

000 001 002 003 004 005 GP-STPCA: GENERALIZED POWER METHOD FOR 006 SPARSE TENSOR PRINCIPAL COMPONENT ANALYSIS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Sparse tensor principal component analysis (STPCA) seeks interpretable low-
026 dimensional representations of high-order data by enforcing sparsity across tensor
027 modes. However, the resulting optimization is highly nonconvex and computa-
028 tionally demanding, particularly in high-dimensional and unbalanced settings. We
029 introduce GP-STPCA, a unified framework that reformulates STPCA into struc-
030 tured sparse PCA subproblems solvable via the generalized power method. Our
031 approach accommodates both ℓ_0 - and ℓ_1 -penalties, in single-unit and block formu-
032 lations, enabling efficient extraction of multiple sparse components. We provide
033 theoretical guarantees by proving equivalence with the original sparse objective
034 and analyzing convergence. Algorithmically, GP-STPCA further leverages effi-
035 cient pattern-finding and post-processing to shrink the search space in column-
036 dominant settings. Extensive experiments on synthetic recovery tasks, ImageNet
037 reconstruction, and brain connectome analysis demonstrate that GP-STPCA con-
038 sistently outperforms the SOTA sparseGeoHOPCA in terms of accuracy, sparsity
039 control, interpretability, and computational efficiency.
040

041 1 INTRODUCTION

042 In this paper, we study the sparse tensor principal component analysis (STPCA) problem. Tensor
043 PCA (TPCA) extends classical PCA to tensor-structured data for dimensionality reduction and pat-
044 tern discovery (Kolda & Bader, 2009; Lu et al., 2008). In high-dimensional settings, sparsity plays a
045 crucial role: it enhances interpretability, enables feature selection, improves statistical stability, and
046 preserves tensor structure for applications such as multimodal learning (Sun et al., 2022), biomedical
047 analysis (Allen, 2012), and recommender systems (Frolov & Oseledets, 2017).
048

049 However, introducing sparsity makes TPCA a non-convex and generally NP-hard problem (Hillar
050 & Lim, 2013). Approximate algorithms have therefore been proposed: early work on multilinear
051 PCA (Lu et al., 2006) laid the foundation for tensor analysis, while sparse HOSVD and sparse
052 CP (Allen, 2012) incorporated sparsity-inducing penalties to recover interpretable low-rank struc-
053 tures. More recently, Xu et al. (2025) proposed sparseGeoHOPCA, a geometry-inspired framework
054 that reformulates sparse higher-order PCA into binary optimization problems, improving both inter-
055 pretability and efficiency. Further developments such as multilinear sparse PCA (Lai et al., 2014)
056 have demonstrated effectiveness in image and video analysis (Liu et al., 2018), brain signal process-
057 ing (Zhang et al., 2019), and biomedical data interpretation (Zhou et al., 2016). In contrast, within
058 the conventional STPCA formulation, the resulting subproblems often involve far more columns
059 than rows, a special case of sparse PCA that requires tailored algorithms for efficiency and accuracy.
060

061 We propose GP-STPCA, a unified and efficient method for solving the STPCA problem. For the
062 matrix subproblems, we formulate four sparse PCA models under ℓ_0 - and ℓ_1 -constraints, in both
063 single-unit and block forms, enabling the extraction of either a single dominant component or mul-
064 tiple components simultaneously.
065

066 As shown in Figure 1, the framework proceeds in three stages: (i) *Tensor preparation*: unfolding the
067 input tensor along each mode to form sparse matrix PCA subproblems; (ii) *Sparse PCA subprob-
068 lem*: applying the generalized power method to identify sparse patterns with convergence guarantees
069 quickly; (iii) *Solution construction*: compressing the data via the identified patterns and assembling
070 factor matrices with the core tensor to obtain a sparse multilinear decomposition. The method re-
071 duces the search space in column-dominant subproblems and ensures theoretical convergence.
072

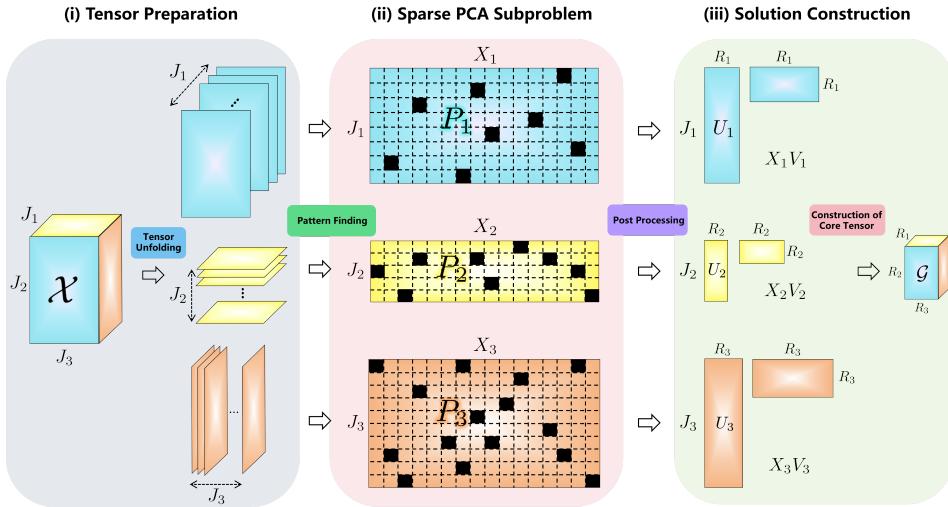


Figure 1: Illustration of the proposed GP-STPCA workflow on a third-order tensor. (i) The tensor \mathcal{X} is unfolded mode by mode into matrices X_1, X_2, X_3 . (ii) Sparse PCA subproblems are solved on each unfolding to identify sparsity patterns P_1, P_2, P_3 . (iii) Based on these patterns, factor matrices U_1, U_2, U_3 and the core tensor \mathcal{G} are constructed to yield a sparse multilinear decomposition.

Main Contributions. The key contributions of this work are summarized as follows:

- **Unified modeling:** We propose GP-STPCA, a generalized power method that reformulates sparse tensor PCA into a sequence of sparse matrix PCA subproblems, handling both ℓ_0 - and ℓ_1 -constraints penalties and single-unit or block formulations.
- **Dimensionality reduction and convex reformulation:** We reformulate each mode-wise optimization as a convex maximization problem over the Stiefel manifold, allowing sparse right factors to be identified first and orthogonal left factors obtained via SVD, thereby reducing the search dimension substantially.
- **Algorithmic framework:** We develop the overall STPCA algorithm together with efficient *pattern-finding* and *post-processing* schemes based on generalized power iterations, which identify sparse supports and maximize explained variance on the selected patterns.
- **Convergence properties:** We analyze the method as a generalized gradient scheme for convex maximization, and establish step-size convergence guarantees under strong convexity of either the function or the feasible set.
- **Empirical validation:** Through extensive experiments on synthetic support recovery, large-scale ImageNet image reconstruction, and brain connectome analysis, GP-STPCA consistently outperforms baselines in terms of accuracy, runtime efficiency, and interpretability.

2 PRELIMINARIES

We summarize the notations and review key results on sparse PCA and Tucker-based tensor PCA, which form the basis of our framework.

2.1 NOTATIONS AND DEFINITIONS

Unless stated otherwise, we adopt the following notation: scalars are denoted by lowercase letters (e.g., a, b), vectors by bold lowercase letters (e.g., \mathbf{v}), matrices by uppercase letters (e.g., M), and tensors by calligraphic letters (e.g., \mathcal{T}).

Let $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \dots \times J_N}$ be an N -th order tensor. Its mode- n matricization, denoted by $X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$, rearranges the mode- n fibers of \mathcal{X} into columns via the unfolding operator $\text{unfold}_n(\mathcal{X})$. The inverse operation $\text{fold}_n(\cdot)$ reconstructs the tensor from its matricized

108 form, satisfying $\mathcal{X} = \text{fold}_n(X_{(n)})$. The mode- k product (also known as the Tucker product)
 109 of \mathcal{X} with a matrix $U_k \in \mathbb{R}^{J_k \times R_k}$ is denoted by $\mathcal{Y} = \mathcal{X} \times_k U_k$, and produces a tensor of size
 110 $\mathbb{R}^{J_1 \times \dots \times J_{k-1} \times R_k \times J_{k+1} \times \dots \times J_N}$. This transformation projects the mode- k fibers of \mathcal{X} onto a lower-
 111 dimensional subspace, and its matrix representation is given by: $Y_{(k)} = U_k X_{(k)}$, where $Y_{(k)}$ is the
 112 mode- k matricization of the resulting tensor \mathcal{Y} .

113 The Stiefel manifold is the set of $n \times m$ matrices with orthonormal columns, $S_m^n = \{X \in \mathbb{R}^{n \times m} \mid$
 114 $X^\top X = I_m\}$. For $t \in \mathbb{R}$, we denote $\text{sign}(t)$ as its sign and $t_+ = \max\{0, t\}$. The operator $\text{Polar}(X)$
 115 denotes the orthogonal factor in the polar decomposition of X .
 116

117 2.2 SPARSE PRINCIPAL COMPONENT ANALYSIS VIA THE GENERALIZED POWER METHOD

119 A widely used formulation of sparse PCA introduces a sparsity-inducing penalty to promote sparsity
 120 in the loading vector. Given a data matrix $X \in \mathbb{R}^{n \times p}$, the single-unit problem is written as
 121

$$122 \hat{w} = \arg \max_{\|w\|_2=1} \|Xw\|_2^2 - \lambda \|w\|_\zeta, \quad (1)$$

123 where $\lambda > 0$ controls the sparsity level and $\|\cdot\|_\zeta$ denotes a general sparsity measure. Here
 124 $\zeta = 1$ gives the lasso penalty, while $\zeta = 0$ corresponds to the cardinality penalty. To ad-
 125 dress Problem (1), Journée et al. (2010) proposed the generalized power method, a gradient-based
 126 scheme specifically designed for sparse PCA. This method reformulates the optimization as $\hat{z} =$
 127 $\arg \max_{\|z\|_2=1} \|S(X^\top z, \lambda)\|^2$, where the soft-thresholding operator $S(X^\top z, \lambda)$ is applied entry-
 128 wise. After obtaining \hat{z} , the sparse loading vector is recovered as $\hat{w} = S(X^\top \hat{z}, \lambda) / \|S(X^\top \hat{z}, \lambda)\|$,
 129 so that the nonzero support of \hat{w} is directly determined by the thresholded pattern. The component
 130 weights are then obtained by applying PCA to the reduced matrix after discarding zeroed variables
 131 in \hat{w} . Thus, the original p -dimensional problem is reformulated as an n -dimensional one, which is
 132 advantageous when $p \gg n$.
 133

134 2.3 TUCKER-BASED TENSOR PRINCIPAL COMPONENT ANALYSIS

136 Tucker-based tensor PCA generalizes classical PCA to higher-order data by exploiting the Tucker
 137 decomposition. For an N th-order tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times \dots \times J_N}$, the model is
 138

$$\mathcal{X} \approx \mathcal{G} \times_1 U_1 \times_2 U_2 \cdots \times_N U_N, \quad (2)$$

139 where $\mathcal{G} \in \mathbb{R}^{R_1 \times \dots \times R_N}$ is the core tensor and $U_n \in \mathbb{R}^{J_n \times R_n}$ are orthonormal factor matrices. In
 140 element-wise form: $\mathcal{X}(i_1, \dots, i_N) \approx \sum_{\alpha_1=1}^{R_1} \cdots \sum_{\alpha_N=1}^{R_N} \mathcal{G}(\alpha_1, \dots, \alpha_N) \prod_{n=1}^N U_n(i_n, \alpha_n)$. This
 141 multilinear form reduces storage from $\mathcal{O}(J_1 \cdots J_N)$ to $\mathcal{O}(R_1 \cdots R_N + \sum_{n=1}^N J_n R_n)$, and methods
 142 such as higher-order SVD or alternating least squares are commonly used to compute the resulting
 143 interpretable components.
 144

146 3 TUCKER-BASED SPARSE TENSOR PRINCIPAL COMPONENT ANALYSIS

148 In this section, we develop a Tucker-based framework for sparse tensor principal component analysis
 149 (STPCA). By unfolding the tensor along each mode, the problem is transformed into sparse matrix
 150 PCA subproblems with different sparsity-inducing formulations. Building upon this reformulation,
 151 we introduce the proposed GP-STPCA algorithm and establish its theoretical foundations.
 152

153 3.1 PROBLEM FORMULATION

155 To enhance interpretability and robustness in multilinear data analysis, Tucker-based tensor PCA
 156 can be extended with sparsity constraints, leading to the Tucker-based sparse tensor PCA (STPCA).
 157 Let $\mathcal{X} \in \mathbb{R}^{J_1 \times \dots \times J_N}$ be the data tensor and $U_n \in \mathbb{R}^{J_n \times R_n}$ the projection matrix for each mode.
 158 The objective is to minimize the projection error while enforcing sparsity and orthogonality, so the
 159 STPCA problem is thus formalized as:
 160

$$161 \begin{aligned} & \underset{U_1, \dots, U_N}{\text{minimize}} & & \|\mathcal{X} - \mathcal{X} \times_1 U_1 U_1^\top \times_2 U_2 U_2^\top \cdots \times_N U_N U_N^\top\|_F^2 \\ & \text{subject to} & & \|\mathcal{X} \times_1 U_1 \cdots \times_N U_N\|_\zeta \leq k, \quad U_n \in S_{R_n}^{J_n}, \quad \text{for } n = 1, \dots, N, \end{aligned} \quad (3)$$

162 where $k > 0$ control the sparsity of core tensor and $\|\cdot\|_\zeta$ denotes a sparsity measure, with $\zeta = 1$
 163 (lasso) or $\zeta = 0$ (cardinality). This formulation yields low-dimensional multilinear projections with
 164 sparse and interpretable factors across modes. The STPCA problem is inherently challenging due to
 165 its non-convex nature and lack of a closed-form solution.
 166

167 3.2 DECOMPOSITION INTO MODE-WISE SUBPROBLEMS

169 Inspired by the alternating optimization strategy in Tucker decomposition, we decompose the prob-
 170 lem into N independent subproblems.
 171

Theorem 3.1 *Let $(U_1, \dots, U_{n-1}, U_{n+1}, \dots, U_N)$ be fixed. Then the optimization of U_n in (3) re-
 172 duces to the sparse matrix approximation problem*

$$174 \min_{U_n} \|X_n - U_n U_n^\top X_n\|_F^2 \quad \text{s.t. } \|\mathcal{X} \times_{j \neq n} U_j\|_\zeta \leq k_n, \quad U_n \in S_{R_n}^{J_n}. \quad (4)$$

176 where $X_n = \text{unfold}_n(\mathcal{X} \times_{j \neq n} U_j U_j^\top)$, and k_n denotes the sparsity level adapted to mode n .
 177

178 *Proof.* See Appendix A. □

180 **Remark 3.1** *Note that the conclusion in (4) is derived under the setting where the factor matrix
 181 U_n is updated iteratively. If U_n is instead generated in a single step, or when no initialization is
 182 provided, then X_n should be directly taken as $X_{(n)}$.*

183 3.3 OVERALL STPCA FRAMEWORK

185 Based on the preceding analysis, we now present the basic algorithmic framework for solving
 186 STPCA, as summarized in Algorithm 1 (See Appendix B).

188 3.4 REFORMULATION AS SPARSE PCA SUBPROBLEM

190 To solve this subproblem, we begin with the mode- n subproblem formulated as (4). Since $U_n U_n^\top$ is
 191 an orthogonal projector, the Pythagorean identity gives $\|\bar{X}_n\|_F^2 = \|X_n - U_n U_n^\top X_n\|_F^2 + \|U_n^\top X_n\|_F^2$,
 192 hence (4) is equivalent to
 193

$$194 \max_{U_n} \|U_n^\top X_n\|_F^2 \quad \text{s.t. } \|\mathcal{X} \times_{j \neq n} U_j\|_\zeta \leq k_n, \quad U_n \in S_{R_n}^{J_n}. \quad (5)$$

196 Since X_n has far more columns than rows, it is natural to seek a right sparse factor V_n ; computing
 197 the SVD of the compressed matrix $X_n V_n$ then yields U_n . Thus, the problem reduces to finding a
 198 sparse right factorization of X_n . For clarity, we focus on the case $\zeta = 1$, while the case $\zeta = 0$
 199 is deferred to Appendix C. Following the generalized power method introduced in Section 2.2, we
 200 adopt two strategies for multiple sparse components: (i) the single-unit approach with sequential
 201 deflation, and (ii) the block sparse approach computing multiple components jointly.
 202

202 3.5 SPARSE PCA FORMULATIONS VIA ℓ_1 PENALTY

204 We first consider the ℓ_1 -penalized setting, which promotes sparsity through soft thresholding.
 205

206 3.5.1 SINGLE-UNIT SPARSE PCA VIA ℓ_1 PENALTY

208 We first consider the single-unit case, where one sparse vector is extracted at a time. The ℓ_1 -
 209 penalized formulation reads
 210

$$211 \phi_{\ell_1}(\gamma^n) \stackrel{\text{def}}{=} \max_{v_n^\top v_n \leq 1} \|X_n v_n\|_2 - \gamma^n \|v_n\|_1. \quad (6)$$

213 Noticing that $\|X_n v_n\|_2 = \max_{z \in S_1^{J_n}} z^\top X_n v_n$, we can reformulate the problem as
 214

$$215 \phi_{\ell_1}(\gamma^n) = \max_{z \in S_1^{J_n}} \max_{v_n} z^\top X_n v_n - \gamma^n \|v_n\|_1. \quad (7)$$

216 For fixed z , the inner maximization over v_n admits a closed-form solution:
 217

$$218 \quad v_n(i)^*(\gamma^n) = \frac{\text{sign}(X_n(:, i)^\top z) [|X_n(:, i)^\top z| - \gamma^n]_+}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [|X_n(:, k)^\top z| - \gamma^n]_+^2}}, \quad i = 1, \dots, \prod_{k \neq n} J_k. \quad (8)$$

221 Substituting this expression back yields a reformulated objective:
 222

$$223 \quad \phi_{\ell_1}^{n,2}(\gamma^n) = \max_{z \in S_1^{J_n}} \sum_{i=1}^{\prod_{k \neq n} J_k} [|X_n(:, i)^\top z| - \gamma^n]_+^2, \quad (9)$$

226 which is a smooth objective defined on the Stiefel manifold $S_1^{J_n}$ and is more efficient to optimize
 227 than the original formulation.
 228

229 **Deflation Scheme** To obtain multiple sparse components from the single-unit method, we adopt
 230 the classical deflation strategy (d'Aspremont et al., 2007). Given a unit-norm sparse vector $v \in \mathbb{R}^n$
 231 of $X \in \mathbb{R}^{p \times n}$, let $z = Xv$ be the associated score that solves $\min_{z \in \mathbb{R}^p} \|X - zv^\top\|_F$. Subsequent
 232 directions are extracted from the residual $X - zv^\top$, thereby removing explained variance and en-
 233 forcing complementarity. Refined deflation variants (Mackey, 2008) further enhance stability and
 234 orthogonality.
 235

3.5.2 BLOCK SPARSE PCA VIA ℓ_1 PENALTY

237 The block formulation extends the single-unit case to extract multiple components simultaneously.
 238 Using Lagrange multipliers, Problem (4) can be reformulated as the ℓ_1 -penalized block problem
 239

$$240 \quad \psi_{\ell_1, R_n}^n(\gamma^n) \stackrel{\text{def}}{=} \max_{Z \in S_{R_n}^{J_n}, \text{diag}(V_n^\top V_n) = I_{R_n}} \text{Tr}(Z^\top X_n V_n N^n) - \sum_{j=1}^{R_n} \gamma_j^n \sum_{i=1}^{\prod_{k \neq n} J_k} |V_n(i, j)|, \quad (10)$$

243 where $\gamma^n = [\gamma_1^n, \dots, \gamma_{R_n}^n]^\top \geq 0$ and $N^n = \text{diag}(\mu_1^n, \dots, \mu_{R_n}^n)$ with positive entries, represent-
 244 ing relative weights associated with different principal components. Since the columns of V_n are
 245 independent, Problem (10) decouples as
 246

$$247 \quad \psi_{\ell_1, R_n}^n(\gamma^n) = \max_{Z \in S_{R_n}^{J_n}} \sum_{j=1}^{R_n} \max_{\|V_n(:, j)\|_2=1} \mu_j^n Z(:, j)^\top X_n V_n(:, j) - \gamma_j^n \|V_n(:, j)\|_1. \quad (11)$$

249 The optimal V_n columns admit the closed form
 250

$$251 \quad V_n(i, j)^* = \frac{\text{sign}(X_n(:, i)^\top Z(:, j)) [\mu_j^n |X_n(:, i)^\top Z(:, j)| - \gamma_j^n]_+}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [\mu_j^n |X_n(:, k)^\top Z(:, j)| - \gamma_j^n]_+^2}}. \quad (12)$$

254 Substituting back yields the equivalent formulation
 255

$$256 \quad \psi_{\ell_1, R_n}^{n,2}(\gamma^n) = \max_{Z \in S_{R_n}^{J_n}} \sum_{j=1}^{R_n} \sum_{i=1}^{\prod_{k \neq n} J_k} [\mu_j^n |X_n(:, i)^\top Z(:, j)| - \gamma_j^n]_+^2, \quad (13)$$

260 which maximizes a convex function $f : \mathbb{R}^{J_n \times R_n} \rightarrow \mathbb{R}$ on the Stiefel manifold $S_{R_n}^{J_n}$. Both the
 261 single-unit (9) and block (13) formulations (as well as their ℓ_0 counterparts) fall within a unified
 262 optimization framework. They can be efficiently solved using the generalized power method, which
 263 applies a gradient-based scheme to maximize convex functions over compact feasible sets. For
 264 completeness, we next describe this scheme and its stepsize convergence properties.
 265

3.6 STEPSIZE CONVERGENCE OF THE GRADIENT SCHEME

267 We analyze the convergence of the generalized gradient scheme for sparse PCA subproblems. Let
 268 $f : E \rightarrow \mathbb{R}$ be a convex function on a finite-dimensional space E , and consider
 269

$$f^* = \max_{x \in Q} f(x), \quad (14)$$

270 with $Q \subseteq E$ compact. Here $f'(x)$ denotes any subgradient and $\partial f(x)$ its subdifferential. We solve
 271 this problem using Algorithm 2 (See Appendix D), which can be viewed as a generalized power
 272 method cast as a gradient scheme for convex maximization. Convergence requires mild structural
 273 conditions: either strong convexity of f or strong convexity of $\text{Conv}(Q)$.
 274

275 **Assumption 1** *The subgradient norms of f are uniformly bounded away from zero on Q , which
 276 means $\delta_f = \min_{x \in Q, f'(x) \in \partial f(x)} \|f'(x)\|_* > 0$, where $\|\cdot\|_*$ is the dual norm.*
 277

278 **Assumption 2** *f is strongly convex: there exists $\sigma_f > 0$ such that for all $x, y \in E$, $f(y) \geq
 279 f(x) + \langle f'(x), y - x \rangle + \frac{\sigma_f}{2} \|y - x\|^2$.*
 280

281 **Assumption 3** *The convex hull $\text{Conv}(Q)$ is strongly convex, i.e., for any $x, y \in \text{Conv}(Q)$ and
 282 $\alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y + \frac{\sigma_Q}{2} \alpha \|x - y\|^2 S \subset \text{Conv}(Q)$, where S is the unit ball in E .*
 283

284 **Theorem 3.2 (Stepsize Convergence)** *Let f be convex, and let either Assumption 2 or Assumption 1
 285 and 3 be satisfied. If $\{x_k\}_{k \geq 0}$ is the sequence of points generated by the Algorithm 2, then*

$$\sum_{k=0}^{\infty} \|x_{k+1} - x_k\|^2 \leq \frac{2(f^* - f(x_0))}{\sigma_Q \delta_f + \sigma_f}. \quad (15)$$

290 *Proof.* See Appendix E. □
 291

292 **Remark 3.2** *Theorem 3.2 shows that for the gradient method scheme in Algorithm 2, in order to
 293 produce an iterate satisfying $\min_{0 \leq i \leq k} \|x_{i+1} - x_i\| \leq \epsilon$, we require at most $k = O(\epsilon^{-2})$ iterations.
 294 This iteration bound aligns with the global complexity of standard first-order methods.*
 295

296 3.7 ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ_1 PENALTY

297 The sparse PCA formulations in Section 3.5 produce locally optimal sparsity patterns, either in the
 298 single-unit or block setting. While penalty terms enforce sparsity, they may also distort the values of
 299 active entries. Thus, an effective algorithm consists of two stages: (i) identifying a sparsity pattern,
 300 and (ii) estimating the active entries to maximize explained variance. In the following, we focus on
 301 the ℓ_1 -penalized formulations, while the ℓ_0 counterparts are deferred to Appendix G. We present the
 302 general block formulation here, which reduces to the single-unit case when $R_n = 1$.
 303

304 3.7.1 PATTERN-FINDING

305 Applying the gradient scheme (Algorithm 2) to the optimization Problems (9), and (13), yields Algo-
 306 rithms 3 and 4 (both in Appendix F), which determine a binary sparsity mask $P \in \{0, 1\}^{\prod_{i \neq n} J_i \times R_n}$.
 307 Here $P(i, j) = 1$ indicates that coefficient $V_n(i, j)$ is active, and $P(i, j) = 0$ otherwise. The per-
 308 iteration cost of the single-unit methods (Algorithms 3) is $O(\prod_{n=1}^N J_n)$, while the block methods
 309 (Algorithms 4) require $O(R_n \prod_{n=1}^N J_n)$ operations. Thresholds γ^n are chosen below natural upper
 310 bounds: $\gamma^n \leq \max_i \|X_n(:, i)\|_2$ for ℓ_1 single-unit, and $\gamma_j^n \leq \max_i \mu_j^n \|X_n(:, i)\|_2$ for ℓ_1 block.
 311

312 3.7.2 POST-PROCESSING

313 With pattern P fixed, the active entries of V_n are refined to maximize variance. We solve
 314

$$(Z^*, V_n^*) \stackrel{\text{def}}{=} \max_{Z \in S_{R_n}^{J_n}; \text{diag}(V_n^\top V_n) = I_{R_n}; V_n|_{P'} = 0} \text{Tr}(Z^\top X_n V_n N^n). \quad (16)$$

315 where P' is the complement of P . In the single-unit case, the solution is the leading SVD of $X_n|_P$:
 316

$$Z^* = u, \quad V_n^*|_P = v, \quad V_n^*|_{P'} = 0, \quad (17)$$

317 where $\sigma u v^\top$ is a rank-one decomposition of $X_n|_P$. This coincides with the variational renormaliza-
 318 tion in Moghaddam et al. (2005). In the block case, (16) is solved by alternating optimization:
 319

324 **Theorem 3.3** Consider the optimization problem
 325

$$\max_{Z, V_n} \text{Tr}(Z^\top X_n V_n N^n), \text{ s.t. } Z \in S_{R_n}^{J_n}; \text{diag}(V_n^\top V_n) = I_{R_n}; V_n|_{P'} = 0. \quad (18)$$

328 For a fixed V_n , the optimal Z^* is given by the U factor of the polar decomposition of
 329 $X_n V_n N^n$. Conversely, for a fixed $Z \in S_{R_n}^{J_n}$, the optimal V_n^* is characterized by $V_n|_P^* =$
 330 $(X_n^\top Z N^n D)|_P$, $V_n|_{P'}^* = 0$ where D is a positive diagonal matrix that normalizes each column
 331 of V_n^* to unit norm, that is, $D = \text{diag}(N^n Z^\top X_n X_n^\top Z N^n)^{-\frac{1}{2}}$.
 332

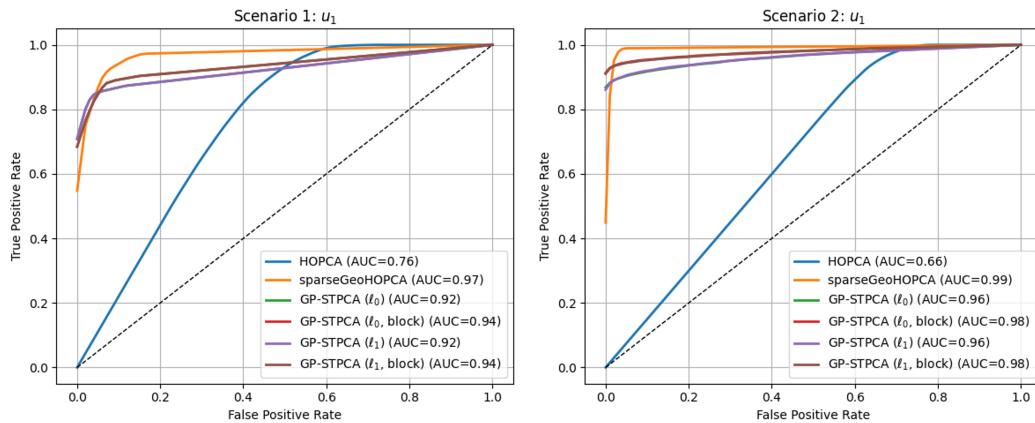
333 *Proof.* See Appendix H. □

334 The alternating optimization scheme is summarized in Algorithm 7 (See Appendix I), initialized by
 335 an accumulation point of the pattern-finding step (Algorithms 4 and 6). This postprocessing heuristic
 336 is strictly required only for the ℓ_1 block case. For ℓ_0 formulations, since the penalty depends only
 337 on the sparsity pattern P and not on the values of $V_n|_P$, the solutions of Algorithms 5 or 6 already
 338 serve as local maximizers of (16), providing a direct alternative to Algorithm 7. In the single-unit ℓ_1
 339 case (Algorithm 3), the solution (17) is available.
 340

341 **Remark 3.3** We have introduced all necessary technical tools. Here we summarize the four variants
 342 of GP-STPCA (single/block with ℓ_0 - or ℓ_1 -penalty) and describe the initialization of hyperparameters.
 343 Detailed settings can be found in Appendix J.

345 4 EMPIRICAL RESULTS

346 This section reports synthetic and real-data experiments evaluating the proposed *GP-STPCA* frame-
 347 work. We first evaluate sparse support recovery in controlled simulations, then test image recon-
 348 struction on ImageNet, and finally analyze brain connectomes, where *GP-STPCA* consistently out-
 349 performs baselines in accuracy, efficiency, and interpretability. All experiments were run on a work-
 350 station with an Intel i7-10700 CPU (2.90GHz), NVIDIA RTX 4070 Super GPU, and 64GB RAM.
 351 Hyperparameter initialization is given in Remark 3.3.
 352



368 Figure 2: ROC curves for mode- u_1 in Scenarios 1 and 2, where it is the only sparse mode. Results are
 369 averaged over fifty replicates. Across both settings, GP-STPCA variants achieve consistently high
 370 true positive rates and large AUC values (up to 0.98), demonstrating accurate and stable support
 371 recovery. As further shown in the runtime comparison of Appendix K.3, GP-STPCA achieves 50–
 372 100× speedup over existing baselines.
 373
 374

375 4.1 SYNTHETIC EXPERIMENTS ON SPARSE SUPPORT RECOVERY

376 We evaluate the support recovery performance of four variants of *GP-STPCA* (different penalties
 377 and block choices) using synthetic low-rank third-order tensor models under varying sparsity and

378 dimensionality. The observed tensor is generated as
 379

$$380 \quad \mathcal{X} = \sum_{k=1}^K d_k \mathbf{u}_k \circ \mathbf{v}_k \circ \mathbf{w}_k + \mathcal{E}, \quad \mathcal{E}_{i,j,l} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1), \quad (19)$$

382 with $K = 1$ and $d_1 = 100$. We compare against both the classical HOPCA, to illustrate the benefit
 383 of incorporating sparsity, and the state-of-the-art sparseGeoHOPCA (Xu et al., 2025). Four scenar-
 384 ios with different tensor sizes and sparsity patterns are considered (details in Appendix K.1). Results
 385 show that the block variants of *GP-STPCA* achieve consistently better recovery, while differences
 386 between ℓ_0 and ℓ_1 penalties are minor. Overall recovery accuracy is comparable to sparseGeo-
 387 HOPCA, but our method is significantly faster. Figure 2 reports ROC curves averaged over 50 trials
 388 in both balanced and unbalanced settings (with sparsity only on u_1), demonstrating strong recovery
 389 performance.

390 Appendix K.2 presents ROC curves for Scenarios 3 and 4, and Appendix K.3 reports comparisons
 391 of true/false positive rates and computational efficiency among HOPCA, *sparseGeoHOPCA*, and
 392 the proposed GP-STPCA variants.

393 4.2 IMAGE RECONSTRUCTION

409 Figure 3: Visual comparison of ImageNet reconstructions for three representative examples (from
 410 top to bottom: Image1, Image2, and Image3). From left to right: original image, *sparseGeo-*
 411 *HOPCA*, GP-STPCA(ℓ_0), GP-STPCA(ℓ_0 , block), GP-STPCA(ℓ_1), and GP-STPCA(ℓ_1 , block). The
 412 GP-STPCA variants consistently enhance reconstruction quality: ℓ_0 -based methods effectively
 413 preserve salient object shapes, block extensions further improve color uniformity, and ℓ_1 -based methods
 414 achieve sharper edge recovery and finer texture details. Overall, GP-STPCA demonstrates superior
 415 balance between structural preservation and visual clarity across diverse images.

416 We further examine the effectiveness of the proposed *GP-STPCA* framework by testing its four
 417 variants (different penalties and block choices) on random ImageNet samples (Russakovsky et al.,
 418 2015). After extracting a fixed number of sparse components, the original images are reconstructed
 419 to evaluate visual fidelity and quantitative performance. Figure 3 presents representative results.

420 421 Table 1: PSNR (dB) comparison on Image1–3 in Figure 3.

422 Method	Image1	Image2	Image3
423 sparseGeoHOPCA	21.491	20.965	27.720
424 GP-STPCA (ℓ_0)	26.412	22.949	31.438
425 GP-STPCA (ℓ_0 , block)	27.692	22.243	30.765
426 GP-STPCA (ℓ_1)	26.419	22.816	31.660
427 GP-STPCA (ℓ_1 , block)	26.263	23.054	31.727

428 Across all samples, GP-STPCA variants achieve sharper textures and fewer directional artifacts
 429 compared to the baseline sparseGeoHOPCA, which tends to produce blurrier reconstructions. Ta-
 430 ble 1 further confirms these observations: block-based variants consistently yield higher PSNR, with
 431 GP-STPCA (ℓ_1 , block) delivering the best overall reconstruction quality.

432 See Appendix L for preprocessing, settings, and additional results.
 433

434 4.3 CONNECTOME-BASED ANALYSIS OF BRAIN NETWORK

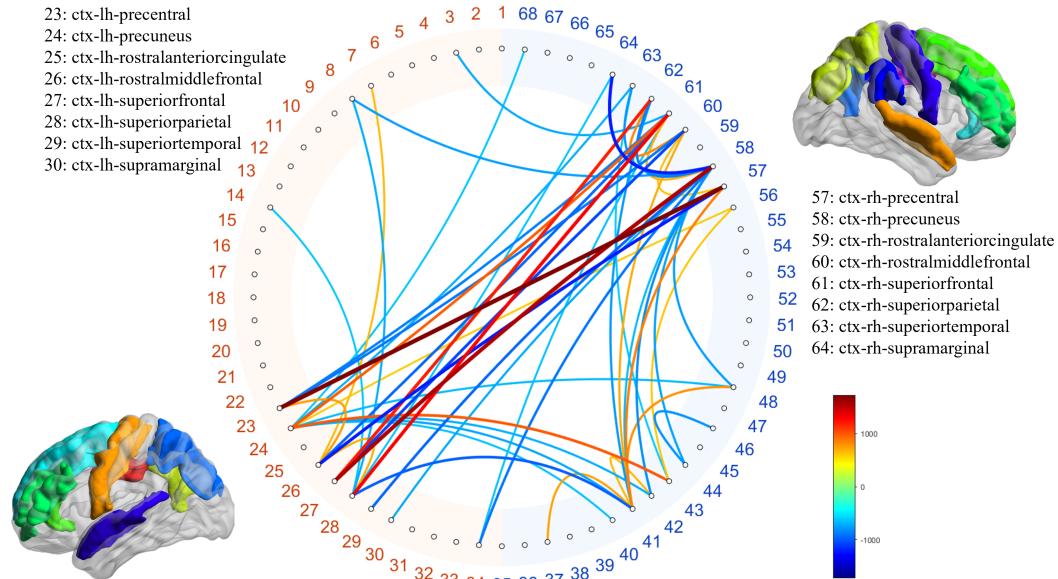


Figure 4: Chord diagram illustrating connectivity differences between high- and low-reading groups. Nodes are cortical regions (left hemisphere: indices 23–30; right hemisphere: indices 57–64), with labels from the Desikan–Killiany atlas. Colored chords represent inter- and intra-hemispheric connectivity differences, with line thickness denoting magnitude and color encoding direction (red/yellow vs. blue). Highlighted regions (precentral, precuneus, superiorfrontal, supramarginal) show consistent alterations in structural connectivity associated with reading performance.

As an application, we study the relationship between structural connectomes and the age-adjusted English reading score using HCP data (Van Essen et al., 2013). Structural connectomes were derived from 200 extreme subjects of the Human Connectome Project, yielding $68 \times 68 \times 200$ adjacency tensors based on the Desikan–Killiany atlas (Desikan et al., 2006) parcellation. GP-STPCA extracts discriminative cross-hemispheric fronto-parietal connections, indicating that higher reading ability is associated with stronger inter-hemispheric integration. Figure 4 visualizes the top-50 discriminative edges, where warm colors (red–yellow) highlight stronger connections in the high-reading group and cool colors (blue) indicate stronger connections in the low-reading group. Details on the experiments are provided in Appendix M.

5 CONCLUSION

In this work, we proposed GP-STPCA, a unified framework for sparse tensor principal component analysis. By reformulating the original nonconvex problem into structured sparse matrix PCA subproblems and solving them via the generalized power method, GP-STPCA accommodates both ℓ_0 - and ℓ_1 -penalties under single-unit and block formulations. Our framework offers theoretical guarantees through equivalence with the original sparse objective and convergence analysis, while algorithmically exploiting pattern-finding and post-processing to reduce the search space in column-dominant settings.

Extensive experiments on synthetic recovery, large-scale ImageNet reconstruction, and brain connectome analysis demonstrate clear advantages in accuracy, sparsity control, interpretability, and computational efficiency over existing approaches such as sparseGeoHOPCA. These results highlight the potential of GP-STPCA as a versatile and scalable tool for high-dimensional tensor data analysis.

486 REPRODUCIBILITY STATEMENT
487488 The Python implementation of the proposed method is available in the supplementary materials.
489490 ETHICS STATEMENT
491492 This work does not involve human subjects, personally identifiable data, or sensitive information.
493 All datasets used are publicly available and widely adopted in the research community. The proposed
494 methods focus on algorithmic development and empirical validation. We believe this work raises no
495 ethical concerns in relation to the ICLR Code of Ethics.
496497 REFERENCES
498500 Genevera Allen. Sparse higher-order principal components analysis. In *Artificial intelligence and
statistics*, pp. 27–36. PMLR, 2012.502 Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and Gert RG Lanckriet. A direct
503 formulation for sparse pca using semidefinite programming. *SIAM Review*, 49(3):434–448, 2007.504 Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah
505 Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman, et al. An auto-
506 mated labeling system for subdividing the human cerebral cortex on mri scans into gyral based
507 regions of interest. *Neuroimage*, 31(3):968–980, 2006.508 Evgeny Frolov and Ivan Oseledets. Tensor methods and recommender systems. *Wiley Interdisci-
509 plinary Reviews: Data Mining and Knowledge Discovery*, 7(3):e1201, 2017.511 Christopher J Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. *Journal of the ACM
(JACM)*, 60(6):1–39, 2013.513 Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power
514 method for sparse principal component analysis. *Journal of Machine Learning Research*, 11
515 (2), 2010.517 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. *SIAM review*, 51(3):
518 455–500, 2009.519 Zhihui Lai, Yong Xu, Qingcai Chen, Jian Yang, and David Zhang. Multilinear sparse principal
520 component analysis. *IEEE transactions on neural networks and learning systems*, 25(10):1942–
521 1950, 2014.523 Yipeng Liu, Longxi Chen, and Ce Zhu. Improved robust tensor principal component analysis via
524 low-rank core matrix. *IEEE Journal of Selected Topics in Signal Processing*, 12(6):1378–1389,
525 2018.526 Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. Multilinear principal
527 component analysis of tensor objects for recognition. In *18th International Conference on Pattern
528 Recognition (ICPR’06)*, volume 2, pp. 776–779. IEEE, 2006.529 Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. MPCA: Multilinear
530 principal component analysis of tensor objects. *IEEE transactions on Neural Networks*, 19(1):
531 18–39, 2008.533 Lester Mackey. Deflation methods for sparse pca. *Advances in neural information processing
534 systems*, 21, 2008.535 Baback Moghaddam, Yair Weiss, and Shai Avidan. Spectral bounds for sparse pca: Exact and
536 greedy algorithms. *Advances in neural information processing systems*, 18, 2005.538 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
539 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. *International journal of computer vision*, 115:211–252, 2015.

540 Hao Sun, Yen-Wei Chen, and Lanfen Lin. Tensorformer: A tensor-based multimodal transformer
541 for multimodal sentiment analysis and depression detection. *IEEE transactions on affective com-*
542 *puting*, 14(4):2776–2786, 2022.

543

544 David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub,
545 Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome project:
546 an overview. *Neuroimage*, 80:62–79, 2013.

547

548 Renjie Xu, Chong Wu, Maolin Che, Zhuoheng Ran, Yimin Wei, and Hong Yan. sparsegeohopca:
549 A geometric solution to sparse higher-order pca without covariance estimation. *arXiv preprint*
550 *arXiv:2506.08670*, 2025.

551

552 Zhengwu Zhang, Maxime Descoteaux, Jingwen Zhang, Gabriel Girard, Maxime Chamberland,
553 David Dunson, Anuj Srivastava, and Hongtu Zhu. Mapping population-based structural con-
554 nectomes. *NeuroImage*, 172:130–145, 2018.

555

556 Zhengwu Zhang, Genevera I Allen, Hongtu Zhu, and David Dunson. Tensor network factorizations:
557 Relationships between brain structural connectomes and traits. *Neuroimage*, 197:330–343, 2019.

558

559 Guoxu Zhou, Qibin Zhao, Yu Zhang, Tülay Adalı, Shengli Xie, and Andrzej Cichocki. Linked
560 component analysis from matrices to high-order tensors: Applications to biomedical data. *Pro-*
561 *ceedings of the IEEE*, 104(2):310–331, 2016.

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A PROOF OF THEOREM 3.1**
595596 This appendix provides the detailed proof of Theorem 3.1.
597598 *Proof.* Let $\{U_i\}_{i=1, i \neq n}^N$ denote the collection of all mode- i projection matrices excluding mode
599 n , i.e., $(U_1, \dots, U_{n-1}, U_{n+1}, \dots, U_N)$. We denote the objective function in (3) as $f(U_n)$ when all
600 other U_i 's are fixed. Assume that each U_i is column-orthonormal.601 By properties of mode-wise tensor projections and the orthogonality of $U_i U_i^\top$, we have:
602

603
$$\begin{aligned} f(U_n) &= \|\mathcal{X} - \mathcal{X} \times_1 U_1 U_1^\top \cdots \times_N U_N U_N^\top\|_F^2 \\ 604 &= \|\mathcal{X} \times_N U_N U_N^\top - \mathcal{X} \times_1 U_1 U_1^\top \cdots \times_N U_N U_N^\top\|_F^2 \\ 605 &\quad + \|\mathcal{X} - \mathcal{X} \times_N U_N U_N^\top\|_F^2 \\ 606 &\quad \vdots \\ 607 &= \|\mathcal{X} \times_{j \neq n} U_j U_j^\top - \mathcal{X} \times_{j \neq n} U_j U_j^\top \times_n U_n U_n^\top\|_F^2 \\ 608 &\quad + \|\mathcal{X} - \mathcal{X} \times_{j \neq n} U_j U_j^\top\|_F^2, \end{aligned} \tag{20}$$

609 where $\times_{j \neq n}$ denotes the sequence of mode- j projections over all $j \in \{1, \dots, N\} \setminus \{n\}$. Noting that
610 the second term in the final expression is independent of U_n , the optimization reduces to minimizing
611 $\|\mathcal{X} \times_{j \neq n} U_j^\top - \mathcal{X} \times_{j \neq n} U_j^\top \times_n U_n U_n^\top\|_F^2$. Let $X_n = \text{unfold}_n(\mathcal{X} \times_{j \neq n} U_j U_j^\top)$ and this is equiv-
612 alent to minimizing the matrix-form objective $\|X_n - U_n U_n^\top X_n\|_F^2$, which corresponds precisely to
613 Problem (3) in the main text, where k_n denotes the sparsity level adapted to mode n . This completes
614 the proof. \square
615616 **B ALGORITHM FOR STPCA FRAMEWORK**
617618 **Algorithm 1:** STPCA framework619 **Input:** Tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \cdots \times J_N}$; target ranks (R_1, \dots, R_N) ; sparsity levels $\{k_n\}_{n=1}^N$.
620621 **Output:** Factor matrices $\{U_n\}_{n=1}^N$ and core tensor \mathcal{G} .
622623 **1 for** $n = 1$ to N **do**
624625 **2 Compute** $X_n = X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$;
626 **3 Solve** mode- n sparse matrix subproblem:
627

628
$$\min_{U_n} \|X_n - U_n U_n^\top X_n\|_F^2 \quad \text{s.t. } \|\mathcal{X} \times_{j \neq n} U_j\|_1 \leq k_n, \quad U_n \in S_{R_n}^{J_n}.$$

629 **4 Set** $U_n \in \mathbb{R}^{J_n \times R_n}$ as the final solution for mode n ;
630631 **5 Compute** the core tensor as: $\mathcal{G} = \mathcal{X} \times_1 U_1^\top \times_2 U_2^\top \cdots \times_N U_N^\top$.
632633 **C SPARSE PCA FORMULATIONS VIA ℓ_0 PENALTY**
634635 This appendix provides the sparse PCA formulations via ℓ_0 -penalty.
636637 **C.1 SINGLE-UNIT SPARSE PCA VIA ℓ_0 PENALTY**
638639 We consider the cardinality-penalized formulation, which directly enforces sparsity by penalizing
640 the number of nonzero loadings. The single-unit case is given by
641

642
$$\phi_{\ell_0}^n(\gamma^n) \stackrel{\text{def}}{=} \max_{v_n^\top v_n \leq 1} \|X_n v_n\|_2^2 - \gamma^n \|v_n\|_0. \tag{21}$$

643 Since $\|X_n v_n\|_2^2 = \max_{z \in S_1^{J_n}} (z^\top X_n v_n)^2$, the problem can be rewritten as
644

645
$$\phi_{\ell_0}^n(\gamma^n) = \max_{z \in S_1^{J_n}} \max_{v_n} (z^\top X_n v_n)^2 - \gamma^n \|v_n\|_0. \tag{22}$$

648 For fixed z , the inner maximization has the explicit solution
 649

$$650 \quad v_n(i)^*(\gamma^n) = \frac{[\text{sign}((X_n(:, i)^\top z)^2 - \gamma^n)]_+ X_n(:, i)^\top z}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [\text{sign}((X_n(:, i)^\top z)^2 - \gamma^n)]_+ (X_n(:, i)^\top z)^2}}, \quad i = 1, \dots, \prod_{k \neq n} J_k. \\ 651 \quad 652 \quad 653 \quad 654 \quad 655 \quad 656 \quad 657 \quad 658 \quad 659 \quad 660 \quad 661 \quad 662 \quad 663 \quad 664 \quad 665 \quad 666 \quad 667 \quad 668 \quad 669 \quad 670 \quad 671 \quad 672 \quad 673 \quad 674 \quad 675 \quad 676 \quad 677 \quad 678 \quad 679 \quad 680 \quad 681 \quad 682 \quad 683 \quad 684 \quad 685 \quad 686 \quad 687 \quad 688 \quad 689 \quad 690 \quad 691 \quad 692 \quad 693 \quad 694 \quad 695 \quad 696 \quad 697 \quad 698 \quad 699 \quad 700 \quad 701$$

Substituting back yields the simplified objective

$$\boxed{\phi_{\ell_0}^n(\gamma^n) = \max_{z \in S_1^{J_n}} \sum_{i=1}^{\prod_{k \neq n} J_k} [(X_n(:, i)^\top z)^2 - \gamma^n]_+,} \quad (24)$$

which defines a smooth problem on the Stiefel manifold $S_1^{J_n}$, more tractable than the original non-convex form.

Deflation Scheme As in the ℓ_1 case, multiple components can be obtained by deflation (d'Aspremont et al., 2007). Given a sparse loading v , its score $z = Xv$ that solves $\min_{z \in \mathbb{R}^p} \|X - zv^\top\|_F$ is computed, and subsequent directions are extracted from the residual $X - zv^\top$. This sequential removal of explained variance ensures complementary components. Re-fined deflation methods (Mackey, 2008) improve stability and orthogonality.

C.2 BLOCK SPARSE PCA VIA ℓ_0 PENALTY

Extending to the block setting with multiple components, the ℓ_0 -penalized formulation reads

$$\psi_{\ell_0, R_n}^n(\gamma^n) \stackrel{\text{def}}{=} \max_{Z \in S_{R_n}^{J_n}, \text{diag}(V_n^\top V_n) = I_{R_n}} \text{Tr}(\text{diag}(Z^\top X_n V_n N^n)^2) - \sum_{j=1}^{R_n} \gamma_j^n \|V_n(:, j)\|_0. \quad (25)$$

where $\gamma^n = [\gamma_1^n, \dots, \gamma_{R_n}^n]^\top \geq 0$ controls sparsity and $N^n = \text{diag}(\mu_1^n, \dots, \mu_{R_n}^n)$ is positive diagonal, representing relative weights associated with different principal components. Since the problem decouples across columns of V_n , we obtain

$$\psi_{\ell_0, R_n}^n(\gamma^n) = \max_{Z \in S_{R_n}^{J_n}} \sum_{j=1}^{R_n} \max_{\|V_n(:, j)\|_2=1} (\mu_j^n Z(:, j)^\top X_n V_n(:, j))^2 - \gamma_j^n \|V_n(:, j)\|_0 \quad (26)$$

Thus, each column $V_n(:, j)$ admits the closed-form solution

$$V_n(i, j)^* = \frac{[\text{sign}((\mu_j^n X_n(:, i)^\top Z(:, j))^2 - \gamma_j^n)]_+ \mu_j^n X_n(:, i)^\top Z(:, j)}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [\text{sign}((\mu_j^n X_n(:, k)^\top Z(:, j))^2 - \gamma_j^n)]_+ (\mu_j^n X_n(:, k)^\top Z(:, j))^2}}. \quad (27)$$

The final block reformulation is therefore

$$\boxed{\psi_{\ell_0, R_n}^n(\gamma^n) = \max_{Z \in S_{R_n}^{J_n}} \sum_{j=1}^{R_n} \sum_{i=1}^{\prod_{k \neq n} J_k} [(\mu_j^n X_n(:, i)^\top Z(:, j))^2 - \gamma_j^n]_+,} \quad (28)$$

which, like the ℓ_1 case, maximizes a convex function on the Stiefel manifold $S_{R_n}^{J_n}$ and admits efficient optimization within the generalized power method framework.

D ALGORITHM FOR GENERALIZED GRADIENT SCHEME

A reasonable stopping criterion for Algorithm 2 is to terminate either when the relative change of the objective function becomes sufficiently small,

$$\frac{f(x_{k+1}) - f(x_k)}{f(x_k)} \leq \epsilon, \quad (29)$$

or when the maximum number of iterations k_{\max} is reached.

702 **Algorithm 2:** Generalized gradient scheme for convex maximization

703 **Input:** Initial iterate $x_0 \in Q$.
704 **Output:** Iterates $\{x_k\}$ approximating the solution of (14).
705 **1** **while** stopping criterion not met **do**
706 **2** $x_{k+1} \leftarrow \arg \max_{y \in Q} \{f(x_k) + \langle f'(x_k), y - x_k \rangle\}$;

708 **E PROOF OF THEOREM 3.2**

711 This appendix provides the detailed proof of Theorem 3.2.

713 *Proof.* Let $\Delta(x) \stackrel{\text{def}}{=} \max_{y \in Q} \langle f'(x), y - x \rangle$. We first establish the estimate
714
$$\Delta(x_k) \geq \frac{\sigma_Q}{2} \|f'(x_k)\|_* \|x_{k+1} - x_k\|^2. \quad (30)$$

716 Since f is convex, $\Delta(x_k) \geq 0$. Thus we focus on the case $\sigma_Q > 0$ and $f'(x_k) \neq 0$. By optimality
717 of x_{k+1} we have

718
$$\langle f'(x_k), y - x_{k+1} \rangle \geq 0 \quad \text{for all } y \in \text{Conv}(Q). \quad (31)$$

719 Choosing

720
$$y = y_\alpha \stackrel{\text{def}}{=} x_k + \alpha(x_{k+1} - x_k) + \frac{\sigma_Q}{2} \alpha(1 - \alpha) \|x_{k+1} - x_k\|^2 \frac{G^{-1} f'(x_k)}{\|f'(x_k)\|_*}, \quad \alpha \in [0, 1], \quad (32)$$

723 and using the definition of strong convexity of $\text{Conv}(Q)$ (Assumption 3), we obtain

724
$$0 \geq \langle f'(x_k), y_\alpha - x_{k+1} \rangle = (1 - \alpha) \langle f'(x_k), x_k - x_{k+1} \rangle + \frac{\sigma_Q}{2} \alpha(1 - \alpha) \|x_{k+1} - x_k\|^2 \|f'(x_k)\|_*. \quad (33)$$

726 Since α is arbitrary in $[0, 1]$, the estimate follows. Here G^{-1} denotes the inverse of the Riesz map
727 associated with the chosen norm, which maps subgradients from the dual space back into E ; in the
728 Euclidean case, this reduces to identity, $G = I$, and thus $G^{-1} = I$.

729 Finally,

730
$$f(x_{k+1}) - f(x_k) \geq \Delta(x_k) + \frac{\sigma_f}{2} \|x_{k+1} - x_k\|^2 \geq \frac{\sigma_Q \delta_f + \sigma_f}{2} \|x_{k+1} - x_k\|^2, \quad (34)$$

732 and the additional assumptions ensure $\sigma_Q \delta_f + \sigma_f > 0$. Summing over $k \geq 0$ completes the proof.

733 □

735 **F ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ_1 PENALTY**

738 **Algorithm 3:** ℓ_1 single-unit pattern finding

739 **Input:** $X_n \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$; parameter $\gamma^n \geq 0$; initial $z \in S_1^{J_n}$.

740 **Output:** Locally optimal sparsity pattern P .

741 **1** **while** stopping criterion not met **do**
742 **2** $z \leftarrow \sum_{i=1}^{\prod_{i \neq n} J_i} [|X_n(:, i)^\top z| - \gamma^n]_+ \text{sign}(X_n(:, i)^\top z) X_n(:, i)$;
743 **3** $z \leftarrow z / \|z\|_2$;
745 **4** Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i}$ with $P(i) = 1$ if $|X_n(:, i)^\top z| > \gamma^n$, else 0;

747 At each iteration, Algorithm 2 requires maximizing a convex function over the Stiefel manifold.
748 As introduced in Section 2.1, we denote by $\text{Polar}(A)$ the U factor in the polar decomposition of a
749 matrix $A \in \mathbb{R}^{p \times m}$,

750
$$A = UP, \quad (35)$$

751 where $U \in S_m^p$ and $P \in \mathbb{R}^{m \times m}$ is positive semi-definite. The polar decomposition has complexity
752 $\mathcal{O}(pm^2)$ for $p \geq m$. By part of the Theorem 3.3, the main step of Algorithm 2 can be expressed as

753
$$x_{k+1} = \text{Polar}(f'(x_k)). \quad (36)$$

754 This formulation directly yields Algorithm 3 and Algorithm 4.

755 For Algorithms 3 and 4, the stopping criterion is adopted from Appendix D.

756

Algorithm 4: ℓ_1 block pattern finding

757

Input: $X_n \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$; parameters $\gamma_j^n \geq 0, \mu_j^n > 0$; initial $Z \in S_{R_n}^{J_n}$.

759

Output: Locally optimal sparsity pattern P .

760

1 **while** stopping criterion not met **do**

761

2 **for** $j = 1$ **to** R_n **do**

762

3 $Z(:, j) \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} \mu_j^n [\mu_j^n |X_n(:, i)^\top Z(:, j)| - \gamma_j^n]_+ \text{sign}(X_n(:, i)^\top Z(:, j)) X_n(:, i);$

763

4 $Z \leftarrow \text{Polar}(Z);$

764

5 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i \times R_n}$ with $P(i, j) = 1$ if $\mu_j^n |X_n(:, i)^\top Z(:, j)| > \gamma_j^n$, else 0;

765

766

767

G ALGORITHMS FOR SPARSE PCA SUBPROBLEM WITH ℓ_0 PENALTY

768

The ℓ_0 -penalized counterparts of the algorithms in Section 3.7 are summarized below. These follow the same two-stage structure of pattern-finding and post-processing, but enforce sparsity directly through cardinality penalties. For parameter selection, the thresholds are chosen below the following natural upper bounds: $\gamma^n \leq \max_i \|X_n(:, i)\|_2^2$ for the single-unit case, and $\gamma_j^n \leq \max_i (\mu_j^n)^2 \|X_n(:, i)\|_2^2$ for the block case.

770

The computational complexity remains the same order as in the ℓ_1 case: the single-unit algorithms (Algorithms 5) require $O\left(\prod_{n=1}^N J_n\right)$ operations per iteration, while the block algorithms (Algorithms 6) require $O\left(R_n \prod_{n=1}^N J_n\right)$ operations.

778

780

Algorithm 5: ℓ_0 single-unit pattern finding

781

Input: $X_n \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$; parameter $\gamma^n \geq 0$; initial $z \in S_1^{J_n}$.

782

Output: Locally optimal sparsity pattern P .

783

1 **while** stopping criterion not met **do**

784

2 $z \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} [\text{sign}(X_n(:, i)^\top z)^2 - \gamma^n]_+ X_n(:, i)^\top z X_n(:, i);$

785

3 $z \leftarrow z / \|z\|_2;$

786

4 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i}$ with $P(i) = 1$ if $(X_n(:, i)^\top z)^2 > \gamma^n$, else 0;

787

788

789

790

Following the discussion for the ℓ_1 -penalized case, the gradient-scheme update under ℓ_0 penalties is also performed via the polar decomposition. In particular, the main iteration can be expressed as

793

$$x_{k+1} = \text{Polar}(f'(x_k)), \quad (37)$$

794

795

This formulation naturally extends the ℓ_1 setting and directly leads to Algorithm 5 and Algorithm 6.

796

797

798

Algorithm 6: ℓ_0 block pattern finding

799

Input: $X_n \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$; parameters $\gamma_j^n \geq 0, \mu_j^n > 0$; initial $Z \in S_{R_n}^{J_n}$.

800

Output: Locally optimal sparsity pattern P .

801

1 **while** stopping criterion not met **do**

802

2 **for** $j = 1$ **to** R_n **do**

803

3 $Z(:, j) \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} (\mu_j^n)^2 [\text{sign}(\mu_j^n X_n(:, i)^\top Z(:, j))^2 - \gamma_j^n]_+ X_n(:, i)^\top Z(:, j) X_n(:, i);$

804

4 $Z \leftarrow \text{Polar}(Z);$

805

5 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i \times R_n}$ with $P(i, j) = 1$ if $(\mu_j^n X_n(:, i)^\top Z(:, j))^2 > \gamma_j^n$, else 0;

806

807

808

809

For Algorithms 5 and 6, the stopping criterion is adopted from Appendix D.

810 **H PROOF OF THEOREM 3.3**
 811

812 This appendix provides the detailed proof of Theorem 3.3.
 813

814 *Proof.* **Step 1. Fixed V_n .** For $\text{diag}(V_n^\top V_n) = I_{R_n}$, Problem (18) reduces to
 815

$$\max_{Z \in S_{R_n}^{J_n}} \text{Tr}(Z^\top X_n V_n N^n) = \max_{Z \in S_{R_n}^{J_n}} \langle Z, X_n V_n N^n \rangle. \quad (38)$$

816 Let $X_n V_n N^n = U \Sigma W^\top$ be the singular value decomposition (SVD), where U is $J_n \times J_n$ orthonormal,
 817 W is $R_n \times R_n$ orthonormal, and Σ is diagonal with entries $\{\sigma_i\}_{i=1}^{R_n}$. Then
 818

$$\max_{Z \in S_{R_n}^{J_n}} \langle Z, X_n V_n N^n \rangle = \max_{Z \in S_{R_n}^{J_n}} \langle U^\top Z W, \Sigma \rangle \leq \sum_{i=1}^{R_n} \sigma_i.$$

819 From the SVD, both factors of the polar decomposition are explicit. Setting U' as the first R_n
 820 columns of U and Σ' as the $R_n \times R_n$ principal block of Σ , we have
 821

$$X_n V_n N^n = U' \Sigma' W^\top = (U' W^\top)(W \Sigma' W^\top). \quad (39)$$

822 Thus the polar decomposition gives $V = U' W^\top$ and $P = W \Sigma' W^\top$, with
 823

$$\langle V, X_n V_n N^n \rangle = \text{Tr}(P) = \sum_{i=1}^{R_n} \sigma_i. \quad (40)$$

824 Since $N^{n\top} V_n^\top X_n^\top X_n V_n N^n = P^2$, we obtain
 825

$$Z^* = X_n V_n N^n (N^{n\top} V_n^\top X_n^\top X_n V_n N^n)^{-1/2}, \quad (41)$$

826 which is precisely the left orthonormal factor of the polar decomposition of $X_n V_n N^n$.
 827

828 **Step 2. Fixed Z .** For $Z \in S_{R_n}^{J_n}$, Problem (18) becomes
 829

$$\max_{\text{diag}(V_n^\top V_n) = I_{R_n}, V_n|_{P'} = 0} \text{Tr}(Z^\top X_n V_n N^n). \quad (42)$$

830 The Lagrangian of the optimization Problem (42) is
 831

$$\mathcal{L}(V_n, \Lambda_1, \Lambda_2) = \text{Tr}(Z^\top X_n V_n N^n) - \text{Tr}(\Lambda_1(V_n^\top V_n - I_{R_n})) - \text{Tr}(\Lambda_2^\top V_n), \quad (43)$$

832 where Λ_1 is diagonal and invertible, and $\Lambda_2|_{P'} = 0$. The first-order conditions yield
 833

$$X_n^\top Z N^n - 2V_n \Lambda_1 - \Lambda_2 = 0, \quad \text{diag}(V_n^\top V_n) = I_{R_n}, \quad V_n|_{P'} = 0. \quad (44)$$

834 Hence any stationary point V_n satisfies
 835

$$V_n|_P = (X_n^\top Z N^n D)|_P, \quad V_n|_{P'} = 0, \quad (45)$$

836 where D is a positive diagonal matrix normalizing the columns of V_n , explicitly
 837

$$D = \text{diag}(N^n Z^\top X_n X_n^\top Z N^n)^{-1/2}. \quad (46)$$

838 \square
 839

840 **I ALGORITHM FOR POST-PROCESSING**
 841

842 For Algorithms 7, the stopping criterion is adopted from Appendix D.
 843

864

865 **Algorithm 7:** Alternating optimization scheme for post-processing866 **Input:** Data matrix $X_n \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$; sparsity pattern P ; diagonal weight matrix867 $N^n = \text{diag}(\mu_1, \dots, \mu_{R_n})$; initial iterate $Z \in S_{R_n}^{J_n}$.868 **Output:** Local maximizer (Z, V_n) of (16).

```

869 1 while stopping criterion not met do
870 2    $V_n \leftarrow X_n^\top Z N^n$ ;
871 3    $V_n \leftarrow V_n \text{diag}(V_n^\top V_n)^{-1/2}$ ;
872 4    $V_n|_P \leftarrow 0$ ;
873 5    $Z \leftarrow \text{Polar}(X_n V_n N^n)$ ;
874

```

875

876

877 Table 2: Construction of $V_n|_P$.

878

	Computation of P	Computation of $V_n _P$
GP-STPCA(ℓ_1)	Algorithm 3	Solution (17)
GP-STPCA(ℓ_0)	Algorithm 5	Solution (23)
GP-STPCA(ℓ_1 , block)	Algorithm 4	Algorithm 7
GP-STPCA(ℓ_0 , block)	Algorithm 6	Solution (27)

884

885

886 Table 3: Summary of the four GP-STPCA variants and their per-iteration computational complexity.

887

	Algorithm	Complexity (per iteration)
GP-STPCA(ℓ_1)	Algorithm 8	$\mathcal{O}\left(\prod_{n=1}^N J_n\right)$
GP-STPCA(ℓ_1 , block)	Algorithm 9	$\mathcal{O}\left(R_n \prod_{n=1}^N J_n\right)$
GP-STPCA(ℓ_0)	Algorithm 10	$\mathcal{O}\left(\prod_{n=1}^N J_n\right)$
GP-STPCA(ℓ_0 , block)	Algorithm 11	$\mathcal{O}\left(R_n \prod_{n=1}^N J_n\right)$

895

896

897 **Algorithm 8:** GP-STPCA(ℓ_1)898 **Input:** Tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \dots \times J_N}$; target ranks (R_1, \dots, R_N) .899 **Output:** Factor matrices $\{U_n\}_{n=1}^N$ and core tensor \mathcal{G} .900 1 **for** $n = 1$ to N **do**901 2 Compute $X_n = X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$;902 3 **for** $r = 1$ to R_n **do**903 4 Initialize the parameter $\gamma^n \geq 0$ and the vector $z \in S_1^{J_n}$;904 5 **while** stopping criterion not met **do**

```

905 6        $z \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} [|X_n(:, i)^\top z| - \gamma^n]_+ \text{sign}(X_n(:, i)^\top z) X_n(:, i);$ 
906 7        $z \leftarrow z / \|z\|_2$ ;

```

907 8 Construct $P \in \{0, 1\}^{\prod_{k \neq n} J_k}$ with $P(i) = 1$ if $|X_n(:, i)^\top z| > \gamma^n$, else 0;908 9 Compute rank-1 decomposition $X_n|_P = \sigma u v^\top$;909 10 $v_r \leftarrow v$;910 11 $z \leftarrow \min_z \|X_n - z v_r^\top\|_F$;911 12 $X_n \leftarrow X_n - z v_r^\top$;912 13 Construct V_n by all v_r ;913 14 Compute U_n as the left orthonormal factor in the SVD of $X_n V_n$;914 15 Set $U_n \in \mathbb{R}^{J_n \times R_n}$ as the final solution for mode n ;915 16 Compute the core tensor as: $\mathcal{G} = \mathcal{X} \times_1 U_1^\top \times_2 U_2^\top \dots \times_N U_N^\top$.

916

917

918

919

920

Algorithm 9: GP-STPCA(ℓ_1 , block)

921

Input: Tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \dots \times J_N}$; target ranks (R_1, \dots, R_N) .

923

Output: Factor matrices $\{U_n\}_{n=1}^N$ and core tensor \mathcal{G} .

924

1 for $n = 1$ to N **do**

925

2 Compute $X_n = X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$;

926

3 Initialize the parameters $\gamma_j^n \geq 0$, $\mu_j^n > 0$ and the matrix $Z \in S_{R_n}^{J_n}$;

927

4 **while** stopping criterion not met **do**

928

5 **for** $j = 1$ to R_n **do**

929

6 $Z(:, j) \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} \mu_j^n [\mu_j^n |X_n(:, i)^\top Z(:, j)| - \gamma_j^n]_+ \text{sign}(X_n(:, i)^\top Z(:, j)) X_n(:, i);$

930

7 $Z \leftarrow \text{Polar}(Z);$

931

8 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i \times R_n}$ with $P(i, j) = 1$ if $\mu_j^n |X_n(:, i)^\top Z(:, j)| > \gamma_j^n$, else 0;

932

9 **while** stopping criterion not met **do**

933

10 $V_n \leftarrow X_n^\top Z N^n;$

934

11 $V_n \leftarrow V_n \text{diag}(V_n^\top V_n)^{-1/2};$

935

12 $V_n|_{P'} \leftarrow 0$ (P' is the complement of P);

936

13 $Z \leftarrow \text{Polar}(X_n V_n N^n);$

937

14 Compute U_n as the left orthonormal factor in the SVD of $X_n V_n$;

938

15 Set $U_n \in \mathbb{R}^{J_n \times R_n}$ as the final solution for mode n ;

939

16 Compute the core tensor as: $\mathcal{G} = \mathcal{X} \times_1 U_1^\top \times_2 U_2^\top \dots \times_N U_N^\top$.

940

941

942

943

944

945

946

947

Algorithm 10: GP-STPCA(ℓ_0)

948

Input: Tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \dots \times J_N}$; target ranks (R_1, \dots, R_N) .

949

Output: Factor matrices $\{U_n\}_{n=1}^N$ and core tensor \mathcal{G} .

950

1 for $n = 1$ to N **do**

951

2 Compute $X_n = X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$;

952

3 **for** $r = 1$ to R_n **do**

953

4 Initialize the parameter $\gamma^n \geq 0$ and the vector $z \in S_1^{J_n}$;

954

5 **while** stopping criterion not met **do**

955

6 $z \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} [\text{sign}(X_n(:, i)^\top z)^2 - \gamma^n]_+ X_n(:, i)^\top z X_n(:, i); z \leftarrow z / \|z\|_2;$

956

7 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i}$ with $P(i) = 1$ if $(X_n(:, i)^\top z)^2 > \gamma^n$, else 0;

957

8 **for** $i = 1$ to $\prod_{k \neq n} J_k$ **do**

958

9 **while** $P(i) = 1$ **do**

959

10 $v_r(i) = \frac{[\text{sign}((X_n(:, i)^\top z)^2 - \gamma^n)]_+ X_n(:, i)^\top z}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [\text{sign}((X_n(:, i)^\top z)^2 - \gamma^n)]_+ (X_n(:, i)^\top z)^2}}.$

960

11 $z \leftarrow \min_z \|X_n - z v_r^\top\|_F;$

961

12 $X_n \leftarrow X_n - z v_r^\top;$

962

13 Construct V_n by all v_r ;

963

14 Compute U_n as the left orthonormal factor in the SVD of $X_n V_n$;

964

15 Set $U_n \in \mathbb{R}^{J_n \times R_n}$ as the final solution for mode n ;

965

16 Compute the core tensor as: $\mathcal{G} = \mathcal{X} \times_1 U_1^\top \times_2 U_2^\top \dots \times_N U_N^\top$.

966

967

968

969

970

971

972
973 **Algorithm 11: GP-STPCA(ℓ_0 , block)**
974 **Input:** Tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times J_2 \times \dots \times J_N}$; target ranks (R_1, \dots, R_N) .
975 **Output:** Factor matrices $\{U_n\}_{n=1}^N$ and core tensor \mathcal{G} .
976 **1 for** $n = 1$ to N **do**
977 2 Compute $X_n = X_{(n)} \in \mathbb{R}^{J_n \times \prod_{i \neq n} J_i}$;
978 3 Initialize the parameters $\gamma_j^n \geq 0$, $\mu_j^n > 0$ and the matrix $Z \in S_{R_n}^{J_n}$;
979 4 **while** stopping criterion not met **do**
980 5 **for** $j = 1$ to R_n **do**
981 6 $Z(:, j) \leftarrow \sum_{i=1}^{\prod_{k \neq n} J_k} (\mu_j^n)^2 [\text{sign}(\mu_j^n X_n(:, i)^\top Z(:, j))^2 - \gamma_j^n]_+ X_n(:, i)^\top Z(:,$
982 7 $, j) X_n(:, i)$;
983 7 $Z \leftarrow \text{Polar}(Z)$;
984 8 Construct $P \in \{0, 1\}^{\prod_{i \neq n} J_i \times R_n}$ with $P(i, j) = 1$ if $(\mu_j^n X_n(:, i)^\top Z(:, j))^2 > \gamma_j^n$, else 0;
985 9 **for** $i = 1$ to $\prod_{k \neq n} J_k$ **do**
986 10 **for** $j = 1$ to R_n **do**
987 11 **while** $P(i, j) = 1$ **do**
988 12 $V_n(i, j) = \frac{[\text{sign}((\mu_j^n X_n(:, i)^\top Z(:, j))^2 - \gamma_j^n)]_+ \mu_j^n X_n(:, i)^\top Z(:, j)}{\sqrt{\sum_{k=1}^{\prod_{p \neq n} J_p} [\text{sign}((\mu_j^n X_n(:, k)^\top Z(:, j))^2 - \gamma_j^n)]_+ (\mu_j^n X_n(:, k)^\top Z(:, j))^2}}$;
989 13 Compute U_n as the left orthonormal factor in the SVD of $X_n V_n$;
990 14 Set $U_n \in \mathbb{R}^{J_n \times R_n}$ as the final solution for mode n ;
991 15 Compute the core tensor as: $\mathcal{G} = \mathcal{X} \times_1 U_1^\top \times_2 U_2^\top \dots \times_N U_N^\top$.
992
993
994
995
996
997

J DETAILS OF GP-STPCA AND INITIALIZATION OF HYPERPARAMETERS

998 To summarize, we present four variants for constructing V_n , which combine a procedure for identifying a suitable sparsity pattern P with a corresponding method for computing the active entries. The specific combinations are listed in Table 2.

1000 We are now ready to present the complete algorithms for the four variants of GP-STPCA. Algorithm 8 corresponds to the ℓ_1 single-unit formulation, Algorithm 9 to the ℓ_1 block formulation, Algorithm 10 to the ℓ_0 single-unit formulation, and Algorithm 11 to the ℓ_0 block formulation. Table 3 provides an overview of the four variants, where the last column lists the per-iteration computational complexity of the corresponding subproblems, derived from the analyses in Section 3.7 and Appendix G. For all algorithms, the stopping criterion follows Appendix D.

1001 Initialization must ensure at least one active element in the sparsity pattern. For the single-unit case, we choose $z \in S_1^{J_n}$ parallel to the column of X_n with maximum norm:

$$1011 \quad z = \frac{X_n(:, i^*)}{\|X_n(:, i^*)\|_2}, \quad i^* = \arg \max_i \|X_n(:, i)\|_2. \quad (47)$$

1012 For the block case, we set $Z = [z \mid Z_\perp]$ with $Z_\perp \in S_{R_n-1}^{J_n}$ orthogonal to z .

1013 According to the analysis in the literature, the sparsity-inducing parameters can be initialized randomly within the following ranges:

- 1014 • for GP-STPCA(ℓ_1), $\gamma^n \sim \mathcal{N}(0, \max_i \|X_n(:, i)\|_2)$;
- 1015 • for GP-STPCA(ℓ_0), $\sqrt{\gamma^n} \sim \mathcal{N}(0, \max_i \|X_n(:, i)\|_2)$;
- 1016 • for GP-STPCA(ℓ_1 , block), $\gamma_j^n \sim \mathcal{N}(0, \mu_j^n \max_i \|X_n(:, i)\|_2)$;
- 1017 • for GP-STPCA(ℓ_0 , block), $\sqrt{\gamma_j^n} \sim \mathcal{N}(0, \mu_j^n \max_i \|X_n(:, i)\|_2)$;

1018 Thus, in all four cases, the parameters may be drawn randomly from these distributions. However, as demonstrated in the experiments of Journée et al. (2010), the algorithms are generally robust to

1026 Table 4: Choices of the hyperparameters γ^n and γ_j^n for different GP-STPCA variants.
1027

1028 Algorithm	1029 Hyperparameter
1029 GP-STPCA(ℓ_1)	$\gamma^n = \frac{1}{2} \max_i \ X_n(:, i)\ _2$
1030 GP-STPCA(ℓ_0)	$\gamma^n = \frac{1}{4} \max_i \ X_n(:, i)\ _2^2$
1031 GP-STPCA(ℓ_1 , block)	$\gamma_j^n = \frac{1}{2} \mu_j^n \max_i \ X_n(:, i)\ _2$
1032 GP-STPCA(ℓ_0 , block)	$\gamma_j^n = \frac{1}{4} (\mu_j^n)^2 \max_i \ X_n(:, i)\ _2^2$

1034
1035 initialization. Hence, the fixed values listed in Table 4 serve as a reliable guideline for choosing
1036 initial parameters in practice.1037 For the block case, N^n can be chosen as needed; in our experiments, we simply set it to the identity
1038 matrix.1040
1041 **K ADDITIONAL DETAILS ON SYNTHETIC EXPERIMENTS ON SPARSE
1042 SUPPORT RECOVERY**1043
1044 **K.1 SIMULATION SETUP**1045 We design four simulation scenarios to capture both balanced and unbalanced settings with different
1046 sparsity structures:1047
1048 • **Scenario 1 (balanced):** $100 \times 100 \times 100$, sparsity only in mode \mathbf{U} ;
1049 • **Scenario 2 (unbalanced):** $1000 \times 20 \times 20$, sparsity only in mode \mathbf{U} ;
1050 • **Scenario 3 (balanced):** $100 \times 100 \times 100$, sparsity in all three modes;
1051 • **Scenario 4 (unbalanced):** $1000 \times 20 \times 20$, sparsity in all three modes.
1052
10531054 For sparse modes, 50% of the entries are randomly set to zero and the remaining entries are sampled
1055 from $N(0, 1)$. For dense modes, the factors are constructed as the leading K left or right singular
1056 vectors of random Gaussian matrices with i.i.d. $N(0, 1)$ entries. Scenarios 1 and 3 thus represent
1057 balanced tensors, while Scenarios 2 and 4 illustrate unbalanced cases with one dominant mode.1058
1059 **K.2 ROC ANALYSIS AND FEATURE SELECTION ACCURACY**1060 To quantify the accuracy of support recovery, we report averaged Receiver Operating Characteristic
1061 (ROC) curves over 50 replications in each simulation setting. Figure 2 displays ROC curves for
1062 mode- u_1 in Scenarios 1 and 2, where it is the only sparse mode. Figure 5 presents ROC curves for
1063 modes u_1, v_1 , and w_1 in Scenarios 3 and 4, where sparsity is present in all modes.1064 In both settings, all variants of the proposed *GP-STPCA* achieve recovery performance comparable
1065 to *sparseGeoHOPCA* while significantly outperforming HOPCA (Kolda & Bader, 2009), and they
1066 do so with markedly faster computation.1067 As illustrated in Figures 2 and 5, *sparseGeoHOPCA* consistently maintains a high true positive
1068 rate while keeping the false positive rate relatively low across all simulation scenarios. Among the
1069 *GP-STPCA* variants, the choice of ℓ_0 or ℓ_1 penalty leads to similar results; however, the block for-
1070 mulations consistently yield larger areas under the ROC curve (AUC), highlighting their robustness
1071 and reliability. Overall, these results validate the effectiveness of *GP-STPCA* for sparse recovery in
1072 both balanced and unbalanced settings.1073
1074 **K.3 SUPPORT RECOVERY AND EFFICIENCY COMPARISON**1075 Table 5 reports the mean and standard deviation of true positive (TP) and false positive (FP) rates,
1076 together with runtime, for HOPCA, *sparseGeoHOPCA*, and the four GP-STPCA variants across
1077 Scenarios 1–4. The results complement the ROC analysis by providing a detailed quantitative com-
1078 parison.

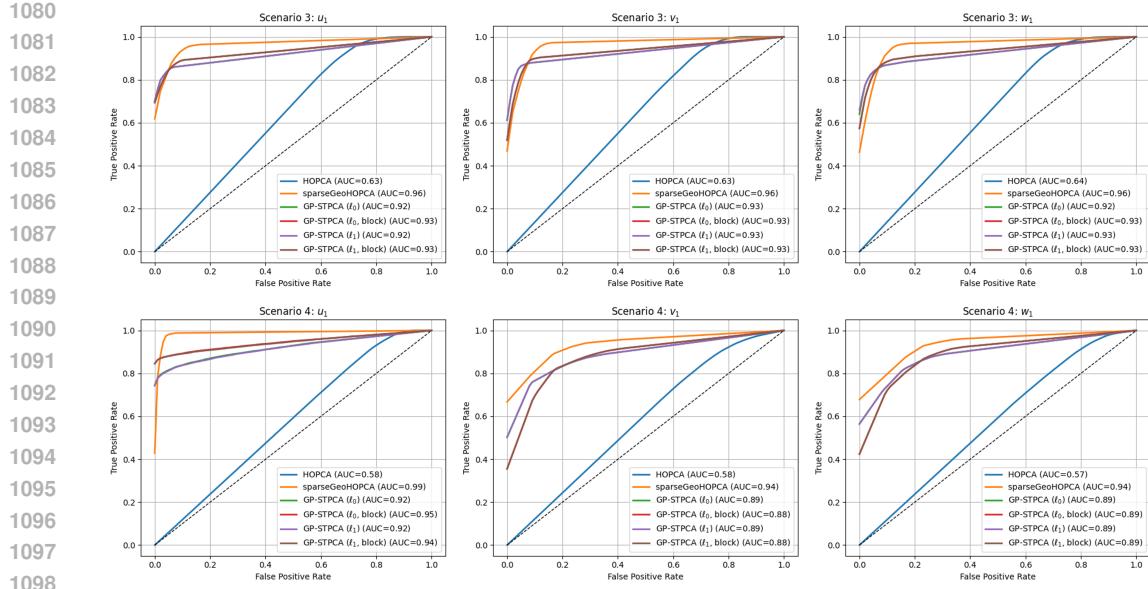


Figure 5: ROC curves for modes u_1 , v_1 , and w_1 in Scenarios 3 and 4, where sparsity is present in all modes. Results are averaged over fifty independent runs.

Overall, HOPCA attains perfect TP rates across all modes, but at the expense of excessive false positives, often above 70% in Scenarios 3 and 4, which indicates very poor feature specificity. SparseGeoHOPCA substantially alleviates this issue by maintaining high TP recovery while reducing FP to below 10% in most cases, albeit with high computational cost ($\sim 1\text{--}1.6$ s per run). By contrast, the proposed GP-STPCA variants achieve recovery performance competitive with sparseGeoHOPCA but with drastically reduced runtime (typically $\sim 0.01\text{--}0.02$ s). Differences between ℓ_0 - and ℓ_1 -penalties are minor, while block variants generally yield slightly higher TP rates at the cost of somewhat larger FP in certain modes (e.g., Scenario 4, mode u_1).

In summary, HOPCA provides high sensitivity but fails to control false positives; sparseGeoHOPCA achieves accurate and stable recovery but is computationally expensive; GP-STPCA, in contrast, combines the advantages of both—offering reliable support recovery comparable to sparseGeoHOPCA while being orders of magnitude faster. This balance of accuracy, sparsity control, and efficiency makes GP-STPCA a practical and scalable choice for large-scale sparse tensor decomposition tasks.

L DETAILS OF IMAGE RECONSTRUCTION EXPERIMENT

Experimental protocol. We evaluate the proposed *GP-STPCA* on six ImageNet RGB images using four variants (penalty and block settings): *GP-STPCA* (ℓ_0), *GP-STPCA* (ℓ_0 , block), *GP-STPCA* (ℓ_1), and *GP-STPCA* (ℓ_1 , block). We randomly selected six RGB images from the ImageNet dataset Russakovsky et al. (2015), with original resolutions of $446 \times 349 \times 3$, $472 \times 349 \times 3$, and $349 \times 349 \times 3$, respectively. The baseline *sparseGeoHOPCA* is included for comparison. All methods retain the same number of components (90), and the reconstructions are obtained by linearly combining the selected bases. Representative visuals are shown in Figure 3 (Image1–3) and Figure 6 (Image4–6); the corresponding PSNR tables are Table 1 and Table 6, respectively.

Qualitative results (Figs. 3 and 6). Across all six samples, *GP-STPCA* variants produce sharper edges and more faithful textures than the baseline. Typical degradations observed in the baseline—blurred details, color wash-out, and faint directional banding—are substantially reduced by *GP-STPCA*. Block variants are particularly effective on scenes with complex local textures (e.g., the bird feathers, coral/fish patterns, and sailboat rigging in Figure 3), where they better preserve fine structures and suppress streaking.

1134

1135

1136

1137

1138

1139

Table 5: Support recovery (TP/FP) and runtime for Scenarios 1–4.

Scenario	Mode	Method	TP (mean \pm std)	FP (mean \pm std)	Time (s)
1	u_1	HOPCA	1.000 \pm 0.000	0.486 \pm 0.116	0.136
		sparseGeoHOPCA	0.967 \pm 0.046	0.029 \pm 0.046	1.038
		GP-STPCA (ℓ_0)	0.857 \pm 0.065	0.007 \pm 0.020	0.018
		GP-STPCA (ℓ_0 , block)	0.888 \pm 0.060	0.015 \pm 0.031	0.018
		GP-STPCA (ℓ_1)	0.857 \pm 0.065	0.007 \pm 0.020	0.021
		GP-STPCA (ℓ_1 , block)	0.888 \pm 0.060	0.015 \pm 0.031	0.021
2	u_1	HOPCA	1.000 \pm 0.000	0.673 \pm 0.064	0.076
		sparseGeoHOPCA	0.989 \pm 0.014	0.008 \pm 0.011	1.622
		GP-STPCA (ℓ_0)	0.976 \pm 0.061	0.561 \pm 0.021	0.009
		GP-STPCA (ℓ_0 , block)	0.989 \pm 0.030	0.644 \pm 0.020	0.008
		GP-STPCA (ℓ_1)	0.975 \pm 0.062	0.569 \pm 0.022	0.010
		GP-STPCA (ℓ_1 , block)	0.988 \pm 0.033	0.642 \pm 0.021	0.010
3	u_1	HOPCA	1.000 \pm 0.000	0.734 \pm 0.079	0.141
		sparseGeoHOPCA	0.958 \pm 0.053	0.028 \pm 0.045	1.041
		GP-STPCA (ℓ_0)	0.850 \pm 0.075	0.006 \pm 0.017	0.020
		GP-STPCA (ℓ_0 , block)	0.881 \pm 0.070	0.013 \pm 0.029	0.019
		GP-STPCA (ℓ_1)	0.850 \pm 0.075	0.006 \pm 0.017	0.020
		GP-STPCA (ℓ_1 , block)	0.881 \pm 0.070	0.013 \pm 0.029	0.020
	v_1	HOPCA	1.000 \pm 0.000	0.736 \pm 0.077	0.141
		sparseGeoHOPCA	0.968 \pm 0.048	0.043 \pm 0.052	1.041
		GP-STPCA (ℓ_0)	0.869 \pm 0.077	0.011 \pm 0.020	0.020
		GP-STPCA (ℓ_0 , block)	0.893 \pm 0.069	0.024 \pm 0.034	0.019
		GP-STPCA (ℓ_1)	0.869 \pm 0.077	0.011 \pm 0.020	0.020
		GP-STPCA (ℓ_1 , block)	0.893 \pm 0.069	0.024 \pm 0.034	0.020
4	u_1	HOPCA	1.000 \pm 0.000	0.850 \pm 0.071	0.073
		sparseGeoHOPCA	0.987 \pm 0.016	0.012 \pm 0.017	1.644
		GP-STPCA (ℓ_0)	0.942 \pm 0.110	0.576 \pm 0.018	0.009
		GP-STPCA (ℓ_0 , block)	0.977 \pm 0.052	0.753 \pm 0.019	0.008
		GP-STPCA (ℓ_1)	0.942 \pm 0.110	0.579 \pm 0.023	0.009
		GP-STPCA (ℓ_1 , block)	0.977 \pm 0.057	0.750 \pm 0.020	0.009
	v_1	HOPCA	1.000 \pm 0.000	0.841 \pm 0.124	0.072
		sparseGeoHOPCA	0.927 \pm 0.096	0.056 \pm 0.104	1.570
		GP-STPCA (ℓ_0)	0.844 \pm 0.123	0.066 \pm 0.106	0.011
		GP-STPCA (ℓ_0 , block)	0.880 \pm 0.108	0.117 \pm 0.130	0.011
		GP-STPCA (ℓ_1)	0.844 \pm 0.123	0.066 \pm 0.106	0.012
		GP-STPCA (ℓ_1 , block)	0.880 \pm 0.108	0.117 \pm 0.130	0.012
	w_1	HOPCA	1.000 \pm 0.000	0.859 \pm 0.109	0.072
		sparseGeoHOPCA	0.938 \pm 0.085	0.064 \pm 0.113	1.570
		GP-STPCA (ℓ_0)	0.856 \pm 0.119	0.068 \pm 0.110	0.011
		GP-STPCA (ℓ_0 , block)	0.898 \pm 0.108	0.112 \pm 0.135	0.011
		GP-STPCA (ℓ_1)	0.856 \pm 0.119	0.068 \pm 0.110	0.012
		GP-STPCA (ℓ_1 , block)	0.898 \pm 0.108	0.112 \pm 0.135	0.012

1185

1186

1187

1188
 1189 **Quantitative results (Tables 1 and 6).** On **Image1–3**, the best PSNR in each image is attained by
 1190 a block variant: ℓ_0 , *block* on Image1 (27.692 dB) and ℓ_1 , *block* on Image2 (23.054 dB) and Image3
 1191 (31.727 dB). Relative to the baseline, the PSNR gains are substantial: +6.20 dB (Image1), +2.09 dB
 1192 (Image2), and +4.01 dB (Image3). Averaged over Image1–3, GP-STPCA (ℓ_1 , *block*) achieves the
 1193 highest mean PSNR (27.01 dB), exceeding the baseline by +3.62 dB.
 1194

1195 On **Image4–6**, the best PSNRs are achieved by the non-block variants: ℓ_1 on Image4 (29.055 dB)
 1196 and ℓ_0 on Image5 (17.735 dB) and Image6 (20.466 dB). Improvements over the baseline remain
 1197 consistent and often large: +5.55 dB (Image4), +0.74 dB (Image5), and +4.69 dB (Image6). Av-
 1198 eraged over Image4–6, GP-STPCA (ℓ_1) attains the highest mean PSNR (21.61 dB), outperforming
 1199 the baseline by about +2.85 dB.
 1200

1201 **Conclusions.** (i) GP-STPCA dominates the baseline on every image, with per-image gains up to
 1202 +6.20 dB and an overall mean improvement of $\approx +3.2$ dB across all six images. (ii) Block
 1203 modeling matters for highly textured scenes (Image1–3), where local spatial correlations are strong;
 1204 here, block variants—especially GP-STPCA (ℓ_1 , *block*)—consistently yield the top PSNR and vis-
 1205 ibly cleaner details. (iii) Penalty choice is data dependent: ℓ_0 excels on scenes where retaining a
 1206 few high-energy structures drives quality (Image5–6), while ℓ_1 provides robust, high-PSNR recon-
 1207 structions under more heterogeneous textures (Image4) and, in its block form, achieves the highest
 1208 average on Image1–3. In practice, we recommend starting with GP-STPCA (ℓ_1 , *block*) for complex
 1209 textures and switching to ℓ_0 when sharp, sparse structures dominate.
 1210

1211 Figure 6: Visual comparison of ImageNet reconstructions: original, sparseGeoHOPCA, GT-
 1212 STPCA(ℓ_0), GT-STPCA(ℓ_0 , *block*), GT-STPCA(ℓ_1), and GT-STPCA(ℓ_1 , *block*).
 1213

1214 Table 6: PSNR (dB) comparison on Image4–6 in Figure 6.
 1215

Method	Image4	Image5	Image6
sparseGeoHOPCA	23.507	16.999	15.773
GP-STPCA (ℓ_0)	26.285	17.735	20.466
GP-STPCA (ℓ_0 , <i>block</i>)	25.338	17.503	19.351
GP-STPCA (ℓ_1)	29.055	17.563	18.219
GP-STPCA (ℓ_1 , <i>block</i>)	25.105	17.410	17.746

1234 M DETAILS OF CONNECTOME-BASED ANALYSIS OF BRAIN NETWORK

1235 We investigate the relationship between brain structural connectomes and cognitive traits using data
 1236 from the Human Connectome Project (HCP) (Van Essen et al., 2013). The full HCP dataset includes
 1237 1065 subjects with diffusion MRI scans (Zhang et al., 2019), from which structural connectivity
 1238 networks were extracted. Each subject’s connectome is represented as a 68×68 connected surface
 1239 area (CSA) (Zhang et al., 2018) network, where nodes correspond to cortical regions defined by
 1240 the popular Desikan–Killiany atlas (Desikan et al., 2006), and edge weights capture white-matter
 1241 connectivity strength.

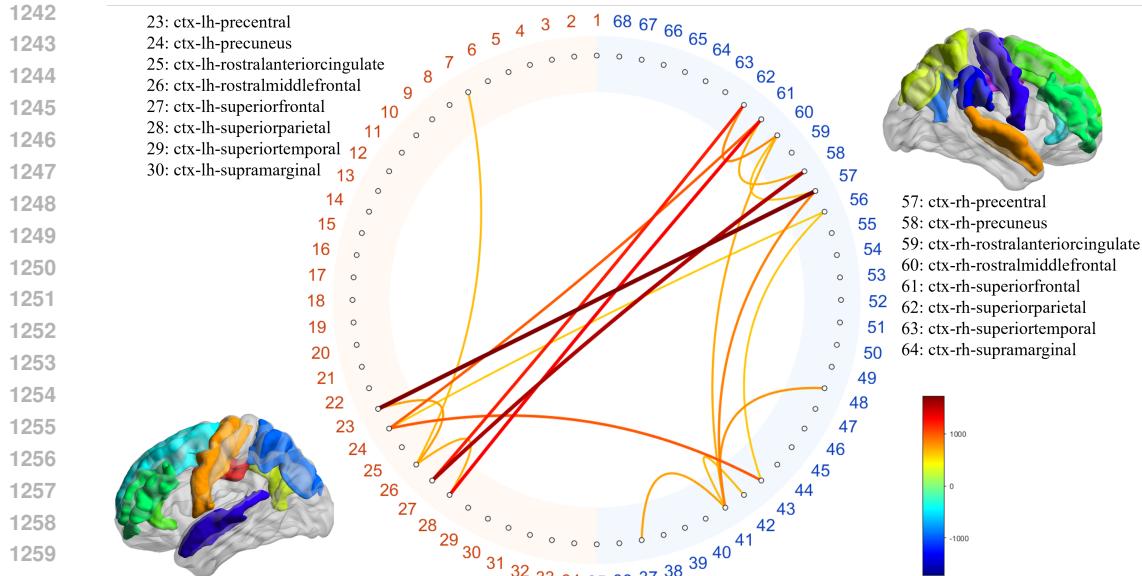


Figure 7: Chord diagram of enhanced connectivity in high-reading group.

To construct these networks, the cortex is parcellated into 68 anatomical regions of interest (ROIs), 34 per hemisphere. For each pair of ROIs, streamlines traced from diffusion tractography are used to determine the white-matter pathways linking them. To ensure meaningful connectivity measures, each gray matter ROI is slightly dilated to include a portion of the adjacent white matter, streamlines passing through multiple ROIs are segmented into appropriate portions, and apparent outliers are removed. The resulting 68×68 weighted adjacency matrix quantifies inter-regional coupling and provides a reproducible representation of each subject’s structural connectome. Further details can be found in Zhang et al. (2018).

For each cognitive trait of interest, subjects are ranked according to their scores. Following the procedure in Zhang et al. (2019), we extract two groups of subjects: the 100 individuals with the highest scores and the 100 with the lowest scores. This yields a subset of 200 subjects, each represented by a 68×68 CSA connectivity matrix, forming a three-order tensor \mathcal{X} of size $68 \times 68 \times 200$. This tensor representation serves as the input for exploratory analyses, allowing us to identify discriminative connectivity patterns associated with the trait. In addition to imaging data, the HCP provides a broad set of behavioral and cognitive trait measures. Here, we focus on the age-adjusted English reading score as a representative cognitive trait.

We apply the proposed STPCA (ℓ_1 , block) to obtain low-dimensional principal component (PC) scores from the CSA networks. These PC scores, together with demographic covariates, are used for downstream statistical analysis. For continuous traits such as reading score, we employ canonical correlation analysis (CCA) to estimate a discriminant direction U_3 in the embedding space. To interpret the results in the original connectivity domain, we project U_3 back, and visualize the top-50 edges with the largest group differences to form a difference network Δ_{net} using a chord diagram, highlighting the subset of edges most correlated with the trait.

Figure 4 illustrates the top-50 edges in Δ_{net} with the largest differences between high- and low-reading groups. Warm colors (red–yellow) denote stronger connections in the high-reading group, while cool colors (blue) denote stronger connections in the low-reading group. Edge thickness reflects the magnitude of the difference. In the chord diagrams (Figures 7 and 8), we observe that subjects with low reading scores exhibit reduced long-range integration across fronto-parietal and fronto-temporal pathways. In contrast, the high-reading group shows enhanced connectivity in key language-related regions, underscoring the role of distributed cortical networks in supporting reading ability. Subjects with high reading scores exhibit enhanced inter-hemispheric connectivity across fronto-parietal circuits, while low-reading subjects show weaker integration. Importantly, no edges were found to decrease significantly with increasing reading ability.

