The Complexity of Finding Local Optima in Contrastive Learning

Jingming Yan^{*1}, Yiyuan Luo^{*2}, Vaggos Chatziafratis^{2,3}, Ioannis Panageas^{1,3}, Parnian Shahkar¹, and Stelios Stavroulakis¹

¹University of California, Irvine ²University of California, Santa Cruz ³Archimedes AI

Abstract

Contrastive learning is a powerful technique for discovering meaningful data representations by optimizing objectives based on contrastive information, often given as a set of weighted triplets $\{(x_i, y_i^+, z_i^-)\}_{i=1}^m$ indicating that an "anchor" x_i is more similar to a "positive" example y_i than to a "negative" example z_i . The goal is to find representations (e.g., embeddings in \mathbb{R}^d or a tree metric) where anchors are placed closer to positive than to negative examples. While finding global optima of contrastive objectives is NP-hard, the complexity of finding local optima—representations that do not improve by local search algorithms such as gradient-based methods—remains open. Our work settles the complexity of finding local optima in various contrastive learning problems by proving PLS-hardness in discrete settings (e.g., maximize satisfied triplets) and CLS-hardness in continuous settings (e.g., minimize Triplet Loss), where PLS (Polynomial Local Search) and CLS (Continuous Local Search) are well-studied complexity classes capturing local search dynamics in discrete and continuous optimization, respectively. Our results imply that no polynomial time algorithm (local search or otherwise) can find a local optimum for various contrastive learning problems, unless $PLS \subseteq P$ (or $CLS \subseteq P$ for continuous problems). Even in the unlikely scenario that $PLS \subseteq P$ (or $CLS \subseteq P$), our reductions imply that there exist instances where local search algorithms need exponential time to reach a local optimum, even for d=1 (embeddings on a line).

1 Introduction

Extracting meaningful representations from complicated datasets is a cornerstone of machine learning. For the past decades, algorithmic questions of how to find convenient representations (Euclidean space, tree metrics, etc.) faithfully capturing distance relationships have been at the forefront of metric embeddings and multidimensional scaling [Kruskal, 1964a, Borg and Groenen, 2007, Indyk et al., 2017], yielding by now a vast literature with both practical successes and deep mathematical insights.

Due to the high cost of labeling datasets and obtaining accurate distances, many communities focus instead on learning representations based on easier-to-obtain *contrastive information*, i.e., distance comparisons [Agarwal et al., 2007, Tamuz et al., 2011, Jamieson and Nowak, 2011, Van Der Maaten and Weinberger, 2012, Terada and Luxburg, 2014, Jain et al., 2016, Kleindessner and von Luxburg, 2017]. Contrastive information, like "item x is closer to item y than to z" or "among x, y, z, items x, z are farthest apart" is much easier to obtain than numerical values ("how similar is x to y"), essentially creating pseudo-labels with little to no supervision. Indeed, such triplets are standard in contrastive learning, e.g., the popular "anchor-positive-negative" paradigm (x, y^+, z^-) [Schroff et al., 2015],

^{*}Equal contribution. Corresponding authors jingmy1@uci.edu, yluo124@ucsc.edu.

since image transformations (cropping, rotations) or nearby words produce anchor-positive pairs, and random images/words yield anchor-negative pairs (see also "hard negatives" [Robinson et al., 2020]).

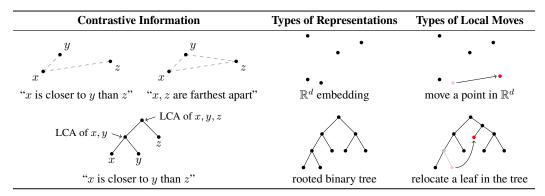


Figure 1: An overview of contrastive learning problems studied here (LCA: lowest common ancestor).

Interestingly, even though contrastive information lies at the heart of contrastive learning pipelines, the history of using ordinal information, i.e., comparisons instead of absolute numerical values, dates back to the 1960s in psychometrics and (non-metric) multi-dimensional scaling [Torgerson, 1952, Thurstone, 1954, Kruskal, 1964b]. Since then, *ordinal* embeddings (also monotone or contrastive embeddings [Bilu and Linial, 2005, Avdiukhin et al., 2024, Chen et al., 2022, Chatziafratis and Indyk, 2024]) are widely-studied in computer science, because important applications (nearest-neighbor, recommendation, ranking, crowdsourcing) only care to preserve the relative ordering of distances (not lengths) [Agarwal et al., 2007, Bădoiu et al., 2008, Tamuz et al., 2011, Vankadara et al., 2019, Ghosh et al., 2019].

Despite empirical successes, various aspects of contrastive learning are not well-understood. To address this, works on theoretical foundations have focused on generalization [Alon et al., 2023], inductive bias [Saunshi et al., 2022, HaoChen and Ma, 2022], latent classes [Saunshi et al., 2019], hard negatives [Robinson et al., 2020, Kalantidis et al., 2020, Awasthi et al., 2022], multi-view redundancy [Tosh et al., 2021], mutual information [Oord et al., 2018, Hjelm et al., 2018] and more.

Optimization of contrastive objectives. Our paper focuses on *optimization* aspects of contrastive learning with widely-used objectives, both in discrete and continuous settings (Figure 1). The input is a set \mathcal{C} of m triplets $\{(x_i, y_i^+, z_i^-)\}_{i=1}^m$ on a dataset \mathcal{S} , with non-negative weights $w_i \geq 0$ indicating the importance of each constraint (see [Robinson et al., 2020, Kalantidis et al., 2020] for benefits of "hard negatives" which are difficult to distinguish from anchor points). The task is to find a representation $f(\cdot)$ respecting the given constraints as much as possible by optimizing Objectives 1, 2, 3 below:

- 1. Triplet Maximization in \mathbb{R}^d : Many algorithmic works in contrastive embeddings, aim at maximizing the weight of *satisfied* triplets. We say that a triplet (x_i, y_i^+, z_i^-) is satisfied by the embedding $f(\cdot)$, if $\|f(x_i) f(y_i)\|_2 \le \|f(x_i) f(z_i)\|_2$. Even the case of d=1 (line embedding or ranking) is well-motivated and non-trivial [Arora et al., 1995, 2002, Guruswami et al., 2011, Fan et al., 2020].
- 2. Triplet Maximization on trees: Here, we map data onto leaves of a tree T maximizing the weight of satisfied triplets $(\mathrm{dist}_T(x_i,y_i) \leq \mathrm{dist}_T(x_i,z_i)$, or equivalently, T has a subtree containing x_i,y_i , but not z_i). Such hierarchical clustering problems known as triplet reconstruction or consistency naturally appear across areas [Aho et al., 1981, Byrka et al., 2010, Vikram and Dasgupta, 2016, Bodirsky et al., 2017, Chatziafratis et al., 2018, Emamjomeh-Zadeh and Kempe, 2018].
- 3. Minimize Triplet Loss in \mathbb{R}^d : The influential FaceNet paper [Schroff et al., 2015] introduced the Triplet Loss, which has since evolved into one of the most prominent contrastive losses:

$$\mathcal{L}(\mathcal{C}, f(\cdot)) := \sum_{i=1}^{m} w_i \mathcal{L}_i, \text{ where } \mathcal{L}_i := \max\{\|f(x_i) - f(y_i)\|_2^2 - \|f(x_i) - f(z_i)\|_2^2 + \alpha, 0\}.$$

The margin α specifies the minimum gap of distance (x_i, y_i) and (x_i, z_i) and w_i is the importance of a triplet. This loss "pushes" positive pairs close together while keeping negative pairs far apart.

Our primary motivation is to understand the complexity of finding representations based on contrastive information. Unfortunately, NP-hardness results prevent us from finding *globally* optimum representations in the worst-case, and so in practice, local search algorithms are deployed. Local search is a general algorithmic approach that examines improving moves from a set of allowable nearby configurations to the current solution (most notably gradient-based methods and various heuristics in discrete optimization [Orlin et al., 2004]). We ask the following basic questions:

Motivating Questions: How hard is it to find a locally optimum representation for contrastive learning? Can we find a local optimum in polynomial time? How efficient is local search?

In this context, a locally optimum representation is one that cannot be improved by taking further steps of gradient-based methods, or generally *any* type of local search algorithm.

1.1 Our contributions

Our main contribution is to formally study the above questions from the lens of computational complexity, and give strong evidence that for many problems with contrastive objectives, even finding a locally optimum solution for the objectives is intractable in a specific formal sense. Local search is a widely-used heuristic for many NP-hard problems [Lawler, 1985, Schäffer and Yannakakis, 1991, Ahuja et al., 2002, Orlin et al., 2004], wherein we iteratively perform local moves (e.g., gradient step or reassignment of points) that get better objective value, terminating at a solution with no improving move, i.e., a local optimum. Of course, a local optimum need not be a global optimum, and since there are more local optima than global optima in general, local optima may appear easier to find. Nevertheless, there is currently an overall lack of theoretical guarantees regarding local optimization of the contrastive objectives 1, 2, 3; indeed, it is not even clear whether there is a polynomial-time algorithm for computing a local optimum. Our main result is to show that no such polynomial-time algorithm exists (unless there is an unlikely collapse of complexity classes, see below). Moreover, an unconditional consequence of our reductions, is that there exist contrastive learning instances where local search algorithms (including gradient-based methods) require exponential time before reaching a local optimum. To the best of our knowledge, we are the first to formally investigate the complexity of local solutions in contrastive learning objectives.

Proving hardness of local optima. The remarkable theory of NP-hardness was developed to understand the difficulty of computing the value of a *global* optimum in optimization problems. Hence, NP-hardness is not suitable to describe local optimality, which corresponds to fixed points of local search algorithms. Johnson, Papadimitriou, and Yannakakis [1988] initiated the complexity-theoretic study of discrete local search problems by defining the complexity class PLS (Polynomial Local Search), and later, Daskalakis and Papadimitriou [2011] defined the class CLS (Continuous Local Search) for continuous local search problems. Due to the significance of computing fixed points, both PLS and CLS have played a prominent role in optimization and algorithmic game theory. For example, computing a pure Nash equilibrium in congestion games is PLS-hard [Fabrikant et al., 2004], and it was recently shown that computing a Karush-Kuhn-Tucker point (fixed points of gradient-descent) of a quadratic program is CLS-hard [Fearnley et al., 2024]. Surprisingly, even though PLS and CLS were originally defined with very different problems in mind, a recent breakthrough [Fearnley, Goldberg, Hollender, and Savani, 2023] established a deep connection between them,* i.e., that CLS = PLS ∩ PPAD. Building on it, Babichenko and Rubinstein [2021], Anagnostides et al. [2023], Ghosh and Hollender [2024], Anagnostides et al. [2025] have shown that broad classes of games, including congestion games and adversarial team games, are captured by CLS. Beyond games, for connections of PLS and CLS to cryptography, see Bitansky and Gerichter [2020], Hubácek and Yogev [2020]. Our work provides formal evidence of computational intractability of finding local optima in contrastive learning:

Theorem (Abridged; see Theorems 3.2, 3.3, 3.4, 4.1). *Triplet maximization problems 1, 2 are* PLS-hard, i.e., every problem in PLS efficiently reduces to them. The Triplet Loss minimization problem 3 is CLS-hard, i.e., every problem in CLS efficiently reduces to it. As a corollary, assuming the widely-believed PLS \nsubseteq P and CLS \nsubseteq P, no polynomial time algorithm (local search or otherwise) can find a local optimum of objectives 1, 2, 3. Even if PLS \subseteq P or CLS \subseteq P, there exist instances where local search (including gradient-methods) require exponential time to reach a local optimum.

^{*}PPAD captures computation of mixed Nash equilibria, see celebrated work of Daskalakis et al. [2009].

Formal statements are in Section 3, 4. As is common in complexity, polynomial time refers to algorithms whose runtime is polynomial in the input size (provided in binary representation). Our results also extend to *approximate* local optima (solutions within a small $\epsilon > 0$ from a local optimum).

Challenges and proof ideas. The consequence of proving that a problem is PLS-hard (or CLS-hard) is that in a certain precise sense, such problems are as hard as any other local search problem where the goal is to find a local optimum. Here, local optimality is defined with respect to a generic definition of a local search algorithm [Johnson et al., 1988, Daskalakis and Papadimitriou, 2011]. The main technical challenge in all works establishing hardness results is how to do PLS-reductions (or CLS-reductions). Roughly speaking, these are special type of efficient transformations between problems, that preserve *local* optimality: the intuition is that starting from an already-known hard problem, and using a PLS-reduction to another problem, e.g., the contrastive objectives above, then any efficient algorithm that purportedly finds a local optimum of the latter, would in fact compute a local optimum of the original (known-to-be-hard) problem. Contrast this with the common NP-reductions that are only required to preserve the value of global optima, ignoring how local solutions are being altered.

Our results provide PLS-reductions from the LocalMaxCut problem [Schäffer and Yannakakis, 1991] (see Section 2 for definitions) to the maximization of satisfied triplets (Obj. 1, 2), and a CLS-reduction from QUADRATIC PROGRAM-KKT [Fearnley et al., 2024] to the Triplet Loss (Obj. 3). Our PLS-reductions rely on novel gadgets that allow us to encode graph cuts and local (vertex) moves via triplet constraints and embeddings in Euclidean space, trees or even the line (for the case of rankings). Our gadgets impose a series of "heavy" contrastive triplet constraints on a special set of "boundary" points, thus ensuring they are not allowed to move back and forth, otherwise the objective value would drift away from any local optimum. After an embedding is performed, the two sides of the graph cut can be formed by looking at which nodes were placed to the "left" or "right" of the boundary points. Regarding our CLS-reductions, we encode and recover KKT stationary points of quadratic programs $\min_{\boldsymbol{x} \in [0,1]^n} \boldsymbol{x}^\top \mathbf{Q} \boldsymbol{x} + \boldsymbol{b}^\top \boldsymbol{x}$, by finding local minima of Triplet Loss, even if the representation $f(\cdot)$ comes from a simple linear embedding model parameterized by $\boldsymbol{\theta} \in [0,1]^n$ such that $f_{\theta}(x) = \theta^{\top} x$. Towards this, we first break the quadratic form into triples of variables $x, y, z \in [0, 1]$ and we generate a specially crafted collection \mathcal{T} of contrastive triplets (x_i, x_i^+, x_k^-) , where x_i, x_j, x_k are coordinates of x. However, contrastive constraints introduce dependencies among their shared variables and to deal with the interacting terms, we introduce groups of contrastive triplets with carefully chosen weights that depend on the coefficients of the quadratic form.

2 Preliminaries

2.1 Discrete objectives in contrastive learning and PLS

Johnson et al. [1988] defined PLS to describe local search problems. A problem Π is in PLS if the following three polynomial-time algorithms exist: † (i) the first algorithm, given an instance of Π , it outputs an arbitrary feasible solution S, (ii) the second, given S, it returns a number which is the objective value of the feasible solution, and (iii) the third, given S, it either reports "locally optimal" or produces a better solution. Implicit in the definition is the fact that feasible solutions have polynomially many *neighboring* solutions (the third algorithm is polynomial-time). In this sense, one can think of PLS as problems with efficient verification of *local* optimality.

Definition 2.1 (PLS-reduction). A PLS-reduction from problem Π_1 to problem Π_2 is two polynomial-time algorithms: (i) the first algorithm A maps every instance x of Π_1 to an instance A(x) of Π_2 , and (ii) the second algorithm B maps every local optimum of A(x) to a local optimum of x.

A PLS-reduction ensures that if we find a local optimum for Π_2 in polynomial time then, we could also find a local optimum for Π_1 in polynomial time. A problem is PLS-hard if every problem in PLS can be reduced to it. In complexity, it is widely-believed that PLS \nsubseteq P, hence there is no polynomial-time algorithm for computing a local optimum of a PLS-hard problem. Interestingly, Schäffer and Yannakakis [1991] proved many natural problems are PLS-hard, including LocalMaxCut:

LOCALMAXCUT Problem.

Input: A weighted undirected graph G(V, E) with a non-negative weight $w_e \ge 0$ for each edge.

[†]Both PLS and CLS can be equivalently defined with arithmetic circuits [Fearnley et al., 2023]

OUTPUT: A partition (S, \overline{S}) of the vertices V in two nonempty sets, such that no vertex v can increase the value of the cut, i.e., the sum of weighted edges cut, by switching sides.

We now define widely-used (discrete) objectives of maximizing satisfied contrastive constraints. To simplify notation, from now on we drop the signs and simply write (x_i, y_i, z_i) for contrastive triplets. All embeddings here map a set of n items to non-overlapping points of a metric space of dimension d < n.

LOCAL CONTRASTIVE-EUCLIDEAN Problem.

INPUT: Set V of n vertices, together with m contrastive triplets $\{(x_i, y_i, z_i)\}_{i=1}^m$ where $x_i, y_i, z_i \in V$ (we dropped the +/- signs for lighter notation), and target dimension d. Each triplet has a nonnegative weight $w_i \geq 0$.

OUTPUT: An embedding $f: V \to \mathbb{R}^d$ such that no vertex v can increase the value of the embedding by switching its location in \mathbb{R}^d . We say a triplet (x_i, y_i, z_i) is *satisfied* by $f(\cdot)$, if x_i is placed closer to y_i than to z_i , i.e., $\|f(x_i) - f(y_i)\|_2 \le \|f(x_i) - f(z_i)\|_2$. The embedding's objective value is $\sum_{i=1}^m w_i \cdot \mathbf{1}_{(x_i, y_i, z_i)}$, where $\mathbf{1}_{(x_i, y_i, z_i)} = 1$ if the constraint is satisfied by $f(\cdot)$, and 0 otherwise.

LOCAL CONTRASTIVE-TREE Problem.

Input: As above, set V with contrastive triplets $\{(x_i,y_i,z_i)\}_{i=1}^m$ (non-negative weights $w_i \geq 0$). Output: A hierarchical clustering, i.e., a binary rooted tree T with |V| leaves, and a 1-to-1 mapping from V to the leaves of T, such that no vertex v can increase the value of the tree by switching to another location in the tree T (for each v in T, there are exactly 2|V|-3 other candidate locations). We say a triplet (x_i,y_i,z_i) is satisfied by T, if x_i is placed closer to y_i than to z_i , i.e., if there is a subtree in T containing x_i,y_i but not z_i (this is equivalent to $\operatorname{dist}_T(x_i,y_i) \leq \operatorname{dist}_T(x_i,z_i)$ for an ultrametric distance on T). The tree's objective value is $\sum_{i=1}^m w_i \cdot \mathbf{1}_{(x_i,y_i,z_i)}$.

Moreover, we examine scenarios where provided contrastive information is of the form "among x, y, z, items x, z are farthest apart" (instead of indicating that "item x is closer to y than to z"). Already for 1-dimensional embeddings, such constraints give rise to Betweenness, a well-studied ranking problem in approximation algorithms [Arora et al., 2002, Charikar et al., 2009, Austrin et al., 2015].

LOCALBETWEENNESS-EUCLIDEAN Problem.

INPUT: Set V with betweenness triplets $\{(x_i, y_i, z_i)\}_{i=1}^m$ each with a non-negative weight $w_i \ge 0$, and target dimension d.

OUTPUT: An embedding $f:V\to\mathbb{R}^d$ such that no vertex v can increase the value of the embedding by switching its location in \mathbb{R}^d . We say a triplet (x_i,y_i,z_i) is satisfied by $f(\cdot)$, if x_i and z_i are placed the farthest apart (equivalently, y_i is "between" x_i and z_i), i.e., $\|f(x_i) - f(z_i)\|_2 \ge \max\{\|f(x_i) - f(y_i)\|_2, \|f(z_i) - f(y_i)\|_2\}$. The embedding's objective value is $\sum_{i=1}^m w_i \cdot \mathbf{1}_{(x_i,y_i,z_i)}$.

Even though we defined problems in their general form, our PLS-hardness results also hold for interesting special cases: we show Local Contrastive-Euclidean in dimension d=1 [Bădoiu et al., 2008, Alon et al., 2008, Fan et al., 2020] and Local Betweenness-Euclidean with d=1 [Arora et al., 2002, Charikar et al., 2009, Austrin et al., 2015] are PLS-hard. For trees, Local Contrastive-Tree is also known as triplet reconstruction/consistency [Byrka et al., 2010, Chatziafratis and Makarychev, 2023], and in terms of approximating the globally optimum solution several results and connections to other hierarchical clustering objectives are known [Chatziafratis et al., 2021, Naumov et al., 2021, Charikar et al., 2019, Chami et al., 2020, Moseley and Wang, 2023, Vainstein et al., 2021]. For other extensions, see Appendix C.

2.2 Continuous objectives in contrastive learning and CLS

Daskalakis and Papadimitriou [2011] proposed CLS to study local search for continuous objective functions, most notably search problems that can be solved by performing Gradient Descent. CLS has played an important role in game theory and optimization, and a recent breakthrough showed that CLS = PPAD \cap PLS [Fearnley et al., 2023]. The natural problem of finding KKT points in quadratic programs was recently shown to be CLS-hard [Fearnley et al., 2024] and we will reduce it to finding local minima of the Triplet Loss [Schroff et al., 2015].

^aThe output embedding f is computable in polynomial time in |V| and the description of weights.

^bThe output embedding f is computable in polynomial time in |V| and the description of weights.

QUADRATICPROGRAM-KKT Problem.

Input: A symmetric matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$.

OUTPUT: Compute a local optimum (i.e., a KKT point) for the quadratic $\min_{x \in [0,1]^n} x^\top \mathbf{Q} x + b^\top x$.

LOCALTRIPLETLOSS-EUCLIDEAN Problem.

INPUT: Set $V \cup \{A, B\}$ of points in \mathbb{R}^d , set \mathcal{C} of triplets $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ of weight $w \geq 0$, margin $\alpha > 0$. Output: Find^c an embedding $f: V \to [0, 1]^d$ that is a first-order stationary point for the minimization objective given by the triplet-loss:

$$\sum_{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathcal{C}} w \cdot \max\left\{ \|f(\boldsymbol{x}) - f(\boldsymbol{y})\|_2^2 - \|f(\boldsymbol{x}) - f(\boldsymbol{z})\|_2^2 + \alpha, 0 \right\}.$$

 c The output embedding f is computable in polynomial time in the description of the input set V and the weights.

Recall, first-order stationary points are fixed points of gradient descent: $x^* \in \mathcal{X}$ is a first-order stationary point of g(x), if $\forall x \in \mathcal{X}$ we have $\langle x - x^*, \nabla_x g(x^*) \rangle \geq 0$ (\mathcal{X} : convex, compact domain).

We emphasize the role of the two pivot points A,B in the definition. Notice that if we did not have pivot points, then the embedding that maps all points from V to the all-zeros vector would be a trivial first-order stationary point. Moreover, if we had only 1 pivot A, then again mapping every point in V to A would result in a first-order stationary point of the Triplet Loss. Thus having two pivot points are necessary and sufficient to make the problem non-trivial.

3 PLS-hardness for discrete objectives in contrastive learning

In this section we present our results for Local Contrastive-Euclidean, Local Contrastive-Tree, Local Betweenness-Euclidean where the goal is to find local solutions for maximizing weight of satisfied triplets. We start with Euclidean embeddings, then have results on trees.

3.1 The case of embeddings in \mathbb{R}^d with d=1

To set some notation and convey the key ideas for our later proofs, we start by presenting our reductions for the case of 1-dimensional embeddings, since our reductions for the general case are more involved.

Theorem 3.1. Local Contrastive-Euclidean, even for embedding dimension d=1, is PLS-hard.

Proof. We present a PLS-reduction from LocalMaxCut to LocalContrastive-Euclidean with d=1. Let G=(V,E) be an undirected graph with edge-weights $w\geq 0$. Let $W:=\sum_{(u,v)\in E}w_{uv}$ be the total weight. Moreover, let M:=W+1 and M':=(2|V|+1)M denote two heavy weights. For our reduction, we introduce three special vertices X,Y,Z (we use capital letters to distinguish them from the vertices of G). Eventually, the input to the LocalContrastive-Euclidean problem will be $V\cup\{X,Y,Z\}$ together with a collection of m=|E|+2|V|+2 contrastive triplets. Our goal is to show how we can recover a locally maximum cut for G, from a locally maximum embedding of our constructed instance.

We add the following two types of contrastive triplet constraints:

- Type A ("edge" triplets). For every edge $(u, v) \in E$ with weight w_{uv} , add a single triplet (u, X^+, v^-) with weight w_{uv} . This incentivizes embeddings to put u closer to X than v.
- Type B ("boundary" triplets). We add the following:
 - For every vertex $v \in V$, add (X, Y^+, v^-) with weight M.
 - For every vertex $v \in V$, add (X, v^+, Z^-) with weight M.
 - Finally, add (Y, Z^+, X^-) with weight M', and (X, Y^+, Z^-) also with weight M'.

In total, this creates m = |E| + 2|V| + 2 contrastive triplets on $V \cup \{X, Y, Z\}$.

First, observe that because of the heavy-weight triplets (X, Y^+, Z^-) and (Y, Z^+, X^-) , any locally maximum embedding must satisfy those two triplets: if any of those two triplets was violated, we can always satisfy both simultaneously by moving Z and forcing either the order X < Y < Z or

Z < Y < X, with distances $|X - Y| \ge |Y - Z|$, thus gaining at least M' while losing at most $2|V|M + \sum_{(u,v) \in E} w_{uv} < M'$, which would contradict local optimality.

Next, we show that in any locally maximum embedding, all (X,Y^+,v^-) and (X,v^+,Z^-) are satisfied, meaning that each $v \in V$ must lie on one of two line segments YZ or Y'Z', where Y' and Z' are the reflections of Y and Z with respect to X respectively (see Figure 2). Note that Y',Z' are only used for the analysis and they are not part of the reduction. If any (X,Y^+,v^-) or (X,v^+,Z^-) is violated, we can always satisfy both by moving v to segment YZ or to Y'Z', thus gaining at least M while losing at most $\sum_{(u,v)\in E} w_{uv} < M = \sum_{(u,v)\in E} w_{uv} + 1$.

$$Z'$$
 Y' X Y Z

Figure 2: Reduction (d=1): Any local optimum places $v \in V$ in segment YZ or its reflection Y'Z'.

Finally, it is clear that (u, X^+, v^-) is satisfied if and only if u and v are placed on different sides of X. This encodes a solution to the LocalMaxCut instance, by defining one side of the cut (S, \overline{S}) to be all vertices placed in segment YZ and the other side to be the remaining vertices.

3.2 Hardness for general d-dimensional embeddings

Extending the above proof, our two results for general Euclidean embeddings are:

Theorem 3.2. For every fixed dimension $d \ge 1$, Local Contrastive-Euclidean is PLS-hard.

Theorem 3.3. For every fixed dimension $d \ge 1$, LocalBetweenness-Euclidean is PLS-hard.

All proofs can be found in the Appendix A. Due to space constraints, we give the proof for Local Betweenness-Euclidean for the case d=2. Similar gadgets are used to prove Theorem 3.2.

Proof of Theorem 3.3 (d=2). Our PLS-reduction is from LocalMaxCut. As previously, let G=(V,E) be an undirected graph with edge-weights $w\geq 0$. Let $W:=\sum_{(u,v)\in E}w_{uv}$, and let M:=W+1 denote a heavy weight. For our reduction, we introduce two special vertices X_1,X_2 . Our goal is to show how we can recover a locally maximum cut for G, from a locally maximum embedding of our constructed instance. We add the following two types of contrastive triplet constraints:

- Type A ("edge" triplets). For each edge $(u, v) \in E$ with weight w_{uv} , add a single triplet (u, X_1, v) with weight w_{uv} . Geometrically, the semantics of the triplet in Local Betweenness-Euclidean is that the pair u, v is the farthest distance apart, i.e., the largest edge in the triangle formed by u, X_1, v is the edge (u, v).
- Type B ("isosceles" triplets). For each $v \in V$, add two triplets (X_1, X_2, v) and (X_2, X_1, v) , each with weight M. Intuitively, because of the heavy weight, this forces X_1, X_2, v to form an *isosceles triangle*, such that $||v X_1||_2 = ||v X_2||_2 \ge ||X_1 X_2||_2$, where we overload the notation v, X_1, X_2 to also denote the vertex embeddings in the 2D-plane.

Observe that in any local optimum, all "isosceles" triplets must be satisfied. If any "isosceles" triplet involving v is unsatisfied, we can always satisfy it by moving v to form the corresponding isosceles triangle, thus gaining at least M while losing at most $\sum w_{uv} < M$, which would strictly increase the objective value. This effectively forces every vertex v to lie on one of two rays (see Figure 3).

Figure 3: Reduction (d=2) for LocalBetweenness-Euclidean: Type B triplets force all $v \in V$ onto two opposing rays. Left: (u, X_1, v) is not satisfied when u and v lie on the same ray. Right: (u, X_1, v) is satisfied when u and v lie on different rays.

Next, we show that in any locally maximum embedding for LocalBetweenness-Euclidean, an "edge" triplet (u, X_1, v) is satisfied if and only if u and v are on *opposite* rays. To see this, let us analyze the triangle $\triangle uX_1v$:

- If u and v are on the same ray, we have $\angle uX_1v < 30^\circ$. Basic trigonometry tells us uv cannot be the longest side of the triangle, thus (u, X_1, v) is not satisfied.
- If u and v are on opposite rays, we have $\angle uX_1v \ge 120^\circ$. Basic trigonometry tells us uv must be the longest side of the triangle, thus (u, X_1, v) is satisfied.

Therefore, the configuration of a locally maximum embedding encodes a local max cut for G. We can easily recover the cut (S, \overline{S}) by checking whether each "edge" triplet (u, X_1, v) is satisfied in the configuration, e.g., S can be all vertices in one ray.

3.3 Hardness of tree embeddings

Theorem 3.4. The LocalContrastive-Tree problem is PLS-hard.

Proof Sketch. We do a PLS-reduction from LocalMaxCut. Given graph G(V, E), we construct triplets over nodes $V \cup \{X, X', Y, Z\}$ for special nodes $\{X, X', Y, Z\}$. The triplets are as follows:

- Type A triplets: XX'|Y, XX'|Z, and XX'|v for all $v \in V$, each with weight $\sum_{e \in E} w_e$.
- Type B triplets: XY|Z with a large weight $|V|\cdot \sum_{e\in E} w_e + |V| + 1$.
- Type C triplets: Yv|X and Zv|X for all $v \in V$, each with weight $\sum_{e \in E} w_e + 1$.
- Type D triplets: uX|v and vX|u whenever $(u,v) \in E$, each with weight $w_{uv}/2$.

The purpose of the special vertices and the constraints is that they force the tree to look as in Figure 4: X, X' are siblings, and any other vertex $v \in V$ is either in subtree T_Y containing Y or subtree T_Z containing Z (because of heavy Type C triplets). Then, the solution to LocalMaxCut can be formed by all nodes that fell in T_Y as one side of the cut, and to T_Z as the other side. The proof proceeds by a case analysis showing that this is indeed a local max cut, and that no vertex can increase the weight of the cut edges by moving to the other subtree (for full proof, see Appendix B).

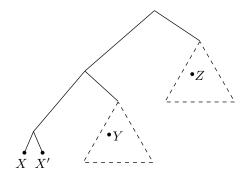


Figure 4: Reduction for LocalContrastive-Tree.

4 CLS-hardness for continuous objectives in contrastive learning

Theorem 4.1. For every dimension $d \ge 1$, LocalTripletLoss-Euclidean is CLS-hard.

Proof Sketch. We present the key idea for the case d=1 with two pivot points A=0 and B=1/2. The full proof is in Appendix D. We give a CLS-reduction from QuadraticProgram-KKT. The key idea is that we can use triplets of the form (x,y,z) to simulate the quadratic function. For now, imagine we had as a representation function $f(\cdot)$ the identity function. Then, a given triplet constraint (x,y,z) with weight w will contribute the following term to the overall Triplet Loss:

$$\mathcal{L}(x, y, z) = w \cdot \max\{(x - y)^2 - (x - z)^2 + \alpha, 0\}.$$

Our proof first breaks the given quadratic program into smaller quadratics on three variables at a time:

$$q(x, y, z) := c_1 x^2 + c_2 y^2 + c_3 z^2 + c_4 xy + c_5 xz + c_6 yz + c_7 x + c_8 y + c_9 z.$$

We then show how to generate a set of m carefully chosen triplets $\{(x_i,y_i,z_i)\}_{i=1}^m$ with appropriate weights w_i so that the total triplet loss \mathcal{L} is the same as the quadratic program. It is easy to see that for terms depending only on one variable such as c_1x^2 or c_8y , we can easily generate them by using a triplet (for example, triplet $(0,x,\frac{1}{2})$ allows us to generate the quadratic term x^2 and triplet $(y,0,\frac{1}{2})$ generates the linear term y). However, the main obstacle is that for the cross-terms like xy we need to use triplet (x,0,y), and this introduces dependencies among the different triplets since there are shared variables. To overcome the difficulty of interacting terms, we need to introduce a total of 12 contrastive triplets on x,y,z, whose corresponding weights depend on the coefficients of the given quadratic. By solving a linear system for the weights, we obtain a loss $\mathcal{L}(x,y,z)$ that equals q(x,y,z).

Using these ideas, we can prove hardness under the framework of contrastive learning [Schroff et al., 2015], even for the case where the representation $f(\cdot)$ is a linear model parameterized by $\theta \in [0,1]^n$ such that $f_{\theta}(x) = \theta^{\top} x$. Here x is the sampled input to the linear model, f(x) is the output of the linear model. For any input x_i , denote $a_i(\theta) = \theta^{\top} x_i$ to be the output of the linear model. We aim to find local solutions of the triplet loss problem:

$$\min_{\boldsymbol{\theta} \in [0,1]^n} \sum_{(i,j,k)} w_{i,j,k} \max \left((a_i(\boldsymbol{\theta}) - a_j(\boldsymbol{\theta}))^2 - (a_i(\boldsymbol{\theta}) - a_k(\boldsymbol{\theta}))^2 + \alpha, 0 \right).$$

We set $\alpha = 1$ and let $x_i = e_i$ to be the i^{th} standard basis, then $a_i(\theta) = \theta_i \in [0, 1]$. The result follows from the case with d = 1.

5 Experimental verification: hard examples for local search

Our theoretical results establish worst-case hardness for finding local optima in several contrastive objectives. Here, we provide an experimental illustration that this indeed can happen by constructing instances where local search takes exponential time. By using our reductions from LocalMaxCut, we create hard instances for various other contrastive problems, namely LocalContrastive-Euclidean, LocalContrastive-Tree and LocalBetweenness-Euclidean, and we measure the runtime of local search.

Our starting point is a hard instance for the LocalMaxCut problem due to Monien and Tscheuschner [2010]. This instance is a bounded-degree graph with maximum vertex degree 4, where any flip-based local search algorithm (initialized from a specific initial cut) will require exponentially many iterations to reach a local optimum. Flip-based local search algorithms attempt to move one vertex at a time from its current position to another position, while trying to improve the objective. Our reductions transform this instance to the various contrastive objectives mentioned previously. In fact, our reductions when applied to the hard instance of LocalMaxCut preserve the local search structure and the changes in the objectives exactly. As we verify, the same exponentially-slow path towards a local optimum exists in all of the transformed instances. In particular, to validate our findings, we implemented local search for LocalMaxCut, as well as for the three problems LocalContrastive-Euclidean, LocalBetweenness-Euclidean, and LocalContrastive-Tree. Interestingly, in all four cases, we observed exactly the same local search dynamics (i.e., the same improving moves were performed). As a consequence the iteration counts on the corresponding instances are identical. We summarize the results in Figure 5 and provide the detailed statistics in Appendix E.

Finally, we observed that if we start from a random configuration, local search usually converges quickly, suggesting that the hard instances of Monien and Tscheuschner [2010] are sensitive to the choice of the starting point. However, understanding whether random initialization (or other strategies) is generally sufficient to avoid such worst-case dynamics remains an open question.

Conclusion

In this work, we provided strong evidence that computing local optima for various contrastive learning objectives is computationally intractable in the worst case. To do so we relied on the well-studied complexity classes PLS and CLS and we presented a series of reductions from difficult problems

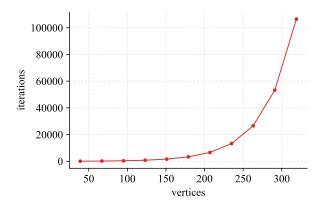


Figure 5: Comparison of instance sizes and number of iterations of local search for the sequence of hard instances created by our reductions.

of those classes to our contrastive objectives (even for relatively simple settings). There are many exciting questions for future consideration. The main interesting future direction is to examine whether our negative results are persistent in the average case. In particular, understanding the effects of initialization is an exciting direction. Another interesting perspective to study for contrastive objectives, is so-called smoothed analysis [Spielman and Teng, 2009], where the input data are slightly perturbed by random noise, and many algorithms (including linear programming with the Simplex, which is a local search algorithm) seem to get much better guarantees compared to worst-case inputs. Finally, our work studied the question of how fast can we reach a local optimum, but an important future direction is to argue about the *quality* of local solutions.

Acknowledgements

Ioannis Panageas and Jingming Yan were supported by NSF grant CCF-2454115. Vaggos Chatziafratis is supported by a Hellman Fellowship and a startup grant from UC Santa Cruz. This work has been partially supported by project MIS 5154714 of the National Recovery and Resilience Plan Greece 2.0 funded by the European Union under the NextGenerationEU Program. Part of this work was done while J.Y., Y.L., V.C., and I.P. were visiting Archimedes AI Research Center, Athens, Greece.

References

- S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman, and S. Belongie. Generalized non-metric multidimensional scaling. In *Artificial Intelligence and Statistics*, pages 11–18. PMLR, 2007.
- A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. *SIAM Journal on Computing*, 10(3):405–421, 1981.
- R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale neighborhood search techniques. *Discrete Applied Mathematics*, 123(1-3):75–102, 2002.
- N. Alon, M. Bădoiu, E. D. Demaine, M. Farach-Colton, M. Hajiaghayi, and A. Sidiropoulos. Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics. ACM Transactions on Algorithms (TALG), 4(4):1–21, 2008.
- N. Alon, D. Avdiukhin, D. Elboim, O. Fischer, and G. Yaroslavtsev. Optimal sample complexity of contrastive learning. *arXiv preprint arXiv:2312.00379*, 2023.
- I. Anagnostides, F. Kalogiannis, I. Panageas, E. Vlatakis-Gkaragkounis, and S. McAleer. Algorithms and complexity for computing nash equilibria in adversarial team games. In *Conference on Economics and Computation (EC)*, 2023.
- I. Anagnostides, I. Panageas, T. Sandholm, and J. Yan. The complexity of symmetric equilibria in min-max optimization and team zero-sum games, 2025. URL https://arxiv.org/abs/2502. 08519.
- S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of np-hard problems. In *Proceedings of the twenty-seventh annual ACM symposium on Theory of* computing, pages 284–293, 1995.
- S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. *Mathematical programming*, 92(1):1–36, 2002.
- P. Austrin, R. Manokaran, and C. Wenner. On the np-hardness of approximating ordering-constraint satisfaction problems. *Theory of Computing*, 11(1):257–283, 2015.
- D. Avdiukhin, V. Chatziafratis, O. Fischer, and G. Yaroslavtsev. Embedding dimension of contrastive learning and *k*-nearest neighbors. *Advances in Neural Information Processing Systems*, 37: 41359–41393, 2024.
- P. Awasthi, N. Dikkala, and P. Kamath. Do more negative samples necessarily hurt in contrastive learning? In *International conference on machine learning*, pages 1101–1116. PMLR, 2022.
- Y. Babichenko and A. Rubinstein. Settling the complexity of nash equilibrium in congestion games. In S. Khuller and V. V. Williams, editors, *Symposium on Theory of Computing (STOC)*, 2021.
- M. Bădoiu, E. D. Demaine, M. Hajiaghayi, A. Sidiropoulos, and M. Zadimoghaddam. Ordinal embedding: Approximation algorithms and dimensionality reduction. In *Approximation, Randomization and Combinatorial Optimization*. *Algorithms and Techniques*, pages 21–34. Springer, 2008.
- Y. Bilu and N. Linial. Monotone maps, sphericity and bounded second eigenvalue. *Journal of Combinatorial Theory*, *Series B*, 95(2):283–299, 2005.
- N. Bitansky and I. Gerichter. On the cryptographic hardness of local search. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), pages 6–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
- M. Bodirsky, P. Jonsson, and T. V. Pham. The complexity of phylogeny constraint satisfaction problems. ACM Transactions on Computational Logic (TOCL), 18(3):1–42, 2017.
- I. Borg and P. J. Groenen. *Modern multidimensional scaling: Theory and applications*. Springer Science & Business Media, 2007.

- J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consistency. *Discrete Applied Mathematics*, 158(11):1136–1147, 2010.
- I. Chami, A. Gu, V. Chatziafratis, and C. Ré. From trees to continuous embeddings and back: Hyperbolic hierarchical clustering. Advances in Neural Information Processing Systems, 33: 15065–15076, 2020.
- M. Charikar, V. Guruswami, and R. Manokaran. Every permutation csp of arity 3 is approximation resistant. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 62–73. IEEE, 2009.
- M. Charikar, V. Chatziafratis, and R. Niazadeh. Hierarchical clustering better than average-linkage. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 2291–2304. SIAM, 2019.
- V. Chatziafratis and P. Indyk. Dimension-accuracy tradeoffs in contrastive embeddings for triplets, terminals & top-k nearest neighbors. In 2024 Symposium on Simplicity in Algorithms (SOSA), pages 230–243. SIAM, 2024.
- V. Chatziafratis and K. Makarychev. Triplet reconstruction and all other phylogenetic csps are approximation resistant. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 253–284. IEEE, 2023.
- V. Chatziafratis, R. Niazadeh, and M. Charikar. Hierarchical clustering with structural constraints. In *International conference on machine learning*, pages 774–783. PMLR, 2018.
- V. Chatziafratis, M. Mahdian, and S. Ahmadian. Maximizing agreements for ranking, clustering and hierarchical clustering via max-cut. In *International Conference on Artificial Intelligence and Statistics*, pages 1657–1665. PMLR, 2021.
- S. Chen, C. Gong, J. Li, J. Yang, G. Niu, and M. Sugiyama. Learning contrastive embedding in low-dimensional space. Advances in Neural Information Processing Systems, 35:6345–6357, 2022.
- C. Daskalakis and C. Papadimitriou. Continuous local search. In *Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms*, pages 790–804. SIAM, 2011.
- C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a nash equilibrium. *Communications of the ACM*, 52(2):89–97, 2009.
- E. Emamjomeh-Zadeh and D. Kempe. Adaptive hierarchical clustering using ordinal queries. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 415–429. SIAM, 2018.
- A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria. In *Proceedings* of the thirty-sixth annual ACM symposium on Theory of computing, pages 604–612, 2004.
- B. Fan, D. I. Centurion, N. Mohammadi, F. Sgherzi, A. Sidiropoulos, and M. Valizadeh. Learning lines with ordinal constraints. *arXiv preprint arXiv:2004.13202*, 2020.
- J. Fearnley, P. Goldberg, A. Hollender, and R. Savani. The complexity of gradient descent: CLS = PPAD ∩ PLS. *J. ACM*, 70(1):7:1–7:74, 2023.
- J. Fearnley, P. W. Goldberg, A. Hollender, and R. Savani. The complexity of computing kkt solutions of quadratic programs. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pages 892–903, 2024.
- A. Ghosh and A. Hollender. The complexity of symmetric bimatrix games with common payoffs. In *International Workshop On Internet And Network Economics (WINE)*, 2024.
- N. Ghosh, Y. Chen, and Y. Yue. Landmark ordinal embedding. *Advances in Neural Information Processing Systems*, 32, 2019.
- V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 573–582. IEEE, 2008.

- V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar. Beating the random ordering is hard: Every ordering csp is approximation resistant. SIAM Journal on Computing, 40 (3):878–914, 2011.
- J. Z. HaoChen and T. Ma. A theoretical study of inductive biases in contrastive learning. *arXiv* preprint arXiv:2211.14699, 2022.
- R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and Y. Bengio. Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.
- P. Hubácek and E. Yogev. Hardness of continuous local search: Query complexity and cryptographic lower bounds. *SIAM Journal on Computing*, 49(6):1128–1172, 2020.
- P. Indyk, J. Matoušek, and A. Sidiropoulos. 8: low-distortion embeddings of finite metric spaces. In *Handbook of discrete and computational geometry*, pages 211–231. Chapman and Hall/CRC, 2017.
- L. Jain, K. G. Jamieson, and R. Nowak. Finite sample prediction and recovery bounds for ordinal embedding. *Advances in neural information processing systems*, 29, 2016.
- K. G. Jamieson and R. D. Nowak. Low-dimensional embedding using adaptively selected ordinal data. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1077–1084. IEEE, 2011.
- D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? *Journal of computer and system sciences*, 37(1):79–100, 1988.
- Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus. Hard negative mixing for contrastive learning. Advances in neural information processing systems, 33:21798–21809, 2020.
- M. Kleindessner and U. von Luxburg. Kernel functions based on triplet comparisons. *Advances in neural information processing systems*, 30, 2017.
- J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 29(1):1–27, 1964a.
- J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. *Psychometrika*, 29(2): 115–129, 1964b.
- E. L. Lawler. The traveling salesman problem: a guided tour of combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics, 1985.
- B. Monien and T. Tscheuschner. On the power of nodes of degree four in the local max-cut problem. In *Algorithms and Complexity: 7th International Conference, CIAC 2010, Rome, Italy, May 26-28, 2010. Proceedings 7*, pages 264–275. Springer, 2010.
- B. Moseley and J. R. Wang. Approximation bounds for hierarchical clustering: Average linkage, bisecting k-means, and local search. *Journal of Machine Learning Research*, 24(1):1–36, 2023.
- S. Naumov, G. Yaroslavtsev, and D. Avdiukhin. Objective-based hierarchical clustering of deep embedding vectors. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 9055–9063, 2021.
- A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. *arXiv* preprint arXiv:1807.03748, 2018.
- J. B. Orlin, A. P. Punnen, and A. S. Schulz. Approximate local search in combinatorial optimization. *SIAM Journal on Computing*, 33(5):1201–1214, 2004.
- J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka. Contrastive learning with hard negative samples. *arXiv preprint arXiv:2010.04592*, 2020.
- N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, and H. Khandeparkar. A theoretical analysis of contrastive unsupervised representation learning. In *International Conference on Machine Learning*, pages 5628–5637. PMLR, 2019.

- N. Saunshi, J. Ash, S. Goel, D. Misra, C. Zhang, S. Arora, S. Kakade, and A. Krishnamurthy. Understanding contrastive learning requires incorporating inductive biases. In *International Conference on Machine Learning*, pages 19250–19286. PMLR, 2022.
- A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to solve. *SIAM Journal on Computing*, 20(1):56–87, 1991.
- F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 815–823, 2015.
- D. A. Spielman and S.-H. Teng. Smoothed analysis: an attempt to explain the behavior of algorithms in practice. *Communications of the ACM*, 52(10):76–84, 2009.
- O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai. Adaptively learning the crowd kernel. 28th International Conference on Machine Learning (ICML), 2011.
- Y. Terada and U. Luxburg. Local ordinal embedding. In *International Conference on Machine Learning*, pages 847–855. PMLR, 2014.
- L. L. Thurstone. The measurement of values. Psychological review, 61(1):47, 1954.
- W. S. Torgerson. Multidimensional scaling: I. theory and method. *Psychometrika*, 17(4):401–419, 1952.
- C. Tosh, A. Krishnamurthy, and D. Hsu. Contrastive learning, multi-view redundancy, and linear models. In *Algorithmic Learning Theory*, pages 1179–1206. PMLR, 2021.
- D. Vainstein, V. Chatziafratis, G. Citovsky, A. Rajagopalan, M. Mahdian, and Y. Azar. Hierarchical clustering via sketches and hierarchical correlation clustering. In *International Conference on Artificial Intelligence and Statistics*, pages 559–567. PMLR, 2021.
- L. Van Der Maaten and K. Weinberger. Stochastic triplet embedding. In 2012 IEEE International Workshop on Machine Learning for Signal Processing, pages 1–6. IEEE, 2012.
- L. C. Vankadara, S. Haghiri, M. Lohaus, F. U. Wahab, and U. von Luxburg. Insights into ordinal embedding algorithms: A systematic evaluation. *arXiv preprint arXiv:1912.01666*, 2019.
- S. Vikram and S. Dasgupta. Interactive bayesian hierarchical clustering. In *International Conference on Machine Learning*, pages 2081–2090. PMLR, 2016.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Our main contributions and results are summarized in the abstract and the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our results are about the computational complexity of local solutions in contrastive learning. These are worst case guarantees and in practice the running time can be much faster.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All the proofs of our claims can be found in the appendix. Moreover, we have provided proof sketches to give intuition to the reader about our proofs.

Guidelines

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments, it includes simulations that do not affect the main claims.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: We have included the code for the simulations in the supplementary material. Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The paper does not include such type of experiments. It includes simulations of hard instances that verify our results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments of this nature.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: The paper does not include experiments of this nature.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on the computational complexity of local optima for contrastive learning and it is theoretical. The authors do not believe there is any social impact from this work.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

[NA]

Justification: The paper does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs. Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Omitted proofs for Section 3.2

Theorem A.1 (Theorem 3.3, restated). For every fixed dimension $d \ge 1$, LocalBetweenness-Euclidean is PLS-hard.

Proof. We reduce from LocalMaxCut. Let G = (V, E, w) be a weighted undirected graph.

Reduction Construction. We define an instance of Local Betweenness-Euclidean in \mathbb{R}^d called \mathcal{I}_{btw} as follows. We introduce special vertices X_1, \ldots, X_d and choose a hierarchy of weights

$$M_3 > M_4 > \dots > M_d > M > \sum_{(u,v) \in E} w_{uv},$$

such that for each k > 3,

$$M_k > \underbrace{\sum_{j>k} 3\binom{j-1}{2}M_j}_{\text{lower layer "equilateral" triplets}} + \underbrace{2|V|\binom{d}{2}M}_{\text{all "isosceles" triplets}} + \underbrace{\sum_{(u,v)\in E} w_{uv}}_{\text{all "edge" triplets}}.$$

Now we add constraints as follows:

- Type A ("edge" triplets). For each edge $(u, v) \in E$, we add a triplet (u, X_1, v) with weight w_{uv} .
- Type B ("isosceles" triplets). For each $v \in V$ and every pair (X_k, X_ℓ) with $1 \le k < \ell \le d$, we add two triplets (X_k, X_ℓ, v) and (X_ℓ, X_k, v) , each with weight M. Intuitively, this will force X_k, X_ℓ, v to form an isosceles triangle such that $\|v X_k\|_2 = \|v X_\ell\|_2 \ge \|X_k X_\ell\|_2$.
- Type C ("equilateral" triplets). For every triple (X_j, X_k, X_ℓ) with $1 \le j < k < \ell \le d$, we add three triplets (X_j, X_k, X_ℓ) , (X_k, X_ℓ, X_j) , (X_ℓ, X_j, X_k) , each with weight M_ℓ (ℓ is the largest index among j, k, ℓ). Intuitively, this will force X_j, X_k, X_ℓ to form an equilateral triangle.

Lemma A.2. In any local optimum of \mathcal{I}_{btw} , all "equilateral" triplets are satisfied, therefore X_1, \ldots, X_d form a (d-1)-dimensional regular simplex.[‡]

Proof of Lemma A.2. We prove $\{X_1, \dots, X_k\}$ form a regular simplex for each $k = 3, \dots, d$. We do this by induction on k.

Base Case (k=3). If any "equilateral" triplets over $\{X_1, X_2, X_3\}$ is unsatisfied, moving any of them to form an equilateral triangle with the other two will satisfy at least one new triplet of weight M_3 , while losing at most $\sum_{j>3} 3\binom{j-1}{2} M_j + 2|V|\binom{d}{2} M + \sum_{(u,v)\in E} w_{uv} < M_3$, which contradicts local optimality.

Inductive Step. Suppose $\{X_1, \dots, X_{k-1}\}$ form a regular simplex but $\{X_1, \dots, X_k\}$ do not. Similar to the above, moving X_k to form a regular simplex with $\{X_1, \dots, X_{k-1}\}$ will satisfy at least one new triplet of weight M_k , while losing a total strictly less than M_k . Hence, $\{X_1, \dots, X_k\}$ must also form a regular simplex.

Lemma A.3. Let C be the centroid of the simplex X_1, \ldots, X_d and $\ell = \|X_1 - X_2\|_2$ be its edge length. Then in any local optimum, all "isosceles" triplets are satisfied, therefore each $v \in V$ must lie on the line through C perpendicular to the hyperplane spanned by the X_i , and moreover at distance at least ℓ from every X_i . Formally, each $v \in V$ lies on one of two opposing rays:

$$R^+ = \{ C + t \mathbf{u} : t \ge t_0 \}, \quad R^- = \{ C - t \mathbf{u} : t \ge t_0 \},$$

where **u** is the unit vector along that line and $t_0 = \ell \cdot \sqrt{\frac{d+1}{2d}}$.

Proof of Lemma A.3. Without loss of generality, assume the simplex is in the standard position:

$$X_1 = (1, 0, \dots, 0), X_2 = (0, 1, \dots, 0), \dots, X_d = (0, 0, \dots, 1)$$

[‡]In geometry, a regular simplex is the d-dimensional generalization of an equilateral triangle (2-simplex) or a regular tetrahedron (3-simplex), consisting of d+1 points with all pairwise distances equal.

with centroid $C = (\frac{1}{d}, \frac{1}{d}, \dots, \frac{1}{d})$. The edge length is $\ell = \sqrt{2}$.

We denote the *i*-th coordinate of v as v_i . The equidistant condition $||v - X_k||_2 = ||v - X_\ell||_2$ simplifies to:

 $v_i^2 - 2v_i = v_j^2 - 2v_j \quad \forall i \neq j.$

The only solutions are $v = (\alpha, \alpha, \dots, \alpha)$ for some $\alpha \in \mathbb{R}$.

For $v = \alpha \mathbf{1}$, the distance to any vertex X_k is:

$$||v - X_k||_2^2 = (\alpha - 1)^2 + (d - 1)\alpha^2 = d\alpha^2 - 2\alpha + 1 \ge \ell^2 = 2.$$

Solving $d\alpha^2 - 2\alpha + 1 \ge 2$ gives:

$$\alpha \le \frac{1 - \sqrt{d+1}}{d}$$
 or $\alpha \ge \frac{1 + \sqrt{d+1}}{d}$.

Expressing v relative to the centroid $C = \frac{1}{d}\mathbf{1}$:

$$v = C + t \mathbf{u}, \quad \mathbf{u} = \mathbf{1}/\sqrt{d}, \quad t = \sqrt{d}\left(\alpha - \frac{1}{d}\right).$$

Substituting the bounds for α yields $t \leq -\sqrt{\frac{d+1}{d}}$ or $t \geq \sqrt{\frac{d+1}{d}}$.

For arbitrary $\ell > 0$, scale the canonical simplex by $\lambda = \ell/\sqrt{2}$. The threshold t_0 scales as:

$$t_0 = \lambda \sqrt{\frac{d+1}{d}} = \ell \sqrt{\frac{d+1}{2d}}.$$

The standard basis assumption is justified because any regular simplex can be mapped to this form via a similarity transformation, which preserves the distance relationships.

Since $M > \sum_{(u,v) \in E} w_{uv}$, any configuration of v that violates the "isosceles" triplets can be improved by moving v to either R^+ or R^- .

Lemma A.4. In any local optimum, the "edge" triplet (u, X_1, v) is satisfied if and only if u and v lie on opposite rays R^+ and R^- .

Proof of Lemma A.4. Let $u = C + t_i \mathbf{u}$ and $v = C + t_j \mathbf{u}$. Since u, v lie on the line through C perpendicular to the hyperplane spanned by the X_i , we have

$$||u - X_1||_2 = \sqrt{t_i^2 + ||X_1 - C||_2^2},$$
$$||v - X_1||_2 = \sqrt{t_j^2 + ||X_1 - C||_2^2}.$$

We can also verify that $\|X_1 - C\|_2 = \ell \sqrt{\frac{d-1}{2d}}$.

Case 1: If u and v are on the same ray (e.g., R^+), then:

$$||u-v||_2 = |t_i-t_j| \le \max(t_i,t_j) < \max(||u-X_1||_2,||v-X_1||_2).$$

Thus (u, X_1, v) is not satisfied.

Case 2: If u and v are on opposite rays R^+ and R^- , then:

$$||u - X_1||_2 = \sqrt{t_i^2 + ||X_1 - C||_2^2} = \sqrt{t_i^2 + \frac{(d-1)\ell^2}{2d}},$$

$$||v - X_1||_2 = \sqrt{t_j^2 + ||X_1 - C||_2^2} = \sqrt{t_j^2 + \frac{(d-1)\ell^2}{2d}},$$

$$||u - v||_2 = |t_i| + |t_j|.$$

We need to show that $||u - v||_2 \ge \max(||u - X_1||_2, ||v - X_1||_2)$.

To show $\|u-v\|_2 \geq \|u-X_1\|_2$, we need $(|t_i|+|t_j|)^2 \geq t_i^2 + \frac{(d-1)\ell^2}{2d}$. Expanding:

$$t_i^2 + 2|t_it_j| + t_j^2 \ge t_i^2 + \frac{(d-1)\ell^2}{2d} \implies 2|t_it_j| + t_j^2 \ge \frac{(d-1)\ell^2}{2d}.$$

Since $|t_i|, |t_j| \ge t_0$, substitute $|t_i| = |t_j| = t_0$ (worst case for the inequality):

$$2t_0^2 + t_0^2 = 3t_0^2 \ge \frac{(d-1)\ell^2}{2d}.$$

Substitute $t_0 = \ell \sqrt{\frac{d+1}{2d}}$:

$$3 \cdot \frac{(d+1)\ell^2}{2d} \ge \frac{(d-1)\ell^2}{2d} \implies 3(d+1) \ge d-1.$$

This holds for all $d \geq 2$.

Symmetrically we can show $||u-v||_2 \ge ||v-X_1||_2$. Thus (u,X_1,v) is satisfied.

Special Case d=1. We note that in the case of d=1, this construction degenerates into only one special vertex X_1 , with only "edge" triplets. We claim that this construction is still correct, as the vertices on different sides of X_1 encode a cut. Since "no local moves can improve the objective function" is a stronger condition than "no local moves of vertices except X_1 can improve the objective function", any local optimum of \mathcal{I}_{btw} is also a local max cut.

This concludes the proof of Theorem 3.3.

Proof of Theorem 3.2. We extend the reduction for LocalContrastive-Euclidean to higher dimensions by modifying the LocalBetweenness-Euclidean construction.

Recall that in the LocalBetweenness-Euclidean construction, all $v \in V$ are forced onto two opposing rays. We can encode the same isosceles and equilateral gadgets using contrastive triplets, for example, replacing a betweenness triplet (x,y,z) with two contrastive triplets (x,y^+,z^-) and (z,y^+,x^-) . We then use the same idea for the d=1 case we considered in Section 3.1, to turn the rays into segments. Let Y be a new special vertex forming a regular simplex with X_1,\ldots,X_d , and Z be a new special vertex on one of the rays. We add a contrastive triplet (Y,Z^+,X_1^-) to ensure that $\|X_1-Y\|_2 \geq \|Y-Z\|_2$, so YZ is the segment we "cut" on the ray.

For each $v \in V$, we add two contrastive triplets (X_1, Y^+, v^-) and (X_1, v^+, Z^-) to ensure that v is on YZ, or on its mirror Y'Z' with respect to the hyperplane spanned by X_1, \ldots, X_d .

We can always choose a hierarchy of weights so that these newly added triplets are satisfied in any local optimum. The rest of the proof follows similarly to Theorem 3.3.

B Omitted proofs for Section 3.3

Proof of Theorem 3.4. We reduce from LocalMaxCut. For a given graph G(V, E, w), we construct the triplets over vertices $V \cup \{X, X', Y, Z\}$. We denote $W := \sum_{(u,v) \in E} w_{uv}$ to be the sum of edge weights. The triplets are constructed as

- Type A triplets: XX'|Y, XX'|Z, and XX'|v for all vertex $v \in V$, each with weight W;
- Type B triplets: XY|Z with a large weight nW + n + 1;
- Type C triplets: Yv|X and Zv|X for all $v \in V$, each with weight W+1;
- Type D triplets: For every edge $(u, v) \in E$, we add uX|v and vX|u, each with weight $w_{uv}/2$.

Assume that T is a local solution of the above triplets instance. Since T is an rooted binary tree, there exists a unique path P starting from the leave node X to the root. All other leave nodes $V \cup \{X', Y, Z\}$ would be on branches of this path P. Firstly observe that X' should share the same parent node with X. In other words, X', and only X', should be on the lowest branch on the path P. If this is not the case, X' can simply move to a location such that X and X' share the same parent and this would only increase the satisfied triplets by satisfying all triplets of Type A.

Since in any local solution T, Type A triplets are always satisfied as argued above. For nodes Y and Z, Type B triplet XY|Z has dominating weight (the weight of XY|Z is greater than the sum of weights of other triplets that Y or Z is involved). Formally, we have

$$w_{XY|Z} > \sum_{v \in V} w_{Yv|X} \quad \text{and} \quad w_{XY|Z} > \sum_{v \in V} w_{Zv|X}.$$

Thus any local solution T needs to satisfy Type B triplet. We note that the triplet XY|Z can only be satisfied when Y is on a lower branch of Z on the path P.

Similarly for each vertex $v \in V$, it holds that

$$w_{Yv|X} > \sum_{u \in \mathcal{N}(v)} \left(w_{uX|v} + w_{vX|u} \right)$$

where $\mathcal{N}(v)$ denotes the set of neighbors of v. Thus in any local solution T, vertex v would try to satisfy Yv|X and Zv|X first. Since Y and Z are on different branch, only one of Yv|X and Zv|X could be satisfied in a local solution T. Notice that in order to satisfy Yv|X or Zv|X, vertex v should be on the branch of Y or the branch of Z respectively. We conclude that in a local solution T, any $v \in V$ should be on either the branch with Y or the branch with Z.

We proceed to show that for any pair of vertices u and v, if u and v are on the same branch (either the branch with Y or the branch with Z), then neither of vX|u or uX|v would be satisfied. If u and v are on different branches, e.g., v is on the branch of Y and u is on the branch of Z, then exactly one of vX|u or uX|v would be satisfied. Since any vertex $v \in V$ can only reside in either the branch with Y or the branch with Z, we conclude that in any local solution T, the configuration of all vertices v will introduce a solution of LocalMaxCut on the original graph. That is, all vertices $v \in V$ on the branch with Y form one side of the cut and those on the branch with Z form the other side.

C Hardness of Non-Betweeness embeddings

We start this section by giving formal definition of Local NonBetweenness-Euclidean problem.

LOCALNONBETWEENNESS-EUCLIDEAN Problem.

INPUT: Set V with non-betweenness triplets $\{(x_i, y_i, z_i)\}_{i=1}^m$ each with a non-negative weight $w_i \geq 0$, and target dimension d.

OUTPUT: An embedding $f: V \to \mathbb{R}^d$ such that no vertex v can increase the value of the embedding by switching its location in \mathbb{R}^d . We say a triplet (x_i, y_i, z_i) is *satisfied* by $f(\cdot)$, if x_i and z_i are not placed the farthest apart (equivalently, y_i is not "between" x_i and z_i), i.e., $\|f(x_i) - f(z_i)\|_2 \le \max\{\|f(x_i) - f(y_i)\|_2, \|f(z_i) - f(y_i)\|_2\}$. The embedding's objective value is $\sum_{i=1}^m w_i \cdot \mathbf{1}_{(x_i, y_i, z_i)}$.

The problem LocalNonBetweenness-Euclidean problem, even in the case of 1-dimensional embeddings (d=1), it is the well-studied problem called Non-Betweenness [Guruswami et al., 2008, Charikar et al., 2009, Austrin et al., 2015]. Here we show that it is PLS-hard.

Theorem C.1. Local NonBetweenness-Euclidean for embedding dimension d=1 is PLS-hard.

Proof. We give a polynomial time reduction from LocalMaxCut to LocalNonBetweenness-Euclidean with d=1. Given an undirected graph G=(V,E) with edge-weights $w\geq 0$. Denote $W\coloneqq \sum_{(u,v)\in E} w_{uv}$ to be the sum of all edge weights. We introduce two special vertices X and Y and the input to the LocalNonBetweenness-Euclidean will be vertices from $V\cup\{X,Y\}$ with |V|+2|E| non-betweenness triplets. The triplets can be classified into two types:

- Type A triplets. For every vertex $v \in V$, we add a triplet (X, v, Y) with weight W.
- Type B triplets. For every edge $(u,v) \in E$, we add (u,v,X) and (v,u,X) with weight w_{uv} .

We now argue that in any local optimal embedding over \mathbb{R} , there must be no point between X and Y. To see this, given an embedding where vertex v is in between X and Y, the corresponding triplet

^aThe output embedding f is computable in polynomial time in the description of the input set V and the weights.

(X,v,Y) is not satisfied. By moving Y to the location such that there is no point between X and Y (X and Y are next to each other), triplet (X,v,Y) becomes satisfied and all previous satisfied triplets remain unchanged. Thus one can simply change the location of Y and increase the sum of weighted satisfied triplets.

We proceed to analyze Type B triplets. For any edge $(u, v) \in E$, we have the following three cases.

Case 1 Vertices u and v are to the left of X, that is, u and v are both smaller than X. Without loss of generality, we assume that u < v. Notice that in this case v is in between u and X. Thus triplet (v, u, X) is satisfied but (u, v, X) is not satisfied.

Case 2 Both u and v are greater than X. Assume that u < v, it follows that triplet (u, v, X) is satisfied but (v, u, X) is not satisfied.

Case 3 Vertices u and v are on different side of X. In this case it holds that

$$|u-X| \le |u-v|$$
, and $|v-X| \le |u-v|$.

Thus both triplets (u, v, X) and (v, u, X) are satisfied.

We conclude that for any edge $(u,v) \in E$, if vertices u and v are on the same side of X (either to the left or to the right), then one of triplets (u,v,X) or (v,u,X) would be satisfied. If u and v are on different side of X, both (u,v,X) and (v,u,X) would be satisfied. Thus type B triplets essentially induce a cut over the original graph G-any vertex v to the left of X is on one side of the cut and vertices to the right of X is on the other side of the cut. Any local optimal embedding over the above LocalNonBetweenness-Euclidean instance with total weight W' would induce a LocalMaxCut over G with weight W' - (|V| + 1)W.

D Omitted proofs for Section 4

Proof of Theorem 4.1. We first study the case where the embedding dimension d=1 with pivot points A=0 and B=1/2. In order to show the hardness result, we reduce QuadraticProgram-KKT problem to the local solution of LocalTripletLoss-Euclidean. The former has been shown to be CLS-complete [Fearnley et al., 2024]. Formally, we consider the following optimization problem

$$\min_{\boldsymbol{x} \in [0,1]^n} \boldsymbol{x}^\top \mathbf{Q} \boldsymbol{x} + \boldsymbol{b}^\top \boldsymbol{x}. \tag{1}$$

To show that QuadraticProgram-KKT reduces to LocalTripletLoss-Euclidean, we consider an arbitrary quadratic function of 3 variables $x, y, z \in [0, 1]$

$$q(x,y,z) := c_1 x^2 + c_2 y^2 + c_3 z^2 + c_4 xy + c_5 xz + c_6 yz + c_7 x + c_8 y + c_9 z. \tag{2}$$

For a LocalTripletLoss-Euclidean problem with points from [0,1], we set the margin $\alpha=1$. Notice that for any triplet of points $(a_i,a_j,a_k)\in[0,1]^3$, we have

$$(a_i - a_j)^2 - (a_i - a_k)^2 + 1 \ge 0.$$

Thus for any triplet constraint (a_i, a_j, a_k) with weight w, the loss function is

$$\mathcal{L} = w \left((a_i - a_j)^2 - (a_i - a_k)^2 + 1 \right).$$

For any triplet (a_i, a_j, a_k) , we denote triplet (a_i, a_k, a_j) as its dual. Notice if (a_i, a_j, a_k) has weight w and the dual triplet (a_i, a_k, a_j) has weight w', we have the following objective function

$$\mathcal{L} = (w - w') ((a_i - a_j)^2 - (a_i - a_k)^2) + w + w'.$$

Now consider a Local Triplet Loss-Euclidean instance on $(x, y, z) \in [0, 1]^3$. Triplets with weights w_i are given as

Triplet
$$t_1 = (x, 0, y)$$
 with weight w_1 : $\mathcal{L}_1 = w_1 ((x - 0)^2 - (x - y)^2 + 1)$;
triplet $t_2 = (y, 0, x)$ with weight w_2 : $\mathcal{L}_2 = w_2 ((y - 0)^2 - (y - x)^2 + 1)$;

triplet
$$t_3 = (x, 0, z)$$
 with weight w_3 : $\mathcal{L}_3 = w_3 ((x - 0)^2 - (x - z)^2 + 1)$;

triplet
$$t_4 = (z,0,x)$$
 with weight w_4 : $\mathcal{L}_4 = w_4 \left((z-0)^2 - (z-x)^2 + 1 \right)$; triplet $t_5 = (y,0,z)$ with weight w_5 : $\mathcal{L}_5 = w_5 \left((y-0)^2 - (y-z)^2 + 1 \right)$; triplet $t_6 = (z,0,y)$ with weight w_6 : $\mathcal{L}_6 = w_6 \left((z-0)^2 - (z-y)^2 + 1 \right)$; triplet $t_7 = (x,0,\frac{1}{2})$ with weight w_7 : $\mathcal{L}_7 = w_7 \left(x^2 - (x-\frac{1}{2})^2 + 1 \right)$; triplet $t_8 = (y,0,\frac{1}{2})$ with weight w_8 : $\mathcal{L}_8 = w_8 \left(y^2 - (y-\frac{1}{2})^2 + 1 \right)$; triplet $t_9 = (z,0,\frac{1}{2})$ with weight w_9 : $\mathcal{L}_9 = w_9 \left(z^2 - (z-\frac{1}{2})^2 + 1 \right)$; triplet $t_{10} = (0,x,\frac{1}{2})$ with weight w_{10} : $\mathcal{L}_{10} = w_{10} \left((0-x)^2 - \frac{1}{4} + 1 \right)$; triplet $t_{11} = (0,y,\frac{1}{2})$ with weight w_{11} : $\mathcal{L}_{11} = w_{11} \left((0-y)^2 - \frac{1}{4} + 1 \right)$; triplet $t_{12} = (0,z,\frac{1}{2})$ with weight w_{12} : $\mathcal{L}_{12} = w_{12} \left((0-z)^2 - \frac{1}{4} + 1 \right)$.

The duals of above constraints are defined similarly with weight w'_i . Summing up all the objectives we get

$$\mathcal{L} = (w_1 - w_1') (2xy - y^2) + (w_2 - w_2') (2xy - x^2) + (w_3 - w_3') (2xz - z^2)$$

$$+ (w_4 - w_4') (2xz - x^2) + (w_5 - w_5') (2yz - z^2) + (w_6 - w_6') (2yz - y^2)$$

$$+ (w_7 - w_7')x + (w_8 - w_8')y + (w_9 - w_9')z$$

$$+ (w_{10} - w_{10}')x^2 + (w_{11} - w_{11}')y^2 + (w_{12} - w_{12}')z^2 + C.$$

We note that the last constant term C wouldn't change the first-order stationary point of the above program. By setting

$$\begin{split} w_1 - w_1' &= -c_2; \\ w_2 - w_2' &= c_2 + \frac{c_4}{2}; \\ w_3 - w_3' &= -c_3 - \frac{c_6}{2}; \\ w_4 - w_4' &= c_3 + \frac{c_5}{2} + \frac{c_6}{2}; \\ w_5 - w_5' &= \frac{c_6}{2}; \\ w_6 - w_6' &= 0; \\ w_7 - w_7' &= c_7; \\ w_8 - w_8' &= c_8; \\ w_9 - w_9' &= c_9; \\ w_{10} - w_{10}' &= c_1 + c_2 + c_3 + \frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2}; \\ w_{11} - w_{11}' &= 0; \\ w_{12} - w_{12}' &= 0, \end{split}$$

we have $\mathcal{L} = q(x, y, z)$. This means that from any first-order stationary point (x^*, y^*, z^*) of the objective \mathcal{L} , we have $[x^*, y^*, z^*]^{\top} \in [0, 1]^3$ is a KKT for the quadratic program defined in (2).

As shown above, \mathcal{L} has the power to represent any quadratic polynomials q(x,y,z). For the general form as in (1), one can group variables into groups of three (v_i,v_j,v_k) and repeat the construction shown above. Since at most we have $O(n^2)$ interacting terms v_iv_j where v_i and v_j are different variables, it requires $O(n^2)$ triplets to represent the quadratic program in (1). From the CLS-hardness of QuadraticProgram-KKT, we conclude that LocalTripletLoss-Euclidean with embedding dimension d=1 is CLS-hard.

To extend above result to higher dimensions, we construct a reduction similar to the one-dimension case. Since $\|\boldsymbol{a}_i - \boldsymbol{a}_j\|_2^2 = \|\boldsymbol{a}_i\|_2^2 + \|\boldsymbol{a}_j\|_2^2 - 2\boldsymbol{a}_i^{\top}\boldsymbol{a}_j$, by using the same constraints and coefficients as the one-dimensional case and setting $\alpha = d$, we can construct a quadratic program of the form

$$\min_{\boldsymbol{x} \in [0,1]^{dn}} \boldsymbol{x}^{\top} \mathbf{Q} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{x}. \tag{3}$$

Where \mathbf{Q} is a $dn \times dn$ matrix with $n \times n$ blocks, the $(i,j)^{th}$ block is of form $c_{ij} \cdot \mathbf{I}$. $\mathbf{b} \in \mathbb{R}^{dn}$ is a concatenation of n vectors $(\mathbf{v}_1, \dots, \mathbf{v}_n)$, where each $\mathbf{v}_i \in \mathbb{R}^d$ is of form $d_i \cdot \mathbf{I}$. Now for any first-order stationary point $\mathbf{a}^* = (\mathbf{a}_1^*, \mathbf{a}_2^*, \dots, \mathbf{a}_n^*) \in [0, 1]^{dn}$, we consider the first coordinate for each $a_{i,1}^* = \mathbf{a}_i^* \cdot \mathbf{e}_1$, one can verify that $\mathbf{a}_1^* = (a_{1,1}^*, \dots, a_{n,1}^*) \in [0, 1]^d$ forms a KKT point of the following program

$$\min_{oldsymbol{x} \in [0,1]^n} oldsymbol{x}^ op \mathbf{C} oldsymbol{x} + oldsymbol{d}^ op oldsymbol{x}.$$

Where $\mathbf{C} \in \mathbb{R}^{n \times n}$ and c_{ij} is the coefficient for the $(i,j)^{th}$ block of \mathbf{Q} defined in (3) and d_i is the coefficient of the i^{th} vector of \mathbf{b} in (3). From the CLS-hardness of QuadraticProgram-KKT, we conclude that LocalTripletLoss-Euclidean is CLS-hard.

E Detailed experimental statistics

Table 1: Experimental statistics for the hard instances H_1 to H_{15} used in Section 5. The second and the third columns show the number of vertices and edges in the original LocalMaxCut instance. The next 6 columns show the number of vertices and constraints in the reduced LocalBetweenness-Euclidean-1D, LocalContrastive-Euclidean-1D and LocalContrastive-Tree instances. The last column shows the number of iterations needed to reach a local optimum.

Instance	MaxCut		Betweenness-1D		Contrastive-1D		Contrastive-Tree		#iterations
	n	m	n	m	n	m	n	m	
$\overline{H_1}$	37	45	38	45	40	121	41	204	63
H_2	65	81	66	81	68	213	69	360	167
H_3^-	93	117	94	117	96	305	97	516	375
H_4	121	153	122	153	124	397	125	672	791
H_5	149	189	150	189	152	489	153	828	1623
H_6	177	225	178	225	180	581	181	984	3287
H_7	205	261	206	261	208	673	209	1140	6615
H_8	233	297	234	297	236	765	237	1296	13,271
H_9	261	333	262	333	264	857	265	1452	26,583
H_{10}	289	369	290	369	292	949	293	1608	53,207
H_{11}	317	405	318	405	320	1041	321	1764	106,455
H_{12}	345	441	346	441	348	1133	349	1920	212,951
H_{13}	373	477	374	477	376	1225	377	2076	425,943
H_{14}	401	513	402	513	404	1317	405	2232	851,927
H_{15}	429	549	430	549	432	1409	433	2388	1,703,895