
i=1. Then

max
Z∈SJn

Rn

⟨Z,XnVnN
n⟩ = max

Z∈SJn
Rn

⟨U⊤ZW,Σ⟩ ≤
Rn∑
i=1

σi.

From the SVD, both factors of the polar decomposition are explicit. Setting U ′ as the first Rn

columns of U and Σ′ as the Rn ×Rn principal block of Σ, we have

XnVnN
n = U ′Σ′W⊤ = (U ′W⊤)(WΣ′W⊤). (39)

Thus the polar decomposition gives V = U ′W⊤ and P =WΣ′W⊤, with

⟨V,XnVnN
n⟩ = Tr(P ) =

Rn∑
i=1

σi. (40)

Since Nn⊤Vn
⊤X⊤

n XnVnN
n = P 2, we obtain

Z∗ = XnVnN
n (Nn⊤Vn

⊤X⊤
n XnVnN

n)−1/2, (41)

which is precisely the left orthonormal factor of the polar decomposition of XnVnN
n.

Step 2. Fixed Z. For Z ∈ SJn

Rn
, Problem (18) becomes

max
diag(V ⊤

n Vn)=IRn , Vn|P ′=0
Tr(Z⊤XnVnN

n). (42)

The Lagrangian of the optimization Problem (42) is

L(Vn,Λ1,Λ2) = Tr(Z⊤XnVnN
n)− Tr(Λ1(V

⊤
n Vn − IRn

))− Tr(Λ⊤
2 Vn), (43)

where Λ1 is diagonal and invertible, and Λ2|P = 0. The first-order conditions yield

X⊤
n ZN

n − 2VnΛ1 − Λ2 = 0, diag(V ⊤
n Vn) = IRn

, Vn|P ′ = 0. (44)

Hence any stationary point Vn satisfies

Vn|P = (X⊤
n ZN

nD)|P , Vn|P ′ = 0, (45)

where D is a positive diagonal matrix normalizing the columns of Vn, explicitly

D = diag(NnZ⊤XnX
⊤
n ZN

n)−1/2. (46)

□

I ALGORITHM FOR POST-PROCESSING

For Algorithms 7, the stopping criterion is adopted from Appendix D.
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Algorithm 7: Alternating optimization scheme for post-processing

Input: Data matrix Xn ∈ RJn×
∏

i̸=n Ji ; sparsity pattern P ; diagonal weight matrix
Nn = diag(µ1, . . . , µRn

); initial iterate Z ∈ SJn

Rn
.

Output: Local maximizer (Z, Vn) of (16).
1 while stopping criterion not met do
2 Vn ← X⊤

n ZN
n;

3 Vn ← Vn diag(V ⊤
n Vn)

−1/2;
4 Vn|P ′ ← 0;
5 Z ← Polar(XnVnN

n);

Table 2: Construction of Vn|P .

Computation of P Computation of Vn|P
GP-STPCA(ℓ1) Algorithm 3 Solution (17)
GP-STPCA(ℓ0) Algorithm 5 Solution (23)
GP-STPCA(ℓ1, block) Algorithm 4 Algorithm 7
GP-STPCA(ℓ0, block) Algorithm 6 Solution (27)

Table 3: Summary of the four GP-STPCA variants and their per-iteration computational complexity.

Algorithm Complexity (per iteration)
GP-STPCA(ℓ1) Algorithm 8 O

(∏N
n=1 Jn

)
GP-STPCA(ℓ1, block) Algorithm 9 O

(
Rn

∏N
n=1 Jn

)
GP-STPCA(ℓ0) Algorithm 10 O

(∏N
n=1 Jn

)
GP-STPCA(ℓ0, block) Algorithm 11 O

(
Rn

∏N
n=1 Jn

)

Algorithm 8: GP-STPCA(ℓ1)

Input: Tensor X ∈ RJ1×J2×···×JN ; target ranks (R1, . . . , RN ).
Output: Factor matrices {Un}Nn=1 and core tensor G.

1 for n = 1 to N do
2 Compute Xn = X(n) ∈ RJn×

∏
i̸=n Ji ;

3 for r = 1 to Rn do
4 Initialize the parameter γn ≥ 0 and the vector z ∈ SJn

1 ;
5 while stopping criterion not met do
6 z ←

∑∏
k ̸=n Jk

i=1 [ |Xn(:, i)
⊤z| − γn ]+ sign(Xn(:, i)

⊤z)Xn(:, i);
7 z ← z/∥z∥2;

8 Construct P ∈ {0, 1}
∏

i̸=n Ji with P (i) = 1 if |Xn(:, i)
⊤z| > γn, else 0;

9 Compute rank-1 decomposition Xn|P = σuv⊤;
10 vr ← v;
11 z ← minz ∥Xn − zv⊤r ∥F ;
12 Xn ← Xn − zv⊤r ;
13 Construct Vn by all vr;
14 Compute Un as the left orthonormal factor in the SVD of XnVn;
15 Set Un ∈ RJn×Rn as the final solution for mode n;

16 Compute the core tensor as:G = X ×1 U
⊤
1 ×2 U

⊤
2 · · · ×N U⊤

N .
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Algorithm 9: GP-STPCA(ℓ1, block)

Input: Tensor X ∈ RJ1×J2×···×JN ; target ranks (R1, . . . , RN ).
Output: Factor matrices {Un}Nn=1 and core tensor G.

1 for n = 1 to N do
2 Compute Xn = X(n) ∈ RJn×

∏
i̸=n Ji ;

3 Initialize the parameters γnj ≥ 0, µn
j > 0 and the matrix Z ∈ SJn

Rn
;

4 while stopping criterion not met do
5 for j = 1 to Rn do
6 Z(:, j)←

∑∏
k ̸=n Jk

i=1 µn
j [µ

n
j |Xn(:, i)

⊤Z(:, j)| − γnj ]+ sign(Xn(:, i)
⊤Z(:, j))Xn(:

, i);
7 Z ← Polar(Z);

8 Construct P ∈ {0, 1}
∏

i̸=n Ji×Rn with P (i, j) = 1 if µn
j |Xn(:, i)

⊤Z(:, j)| > γnj , else 0;
9 while stopping criterion not met do

10 Vn ← X⊤
n ZN

n;
11 Vn ← Vn diag(V ⊤

n Vn)
−1/2;

12 Vn|P ′ ← 0 (P ′ is the complement of P );
13 Z ← Polar(XnVnN

n);
14 Compute Un as the left orthonormal factor in the SVD of XnVn;
15 Set Un ∈ RJn×Rn as the final solution for mode n;

16 Compute the core tensor as:G = X ×1 U
⊤
1 ×2 U

⊤
2 · · · ×N U⊤

N .

Algorithm 10: GP-STPCA(ℓ0)

Input: Tensor X ∈ RJ1×J2×···×JN ; target ranks (R1, . . . , RN ).
Output: Factor matrices {Un}Nn=1 and core tensor G.

1 for n = 1 to N do
2 Compute Xn = X(n) ∈ RJn×

∏
i̸=n Ji ;

3 for r = 1 to Rn do
4 Initialize the parameter γn ≥ 0 and the vector z ∈ SJn

1 ;
5 while stopping criterion not met do
6 z ←

∑∏
k ̸=n Jk

i=1 [ sign(Xn(:, i)
⊤z)2 − γn ]+Xn(:, i)

⊤z Xn(:, i); z ← z/∥z∥2;

7 Construct P ∈ {0, 1}
∏

i̸=n Ji with P (i) = 1 if (Xn(:, i)
⊤z)2 > γn, else 0;

8 for i = 1 to
∏

k ̸=n Jk do
9 while P (i) = 1 do

10 vr(i) =
[sign((Xn(:,i)

⊤z)2−γn)]+Xn(:,i)
⊤z√∑∏

p̸=n Jp

k=1 [sign((Xn(:,i)⊤z)2−γn)]+(Xn(:,i)⊤z)2
.

11 z ← minz ∥Xn − zv⊤r ∥F ;
12 Xn ← Xn − zv⊤r ;
13 Construct Vn by all vr;
14 Compute Un as the left orthonormal factor in the SVD of XnVn;
15 Set Un ∈ RJn×Rn as the final solution for mode n;

16 Compute the core tensor as:G = X ×1 U
⊤
1 ×2 U

⊤
2 · · · ×N U⊤

N .
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Algorithm 11: GP-STPCA(ℓ0, block)

Input: Tensor X ∈ RJ1×J2×···×JN ; target ranks (R1, . . . , RN ).
Output: Factor matrices {Un}Nn=1 and core tensor G.

1 for n = 1 to N do
2 Compute Xn = X(n) ∈ RJn×

∏
i̸=n Ji ;

3 Initialize the parameters γnj ≥ 0, µn
j > 0 and the matrix Z ∈ SJn

Rn
;

4 while stopping criterion not met do
5 for j = 1 to Rn do
6 Z(:, j)←

∑∏
k ̸=n Jk

i=1 (µn
j )

2[ sign(µn
jXn(:, i)

⊤Z(:, j))2 − γnj ]+Xn(:, i)
⊤Z(:

, j)Xn(:, i);
7 Z ← Polar(Z);

8 Construct P ∈ {0, 1}
∏

i̸=n Ji×Rn with P (i, j) = 1 if (µn
jXn(:, i)

⊤Z(:, j))2 > γnj , else 0;
9 for i = 1 to

∏
k ̸=n Jk do

10 for j = 1 to Rn do
11 while P (i, j) = 1 do
12 Vn(i, j) =

[sign((µn
j Xn(:,i)

⊤Z(:,j))2−γn
j )]+ µn

j Xn(:,i)
⊤Z(:,j)√∑∏

p ̸=n Jp

k=1 [sign((µn
j Xn(:,k)⊤Z(:,j))2−γn

j )]+(µn
j Xn(:,k)⊤Z(:,j))2

;

13 Compute Un as the left orthonormal factor in the SVD of XnVn;
14 Set Un ∈ RJn×Rn as the final solution for mode n;

15 Compute the core tensor as:G = X ×1 U
⊤
1 ×2 U

⊤
2 · · · ×N U⊤

N .

J DETAILS OF GP-STPCA AND INITIALIZATION OF HYPERPARAMETERS

To summarize, we present four variants for constructing Vn, which combine a procedure for iden-
tifying a suitable sparsity pattern P with a corresponding method for computing the active entries.
The specific combinations are listed in Table 2.

We are now ready to present the complete algorithms for the four variants of GP-STPCA. Algo-
rithm 8 corresponds to the ℓ1 single-unit formulation, Algorithm 9 to the ℓ1 block formulation, Al-
gorithm 10 to the ℓ0 single-unit formulation, and Algorithm 11 to the ℓ0 block formulation. Table 3
provides an overview of the four variants, where the last column lists the per-iteration computa-
tional complexity of the corresponding subproblems, derived from the analyses in Section 3.7 and
Appendix G. For all algorithms, the stopping criterion follows Appendix D.

Initialization must ensure at least one active element in the sparsity pattern. For the single-unit case,
we choose z ∈ SJn

1 parallel to the column of Xn with maximum norm:

z =
Xn(:, i

∗)

∥Xn(:, i∗)∥2
, i∗ = argmax

i
∥Xn(:, i)∥2. (47)

For the block case, we set Z = [z |Z⊥] with Z⊥ ∈ SJn

Rn−1 orthogonal to z.

According to the analysis in the literature, the sparsity-inducing parameters can be initialized ran-
domly within the following ranges:

• for GP-STPCA(ℓ1), γn ∼ N (0,maxi ∥Xn(:, i)∥2);
• for GP-STPCA(ℓ0),

√
γn ∼ N (0,maxi ∥Xn(:, i)∥2);

• for GP-STPCA(ℓ1, block), γnj ∼ N
(
0, µn

j maxi ∥Xn(:, i)∥2
)
.

• for GP-STPCA(ℓ0, block),
√
γnj ∼ N

(
0, µn

j maxi ∥Xn(:, i)∥2
)
;

Thus, in all four cases, the parameters may be drawn randomly from these distributions. However,
as demonstrated in the experiments of Journée et al. (2010), the algorithms are generally robust to
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Table 4: Choices of the hyperparameters γn and γnj for different GP-STPCA variants.

Algorithm Hyperparameter
GP-STPCA(ℓ1) γn = 1

2 maxi ∥Xn(:, i)∥2
GP-STPCA(ℓ0) γn = 1

4 maxi ∥Xn(:, i)∥22
GP-STPCA(ℓ1, block) γnj = 1

2µ
n
j maxi ∥Xn(:, i)∥2

GP-STPCA(ℓ0, block) γnj = 1
4 (µ

n
j )

2 maxi ∥Xn(:, i)∥22

initialization. Hence, the fixed values listed in Table 4 serve as a reliable guideline for choosing
initial parameters in practice.

For the block case, Nn can be chosen as needed; in our experiments, we simply set it to the identity
matrix.

K ADDITIONAL DETAILS ON SYNTHETIC EXPERIMENTS ON SPARSE
SUPPORT RECOVERY

K.1 SIMULATION SETUP

We design four simulation scenarios to capture both balanced and unbalanced settings with different
sparsity structures:

• Scenario 1 (balanced): 100× 100× 100, sparsity only in mode U;

• Scenario 2 (unbalanced): 1000× 20× 20, sparsity only in mode U;

• Scenario 3 (balanced): 100× 100× 100, sparsity in all three modes;

• Scenario 4 (unbalanced): 1000× 20× 20, sparsity in all three modes.

For sparse modes, 50% of the entries are randomly set to zero and the remaining entries are sampled
from N(0, 1). For dense modes, the factors are constructed as the leading K left or right singular
vectors of random Gaussian matrices with i.i.d. N(0, 1) entries. Scenarios 1 and 3 thus represent
balanced tensors, while Scenarios 2 and 4 illustrate unbalanced cases with one dominant mode.

K.2 ROC ANALYSIS AND FEATURE SELECTION ACCURACY

To quantify the accuracy of support recovery, we report averaged Receiver Operating Characteristic
(ROC) curves over 50 replications in each simulation setting. Figure 2 displays ROC curves for
mode-u1 in Scenarios 1 and 2, where it is the only sparse mode. Figure 5 presents ROC curves for
modes u1, v1, and w1 in Scenarios 3 and 4, where sparsity is present in all modes.

In both settings, all variants of the proposed GP-STPCA achieve recovery performance comparable
to sparseGeoHOPCA while significantly outperforming HOPCA (Kolda & Bader, 2009), and they
do so with markedly faster computation.

As illustrated in Figures 2 and 5, sparseGeoHOPCA consistently maintains a high true positive
rate while keeping the false positive rate relatively low across all simulation scenarios. Among the
GP-STPCA variants, the choice of ℓ0 or ℓ1 penalty leads to similar results; however, the block for-
mulations consistently yield larger areas under the ROC curve (AUC), highlighting their robustness
and reliability. Overall, these results validate the effectiveness of GP-STPCA for sparse recovery in
both balanced and unbalanced settings.

K.3 SUPPORT RECOVERY AND EFFICIENCY COMPARISON

Table 5 reports the mean and standard deviation of true positive (TP) and false positive (FP) rates,
together with runtime, for HOPCA, sparseGeoHOPCA, and the four GP-STPCA variants across
Scenarios 1–4. The results complement the ROC analysis by providing a detailed quantitative com-
parison.
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Figure 5: ROC curves for modes u1, v1, and w1 in Scenarios 3 and 4, where sparsity is present in
all modes. Results are averaged over fifty independent runs.

Overall, HOPCA attains perfect TP rates across all modes, but at the expense of excessive false
positives, often above 70% in Scenarios 3 and 4, which indicates very poor feature specificity.
SparseGeoHOPCA substantially alleviates this issue by maintaining high TP recovery while reduc-
ing FP to below 10% in most cases, albeit with high computational cost (∼1–1.6s per run). By con-
trast, the proposed GP-STPCA variants achieve recovery performance competitive with sparseGeo-
HOPCA but with drastically reduced runtime (typically ∼0.01–0.02s). Differences between ℓ0- and
ℓ1-penalties are minor, while block variants generally yield slightly higher TP rates at the cost of
somewhat larger FP in certain modes (e.g., Scenario 4, mode u1).

In summary, HOPCA provides high sensitivity but fails to control false positives; sparseGeoHOPCA
achieves accurate and stable recovery but is computationally expensive; GP-STPCA, in contrast,
combines the advantages of both—offering reliable support recovery comparable to sparseGeo-
HOPCA while being orders of magnitude faster. This balance of accuracy, sparsity control, and
efficiency makes GP-STPCA a practical and scalable choice for large-scale sparse tensor decompo-
sition tasks.

L DETAILS OF IMAGE RECONSTRUCTION EXPERIMENT

Experimental protocol. We evaluate the proposed GP-STPCA on six ImageNet RGB images
using four variants (penalty and block settings): GP-STPCA (ℓ0), GP-STPCA (ℓ0, block), GP-
STPCA (ℓ1), and GP-STPCA (ℓ1, block). We randomly selected six RGB images from the Ima-
geNet dataset Russakovsky et al. (2015), with original resolutions of 446× 349× 3, 472× 349× 3,
472 × 349 × 3, 472 × 349 × 3, 472 × 349 × 3, and 349 × 349 × 3, respectively. The baseline
sparseGeoHOPCA is included for comparison. All methods retain the same number of components
(90), and the reconstructions are obtained by linearly combining the selected bases. Representative
visuals are shown in Figure 3 (Image1–3) and Figure 6 (Image4–6); the corresponding PSNR tables
are Table 1 and Table 6, respectively.

Qualitative results (Figs. 3 and 6). Across all six samples, GP-STPCA variants produce sharper
edges and more faithful textures than the baseline. Typical degradations observed in the base-
line—blurred details, color wash-out, and faint directional banding—are substantially reduced by
GP-STPCA. Block variants are particularly effective on scenes with complex local textures (e.g.,
the bird feathers, coral/fish patterns, and sailboat rigging in Figure 3), where they better preserve
fine structures and suppress streaking.
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Table 5: Support recovery (TP/FP) and runtime for Scenarios 1–4.

Scenario Mode Method TP (mean ± std) FP (mean ± std) Time (s)

1 u1

HOPCA 1.000 ± 0.000 0.486 ± 0.116 0.136
sparseGeoHOPCA 0.967 ± 0.046 0.029 ± 0.046 1.038

GP-STPCA (ℓ0) 0.857 ± 0.065 0.007 ± 0.020 0.018
GP-STPCA (ℓ0, block) 0.888 ± 0.060 0.015 ± 0.031 0.018

GP-STPCA (ℓ1) 0.857 ± 0.065 0.007 ± 0.020 0.021
GP-STPCA (ℓ1, block) 0.888 ± 0.060 0.015 ± 0.031 0.021

2 u1

HOPCA 1.000 ± 0.000 0.673 ± 0.064 0.076
sparseGeoHOPCA 0.989 ± 0.014 0.008 ± 0.011 1.622

GP-STPCA (ℓ0) 0.976 ± 0.061 0.561 ± 0.021 0.009
GP-STPCA (ℓ0, block) 0.989 ± 0.030 0.644 ± 0.020 0.008

GP-STPCA (ℓ1) 0.975 ± 0.062 0.569 ± 0.022 0.010
GP-STPCA (ℓ1, block) 0.988 ± 0.033 0.642 ± 0.021 0.010

3

u1

HOPCA 1.000 ± 0.000 0.734 ± 0.079 0.141
sparseGeoHOPCA 0.958 ± 0.053 0.028 ± 0.045 1.041

GP-STPCA (ℓ0) 0.850 ± 0.075 0.006 ± 0.017 0.020
GP-STPCA (ℓ0, block) 0.881 ± 0.070 0.013 ± 0.029 0.019

GP-STPCA (ℓ1) 0.850 ± 0.075 0.006 ± 0.017 0.020
GP-STPCA (ℓ1, block) 0.881 ± 0.070 0.013 ± 0.029 0.020

v1

HOPCA 1.000 ± 0.000 0.736 ± 0.077 0.141
sparseGeoHOPCA 0.968 ± 0.048 0.043 ± 0.052 1.041

GP-STPCA (ℓ0) 0.869 ± 0.077 0.011 ± 0.020 0.020
GP-STPCA (ℓ0, block) 0.893 ± 0.069 0.024 ± 0.034 0.019

GP-STPCA (ℓ1) 0.869 ± 0.077 0.011 ± 0.020 0.020
GP-STPCA (ℓ1, block) 0.893 ± 0.069 0.024 ± 0.034 0.020

w1

HOPCA 1.000 ± 0.000 0.730 ± 0.077 0.141
sparseGeoHOPCA 0.963 ± 0.058 0.045 ± 0.053 1.041

GP-STPCA (ℓ0) 0.862 ± 0.085 0.013 ± 0.031 0.020
GP-STPCA (ℓ0, block) 0.889 ± 0.080 0.024 ± 0.042 0.019

GP-STPCA (ℓ1) 0.863 ± 0.085 0.012 ± 0.031 0.020
GP-STPCA (ℓ1, block) 0.889 ± 0.080 0.024 ± 0.042 0.020

4

u1

HOPCA 1.000 ± 0.000 0.850 ± 0.071 0.073
sparseGeoHOPCA 0.987 ± 0.016 0.012 ± 0.017 1.644

GP-STPCA (ℓ0) 0.942 ± 0.110 0.576 ± 0.018 0.009
GP-STPCA (ℓ0, block) 0.977 ± 0.052 0.753 ± 0.019 0.008

GP-STPCA (ℓ1) 0.942 ± 0.110 0.579 ± 0.023 0.009
GP-STPCA (ℓ1, block) 0.977 ± 0.057 0.750 ± 0.020 0.009

v1

HOPCA 1.000 ± 0.000 0.841 ± 0.124 0.072
sparseGeoHOPCA 0.927 ± 0.096 0.056 ± 0.104 1.570

GP-STPCA (ℓ0) 0.844 ± 0.123 0.066 ± 0.106 0.011
GP-STPCA (ℓ0, block) 0.880 ± 0.108 0.117 ± 0.130 0.011

GP-STPCA (ℓ1) 0.844 ± 0.123 0.066 ± 0.106 0.012
GP-STPCA (ℓ1, block) 0.880 ± 0.108 0.117 ± 0.130 0.012

w1

HOPCA 1.000 ± 0.000 0.859 ± 0.109 0.072
sparseGeoHOPCA 0.938 ± 0.085 0.064 ± 0.113 1.570

GP-STPCA (ℓ0) 0.856 ± 0.119 0.068 ± 0.110 0.011
GP-STPCA (ℓ0, block) 0.898 ± 0.108 0.112 ± 0.135 0.011

GP-STPCA (ℓ1) 0.856 ± 0.119 0.068 ± 0.110 0.012
GP-STPCA (ℓ1, block) 0.898 ± 0.108 0.112 ± 0.135 0.012
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Quantitative results (Tables 1 and 6). On Image1–3, the best PSNR in each image is attained by
a block variant: ℓ0, block on Image1 (27.692 dB) and ℓ1, block on Image2 (23.054 dB) and Image3
(31.727 dB). Relative to the baseline, the PSNR gains are substantial: +6.20 dB (Image1), +2.09 dB
(Image2), and +4.01 dB (Image3). Averaged over Image1–3, GP-STPCA (ℓ1, block) achieves the
highest mean PSNR (27.01 dB), exceeding the baseline by +3.62 dB.

On Image4–6, the best PSNRs are achieved by the non-block variants: ℓ1 on Image4 (29.055 dB)
and ℓ0 on Image5 (17.735 dB) and Image6 (20.466 dB). Improvements over the baseline remain
consistent and often large: +5.55 dB (Image4), +0.74 dB (Image5), and +4.69 dB (Image6). Av-
eraged over Image4–6, GP-STPCA (ℓ1) attains the highest mean PSNR (21.61 dB), outperforming
the baseline by about +2.85 dB.

Conclusions. (i) GP-STPCA dominates the baseline on every image, with per-image gains up to
+6.20 dB and an overall mean improvement of ≈+3.2 dB across all six images. (ii) Block mod-
eling matters for highly textured scenes (Image1–3), where local spatial correlations are strong;
here, block variants—especially GP-STPCA (ℓ1, block)—consistently yield the top PSNR and vis-
ibly cleaner details. (iii) Penalty choice is data dependent: ℓ0 excels on scenes where retaining a
few high-energy structures drives quality (Image5–6), while ℓ1 provides robust, high-PSNR recon-
structions under more heterogeneous textures (Image4) and, in its block form, achieves the highest
average on Image1–3. In practice, we recommend starting with GP-STPCA (ℓ1, block) for complex
textures and switching to ℓ0 when sharp, sparse structures dominate.

Figure 6: Visual comparison of ImageNet reconstructions: original, sparseGeoHOPCA, GT-
STPCA(ℓ0), GT-STPCA(ℓ0, block), GT-STPCA(ℓ1), and GT-STPCA(ℓ1, block).

Table 6: PSNR (dB) comparison on Image4–6 in Figure 6.

Method Image4 Image5 Image6
sparseGeoHOPCA 23.507 16.999 15.773
GP-STPCA (ℓ0) 26.285 17.735 20.466
GP-STPCA (ℓ0, block) 25.338 17.503 19.351
GP-STPCA (ℓ1) 29.055 17.563 18.219
GP-STPCA (ℓ1, block) 25.105 17.410 17.746

M DETAILS OF CONNECTOME-BASED ANALYSIS OF BRAIN NETWORK

We investigate the relationship between brain structural connectomes and cognitive traits using data
from the Human Connectome Project (HCP) (Van Essen et al., 2013). The full HCP dataset includes
1065 subjects with diffusion MRI scans (Zhang et al., 2019), from which structural connectivity
networks were extracted. Each subject’s connectome is represented as a 68× 68 connected surface
area (CSA) (Zhang et al., 2018) network, where nodes correspond to cortical regions defined by
the popular Desikan–Killiany atlas (Desikan et al., 2006), and edge weights capture white-matter
connectivity strength.
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Figure 7: Chord diagram of enhanced connectivity in high-reading group.

To construct these networks, the cortex is parcellated into 68 anatomical regions of interest (ROIs),
34 per hemisphere. For each pair of ROIs, streamlines traced from diffusion tractography are used
to determine the white-matter pathways linking them. To ensure meaningful connectivity measures,
each gray matter ROI is slightly dilated to include a portion of the adjacent white matter, streamlines
passing through multiple ROIs are segmented into appropriate portions, and apparent outliers are
removed. The resulting 68 × 68 weighted adjacency matrix quantifies inter-regional coupling and
provides a reproducible representation of each subject’s structural connectome. Further details can
be found in Zhang et al. (2018).

For each cognitive trait of interest, subjects are ranked according to their scores. Following the pro-
cedure in Zhang et al. (2019), we extract two groups of subjects: the 100 individuals with the highest
scores and the 100 with the lowest scores. This yields a subset of 200 subjects, each represented by
a 68 × 68 CSA connectivity matrix, forming a three-order tensor X of size 68 × 68 × 200. This
tensor representation serves as the input for exploratory analyses, allowing us to identify discrimi-
native connectivity patterns associated with the trait. In addition to imaging data, the HCP provides
a broad set of behavioral and cognitive trait measures. Here, we focus on the age-adjusted English
reading score as a representative cognitive trait.

We apply the proposed STPCA (ℓ1, block) to obtain low-dimensional principal component (PC)
scores from the CSA networks. These PC scores, together with demographic covariates, are used for
downstream statistical analysis. For continuous traits such as reading score, we employ canonical
correlation analysis (CCA) to estimate a discriminant direction U3 in the embedding space. To
interpret the results in the original connectivity domain, we project U3 back, and visualize the top-
50 edges with the largest group differences to form a difference network ∆net using a chord diagram,
highlighting the subset of edges most correlated with the trait.

Figure 4 illustrates the top-50 edges in ∆net with the largest differences between high- and low-
reading groups. Warm colors (red–yellow) denote stronger connections in the high-reading group,
while cool colors (blue) denote stronger connections in the low-reading group. Edge thickness
reflects the magnitude of the difference. In the chord diagrams (Figures 7 and 8), we observe
that subjects with low reading scores exhibit reduced long-range integration across fronto-parietal
and fronto-temporal pathways. In contrast, the high-reading group shows enhanced connectivity in
key language-related regions, underscoring the role of distributed cortical networks in supporting
reading ability. Subjects with high reading scores exhibit enhanced inter-hemispheric connectivity
across fronto-parietal circuits, while low-reading subjects show weaker integration. Importantly, no
edges were found to decrease significantly with increasing reading ability.
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Figure 8: Chord diagram of reduced connectivity in low-reading group.

The most discriminative edges are concentrated in cross-hemispheric connections linking frontal and
parietal lobes, specifically between superior and middle frontal gyri (including BA46), the superior
parietal lobule, and the precuneus. These findings underscore the role of distributed fronto-parietal
networks in supporting reading performance.

In simple terms, individuals with higher reading ability show “stronger bridges” between the left and
right hemispheres, enabling more efficient information transfer. By contrast, low-reading individuals
exhibit weaker cross-hemisphere integration. This highlights structural connectivity as a neural
substrate of individual differences in reading ability.

N LARGE LANGUAGE MODELS USAGE STATEMENT

Large Language Models were only used to aid or polish writing.
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