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Abstract

Contrastive learning is a powerful technique for discovering meaningful data
representations by optimizing objectives based on contrastive information, often
given as a set of weighted triplets {(x;, y;", z; )}, indicating that an “anchor” ;
is more similar to a “positive” example y; than to a “negative” example z;. The
goal is to find representations (e.g., embeddings in R? or a tree metric) where
anchors are placed closer to positive than to negative examples. While finding
global optima of contrastive objectives is NP-hard, the complexity of finding local
optima—representations that do not improve by local search algorithms such as
gradient-based methods—remains open. Our work settles the complexity of finding
local optima in various contrastive learning problems by proving PLS-hardness in
discrete settings (e.g., maximize satisfied triplets) and CLS-hardness in continuous
settings (e.g., minimize Triplet Loss), where PLS (Polynomial Local Search) and
CLS (Continuous Local Search) are well-studied complexity classes capturing local
search dynamics in discrete and continuous optimization, respectively. Our results
imply that no polynomial time algorithm (local search or otherwise) can find a local
optimum for various contrastive learning problems, unless PLS C P (or CLS C P
for continuous problems). Even in the unlikely scenario that PLS C P (or CLS C P),
our reductions imply that there exist instances where local search algorithms need
exponential time to reach a local optimum, even for d = 1 (embeddings on a line).

1 Introduction

Extracting meaningful representations from complicated datasets is a cornerstone of machine learning.
For the past decades, algorithmic questions of how to find convenient representations (Euclidean
space, tree metrics, etc.) faithfully capturing distance relationships have been at the forefront of metric
embeddings and multidimensional scaling [Kruskal, 1964a, Borg and Groenen, 2007, Indyk et al.,
2017], yielding by now a vast literature with both practical successes and deep mathematical insights.

Due to the high cost of labeling datasets and obtaining accurate distances, many communities focus
instead on learning representations based on easier-to-obtain contrastive information, i.e., distance
comparisons [Agarwal et al., 2007, Tamuz et al., 2011, Jamieson and Nowak, 2011, Van Der Maaten
and Weinberger, 2012, Terada and Luxburg, 2014, Jain et al., 2016, Kleindessner and von Luxburg,
2017]. Contrastive information, like “item x is closer to item y than to 2” or “among z, y, 2, items x, 2
are farthest apart” is much easier to obtain than numerical values (“how similar is x to y”), essentially
creating pseudo-labels with little to no supervision. Indeed, such triplets are standard in contrastive
learning, €.g., the popular “anchor-positive-negative” paradigm (x,y™, z7) [Schroff et al., 2015],
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since image transformations (cropping, rotations) or nearby words produce anchor-positive pairs, and
random images/words yield anchor-negative pairs (see also “hard negatives” [Robinson et al., 2020]).
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Figure 1: An overview of contrastive learning problems studied here (LCA: lowest common ancestor).

Interestingly, even though contrastive information lies at the heart of contrastive learning pipelines,
the history of using ordinal information, i.e., comparisons instead of absolute numerical values, dates
back to the 1960s in psychometrics and (non-metric) multi-dimensional scaling [Torgerson, 1952,
Thurstone, 1954, Kruskal, 1964b]. Since then, ordinal embeddings (also monotone or contrastive
embeddings [Bilu and Linial, 2005, Avdiukhin et al., 2024, Chen et al., 2022, Chatziafratis and Indyk,
20241]) are widely-studied in computer science, because important applications (nearest-neighbor,
recommendation, ranking, crowdsourcing) only care to preserve the relative ordering of distances
(not lengths) [Agarwal et al., 2007, Béddoiu et al., 2008, Tamuz et al., 2011, Vankadara et al., 2019,
Ghosh et al., 2019].

Despite empirical successes, various aspects of contrastive learning are not well-understood. To
address this, works on theoretical foundations have focused on generalization [Alon et al., 2023],
inductive bias [Saunshi et al., 2022, HaoChen and Ma, 2022], latent classes [Saunshi et al., 2019],
hard negatives [Robinson et al., 2020, Kalantidis et al., 2020, Awasthi et al., 2022], multi-view
redundancy [Tosh et al., 2021], mutual information [Oord et al., 2018, Hjelm et al., 2018] and more.

Optimization of contrastive objectives. Our paper focuses on optimization aspects of contrastive
learning with widely-used objectives, both in discrete and continuous settings (Figure 1). The inputis a
set C of m triplets {(z;,y;", z; )}, on a dataset S, with non-negative weights w; > 0 indicating the
importance of each constraint (see [Robinson et al., 2020, Kalantidis et al., 2020] for benefits of “hard
negatives” which are difficult to distinguish from anchor points). The task is to find a representation
£ () respecting the given constraints as much as possible by optimizing Objectives 1, 2, 3 below:

1. Triplet Maximization in R?: Many algorithmic works in contrastive embeddings, aim at maximizing
the weight of satisfied triplets. We say that a triplet (z;, y;", z;") is satisfied by the embedding f (),
if || f(zs) — f(yi)lly < || f(zi) — f(2:)]l5- Even the case of d = 1 (line embedding or ranking) is
well-motivated and non-trivial [Arora et al., 1995, 2002, Guruswami et al., 2011, Fan et al., 2020].

2. Triplet Maximization on trees: Here, we map data onto leaves of a tree 7' maximizing the weight of
satisfied triplets (disty(z;,y;) < dist(z;, 2;), or equivalently, T has a subtree containing z;, y;,
but not z;). Such hierarchical clustering problems known as triplet reconstruction or consistency
naturally appear across areas [Aho et al., 1981, Byrka et al., 2010, Vikram and Dasgupta, 2016,
Bodirsky et al., 2017, Chatziafratis et al., 2018, Emamjomeh-Zadeh and Kempe, 2018].

3. Minimize Triplet Loss in R%: The influential FaceNet paper [Schroff et al., 2015] introduced the
Triplet Loss, which has since evolved into one of the most prominent contrastive losses:
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The margin « specifies the minimum gap of distance (x;, y;) and (z;, 2;) and w; is the importance
of a triplet. This loss “pushes” positive pairs close together while keeping negative pairs far apart.



Our primary motivation is to understand the complexity of finding representations based on con-
trastive information. Unfortunately, NP-hardness results prevent us from finding globally optimum
representations in the worst-case, and so in practice, local search algorithms are deployed. Local
search is a general algorithmic approach that examines improving moves from a set of allowable
nearby configurations to the current solution (most notably gradient-based methods and various
heuristics in discrete optimization [Orlin et al., 2004]). We ask the following basic questions:

Motivating Questions: How hard is it to find a locally optimum representation for contrastive
learning? Can we find a local optimum in polynomial time? How efficient is local search?

In this context, a locally optimum representation is one that cannot be improved by taking further
steps of gradient-based methods, or generally any type of local search algorithm.

1.1 Our contributions

Our main contribution is to formally study the above questions from the lens of computational
complexity, and give strong evidence that for many problems with contrastive objectives, even finding
a locally optimum solution for the objectives is intractable in a specific formal sense. Local search is
a widely-used heuristic for many NP-hard problems [Lawler, 1985, Schéffer and Yannakakis, 1991,
Ahuja et al., 2002, Orlin et al., 2004], wherein we iteratively perform local moves (e.g., gradient step
or reassignment of points) that get better objective value, terminating at a solution with no improving
move, i.e., a local optimum. Of course, a local optimum need not be a global optimum, and since
there are more local optima than global optima in general, local optima may appear easier to find.
Nevertheless, there is currently an overall lack of theoretical guarantees regarding local optimization
of the contrastive objectives 1, 2, 3; indeed, it is not even clear whether there is a polynomial-time
algorithm for computing a local optimum. Our main result is to show that no such polynomial-time
algorithm exists (unless there is an unlikely collapse of complexity classes, see below). Moreover, an
unconditional consequence of our reductions, is that there exist contrastive learning instances where
local search algorithms (including gradient-based methods) require exponential time before reaching
a local optimum. To the best of our knowledge, we are the first to formally investigate the complexity
of local solutions in contrastive learning objectives.

Proving hardness of local optima. The remarkable theory of NP-hardness was developed to
understand the difficulty of computing the value of a global optimum in optimization problems. Hence,
NP-hardness is not suitable to describe local optimality, which corresponds to fixed points of local
search algorithms. Johnson, Papadimitriou, and Yannakakis [1988] initiated the complexity-theoretic
study of discrete local search problems by defining the complexity class PLS (Polynomial Local
Search), and later, Daskalakis and Papadimitriou [2011] defined the class CLS (Continuous Local
Search) for continuous local search problems. Due to the significance of computing fixed points, both
PLS and CLS have played a prominent role in optimization and algorithmic game theory. For example,
computing a pure Nash equilibrium in congestion games is PLS-hard [Fabrikant et al., 2004], and it
was recently shown that computing a Karush-Kuhn-Tucker point (fixed points of gradient-descent)
of a quadratic program is CLS-hard [Fearnley et al., 2024]. Surprisingly, even though PLS and
CLS were originally defined with very different problems in mind, a recent breakthrough [Fearnley,
Goldberg, Hollender, and Savani, 2023] established a deep connection between them,* i.e., that
CLS = PLS N PPAD. Building on it, Babichenko and Rubinstein [2021], Anagnostides et al. [2023],
Ghosh and Hollender [2024], Anagnostides et al. [2025] have shown that broad classes of games,
including congestion games and adversarial team games, are captured by CLS. Beyond games, for
connections of PLS and CLS to cryptography, see Bitansky and Gerichter [2020], Hubdcek and Yogev
[2020]. Our work provides formal evidence of computational intractability of finding local optima in
contrastive learning:

Theorem (Abridged; see Theorems 3.2, 3.3, 3.4, 4.1). Triplet maximization problems 1, 2 are
PLS-hard, i.e., every problem in PLS efficiently reduces to them. The Triplet Loss minimization
problem 3 is CLS-hard, i.e., every problem in CLS efficiently reduces to it. As a corollary, assuming
the widely-believed PLS ¢ P and CLS ¢ P, no polynomial time algorithm (local search or otherwise)
can find a local optimum of objectives 1, 2, 3. Even if PLS C P or CLS C P, there exist instances
where local search (including gradient-methods) require exponential time to reach a local optimum.

*PPAD captures computation of mixed Nash equilibria, see celebrated work of Daskalakis et al. [2009].



Formal statements are in Section 3, 4. As is common in complexity, polynomial time refers to
algorithms whose runtime is polynomial in the input size (provided in binary representation). Our
results also extend to approximate local optima (solutions within a small € > 0 from a local optimum).

Challenges and proof ideas. The consequence of proving that a problem is PLS-hard (or CLS-hard)
is that in a certain precise sense, such problems are as hard as any other local search problem where the
goal is to find a local optimum. Here, local optimality is defined with respect to a generic definition of a
local search algorithm [Johnson et al., 1988, Daskalakis and Papadimitriou, 2011]. The main technical
challenge in all works establishing hardness results is how to do PLS-reductions (or CLS-reductions).
Roughly speaking, these are special type of efficient transformations between problems, that preserve
local optimality: the intuition is that starting from an already-known hard problem, and using a
PLS-reduction to another problem, e.g., the contrastive objectives above, then any efficient algorithm
that purportedly finds a local optimum of the latter, would in fact compute a local optimum of the
original (known-to-be-hard) problem. Contrast this with the common NP-reductions that are only
required to preserve the value of global optima, ignoring how local solutions are being altered.

Our results provide PLS-reductions from the LocaALMaxCuT problem [Schéffer and Yannakakis,
1991] (see Section 2 for definitions) to the maximization of satisfied triplets (Obj. 1, 2), and a
CLS-reduction from QuapraticPrROGRAM-KKT [Fearnley et al., 2024] to the Triplet Loss (Obj. 3).
Our PLS-reductions rely on novel gadgets that allow us to encode graph cuts and local (vertex) moves
via triplet constraints and embeddings in Euclidean space, trees or even the line (for the case of
rankings). Our gadgets impose a series of “heavy” contrastive triplet constraints on a special set of
“boundary” points, thus ensuring they are not allowed to move back and forth, otherwise the objective
value would drift away from any local optimum. After an embedding is performed, the two sides
of the graph cut can be formed by looking at which nodes were placed to the “left” or “right” of
the boundary points. Regarding our CLS-reductions, we encode and recover KKT stationary points
of quadratic programs mingejg,1]» 2" Qx + bz, by finding local minima of Triplet Loss, even if
the representation f(-) comes from a simple linear embedding model parameterized by 8 € [0, 1]”
such that fg(x) = @"x. Towards this, we first break the quadratic form into triples of variables
x,y,z € [0, 1] and we generate a specially crafted collection 7 of contrastive triplets (z;, x;“, x ),
where x;, x;, 2, are coordinates of . However, contrastive constraints introduce dependencies
among their shared variables and to deal with the interacting terms, we introduce groups of contrastive
triplets with carefully chosen weights that depend on the coefficients of the quadratic form.

2 Preliminaries

2.1 Discrete objectives in contrastive learning and PLS

Johnson et al. [1988] defined PLS to describe local search problems. A problem II is in PLS if
the following three polynomial-time algorithms exist: © (i) the first algorithm, given an instance of
11, it outputs an arbitrary feasible solution .S, (ii) the second, given S, it returns a number which
is the objective value of the feasible solution, and (iii) the third, given S, it either reports “locally
optimal” or produces a better solution. Implicit in the definition is the fact that feasible solutions have
polynomially many neighboring solutions (the third algorithm is polynomial-time). In this sense, one
can think of PLS as problems with efficient verification of local optimality.

Definition 2.1 (PLS-reduction). A PLS-reduction from problem II; to problem II5 is two polynomial-
time algorithms: (i) the first algorithm A maps every instance x of II; to an instance A(x) of Il5, and
(ii) the second algorithm B maps every local optimum of A(z) to a local optimum of z.

A PLS-reduction ensures that if we find a local optimum for IT5 in polynomial time then, we could also
find a local optimum for I1; in polynomial time. A problem is PLS-hard if every problem in PLS can
be reduced to it. In complexity, it is widely-believed that PLS ¢ P, hence there is no polynomial-time
algorithm for computing a local optimum of a PLS-hard problem. Interestingly, Schiffer and
Yannakakis [1991] proved many natural problems are PLS-hard, including LocaLMaxCur:

LocaLMaxCur Problem.
InpuT : A weighted undirected graph G(V, E') with a non-negative weight w,. > 0 for each edge.

"Both PLS and CLS can be equivalently defined with arithmetic circuits [Fearnley et al., 2023]



OutpUT : A partition (S, S) of the vertices V' in two nonempty sets, such that no vertex v can
increase the value of the cut, i.e., the sum of weighted edges cut, by switching sides.

We now define widely-used (discrete) objectives of maximizing satisfied contrastive constraints. To
simplify notation, from now on we drop the signs and simply write (x;, y;, 2;) for contrastive triplets.
All embeddings here map a set of n items to non-overlapping points of a metric space of dimension
d<n.

LocALCONTRASTIVE-EUCLIDEAN Problem.

Input: Set V of n vertices, together with m contrastive triplets { (x;, y;, z;) }/2.; where z;, y;, 2, € V
(we dropped the +/— signs for lighter notation), and target dimension d. Each triplet has a non-
negative weight w; > 0.

Output : Anembedding f : V — R? such that® no vertex v can increase the value of the embedding
by switching its location in R?. We say a triplet (z;, y;, 2;) is satisfied by f(-), if z; is placed closer
to y; than to z;, i.e., || f(x;) — f(yi)ll2 < ||f(x;) — f(2i)|]2- The embedding’s objective value is
Yot Wi Ly, g 2> Where 1y, o oy = 1if the constraint is satisfied by f(-), and 0 otherwise.

“The output embedding f is computable in polynomial time in |V'| and the description of weights.

LocALCONTRASTIVE-TREE Problem.

InpuT : As above, set V with contrastive triplets {(z;, v:, z;) }1%; (non-negative weights w; > 0).
Ourpurt : A hierarchical clustering, i.e., a binary rooted tree T' with |V| leaves, and a 1-to-1 mapping
from V to the leaves of T, such that no vertex v can increase the value of the tree by switching to
another location in the tree T (for each v in T, there are exactly 2|V'| — 3 other candidate locations).
We say a triplet (x;, y;, 2;) is satisfied by T, if x; is placed closer to y; than to z;, i.e., if there is a
subtree in T containing x;, y; but not z; (this is equivalent to distr(x;, y;) < disty(z;, 2;) for an
ultrametric distance on T)). The tree’s objective value is Y. w; - Lz, y; 2)-

Moreover, we examine scenarios where provided contrastive information is of the form “among z, y, 2,
items x, z are farthest apart” (instead of indicating that “item z is closer to y than to z”). Already
for 1-dimensional embeddings, such constraints give rise to BETWEENNESs, a well-studied ranking
problem in approximation algorithms [Arora et al., 2002, Charikar et al., 2009, Austrin et al., 2015].

LocALBETWEENNESS-EuCLIDEAN Problem.

InpuT : Set V' with betweenness triplets {(z;, y;, z;) }., each with a non-negative weight w; > 0,
and target dimension d.

OutpuUT : An embedding f : V — R? such that” no vertex v can increase the value of the
embedding by switching its location in R?. We say a triplet (x;, y;, 2;) is satisfied by f(-), if z; and
z; are placed the farthest apart (equivalently, y; is “between” x; and z;), i.e., || f(z:) — f(zi)]l2 >
max{|| f(z:)— f(vi)ll2, | f(z:) = f(ys)||2}. The embedding’s objective valueis Y ;" w;-1(z, 4, 2,)-

bThe output embedding f is computable in polynomial time in |V] and the description of weights.

Even though we defined problems in their general form, our PLS-hardness results also hold for
interesting special cases: we show LocALCONTRASTIVE-EUCLIDEAN in dimension d = 1 [Béddoiu et al.,
2008, Alon et al., 2008, Fan et al., 2020] and LocaLBETWEENNESS-EucLIDEAN with d = 1 [Aroraet al.,
2002, Charikar et al., 2009, Austrin et al., 2015] are PLS-hard. For trees, LocALCONTRASTIVE-TREE
is also known as triplet reconstruction/consistency [Byrka et al., 2010, Chatziafratis and Makarycheyv,
2023], and in terms of approximating the globally optimum solution several results and connections
to other hierarchical clustering objectives are known [Chatziafratis et al., 2021, Naumov et al., 2021,
Charikar et al., 2019, Chami et al., 2020, Moseley and Wang, 2023, Vainstein et al., 2021]. For other
extensions, see Appendix C.

2.2 Continuous objectives in contrastive learning and CLS

Daskalakis and Papadimitriou [2011] proposed CLS to study local search for continuous objective
functions, most notably search problems that can be solved by performing Gradient Descent. CLS has
played an important role in game theory and optimization, and a recent breakthrough showed that
CLS = PPAD N PLS [Fearnley et al., 2023]. The natural problem of finding KKT points in quadratic
programs was recently shown to be CLS-hard [Fearnley et al., 2024] and we will reduce it to finding
local minima of the Triplet Loss [Schroff et al., 2015].



QuADRATICPROGRAM-KKT Problem.
InpUT : A symmetric matrix Q € R™*™ and vector b € R"™.
Output : Compute a local optimum (i.e., a KKT point) for the quadratic ming¢g,1j» ' Qr+blz.

LocALTRIPLETLOSS-EucLIDEAN Problem.

Input : Set V U {A, B} of points in RY, set C of triplets (x, y, z) of weight w > 0, margin o > 0.
Output : Find® an embedding f : V' — [0,1]¢ that is a first-order stationary point for the
minimization objective given by the triplet-loss:

> weomax{|f(@) — f@) - @) - f@)]3+a,0}.

(z,y,2)€C

“The output embedding f is computable in polynomial time in the description of the input set V' and the
weights.

Recall, first-order stationary points are fixed points of gradient descent: =* € X is a first-order
stationary point of g(x), if V& € X’ we have (x — x*, V,g(x*)) > 0 (X convex, compact domain).

We emphasize the role of the two pivot points A, B in the definition. Notice that if we did not have
pivot points, then the embedding that maps all points from V" to the all-zeros vector would be a trivial
first-order stationary point. Moreover, if we had only 1 pivot A, then again mapping every point in V'
to A would result in a first-order stationary point of the Triplet Loss. Thus having two pivot points
are necessary and sufficient to make the problem non-trivial.

3 PLS-hardness for discrete objectives in contrastive learning

In this section we present our results for LocALCONTRASTIVE-EUCLIDEAN, LOCALCONTRASTIVE-TREE,
LocaLBETWEENNESs-EuCLIDEAN where the goal is to find local solutions for maximizing weight of
satisfied triplets. We start with Euclidean embeddings, then have results on trees.

3.1 The case of embeddings in R? with d = 1

To set some notation and convey the key ideas for our later proofs, we start by presenting our reductions
for the case of 1-dimensional embeddings, since our reductions for the general case are more involved.

Theorem 3.1. LocaLCoNTRASTIVE-EUCLIDEAN, even for embedding dimension d = 1, is PLS-hard.

Proof. We present a PLS-reduction from LocaLMaxCut to LocALCONTRASTIVE-EUCLIDEAN with
d=1. Let G = (V, E) be an undirected graph with edge-weights w > 0. Let W := Z(U’U)GE Wy
be the total weight. Moreover, let M :== W + 1 and M’ := (2|V| + 1) M denote two heavy weights.
For our reduction, we introduce three special vertices X, Y, Z (we use capital letters to distinguish
them from the vertices of G). Eventually, the input to the LocaALCONTRASTIVE-EUCLIDEAN problem
willbe V U{X,Y, Z} together with a collection of m = |E|+ 2|V| + 2 contrastive triplets. Our goal
is to show how we can recover a locally maximum cut for G, from a locally maximum embedding of
our constructed instance.

We add the following two types of contrastive triplet constraints:

* Type A (‘“edge” triplets). For every edge (u,v) € E with weight w,,, add a single triplet
(u, X, v™) with weight w,,,. This incentivizes embeddings to put u closer to X than v.

* Type B (“boundary” triplets). We add the following:
— For every vertex v € V, add (X, Y™, v ™) with weight M.
— For every vertex v € V, add (X,v™, Z~) with weight M.
— Finally, add (Y, Z+, X ) with weight M’, and (X,Y ", Z ) also with weight M’.

In total, this creates m = |E| 4+ 2|V'| + 2 contrastive triplets on V U {X,Y, Z}.

First, observe that because of the heavy-weight triplets (X, Y+, Z~) and (Y, ZT, X 7), any locally
maximum embedding must satisfy those two triplets: if any of those two triplets was violated, we
can always satisfy both simultaneously by moving Z and forcing either the order X < Y < Z or



Z <Y < X, with distances | X — Y| > |Y — Z|, thus gaining at least M’ while losing at most
2\[V|IM + Z(u el Wuw < M, which would contradict local optimality.

Next, we show that in any locally maximum embedding, all (X,Y ¥, v~) and (X,v",Z7) are
satisfied, meaning that each v € V must lie on one of two line segments Y Z or Y'Z’, where Y’/ and
Z' are the reflections of Y and Z with respect to X respectively (see Figure 2). Note that Y’/ Z’ are
only used for the analysis and they are not part of the reduction. If any (X, Y™, v™) or (X,v",Z7)
is violated, we can always satisfy both by moving v to segment Y Z or to Y'Z’, thus gaining at least
M while losing at most Z(u,v)EE Wy < M = Z(u,U)EE Wy + 1.

Figure 2: Reduction (d = 1): Any local optimum places v € V in segment Y Z or its reflection Y’ Z.

Finally, it is clear that (u, X T, v ™) is satisfied if and only if u and v are placed on different sides of
X. This encodes a solution to the LocaLMaxCur instance, by defining one side of the cut (S, S) to
be all vertices placed in segment Y Z and the other side to be the remaining vertices.

3.2 Hardness for general d-dimensional embeddings

Extending the above proof, our two results for general Euclidean embeddings are:
Theorem 3.2. For every fixed dimension d > 1, LocaALCoNTRAsTIVE-EUCLIDEAN is PLS-hard.

Theorem 3.3. For every fixed dimension d > 1, LocALBETWEENNEss-EucLIDEAN is PLS-hard.

All proofs can be found in the Appendix A. Due to space constraints, we give the proof for
LocaLBETWEENNESs-EuCLIDEAN for the case d = 2. Similar gadgets are used to prove Theorem 3.2.

Proof of Theorem 3.3 (d = 2). Our PLS-reduction is from LocaLMaxCut. As previously, let
G = (V, E) be an undirected graph with edge-weights w > 0. Let W = ) (u,0)e B Wuv, and let
M = W +1 denote a heavy weight. For our reduction, we introduce two special vertices X1, X5. Our
goal is to show how we can recover a locally maximum cut for GG, from a locally maximum embedding
of our constructed instance. We add the following two types of contrastive triplet constraints:

* Type A (“edge” triplets). For each edge (u,v) € E with weight w,,,, add a single triplet (u, X1, v)
with weight w,,,. Geometrically, the semantics of the triplet in LocALBETWEENNESs-EUCLIDEAN
is that the pair u, v is the farthest distance apart, i.e., the largest edge in the triangle formed by
u, X1, v is the edge (u,v).

* Type B (“isosceles” triplets). For each v € V, add two triplets (X1, X2,v) and (X5, X1, v), each
with weight M. Intuitively, because of the heavy weight, this forces X1, Xo, v to form an isosceles
triangle, such that ||v — X1||2 = ||[v — Xa|2 > || X1 — X2||2, where we overload the notation
v, X1, X5 to also denote the vertex embeddings in the 2D-plane.

Observe that in any local optimum, all “isosceles” triplets must be satisfied. If any “isosceles” triplet
involving v is unsatisfied, we can always satisfy it by moving v to form the corresponding isosceles
triangle, thus gaining at least M while losing at most > w,,, < M, which would strictly increase the
objective value. This effectively forces every vertex v to lie on one of two rays (see Figure 3).

Figure 3: Reduction (d = 2) for LocaLBeErweeNNEss-EucLiDEAN: Type B triplets force all v € V'
onto two opposing rays. Left: (u, X, v) is not satisfied when u and v lie on the same ray. Right:
(u, X1,v) is satisfied when u and v lie on different rays.



Next, we show that in any locally maximum embedding for LocALBETWEENNESsS-EUCLIDEAN, an
“edge” triplet (u, X7, v) is satisfied if and only if u and v are on opposite rays. To see this, let us
analyze the triangle AuX;v:

¢ If v and v are on the same ray, we have ZuX; v < 30°. Basic trigonometry tells us wv cannot be
the longest side of the triangle, thus (u, X7, v) is not satisfied.

* If v and v are on opposite rays, we have ZuX; v > 120°. Basic trigonometry tells us wv must be
the longest side of the triangle, thus (u, X7, v) is satisfied.

Therefore, the configuration of a locally maximum embedding encodes a local max cut for G. We
can easily recover the cut (S, .S) by checking whether each “edge” triplet (u, X1, v) is satisfied in the
configuration, e.g., S can be all vertices in one ray. O

3.3 Hardness of tree embeddings

Theorem 3.4. The LocarContrastive-TREE problem is PLS-hard.

Proof Sketch. We do a PLS-reduction from LocaLMaxCur. Given graph G(V, E), we construct
triplets over nodes V U {X, X', Y, Z} for special nodes {X, X', Y, Z}. The triplets are as follows:

* Type A triplets: X X'|Y, X X'|Z, and X X'|v for all v € V, each with weight > ___ , we.

* Type B triplets: XY'|Z with a large weight [V/|- > _pwe + [V| + 1.

* Type C triplets: Yv|X and Zv|X for all v € V, each with weight > __ . w. + 1.

* Type D triplets: u.X |v and vX|u whenever (u,v) € E, each with weight w,,, /2.

The purpose of the special vertices and the constraints is that they force the tree to look as in Figure 4:
X, X' are siblings, and any other vertex v € V is either in subtree Ty containing Y or subtree T
containing Z (because of heavy Type C triplets). Then, the solution to LocaALMaxCurT can be formed
by all nodes that fell in 73 as one side of the cut, and to Tz as the other side. The proof proceeds by

a case analysis showing that this is indeed a local max cut, and that no vertex can increase the weight
of the cut edges by moving to the other subtree (for full proof, see Appendix B). [

XX/ -2

Figure 4: Reduction for LocALCONTRASTIVE-TREE.

4 CLS-hardness for continuous objectives in contrastive learning

Theorem 4.1. For every dimension d > 1, LocaLTripLETLoss-EucLipEAN is CLS-hard.

Proof Sketch. We present the key idea for the case d = 1 with two pivot points A = 0 and B = 1/2.
The full proof is in Appendix D. We give a CLS-reduction from QuabpraticPrRoOGRAM-KKT. The
key idea is that we can use triplets of the form (z, y, z) to simulate the quadratic function. For now,
imagine we had as a representation function f(-) the identity function. Then, a given triplet constraint
(z,y, z) with weight w will contribute the following term to the overall Triplet Loss:

L(z,y,2) = w-max{(z — y)* — (z — 2)* + a,0}.



Our proof first breaks the given quadratic program into smaller quadratics on three variables at a time:
q(m, Y, z) = clx2 + 02y2 + 0322 + cqxy + c572 + CeYz + Crx + CgY + Coz.

We then show how to generate a set of m carefully chosen triplets {(z;, v;, z;) } 1%, with appropriate
weights w; so that the total triplet loss £ is the same as the quadratic program. It is easy to see that
for terms depending only on one variable such as c;z2 or cgy, we can easily generate them by using a
triplet (for example, triplet (0, z, %) allows us to generate the quadratic term z% and triplet (y, 0, %)
generates the linear term y). However, the main obstacle is that for the cross-terms like 2y we need
to use triplet (x, 0, y), and this introduces dependencies among the different triplets since there are
shared variables. To overcome the difficulty of interacting terms, we need to introduce a total of 12
contrastive triplets on x, y, 2z, whose corresponding weights depend on the coefficients of the given
quadratic. By solving a linear system for the weights, we obtain a loss £(z, y, z) that equals ¢(z, y, z).

Using these ideas, we can prove hardness under the framework of contrastive learning [Schroff et al.,
2015], even for the case where the representation f(-) is a linear model parameterized by 8 € [0, 1]™
such that fg(z) = @ x. Here x is the sampled input to the linear model, f(x) is the output of the
linear model. For any input «;, denote a;(0) = 0T x; to be the output of the linear model. We aim to
find local solutions of the triplet loss problem:

eggrll]n (MZ;C) w; ;.1 max ((a;(8) — aj(0))* — (a;(0) — ax(8))? + a,0) .

We set = 1 and let z; = e; to be the i*" standard basis, then a;(8) = 6; € [0, 1]. The result follows
from the case with d = 1. O

5 Experimental verification: hard examples for local search

Our theoretical results establish worst-case hardness for finding local optima in several contrastive
objectives. Here, we provide an experimental illustration that this indeed can happen by constructing
instances where local search takes exponential time. By using our reductions from LocaLMaxCur, we
create hard instances for various other contrastive problems, namely LocALCONTRASTIVE-EUCLIDEAN,
LocAaLCoNTRASTIVE-TREE and LocALBETWEENNESS-EUCLIDEAN, and we measure the runtime of
local search.

Our starting point is a hard instance for the LocaLMaxCut problem due to Monien and Tscheuschner
[2010]. This instance is a bounded-degree graph with maximum vertex degree 4, where any flip-based
local search algorithm (initialized from a specific initial cut) will require exponentially many iterations
to reach a local optimum. Flip-based local search algorithms attempt to move one vertex at a time from
its current position to another position, while trying to improve the objective. Our reductions transform
this instance to the various contrastive objectives mentioned previously. In fact, our reductions when
applied to the hard instance of LocaLMaxCur preserve the local search structure and the changes
in the objectives exactly. As we verify, the same exponentially-slow path towards a local optimum
exists in all of the transformed instances. In particular, to validate our findings, we implemented
local search for LocaLMaxCur, as well as for the three problems LocALCONTRASTIVE-EUCLIDEAN,
LocaLBeETWEENNESS-EUcLIDEAN, and LocALCoNTRASTIVE-TREE. Interestingly, in all four cases, we
observed exactly the same local search dynamics (i.e., the same improving moves were performed).
As a consequence the iteration counts on the corresponding instances are identical. We summarize
the results in Figure 5 and provide the detailed statistics in Appendix E.

Finally, we observed that if we start from a random configuration, local search usually converges
quickly, suggesting that the hard instances of Monien and Tscheuschner [2010] are sensitive to the
choice of the starting point. However, understanding whether random initialization (or other strategies)
is generally sufficient to avoid such worst-case dynamics remains an open question.

Conclusion

In this work, we provided strong evidence that computing local optima for various contrastive learning
objectives is computationally intractable in the worst case. To do so we relied on the well-studied
complexity classes PLS and CLS and we presented a series of reductions from difficult problems
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Figure 5: Comparison of instance sizes and number of iterations of local search for the sequence of
hard instances created by our reductions.

of those classes to our contrastive objectives (even for relatively simple settings). There are many
exciting questions for future consideration. The main interesting future direction is to examine
whether our negative results are persistent in the average case. In particular, understanding the effects
of initialization is an exciting direction. Another interesting perspective to study for contrastive
objectives, is so-called smoothed analysis [Spielman and Teng, 2009], where the input data are slightly
perturbed by random noise, and many algorithms (including linear programming with the Simplex,
which is a local search algorithm) seem to get much better guarantees compared to worst-case inputs.
Finally, our work studied the question of how fast can we reach a local optimum, but an important
future direction is to argue about the quality of local solutions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions and results are summarized in the abstract and the
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our results are about the computational complexity of local solutions in
contrastive learning. These are worst case guarantees and in practice the running time can
be much faster.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* Ifapplicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the proofs of our claims can be found in the appendix. Moreover, we have
provided proof sketches to give intuition to the reader about our proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments, it includes simulations that do not
affect the main claims.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If'the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]
Justification: We have included the code for the simulations in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include such type of experiments. It includes simulations
of hard instances that verify our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments of this nature.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [NA]
Justification: The paper does not include experiments of this nature.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on the computational complexity of local optima for contrastive
learning and it is theoretical. The authors do not believe there is any social impact from this
work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

A Omitted proofs for Section 3.2

Theorem A.1 (Theorem 3.3, restated). For every fixed dimension d > 1, LoCALBETWEENNESS-
EucLipean is PLS-hard.

Proof. We reduce from LocaLMaxCur. Let G = (V, E, w) be a weighted undirected graph.

Reduction Construction. We define an instance of LocALBErweeNNESs-EucLIDEAN in R? called
Ty as follows. We introduce special vertices X1, ..., X4 and choose a hierarchy of weights

My>My> - >Mg>M> > wy,
(uv)ER

such that for each k > 3,

My> D 30,0M; 4+ 2VIM 4+ D we.
>k ? — (up)EE

all “isosceles” triplets

lower layer “equilateral” triplets all “edge” triplets

Now we add constraints as follows:
* Type A (“edge” triplets). For each edge (u,v) € E, we add a triplet (u, X1, v) with weight w,,,.

» Type B (“isosceles” triplets). For each v € V and every pair (X, Xy) with 1 < k < ¢ < d,
we add two triplets (X, Xy, v) and (X, X, v), each with weight M. Intuitively, this will force
Xk, Xy, v to form an isosceles triangle such that ||[v — Xp ||, = [|[v — X¢|ly > || Xk — Xol|5-

* Type C (“equilateral” triplets). For every triple (X;, Xz, X,) with1 < j < k < ¢ < d, we add

three triplets (X;, Xy, Xy), (Xk, X¢, X;), (X¢, X, X&), each with weight M, (¢ is the largest
index among j, k, ¢). Intuitively, this will force X ;, X}, X, to form an equilateral triangle.

Lemma A.2. In any local optimum of Ly, all “equilateral” triplets are satisfied, therefore
X1,..., X4 forma (d — 1)-dimensional regular simplex.*

Proof of Lemma A.2. We prove { X}, ..., X} form a regular simplex for each k = 3,...,d. We do
this by induction on k.

Base Case (k = 3). If any “equilateral” triplets over { X1, X5, X3} is unsatisfied, moving any of
them to form an equilateral triangle with the other two will satisfy at least one new triplet of weight

M3, while losing at most > ;- 5 3(321)Mj + 2|V (g)M + 2 (uw)eE Wuv < Ms, which contradicts
local optimality.

Inductive Step. Suppose { X1, ..., X_1} form a regular simplex but { X1, ..., X4} do not. Similar

to the above, moving X}, to form a regular simplex with { X7, ..., Xj;_1} will satisfy at least one
new triplet of weight M, while losing a total strictly less than Mj. Hence, { X1, ..., X} } must also
form a regular simplex. O

Lemma A.3. Let C be the centroid of the simplex X1, ..., Xq and { = | X1 — Xs||, be its edge
length. Then in any local optimum, all “isosceles” triplets are satisfied, therefore each v € V must lie
on the line through C perpendicular to the hyperplane spanned by the X;, and moreover at distance
at least { from every X;. Formally, each v € V lies on one of two opposing rays:

Rt ={C+tu:t>t}, R ={C—tu:t>t},

d+1

where W is the unit vector along that line and to = £ - |/ 5.

Proof of Lemma A.3. Without loss of generality, assume the simplex is in the standard position:

X1 =(1,0,...,0), X5 = (0,1,...,0),..., X4 = (0,0,...,1)

*In geometry, a regular simplex is the d-dimensional generalization of an equilateral triangle (2-simplex) or a
regular tetrahedron (3-simplex), consisting of d + 1 points with all pairwise distances equal.
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with centroid C' = (4,2,..., ). The edge length is £ = /2.

We denote the i-th coordinate of v as v;. The equidistant condition ||[v — X[, = |lv — X||5
simplifies to:
v? — 2u; ZU?—QUj Vi # j.

The only solutions are v = (v, c, . .., ) for some o € R.
For v = a1, the distance to any vertex Xy is:

v —Xill3 = (@ =12+ (d—1)a? =do® —2a+1> (> =2.
Solving da? — 2a + 1 > 2 gives:

—vVd+1 1+vd+1
a_T or OZZT.

Expressing v relative to the centroid C' = él:

v=C+tu, u=1/Vd, t:ﬁl(a—l).

d
Substituting the bounds for o yields t < —/%tL or ¢ >, /441,

For arbitrary £ > 0, scale the canonical simplex by A\ = ¢/+/2. The threshold ¢, scales as:

o fd+1 [d+1
to =M/ —— =4/ 5

The standard basis assumption is justified because any regular simplex can be mapped to this form via
a similarity transformation, which preserves the distance relationships.

Since M > Z(u v)eE Wuv, ANy configuration of v that violates the “isosceles” triplets can be
improved by moving v to either R™ or R™. O

Lemma A.4. In any local optimum, the “edge” triplet (u, X1,v) is satisfied if and only if u and v lie
on opposite rays R™ and R™.

Proof of Lemma A4. Let u = C' 4+ t;u and v = C + t;u. Since u,v lie on the line through C
perpendicular to the hyperplane spanned by the X;, we have

/ 2
flu — X1||2 = tzz + (| X1 — C”Q’

2
lv=Xully = /] + 1X1 = Cll3-

We can also verify that [| X, — C||, = ¢

Case 1: If v and v are on the same ray (e.g., R™), then:
[u—wvlly = [t; — ;] < max(t;,t;) < max([ju— Xi[,,[|lv— Xil)-
Thus (u, X;,v) is not satisfied.

Case 2: If v and v are on opposite rays R and R, then:
lu—Xall, = /82 + X1 = Cll5 = \/#2 +
lo = X1ll, = /8 +11X1 = Cll3 = \/#

[u = lly = [ta] +[¢;1]-

We need to show that [|u — v, > max(|lu — Xi||5, |lv — X1]|5)-
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)¢?

To show [ju — v||y > ||u — X1 ||y, we need (|t;] + [t;])* > 7 + (d%. Expanding:

2 2o 2, (-1 2o (@-1)¢
Since [t;], [t;] > to, substitute |t;| = |t;| = to (worst case for the inequality):
d—1)¢?
22 412 =32 > LD
0t 02 oy

Substitute tg = ¢ %:

(d+ D _ (d—1)e

3 %q 2 24

— 3(d+1)>d—1.

This holds for all d > 2.

Symmetrically we can show ||u — v||, > ||[v — X1 ||5. Thus (u, X1, v) is satisfied. O

Special Case d = 1. We note that in the case of d = 1, this construction degenerates into only one
special vertex X7, with only “edge” triplets. We claim that this construction is still correct, as the
vertices on different sides of X; encode a cut. Since “no local moves can improve the objective
function” is a stronger condition than “no local moves of vertices except X; can improve the objective
function”, any local optimum of Z;,, is also a local max cut.

This concludes the proof of Theorem 3.3. O

Proof of Theorem 3.2. We extend the reduction for LocALCONTRASTIVE-EUCLIDEAN to higher dimen-
sions by modifying the LocALBETWEENNESs-EUCLIDEAN construction.

Recall that in the LocALBETWEENNESS-EUCLIDEAN construction, all v € V are forced onto two
opposing rays. We can encode the same isosceles and equilateral gadgets using contrastive triplets,
for example, replacing a betweenness triplet (z,y, z) with two contrastive triplets (z,y™, 27) and
(2,47, 2~ ). We then use the same idea for the d = 1 case we considered in Section 3.1, to turn the
rays into segments. Let Y be a new special vertex forming a regular simplex with X, ..., X4, and Z
be a new special vertex on one of the rays. We add a contrastive triplet (Y, ZT, X ") to ensure that
| X1 =Y, > [|Y — Z|5, so YZ is the segment we “cut” on the ray.

For each v € V, we add two contrastive triplets (X;,Y ", v ) and (X3, v, Z7) to ensure that v is
on Y Z, or on its mirror Y’ Z’ with respect to the hyperplane spanned by X1, ..., Xq4.

We can always choose a hierarchy of weights so that these newly added triplets are satisfied in any
local optimum. The rest of the proof follows similarly to Theorem 3.3. O

B Omitted proofs for Section 3.3

Proof of Theorem 3.4. We reduce from LocaLMaxCur. For a given graph G(V, E, w), we construct
the triplets over vertices V U {X, X", Y, Z}. We denote W := 3", )< Wuo t0 be the sum of edge
weights. The triplets are constructed as

* Type A triplets: X X'|Y, X X'|Z, and X X'|v for all vertex v € V, each with weight W;

* Type B triplets: XY'|Z with a large weight nW + n + 1;

* Type C triplets: Yv|X and Zv|X for all v € V, each with weight W + 1;

* Type D triplets: For every edge (u,v) € E, we add uX |v and vX |u, each with weight w,,,, /2.

Assume that T is a local solution of the above triplets instance. Since 7" is an rooted binary tree,
there exists a unique path P starting from the leave node X to the root. All other leave nodes
V U{X',Y, Z} would be on branches of this path P. Firstly observe that X’ should share the same
parent node with X. In other words, X', and only X', should be on the lowest branch on the path P.
If this is not the case, X’ can simply move to a location such that X and X’ share the same parent
and this would only increase the satisfied triplets by satisfying all triplets of Type A.
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Since in any local solution 7', Type A triplets are always satisfied as argued above. For nodes Y
and Z, Type B triplet XY|Z has dominating weight (the weight of XY'|Z is greater than the sum of
weights of other triplets that Y or Z is involved). Formally, we have

IUXY\Z>E Wy, x and wXY\Z>E Wzy|X -
veV veV

Thus any local solution 7" needs to satisfy Type B triplet. We note that the triplet XY'|Z can only be
satisfied when Y is on a lower branch of Z on the path P.

Similarly for each vertex v € V, it holds that

Wy v| X > Z (wuX\v +va\u)
ueN (v)

where N (v) denotes the set of neighbors of v. Thus in any local solution T, vertex v would try to
satisfy Yv| X and Zv| X first. Since Y and Z are on different branch, only one of Yv|X and Zv|X
could be satisfied in a local solution T'. Notice that in order to satisfy Y'v|X or Zv| X, vertex v should
be on the branch of Y or the branch of Z respectively. We conclude that in a local solution 7', any
v € V should be on either the branch with Y or the branch with Z.

We proceed to show that for any pair of vertices u and v, if u and v are on the same branch (either the
branch with Y or the branch with Z), then neither of v X |u or uX |v would be satisfied. If u and v are
on different branches, e.g., v is on the branch of Y and u is on the branch of Z, then exactly one of
vX|u or uX|v would be satisfied. Since any vertex v € V' can only reside in either the branch with
Y or the branch with Z, we conclude that in any local solution 7T, the configuration of all vertices v
will introduce a solution of LocaLMaxCurt on the original graph. That is, all vertices v € V' on the
branch with Y form one side of the cut and those on the branch with Z form the other side. [

C Hardness of Non-Betweeness embeddings

We start this section by giving formal definition of LocALNoNBETWEENNESs-EUCLIDEAN problem.

LocALNONBETWEENNESS-EUCLIDEAN Problem.

InpuT @ Set V' with non-betweenness triplets {(z;, y;, z;) }".; each with a non-negative weight
w; > 0, and target dimension d.

OutpuUT : An embedding® f : V — R< such that no vertex v can increase the value of the
embedding by switching its location in R, We say a triplet (z;,y;, 2;) is satisfied by f(-), if
x; and z; are not placed the farthest apart (equivalently, y; is not “between” z; and z;), i.e.,
1f (@) — f(zi)lly < max{||f(z:) — f(i)ll, (i) — f(5i)ll}. The embedding’s objective
value is Y7 w; - Lz, ye 20)-

“The output embedding f is computable in polynomial time in the description of the input set V" and the
weights.

The problem LocaLNoNBETWEENNESs-EUCLIDEAN problem, even in the case of 1-dimensional
embeddings (d = 1), it is the well-studied problem called Non-Betweenness [Guruswami et al., 2008,
Charikar et al., 2009, Austrin et al., 2015]. Here we show that it is PLS-hard.

Theorem C.1. LocarNonBETWEENNESs-EucLIDEAN for embedding dimension d = 1 is PLS-hard.

Proof. We give a polynomial time reduction from LocaLMaxCut to LocALNONBETWEENNESS-
EucLipean with d = 1. Given an undirected graph G = (V, E) with edge-weights w > 0. Denote
W=>" (u,0)€ E Wuo 10 be the sum of all edge weights. We introduce two special vertices X and Y’

and the input to the LocaALNoNBETWEENNEss-EucLIDEAN will be vertices from V U {X, Y} with
|V'| + 2| E| non-betweenness triplets. The triplets can be classified into two types:

* Type A triplets. For every vertex v € V, we add a triplet (X, v,Y") with weight W.
* Type B triplets. For every edge (u,v) € E, we add (u, v, X) and (v, u, X) with weight w,,,.

We now argue that in any local optimal embedding over R, there must be no point between X and Y.
To see this, given an embedding where vertex v is in between X and Y, the corresponding triplet
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(X,v,Y) is not satisfied. By moving Y to the location such that there is no point between X and YV’
(X and Y are next to each other), triplet (X, v,Y") becomes satisfied and all previous satisfied triplets
remain unchanged. Thus one can simply change the location of Y and increase the sum of weighted
satisfied triplets.

We proceed to analyze Type B triplets. For any edge (u,v) € E, we have the following three cases.

Case 1 Vertices u and v are to the left of X, that is, v and v are both smaller than X. Without loss
of generality, we assume that v < v. Notice that in this case v is in between v and X. Thus triplet
(v, u, X) is satisfied but (u, v, X) is not satisfied.

Case 2 Both u and v are greater than X. Assume that u < v, it follows that triplet (u, v, X) is
satisfied but (v, u, X) is not satisfied.

Case 3 Vertices u and v are on different side of X . In this case it holds that
lu—X|<|u—wv|, and |v—X|<|u—"2|.
Thus both triplets (u, v, X) and (v, u, X) are satisfied.

We conclude that for any edge (u,v) € E, if vertices u and v are on the same side of X (either to the
left or to the right), then one of triplets (u,v, X) or (v, u, X) would be satisfied. If  and v are on
different side of X, both (u, v, X) and (v, u, X ) would be satisfied. Thus type B triplets essentially
induce a cut over the original graph G—any vertex v to the left of X is on one side of the cut and
vertices to the right of X is on the other side of the cut. Any local optimal embedding over the above
LocaLNoNBeTwEENNESs-EUCLIDEAN instance with total weight W’ would induce a LocaLMaxCut
over G with weight W’/ — (|V| + 1)W. O

D Omitted proofs for Section 4

Proof of Theorem 4.1. We first study the case where the embedding dimension d = 1 with pivot points
A =0and B = 1/2. In order to show the hardness result, we reduce QUADRATICPROGRAM-KKT
problem to the local solution of LocaLTripLETLoss-EucLiDEAN. The former has been shown to be
CLS-complete [Fearnley et al., 2024]. Formally, we consider the following optimization problem

min ' Qe +b'x. D
z€[0,1]™

To show that QUADRATICPROGRAM-KKT reduces to LocaLTripLETLoss-EucLIDEAN, we consider an
arbitrary quadratic function of 3 variables z, y, z € [0, 1]

q(z,y,z) = cx? + 02y2 + 0322 + cqxy + csx2 + cgyz + crx + cgy + coz. 2)

For a LocaLTripLETLOss-EucLIDEAN problem with points from [0, 1], we set the margin a = 1.
Notice that for any triplet of points (a;, a;, ax) € [0,1]%, we have

(ai —a;)? — (a; —ax)* +1>0.
Thus for any triplet constraint (a;, a;, ax) with weight w, the loss function is
,C =w ((az — aj)2 — (ai — ak)z + 1) .

For any triplet (a;, a;, ax), we denote triplet (a;, ax, a;) as its dual. Notice if (a;, a;, ax) has weight
w and the dual triplet (a;, ay, a;) has weight w’, we have the following objective function

L=w-uw)((a;—a;)*—(a; —ap)?) +w+w'.

Now consider a LocaLTrIPLETLoss-EUCLIDEAN instance on (z,y, z) € [0, 1]3. Triplets with weights
w; are given as

Triplet t; = (z,0,y) with weight wy: £ = wy ((z — 0)2 — (z —y)* + 1) ;
triplet to = (y, 0, z) with weight wa: Lo = ws ((y — 0)* — (y — x)? + 1) ;

triplet t3 = (, 0, z) with weight ws: L3 = w3 ((z — 0)* — (z — 2)2 + 1) ;
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triplet ¢4 = (2,0, z) with weight wa: £4 = wy ((z — 0)® — (z — 2)* +
triplet ¢5 = (y, 0, z) with weight ws: L5 = w5 ((y — 0)* — (y — 2)? + 1) ;
triplet t = (2,0, y) with weight wg: L6 = we ((z — 0)% — ( )° +

% with weight wr: L7 = wr (x2 —(z— %)2

triplet t7 = (x,0, 5)

triplet ts = (y,0, ) with weight ws: Ls = ws (y* — (y — &
triplet tg = (z,0, 3) with weight wg: Lo = wg (22 — (2 — 1
triplet t19 = (0, z, ) with weight wio: L19 = w1 ((0 — z)? — 1
triplet ¢11 = (0, y, 1) with weight wy1: L11 = w11 ((0—y

’ 2

1
’ 2
triplet t15 = (O, 2, %) with weight wi2: L1 = wis ((0 -z

The duals of above constraints are defined similarly with weight w,. Summing up all the objectives
we get

L= (w; —wh) (2zy — y?) + (w2 — wh) (2zy — 2°) + (w3 — wh) 22z — 2%)
+ (wg — wh) (222 — 2%) + (ws — wh) (2yz — 2°) + (we — wg) (2yz — y*)
+ (w7 — wh)z + (ws — wg)y + (w9 — wy)z

+ (w10 — wip)z® + (w11 — wiy)y? + (w12 — wiy)z® + C.

We note that the last constant term C' wouldn’t change the first-order stationary point of the above
program. By setting

wy) — Wy = —ca;
wo — wh = 3 + G
w3 —wh = —cz — L,
wy —wy =c3+ G+ D
ws — wy = F;
we — wi = 0;
wy — wh = cp;
wg — w§ = Cg;
wy — wh = Cy;
wi —wig =c1+ca+e3+ G+ P+ L
w11 — w’u = 0;
wyy — why =0,
we have £ = ¢(z,y, z). This means that from any first-order stationary point (z*,y*, z*) of the
objective £, we have [z*,y*, 2*]T € [0,1]? is a KKT for the quadratic program defined in (2).

As shown above, £ has the power to represent any quadratic polynomials g(x, y, z). For the general
form as in (1), one can group variables into groups of three (v;, v;, vy) and repeat the construction
shown above. Since at most we have O(n?) interacting terms v;v; where v; and v; are different
variables, it requires O(n?) triplets to represent the quadratic program in (1). From the CLS-hardness
of QuapraticPrROGRAM-KKT, we conclude that LocaLTripLETLoss-EucLIDEAN with embedding
dimension d = 1 is CLS-hard.
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To extend above result to higher dimensions, we construct a reduction similar to the one-dimension
. 2 2 2 . . .

case. Since ||a; — a;|; = ||la;||; + [la;]l; — 2a; a;, by using the same constraints and coefficients

as the one-dimensional case and setting av = d, we can construct a quadratic program of the form

min z'Qx+b'x. 3)
x€[0,1]dn

Where Q is a dn x dn matrix with n x n blocks, the (i, j)*" block is of form ¢;; - I. b € R is

a concatenation of n vectors (vy,...,v,), where each v; € R? is of form d; - 1 . Now for any
first-order stationary point a* = (a}, a3, ...,a’) € [0,1]%, we consider the first coordinate for
each af, = a} - ey, one can verify that a} = (aj ,,...,a; ;) € [0,1]* forms a KKT point of the

following program

min z'Czx+d' .
xze[0,1]"
Where C € R™*™ and ¢;; is the coeflicient for the (3, j )" block of Q defined in (3) and d; is the
coefficient of the i*" vector of b in (3). From the CLS-hardness of QuabpraTicPrROGRAM-KKT, we
conclude that LocaLTRrRIPLETLOSS-EucLIDEAN is CLS-hard. O]

E Detailed experimental statistics

Table 1: Experimental statistics for the hard instances H; to H15 used in Section 5. The second and
the third columns show the number of vertices and edges in the original LocaLMaxCur instance.
The next 6 columns show the number of vertices and constraints in the reduced LocALBETWEENNESS-
EucLiDEAN-1D, LocALCONTRASTIVE-EUCLIDEAN-1D and LocALCoNTRASTIVE-TREE instances. The
last column shows the number of iterations needed to reach a local optimum.

MaxCut Betweenness-1D  Contrastive-1D  Contrastive-Tree

Instance #iterations
n m n m n m n m
H, 37 45 38 45 40 121 41 204 63
Hs> 65 81 66 81 68 213 69 360 167
Hs 93 117 94 117 96 305 97 516 375
H, 121 153 122 153 124 397 125 672 791
Hy 149 189 150 189 152 489 153 828 1623
Hg 177 225 178 225 180 581 181 984 3287
Hy 205 261 206 261 208 673 209 1140 6615

Hyg 233 297 234 297 236 765 237 1296 13,271
Hy 261 333 262 333 264 857 265 1452 26,583
Hiyg 289 369 290 369 292 949 293 1608 53,207
Hyy 317 405 318 405 320 1041 321 1764 106,455
Hy» 345 441 346 441 348 1133 349 1920 212,951
His 373 477 374 477 376 1225 377 2076 425,943
Hyy 401 513 402 513 404 1317 405 2232 851,927
His 429 549 430 549 432 1409 433 2388 1,703,895
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