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Abstract
In this paper, we leverage pre-trained language001
models (PLMs) to precisely evaluate the se-002
mantics preservation of edition process on sen-003
tences. Our metric, Neighboring Distribution004
Divergence (NDD), evaluates the disturbance005
on predicted distribution of neighboring words006
from mask language model (MLM). NDD is007
capable of detecting precise changes in seman-008
tics which are easily ignored by text similar-009
ity. By exploiting the property of NDD, we im-010
plement a unsupervised and even training-free011
algorithm for extractive sentence compression.012
We show that NDD-based algorithm outper-013
forms previous perplexity-based unsupervised014
algorithm by a large margin. For further ex-015
ploration on interpretability, we evaluate NDD016
by pruning on syntactic dependency treebanks017
and apply NDD for predicate detection as well.018

1 Introduction019

Sentence editions, like deletion and replacement020

(Liu et al., 2020; Huang et al., 2021; Xu and Dur-021

rett, 2019a), are widely used in natural language022

processing (NLP) to complete generative tasks in023

an extractive procedure. Many such tasks require024

model to maintain most semantics, including text025

compression and rewriting. However, metrics for026

semantics comparison remain insufficient. Perplex-027

ity emphasizes more on structural integrity rather028

than semantics and text similarity is not precise029

enough for a satisfying performance.030

As the two cases in Figure 1, we execute an031

edition (replacement) for each sentence. In the032

first case, we keep the semantics almost unchanged033

while in the second case, the replacement from034

river into town obvious leads to a semantics change,035

especially for the meaning of bank. However, con-036

ventional cosine similarity fails to capture the se-037

mantics shifting in the second case as it predicts a038

similarity close to the first case.039

Thus, we introduce our novel metric, Neighbor-040

ing Distribution Divergence, to precisely detect the041

The man sits beside the bank of the river .

The man sits beside the bank of the town .

We go to the cafe for some drink .

We go to the bar for some drink .

Cosine Similarity: 0.993 Neighboring Distribution Divergence: 2.63

Cosine Similarity: 0.989 Neighboring Distribution Divergence: 6.79

Figure 1: Comparison on semantic change detection
between conventional text similarity and Neighboring
Distribution Divergence.

semantics changes caused by text edition. NDD 042

evaluates based on pre-trained language models 043

like BERT (Devlin et al., 2019). NDD is designed 044

based on the assumption that changes in semantics 045

can be reflected by predicted distribution changes 046

of neighboring words. For instance, when we use 047

masked language model to predict the masked bank 048

in The man sits beside the bank of the river., words 049

like source or surface will more likely be predicted. 050

If we replace river by bank, which leads to a seman- 051

tics change, the probability of words like center or 052

college to be predicted will become higher. In con- 053

trast, if river is replaced by lake, source be surface 054

will still be predicted with high confidence, which 055

indicates the edition preserves the initial semantics. 056

In Specific, NDD predicts distributions of 057

masked neighboring words before and after the 058

edition. Then these distributions are calculated by 059

the KL divergence function and summed up to get 060

the final metric. A higher NDD indicates greater 061

change in semantics of a sentence. As shown in 062

Figure 1, edition in the second case results on more 063

than ×2.5 NDD than the first case, which reflects 064

high precision of NDD’s detection on the semantics 065

change. 066

Based on NDD’s property, we use this metric to 067

detect semantics changes during text compression 068
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My life will be mine .

Pre-trained Language Model

(masked)

with 0.0

fine 0.2

…

there 0.1

My life will be mine .

shall

MLM-based Prediction Distribution

KL Divergence

× × × × ×

Weighted Sum

Final NDD Score

Distribution before edition

Distribution after edition

Distance Weights

My life shall be mine .

Pre-trained Language Model

(masked)

with 0.0

fine 0.3

…

there 0.0

Figure 2: Calculating procedure for Neighboring Distribution Divergence.

and implement a NDD-based compressing algo-069

rithm. For each compressing step, we evaluate the070

NDD caused by this edition and only allow the071

edition when NDD is under the threshold. As the072

procedure is totally guided by a fixed PLM, our al-073

gorithm is unsupervised and free from any training074

on large corpus for compression. With the com-075

parison between perplexity-based algorithm, NDD-076

based algorithm outperforms by a large margin and077

is shown to be much more capable of preserving078

semantics.079

We conduct experiments on syntactic and se-080

mantic treebanks to explore NDD’s awareness of081

syntax and semantics. To be specific, NDD enables082

unsupervised pruning on syntactic dependency tree-083

banks and predicate mining. This shows NDD’s084

awareness of syntax and semantics without training085

on related datasets, which verifies the potential of086

NDD on more NLP tasks. Our contributions can087

be concluded as follows:088

• We propose a novel PLM-based metric NDD089

to evaluate the semantics preservation or090

change caused by text edition.091

• We implement a NDD-based training-free al-092

gorithm which performance significantly bet-093

ter than previous perplexity-based algorithm094

on unsupervised text compression.095

• Our further experiments on syntactic and se-096

mantic treebanks show NDD’s awareness of 097

syntax and semantics. 098

2 Neighboring Distribution Divergence 099

In this section, we give an elaborate description 100

of the procedure to calculate the NDD metric. In 101

NDD, distribution refers to the predicted probabil- 102

ity distributions in MLM, divergence refers to the 103

KL divergence of the predicted distributions be- 104

fore and after the edition, and neighboring means 105

that more attention will be paid to words near the 106

edited spans. NDD directly reflects the semantic 107

disturbance on other unedited words caused by the 108

edition. 109

Given a sentence W with n words 110

W = [w1, w2, · · · , wn], an editing operation E is 111

used to convert the sentence to an edited one. For 112

formula simplification, we suppose E to be a re- 113

placement for discussion. Suppose that E replaces 114

a span [wi, wi+1, · · · , wj ] in W with a span V = 115

[v1, v2, · · · , vk], then the new sentence will be 116

W ′ = [w1, · · · , wi−1, v1, · · · , vk, wj+1, · · · , wn]. 117

Then we calculate the predicted distribu- 118

tion divergence on those neighboring words 119

[w1, · · · , wi−1, wj+1, · · · , wn] of the edition. We 120

use MLM-based prediction as depicted in Figure 2. 121

For a sentence W , we predict the MLM-based 122

distribution on i-th position as follows. 123
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Wm = [w1, · · · , wi−1, [MASK], wi+1, · · · , wn];

R = PLM(Wm); d = softmax(Ri) ∈ Rc124

We first mask the word on i-th position and then125

apply PLM for prediction on that position. Finally126

a softmax function is used to get the probability127

distribution D where dj refers to the appearance128

possibility of j-th word in the c-word dictionary129

on i-th position. We summarize this distribution130

predicting process with a function MLM(·) where131

MLM(W, i) = d.132

Then we go back to the discussion of text edition.133

For the edition E, we use MLM(·) to predict the134

distribution D = [d1, · · · , di−1, dj+1, · · · , dn] of135

neighboring words in the unedited sentenceW . We136

calculate another distribution D′ for neighboring137

words in the edited sentence W ′.138

After we get the distributions D and D′, we use139

KL divergence to calculate the difference between140

the two distributions.141

div = DKL(d
′||d) =

c∑
i=1

d′i log(
d′i
di
)142

Here we use D from the unedited sentence as143

the observed distribution and D′ from the edited144

sentence for approximation. After we get the diver-145

gence div between each pair in D and D′, we use146

a weighted sum for the final NDD score.147

NDD(W,W ′) =
∑

k∈[1,··· ,i−1,j+1,··· ,n]

akdivk148

where ak is the distance weight which can be149

designed as µmin(|k−i|,|k−j|)(µ ≤ 1.0). Distance150

weight is added for scaling for that more divergence151

will be detected on words closer to edited spans. In152

latter experiments, this weight will be re-designed153

for specific tasks, but generally, words closer to154

edited spans will be assigned higher weights.155

So why is NDD capable to capture preciser se-156

mantics changes? First, NDD uses predicted distri-157

butions to represent words rather than just the word158

itself. As shown in Figure 2, the disturbance on se-159

mantics is not just detected by existing words like160

be and mine, but is detected by all words in the dic-161

tionary as well. Moreover, this procedure enables162

PLM to evaluate semantic disturbance on unknown163

words much better. For instance, if a PLM meets164

Sentence PPL NDD Cos.Sim.

I am walking in the cold rain. 5.99 0.00 1.000

I am walking in the cool rain. 10.10 0.81 0.995
I am walking in the freezing rain. 5.63 0.97 0.997
I am walking in the heavy rain. 5.30 1.82 0.994
I am walking in the hot rain. 14.77 3.17 0.995

I am walking in the cold snow. 5.37 2.46 0.996
I am walking in the cold night. 6.18 3.52 0.991
I am walking in the cold sunshine. 8.59 4.73 0.994

I am running in the cold rain. 11.86 0.66 0.990
I am wandering in the cold rain. 16.89 0.89 0.982
I am swimming in the cold rain. 14.84 3.29 0.986

I was walking in the cold rain. 10.32 4.72 0.980
He am walking in the cold rain. 105.55 13.04 0.991
He is walking in the cold rain. 13.95 7.22 0.980

Table 1: Cases for detection of NDD on very precise se-
mantics changes. The initial sentence is "I am walking
in the cold rain."

an unknown word like Okinawa, it will use it as 165

an [UNK] token to calculate the perplexity. In con- 166

trast, we replace evaluation directly on real words 167

by evaluating on appearance likelihood. Thus, the 168

PLM will be able to know this word to have like 169

10% probability to be place, 20% probability to be 170

region, etc. from the surrounding words. Finally, 171

NDD compares the semantics between sentences 172

before and after edition, which is unlikely to be 173

implemented using perplexity. Perplexity can only 174

be used to evaluate the fluency of the edited sen- 175

tence while NDD is also able to detect whether the 176

semantics has been preserved. 177

3 Evaluating Precise Semantic Similarity 178

Following the discussion in the introduction, we 179

use cases to further explore the ability of our model 180

to capture precise semantics changes using several 181

examples. As in Table 1, we edit the initial sen- 182

tence "I am walking in the cold rain." with a series 183

of replacement. We keep syntactic structure of the 184

sentence unchanged and replace some words by 185

other words with the same POS. Thus, the differ- 186

ence between the initial and edited sentences is 187

majorly the semantics. 188

We divide the editing cases into several groups. 189

In the first three groups, we change words (ad- 190

jective, noun and verb respectively) into similar, 191

different or opposite meanings. NDD successfully 192

detects the semantics changes and is able to pre- 193

cisely evaluate the changing extents. Taking the 194

first group as the instance, changing from cold into 195

cool and freezing keeps the most semantics while 196

changing into hot leads to the opposite and even 197
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implausible semantics. NDD reflects the difference198

of semantics between these edited results and as-199

signs a much higher score to the cold-to-hot case.200

Moreover, in the medium case where the aspect for201

description is changed to heavy, NDD remarkably202

assigns a medium score to this case, showing its203

high discerning capability.204

In the last case group, we change the tense and205

subject of the sentence. NDD is shown to be fairly206

sensitive to tenses and subjects. This property can207

be used to retain those critical properties during208

editions. NDD is also able to detect syntactic faults209

like the combination of He am and can thus be used210

for fault preventing.211

From these cases we can also see why perplex-212

ity and cosine similarity is incapable of detecting213

precise semantics changes as NDD. In Table 1,214

cosine similarity cannot detect subtle semantics215

changes and even syntactic faults. We attribute this216

to the high reliance on word representations for217

sentence represents as sentences with many words218

overlapped will be classified to be similar.219

For perplexity, the first problem with it is that220

this metric evaluates a single sentence rather than221

a pair of sentences. Thus, perplexity can only es-222

timate the plausibility of sentences instead of se-223

mantic relationships. Perplexity will thus guide edi-224

tions to transform sentences into more syntactically225

plausible versions. As shown in Table 1, edited re-226

sults with lower perplexity may change semantics227

like cold-to-heavy and rain-to-snow. NDD is able228

to preserve semantics much better by suggesting229

changing cold to cool or freezing and changing230

walking to running or wandering.231

Another reason is that perplexity can easily be232

misguided by low-frequency words. In the walk-233

ing-to-wandering case, the resulted perplexity is234

even higher than the walking-to-swimming case.235

Since perplexity is scored based on existence prob-236

ability of words, the low-frequency wandering will237

lead to a higher perplexity, even though wandering238

is semantically closer to walking than swimming.239

This issue is overcome in NDD as we use predicted240

distributions rather than real words. As described241

before, NDD can understand low-frequency words242

and even named entities much better. As the re-243

sult, NDD correctly scores the semantics changes244

caused by replacement on walking.245

4 Unsupervised Text Compression 246

To show the advantages of NDD in application, 247

we implement an unsupervised algorithm for text 248

compression guided by NDD. 249

4.1 Span Searching 250

Given a sentence W , we try every span Wij = 251

[wi, · · · , wj ] with length under a certain limit 252

Lmax for deletion. Then we use NDD to score 253

the semantics changes caused by the deletions. 254

Sij = NDD(W,W ′ij)

W ′ij = [w1, · · · , wi−1, wj+1, · · · , wn]
255

where all words in W ′ are used as neighboring 256

words for metric calculating. We select spans with 257

NDD under a certain limit NDDmax as the candi- 258

dates for the next processing step. 259

4.2 Overlapped Span Selection 260

As overlapping often occurs in the spans from 261

searching, we apply a simple selective algorithm to 262

filter the candidate spans. Specifically, we compare 263

each overlapped span pairs, in which two spans 264

contain some common words. For each pair, we 265

delete the span with lower NDD score and keep 266

the other span for next round of comparison. This 267

process iterates until there is no overlapped span in 268

candidates. 269

4.3 Other Details 270

As following the distance weights described before 271

are imbalanced for words near the start and end of 272

a sentence. In practice, we use a modified balanced 273

weights for distance. 274

ak = µmin(|k−i|,|k−j|)

a′k = ak + an′−k ∗ µn
′

n′ = n− (j − i+ 1)

275

The main effect of this modification is to let 276

words near the two side to be detected twice for 277

their disturbance on neighboring words. With the 278

help of this modification, we overcome the weight 279

imbalance issue and thus avoid incorrect deletions. 280

Furthermore, we add another weight bk to en- 281

courage our algorithm to delete latter words in the 282

sentence as it is less common to use these words for 283

summary. We modify the weighted sum as follows. 284
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Method F1 B1 B2 B3 B4 B

(Unsupervised)
Unedited 63.2 44.8 34.9 28.3 23.5 32.9
Random 45.7 43.0 25.4 16.2 10.4 23.8
PPL-based (Niu et al., 2019) 50.0 - - - - -
PPL-based∗ 52.3 45.9 35.5 19.9 14.7 29.0
NDD-based (ours) 67.4 54.8 39.3 30.5 23.7 37.1

(Supervised)
(Filippova et al., 2015) 82.0 - - - - -
(Kamigaito et al., 2018) 83.5 - - - - -
(Zhao et al., 2018) 85.1 - - - - -
(Kamigaito and Okumura, 2020) 85.5 - - - - -

Table 2: Results for sentence compression on the
Google dataset, we compare our algorithm with other
unsupervised algorithms. Underlines mean the im-
provement to be significant (p < 0.05) considering the
highest baseline. ∗: Re-implementation

bk = νk

NDD(W,W ′) =
∑

k∈[1,··· ,i−1,j+1,··· ,n]

a′kbkdivk
285

4.4 Experiment286

Dataset and Configuration To compare our al-287

gorithm with previous algorithms, we conduct our288

experiments on the Google dataset (Filippova et al.,289

2015). We use the evaluation dataset with 10,000290

sentence pairs for performance evaluating. We use291

BERT-base-cased which has been specialized for292

the MLM task as the PLM. We set Lmax to 9 and293

NDDmax to 1.0 for span filtering. For weight-294

ing, we set µ and ν both to 0.9. Compressing rate295

is controlled under 0.6 as in previous works. We296

choose BLEU (Papineni et al., 2002) and F1 score297

as metrics for evaluation and comparison because298

precision is more critical than recall (Returning the299

whole unedited sentence results in a high recall) in300

extractive compression.301

Results Our results are shown in Table 2, we302

report the result from (Niu et al., 2019) and re-303

implement the claimed PPL-based algorithm. We304

find our implementation performs a little higher305

than the reported result. However, the result is still306

poor and even far from the unedited baseline. Our307

compression algorithm significantly outperforms308

the PPL-based algorithm by 17.4 F1 score on un-309

supervised sentence compression.310

For further exploration, we randomize our algo-311

rithm by deleting random words of the same num-312

ber as in NDD-based algorithm for each sentence.313

Results in Table 2 show that PPL-based algorithm314

even does not have a significant improvement com-315

paring with the randomized algorithm. This implies316

Init: The speed limit on rural interstate highways in Illinois
will be raised to 70 mph next year after Gov. Pat Quinn
approved legislation Aug. 19, despite opposition from the
Illinois Dept. of Transportation, state police and leading
roadway safety organizations.
Edit: The speed limit will be 70 mph despite opposition
from organizations.
Gold: The speed limit on highways in Illinois will be raised
to 70 mph next year.
F1 Score = 51.9(↓ 8.5) BLEU = 28.7(↑ 0.0)

Init: New US ambassador to Lebanon David Hale presents
credentials to Lebanese President Michel Sleiman in Baabda,
Friday, Sept. 6, 2013.
Edit: New US ambassador to Lebanon presents credentials
to Lebanese President Michel Sleiman.
Gold: New US ambassador presents credentials to Michel
Sleiman.
F1 Score = 87.0(↑ 28.7) BLEU = 36.6(↑ 19.5)

Table 3: Examples for how automatic metrics reflect
the performance of NDD-based compression. Improve-
ment refers to comparison with unedited texts.

that only keeping the fluency of sentences by con- 317

sidering perplexity does not help much for sentence 318

compression. In contrast, NDD has the ability to 319

guide the algorithm to remove subordinated com- 320

ponents by preserves semantics in each edition step. 321

Thus, NDD performs much better than perplexity 322

on sentence compression to produce semantics pre- 323

served output. 324

Comparing with supervised methods, our algo- 325

rithm still has a long way to go. But we will show in 326

the next sections that automatic metrics are biased 327

for evaluating the performance of our compression 328

as difference exists in compressing styles between 329

outputs from unsupervised compression and anno- 330

tated gold results. 331

4.5 Compression Cases 332

Real Effect v.s. Automatic Metrics As the com- 333

pressed results for sentences can be various, auto- 334

matic metrics might not be able to fully reflect the 335

compressing ability of our algorithm. Also, as our 336

compression follows a training-free procedure, the 337

compressed results might not be in the same style 338

as the annotated golden ones like the first instances 339

in Table 3. Both our compressed and the golden 340

result keep the main point that the speed limit will 341

be 70 mphs, preserving the semantics of the whole 342

sentence. However, the golden compression tends 343

to keep some auxiliary information like the loca- 344

tion on highways in Illinois and the time next year. 345

In contrast, NDD-based compression tends to re- 346

move those unimportant information and prevent 347
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Init: A US$5 million fish feed mill with an installed capacity
of 24,000 metric tonnes has been inaugurated at Prampram,
near Tema, to help boost the aquaculture sector of the coun-
try.

Iter1: A US$5 million fish feed mill with an installed ca-
pacity of 24,000 metric tonnes has been inaugurated at
Prampram, near Tema, to help boost the aquaculture sec-
tor of the country.

Iter2: A fish feed mill with capacity 24,000 has been inau-
gurated at Prampram to boost the aquaculture sector.

Final: A mill has been inaugurated to boost aquaculture
sector .

Table 4: Cases for output in iterations of the NDD-
based compression. Bold: Kept components

semantics in other parts of the sentence to be un-348

changed. Thus, NDD-based compression still keep349

despite opposition from organizations towards the350

integrated semantics. In the second instance of351

Table 3, as the golden compression also remove lo-352

cation and time information from the sentence, our353

algorithm leads to a significant improvement since354

our compressing style matches with the annotated355

one. Considering that the automatic metrics may356

be biased due to the style of annotation, we present357

more cases in this section to show the capacity of358

our algorithm to keep semantics and fluency while359

removing unimportant and auxiliary components360

at the same time.361

Outputs from Compression Iterations We362

present the intermediate outputs of our algorithm363

in Table 4. NDD-based text compression is shown364

to be capable of detect and remove auxiliary com-365

ponents like locations or adjective spans in the sen-366

tence for example. Also, the syntactic integrity and367

initial semantics are preserved in each iteration of368

our algorithm. There is an advantage over super-369

vised methods as output in each iteration is still a370

plausible compression for the initial sentence. We371

can thus set some proper thresholds and iterate the372

compression until we get a fully satisfying output.373

Compression on Other Languages We also im-374

plement algorithm for other languages to verify375

the cross-lingual capability of NDD-based com-376

pressing. Cases in Table 5 show our algorithm to377

be pretty well-performed on compression of other378

languages.379

5 Syntactic Dependency Tree Pruning380

We further analyze our metric and algorithm on381

upstream tasks. To show that NDD understands382

Init: 调价周期内，沙特下调10月售往亚洲的原油价格，
我国计划释放储备原油，油价一度承压下跌。
Edit: 调价周期内，沙特下调原油价格，我国释放储备原
油。

Init: El comité de crisis, aseguró el presidente, ha tomado deci-
siones estratégicas que, por seguridad, no pueden ser reveladas
pero que serán evidentes en las acciones que se ejecutarán en
las próximas horas.
Edit: El comité de crisis ha tomado decisiones que no pueden
ser reveladas pero serán evidentes en las acciones que se ejecu-
tarán.

Init: 大型で非常に強い台風16号は、10月1日の明け方以
降、非常に強い勢力で伊豆諸島にかなり近づく見込み
です。
Edit: 台風16号は伊豆諸島に近づく見込みです。

Table 5: Cases for NDD-based compression on sen-
tences in Chinese, Spanish and Japanese. Translation
can be found in Appendix A.1.

semantics, we first verify NDD’s awareness of syn- 383

tax since semantics is highly dependent on syntax. 384

In this section, we continue experimenting on the 385

mentioned compression algorithm to use it to prune 386

syntactic dependency treebanks and then analyze 387

the distribution of pruned nodes. If the pruned 388

nodes mostly play subordinated roles in the tree, 389

our algorithm can be better convinced to compress 390

sentences with the awareness of syntax. 391

We first give an example for the syntactic depen- 392

dency treebank in Figure 3, the depths of nodes 393

in the tree are also annotated. In the dependency 394

tree, deeper nodes like the and early contain less 395

semantic information and should be more likely to 396

be pruned in a well-performed compression algo- 397

rithm. Also, pruning subtrees of the dependency 398

tree is less likely to hinder the syntactic integrity 399

of the sentence. For instance, pruning the subtree 400

since the early 1970s will still preserve the syntac- 401

tic structure of the rest components That would be 402

the lowest level. 403

Therefore, we introduce two metrics to evaluate 404

the pruning ability for words and spans. The first 405

one is Depth-n, which evaluates the proportion in 406

all pruned words of words in a depth n of the depen- 407

dency tree. The second one is Subtree-n, which 408

refers to the proportion of spans which are also sub- 409

trees of dependency trees in pruned n-gram spans. 410

Higher Depth-n for larger n and lower Depth-n 411

for smaller n indicates better preservation of the 412

syntactic structure. Higher Subtree-n indicates the 413

pruned spans result in less damage to the syntactic 414

integrity. 415

We experiment on the test data of PTB-3.0 416

dataset (Marcus et al., 1993). We randomize our 417
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algorithm as before for a fair comparison with the418

same compressing rate. For our algorithm in differ-419

ent configuration, we implement a corresponding420

randomized algorithm for preciser comparison. As421

in Table 6, the awareness of syntax is verified for422

both node and span pruning. First, the propor-423

tion of nodes in shallower levels (depth=1 ∼ 3)424

pruned by our algorithm are smaller than all the425

corresponding proportion when pruned nodes are426

randomized. NDD-based pruning is more likely to427

pruned deeper nodes (depth≥ 4) in the syntactic428

dependency tree. Also, the proportion of subtrees429

in spans pruned by NDD-based algorithm is sig-430

nificantly larger (30 ∼ 50) than the randomized431

correspondents. Thus, we conclude that NDD is432

able to guide the compressing algorithm to detect433

subordinated components in syntax dependency434

treebanks even though the PLM has never been435

trained on any syntactic datasets.436

For comparison among different configurations,437

a lower NDDmax will lead both node and span438

pruning to improve. This is natural as the lower439

threshold will only allow the algorithm to prune440

components with little disturbance to semantics.441

For Lmax, when NDDmax is low, a higher Lmax442

will improve the node pruning by pruning more443

auxiliary components in deeper levels. For instance,444

long spans like since the early 1970s in Figure 3445

might not be detected when Lmax is low. But for446

a higher NDDmax, Lmax will lead to higher pro-447

portion of subtrees in pruned spans as higher Lmax448

may allow longer spans which are not subtrees to449

be pruned.450

6 Predicate Detection451

As pruning on the syntax dependency treebanks452

shows NDD to have the understanding of syntax,453

we further explore the discerning ability of NDD454

for semantic components on large datasets. We455

choose to experiment on the semantic role labeling456

(SRL) dataset for predicate detection. In the exper-457

iment, words in the sentence are edited by deletion458

or replacement and semantics changes caused by459

these editions are evaluated using NDD. As predi-460

cates are semantically related to more components461

(augments) in the sentence, higher NDD refers to462

higher probability of an edited word to be a pred-463

icate. Thus, we evaluate the predicate detecting464

ability following with the words ranking task. We465

rank the probability of words to be predicates and466

use ranking metrics mean average precison (mAP)467

That would the lowest level since the early 1970s .be

nsubj

aux

cop

amod

det

punct

prep

pobj

det
amod

root

2 2 2 2 1 2 4 4 3 22

Tokens:

Depths:

Treebank:

Figure 3: An example for syntactic dependency tree-
bank. Deeper nodes in the treebank generally play less
important roles in both syntax and semantics.

Method Lmax NDDmax
Depth Subtree

1 2 3 ≥ 4 1 2 ≥ 3

Random

3 1.0 3.2 21.2 21.2 54.5 56.7 35.4 24.7
3 2.0 4.2 23.6 21.3 50.9 56.9 27.2 17.1
5 1.0 3.7 20.7 22.0 53.6 55.3 30.6 26.8
5 2.0 4.4 24.3 23.3 48.0 51.6 29.4 22.9

NDD-based

3 1.0 2.0 19.6 20.5 57.9 90.1 80.9 70.2
3 2.0 1.7 22.5 21.3 54.4 86.7 71.2 65.0
5 1.0 1.4 19.0 19.9 59.6 90.3 81.3 65.7
5 2.0 1.7 23.3 23.2 51.8 82.0 70.0 62.8

Table 6: Proportion (%) of pruned nodes in certain
depth of the syntactic dependency treebanks and pro-
portion (%) of pruned spans that are subtrees in the
syntactic dependency treebanks.

and area under curve (AUC) for evaluation. 468

We conduct our experiments on Conll09 SRL 469

datasets (Hajic et al., 2009). To test the generaliz- 470

ing ability of our method, we experiment on both 471

in-domain (ID) and out-of-domain (OOD) English 472

(ENG) datasets. Another Spanish (SPA) dataset is 473

also involved for cross-language evaluation. We 474

edit each word in the sentence in three ways: (a) 475

Directly delete the word, (b) Replace the word with 476

a mask token, (c) Replace the word with a certain 477

word (a for ENG-ID, that for ENG-OOD and el 478

for SPA). We apply SpanBERT-base-cased (Joshi 479

et al., 2020) and BERT-base-spanish-cased (Cañete 480

et al., 2020) as PLMs. For comparison, we also 481

implement a PPL-based algorithm which likewise 482

uses perplexity to determine predicates. 483

Our main results are presented in Table 7, show- 484

ing that PPL might not be a proper metric to detect 485

predicates as AUCs that result from PPL-based 486

algorithm are around 40 ∼ 60 and mAPs are gen- 487

erally poor. In contrast, NDD-based algorithm pro- 488

duces much better results and outperforms PPL- 489

based algorithm by 10 ∼ 20 scores on both AUC 490

and mAP metrics, which is a remarkably significant 491

margin and verifies NDD to be much more capa- 492

ble in understanding semantics. We also ensemble 493

the three editions by using the product of three 494

predicted probabilities. The ensembled algorithm 495

leads to further improvement and lifts AUC, mAP 496

to higher than 80.0, 50.0 respectively, even making 497

it a plausible way to detect predicates following an 498
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Edition ENG-ID ENG-OOD SPA

mAP AUC mAP AUC mAP AUC

(NDD-based)
Delete 52.1 75.8 61.1 80.7 48.3 77.0
Replace by mask 48.2 74.6 56.8 80.2 44.6 76.3
Replace by word∗ 51.6 77.2 56.2 78.5 44.1 77.5
Ensemble 54.3 80.0 63.7 83.8 53.3 83.0

(PPL-based)
Delete 36.8 56.8 44.5 60.4 26.6 54.5
Replace by mask 35.9 56.7 33.1 48.5 25.1 50.4

Table 7: Evaluation on ability of metrics to detect pred-
icates in sentences. ∗We use a for replacement in ENG-
ID, that in ENG-OOD and el in SPA, those words em-
pirically perform well for predicate detection.

unsupervised procedure.499

Comparison among editions shows that direct500

deletion will lead to the better performance than501

other editions evaluated by AUC. Replacing with a502

certain word perform better on ENG-ID and SPA503

when we evaluate algorithms with the mAP. Thus,504

we conclude that deleting predicates causes the505

greatest disturbance on other components (aug-506

ments) in the sentence and makes the disturbance507

more prominent for our algorithm to detect. Also,508

as a, that and el may empirically outperform other509

words when being used to detect predicates, those510

words with low semantic meanings might be ad-511

visable choices for predicate detection using word512

replacement.513

7 Related Works514

Text similarity and perplexity are metrics which515

can be used for many downstream tasks (Park et al.,516

2020; Lakshmi and Baskar, 2021; Nguyen-Son517

et al., 2021; Campos et al., 2018; Neishabouri and518

Desmarais, 2020; Lee et al., 2021). Unfortunately,519

these metrics are not precise enough to detect se-520

mantics changes as discussed before. Recent study521

(Kuribayashi et al., 2021) shows that low perplex-522

ity does not directly refer to a human-like sentence.523

Therefore, we should consider again how to evalu-524

ate subtle text difference like semantics shift caused525

by an edition on the text.526

Therefore, we assume PLM like BERT (Devlin527

et al., 2019) to be a chance for some changes. PLM-528

based metrics like BERT score has been verified529

by experiments to evaluate text generation better530

(Zhang et al., 2020). Instead of matching words ex-531

actly, BERT score computes pairwise cosine simi-532

larity between words in texts and use greedy match-533

ing for the final scoring. Our NDD also puts real534

words aside but uses distributions predicted from535

MLM to represent words. We use KL divergence 536

to estimate the semantic difference between texts. 537

Other works are also pursuing better metrics than 538

strict matching scores like BLEU for generative 539

tasks. To evaluate semantics preservation in AMR- 540

to-sentence, (Opitz and Frank, 2021) exploits pre- 541

trained AMR parser to compare the AMR graph of 542

generated results with the golden graph, showing 543

the potential of pre-trained model in evaluation. 544

Sentence compression is currently dominated 545

by supervised methods (Malireddy et al., 2020; 546

Nguyen et al., 2020; Nóbrega et al., 2020) and 547

highly relies on syntactic dependency trees (Le 548

et al., 2019; Xu and Durrett, 2019b; Wang and 549

Chen, 2019; Kamigaito and Okumura, 2020). Un- 550

supervised methods have been explored to extract 551

sentences from documents to represent the key 552

points (Jang and Kang, 2021). But the performance 553

on pruning components in sentences is still far from 554

satisfaction. (Niu et al., 2019) explores evaluating 555

the perplexity of outputs after compression. Com- 556

paring with NDD, such metric is fairly less capable 557

to detect semantics changes in editions and thus 558

cannot preserve the semantics. 559

Annotated data from parsing tasks like syntactic 560

dependency parsing (Dozat and Manning, 2017; Li 561

et al., 2020b) and semantic role labeling (Li et al., 562

2020a,c) can reflect model’s awareness of those 563

internal relationships between words in sentences. 564

Experiments show NDD to perform well on de- 565

tecting those relationships. Thus, we may explore 566

unsupervised procedures for those tasks based on 567

NDD in the future. 568

8 Conclusion 569

In this paper, we propose a novel metric, neighbor- 570

ing distribution divergence, to evaluate very precise 571

semantics changes caused by editions. We imple- 572

ment an unsupervised and training-free algorithm 573

for text compression and find that NDD-based al- 574

gorithm outperforms PPL-based algorithm by a 575

large margin. Also, NDD-based text compression 576

can still produce highly semantics-preserved out- 577

puts even when human-annotated data cause auto- 578

matic metrics to be biased. We further explore for 579

whether NDD has a real awareness of semantics 580

and verify our hypothesis as NDD perform well 581

for both syntactic dependency treebank pruning 582

and predicate detection in semantic role labeling. 583

Experiments show NDD to have the potential to 584

realize an unsupervised predicate detection. 585
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A Appendix830

A.1 Case Translation831

Init: 调价周期内，沙特下调10月售往亚洲的原油价格，
我国计划释放储备原油，油价一度承压下跌。
(Translation) During the price adjustment, Saudi scales down
the price of crude oil sold to Asia in October, our country plans
to release the reserved crude oil, oil price has once been under
the dropping pressure.
Edit: 调价周期内，沙特下调原油价格，我国释放储备原
油。
(Translation) During the price adjustment, Saudi scales down
the price of crude oil, our country releases the reserved crude
oil.
Init: El comité de crisis, aseguró el presidente, ha tomado deci-
siones estratégicas que, por seguridad, no pueden ser reveladas
pero que serán evidentes en las acciones que se ejecutarán en
las próximas horas.
(Translation) The crisis committee, the president assured, has
made strategic decisions that, for security, cannot be disclosed
but which will be evident in the actions that will be carried out
in the next few hours.
Edit: El comité de crisis ha tomado decisiones que no pueden
ser reveladas pero serán evidentes en las acciones que se ejecu-
tarán.
(Translation) The crisis committee has made decisions that can-
not be disclosed but will be evident in the actions to be carried
out.

Init: 大型で非常に強い台風16号は、10月1日の明け方以
降、非常に強い勢力で伊豆諸島にかなり近づく見込み
です。
(Translation) Very strong typhoon No.16 with a large scale is
expected to closely approach to the Izu Islands with a very
strong force after the dawn of October 1.
Edit: 台風16号は伊豆諸島に近づく見込みです。
(Translation) Typhoon No.16 is expected to approach to the Izu
Islands.

Table 8: Translation for cases in Table 5.
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