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ABSTRACT

Volume parameterizations abound in recent literature, from the classic voxel grid1

to the implicit neural representation and everything in between. While implicit2

representations have shown impressive capacity and better memory efficiency3

compared to voxel grids, to date they require training via nonconvex optimization.4

This nonconvex training process can be slow to converge and sensitive to initial-5

ization and hyperparameter choices. We introduce a family of models, GA-Planes,6

that is the first class of implicit neural volume representations that can be trained7

by convex optimization. GA-Planes models include any combination of features8

stored in tensor basis elements, followed by a neural feature decoder. They gen-9

eralize many existing representations and can be adapted for convex, semiconvex,10

or nonconvex training as needed for different inverse problems. In the 2D setting,11

we prove that GA-Planes is equivalent to a low-rank plus low-resolution matrix12

factorization; we show that this approximation outperforms the classic low-rank13

plus sparse decomposition for fitting a natural image. In 3D, we demonstrate14

GA-Planes’ competitive performance in terms of expressiveness, model size, and15

optimizability across three volume fitting tasks: radiance field reconstruction, 3D16

segmentation, and video segmentation.17

1 INTRODUCTION18

Volumes are everywhere—from the world we live in to the videos we watch to the organs and19

tissues inside our bodies. In recent years tremendous progress has been made in modeling these20

volumes using measurements and computation (Tewari et al., 2022), to make them accessible for21

downstream tasks in applications including manufacturing (Intwala & Magikar, 2016; Šlapak et al.,22

2024), robotic navigation (Ming et al., 2024; Wijayathunga et al., 2023), entertainment and culture23

(Liu et al., 2024; Croce et al., 2023), and medicine (Udupa & Herman, 1999; Masero et al., 2002;24

Richter et al., 2024; Xu et al., 2024). All methods that seek to model a volume face a three-way25

tradeoff between model size, which determines hardware memory requirements, expressiveness,26

which determines how faithfully the model can represent the underlying volume, and optimizability,27

which captures how quickly and reliably the model can learn the volume from measurements. Cer-28

tain applications place stricter requirements on model size (e.g. for deployment on mobile or edge29

devices), expressiveness (e.g. resolution required for medical diagnosis or safe robotic navigation),30

or optimizability (e.g. for interactive applications), but all stand to benefit from improvements to31

this three-way pareto frontier.32

Many existing strategies have been successfully applied at different points along this pareto frontier;33

some representative examples from computer vision are summarized in Appendix A.1. Our goal is34

to maintain or surpass the existing pareto frontier of model size and expressiveness while improving35

optimization stability through convex optimization.36

Our approach introduces convex and semiconvex reformulations of the volume modeling optimiza-37

tion process that apply to a broad class of volume models we call Geometric Algebra Planes, or38

GA-Planes for short. We adopt the term semiconvex for Burer-Monteiro (BM) factorizations of a39

convex objective, as introduced in Sahiner et al. (2024), within the context of convex neural net-40

works. BM factorized problems have the property that every local minimum is globally optimal41

(Sahiner et al., 2024).42
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GA-Planes is a mixture-of-primitives model that generalizes several existing volume models includ-43

ing voxels and tensor factorizations. Most importantly, most models in this family can be formulated44

for optimization by a convex program, as long as the objective function (to fit measurements of the45

volume) is convex. At the same time, any GA-Planes model can also be formulated for nonconvex46

optimization towards any objective, matching the range of applicability enjoyed by common mod-47

els. While only our convex and semiconvex models come with guarantees of convergence to global48

optimality, all the models we introduce extend the pareto frontier of model size, expressiveness, and49

optimizability on diverse tasks.50

Concretely, we make the following contributions:51

• We introduce GA-Planes, a mixture-of-primitives volume parameterization inspired by ge-52

ometric algebra basis elements. GA-Planes combines any subset of line, plane, and volume53

features at different resolutions, with an MLP decoder. This GA-Planes family of parame-54

terizations generalizes many existing volume and radiance field models.55

• We derive convex and semiconvex reformulations of the GA-Planes training process for56

certain tasks and a large subset of the GA-Planes model family, to ensure our model opti-57

mizes globally regardless of initialization.58

• We analyze GA-Planes in the 2D setting and show equivalence to a low-rank plus low-59

resolution matrix approximation whose expressiveness can be directly controlled by design60

choices. We demonstrate that this matrix decomposition is expressive for natural images,61

outperforming the classic low-rank plus sparse approximation.62

• We demonstrate convex, semiconvex, and nonconvex GA-Planes’ high performance in63

terms of memory, expressiveness, and optimizability across three volume-fitting tasks: 3D64

radiance field reconstruction, 3D segmentation, and video segmentation.65

2 RELATED WORK66

Volume parameterization. Many volume parameterizations have been proposed and enjoy67

widespread use across diverse applications. Here we give an overview of representative methods68

used in computer vision, focusing on methods that parameterize an entire volume (rather than e.g. a69

surface). These parameterizations achieve different tradeoffs between memory usage, representation70

quality, and ease of optimization; richer descriptions are provided in Appendix A.1.71

Coordinate MLPs like NeRF (Mildenhall et al., 2020) and Scene Representation Networks (Sitz-72

mann et al., 2019b) are representative of Implicit Neural Representations (INRs), which excel at73

reducing model size (with decent expressiveness) but suffer from slow optimization. At the oppo-74

site end of the spectrum, explicit voxel grid representations like Plenoxels (Sara Fridovich-Keil and75

Alex Yu et al., 2022) and Direct Voxel Grid Optimization (Sun et al., 2022) can optimize quickly but76

require large model size to achieve good expressiveness (resolution). Many other methods (Chen77

et al., 2022; Fridovich-Keil et al., 2023; Müller et al., 2022; Kerbl et al., 2023; Reiser et al., 2023;78

Lombardi et al., 2021) find their niche somewhere in between, achieving tractable model size, good79

expressiveness, and reasonably fast optimization time in exchange for some increased sensitivity (to80

initialization, randomness, and prior knowledge) in the optimization process. GA-Planes matches or81

exceeds the performance of strong baselines (Chen et al., 2022; Fridovich-Keil et al., 2023; Barron82

et al., 2021) in terms of model size and expressiveness, while introducing the option to train by83

convex or semiconvex optimization with guaranteed convergence to global optimality.84

Radiance field modeling. Most of the works described above are designed for the task of model-85

ing a radiance field, in which the training measurements consist of color photographs from known86

camera poses. The goal is then to faithfully model the optical density and view-dependent color of87

light inside a volume so that unseen views can by rendered accurately. This task is also referred to as88

novel view synthesis (Mildenhall et al., 2020; Sitzmann et al., 2019b). Although we do demonstrate89

superior performance of GA-Planes in this setting, we note that the volumetric rendering formula90

used in radiance field modeling (Max, 1995; Kajiya, 1986; Mildenhall et al., 2020) yields a noncon-91

vex photometric loss function, regardless of model parameterization.92

3D segmentation. We test our convex and semiconvex GA-Planes parameterizations on fully con-93

vex objectives, namely volume (xyz) segmentation with either indirect 2D tomographic supervision94
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Figure 1: Overview of the GA-Planes models we use in our experiments. Our nonconvex model
(top) uses a standard MLP decoder and multiplication of features when the result yields a volume
under geometric algebra; it also concatenates features across mult-resolution grids. Our semicon-
vex (middle) and convex (bottom) models use a single resolution for each feature grid, and avoid
multiplication of features since that would induce nonconvexity. The pastel-colored grids inside the
indicator function of the convex model are frozen at initialization and used as fixed ReLU gating
patterns. ⊙ denotes concatenation and ◦ denotes elementwise multiplication.

or direct supervision, as well as video (xyt) segmentation with direct 3D supervision. This 3D95

(xyz) segmentation task has also been studied in recent work (Cen et al., 2023; Uy et al., 2023),96

though these methods require additional inputs such as a pretrained radiance field model or monoc-97

ular depth estimator. Our setup is most similar to Mescheder et al. (2019), which uses an implicit98

neural representation trained with cross-entropy loss and direct 3D supervision of the occupancy99

function. Instead of having direct access to this 3D training data, we infer 3D supervision labels via100

Space Carving (Kutulakos & Seitz, 1999) from 2D image masks obtained by image segmentation101

(via Kirillov et al. (2023)).102

Convex neural networks. Recent work has exposed an equivalence between training a shallow103

(Pilanci & Ergen, 2020) or deep (Ergen & Pilanci, 2024) neural network and solving a convex pro-104

gram whose structure is defined by the architecture and parameter dimensions of the corresponding105

neural network. The key idea behind this convexification procedure is to enumerate (or randomly106

sample from) the possible activation paths through the neural network, and then treat these paths as107

a fixed dictionary whose coefficients may be optimized according to a convex program.108

Geometric (Clifford) algebra. Geometric algebra (GA) is a powerful framework for modeling109

geometric primitives and interactions between them (Dorst et al., 2009). The fundamental entity in110

GA is the multivector, which is a sum of vectors, bivectors, trivectors, etc. In 3D GA, an example is111

the multivector e1e2 + e1e2e3, representing the sum of a bivector (a plane) and a trivector (a vol-112

ume). The geometric product in GA allows us to derive a volume element by multiplying a plane and113

a line, e.g. (e1e2)e3 = e1e2e3. We use the shorthand e123 = e1e2e3, and similarly for other multi-114

vector components throughout. Inspired by this framework, we define the GA-Planes model family115

to include any volume parameterization that combines any subset (including the complete subset116

and the empty subset) of the linear geometric primitives {e1, e2, e3}, planar geometric primitives117

{e12, e13, e23}, and/or volumetric primitive {e123} with a (potentially convexified) MLP feature118

decoder. We leverage geometric algebra to combine these primitives into a trivector (volume). To119

our knowledge, this work is the first to use geometric algebra in neural volume models.120

3 MODEL121

3.1 THE GA-PLANES MODEL FAMILY122

A GA-Planes model represents a volume using a combination of geometric algebra features ec123

derived by interpolating the following parameter grids:124

• Line (1-dimensional) feature grids {g1,g2,g3}, where each grid has shape [r1, d1] with125

spatial resolution r1 and feature dimension d1.126
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• Plane (2-dimensional) feature grids {g12,g13,g23}, where each grid has shape [r2, r2, d2]127

with spatial resolution r2 and feature dimension d2.128

• A single volume feature grid {g123} with shape [r3, r3, r3, d3].129

A GA-Planes model may include multiple copies of a given basis element with different resolution130

and feature dimensions, to effectively capture multi-resolution signal content. The x, y, and z spatial131

resolutions of each grid may differ in practice; for simplicity of notation we use isotropic resolutions.132

We first extract features corresponding to q = (x, y, z) ∈ R3 from each of our line, plane, and133

volume feature grids gc by linear, bilinear, and trilinear interpolation, respectively:134

ec := ψ
(
gc, πc(q)

)
, (1)

where πc projects q onto the coordinates of the c’th feature grid gc and ψ denotes (bi/tri)linear135

interpolation. The resulting feature ec is a vector of length d1 if c ∈ {1, 2, 3}, d2 if c ∈ {12, 13, 23}136

or d3 if c = 123. We repeat this projection and interpolation procedure over each gc, and combine137

the resulting feature vectors by any combination of elementwise multiplication (◦), addition (+),138

and concatenation (⊙) along the feature dimension. Finally, the combined feature vector is decoded139

using an MLP decoder D. The decoder can take as input both the feature vector arising from the140

feature grids as well as possible auxiliary inputs, such as (positionally encoded) viewing direction.141

We consider any model that fits the above description to fall into the GA-Planes family. The specific142

models we use for nonconvex, semiconvex, and convex optimization are illustrated in Figure 1.143

Our experiments focus primarily on two specific GA-Planes models that exemplify some of the144

strongest convex and nonconvex representations in the GA-Planes family. For our experiments145

including convex optimization, namely 3D segmentation with 2D or 3D supervision, and video seg-146

mentation, we use the following GA-Planes model (illustrated in the second and third rows of Fig-147

ure 1) which can be trained by either convex, semiconvex, or nonconvex optimization as described148

in the following subsections:149

D(e1 ⊙ e2 ⊙ e3 ⊙ e12 ⊙ e13 ⊙ e23 ⊙ e123). (2)

Here we use ⊙ to denote concatenation of features. For our radiance field experiments, since the150

objective function is inherently nonconvex, we use the following nonconvex member of the GA-151

Planes family (illustrated with multiresolution feature grids in the first row of Figure 1):152

D((e1 ◦ e2 ◦ e3)⊙ (e1 ◦ e23)⊙ (e2 ◦ e13)⊙ (e3 ◦ e12)⊙ e123), (3)

which leverages geometric algebra to multiply (◦) lower-dimensional (vector and bivector) features153

together into 3D volume (trivector) features, but cannot be convexified because of this multiplication.154

We use multi-resolution copies of the line and plane feature grids g1,g2,g3,g12,g13,g23, but only155

a single resolution for the volume grid g123 since it is already at lower resolution. For our nonconvex156

experiments the decoder D is a standard fully-connected ReLU neural network; decoder details for157

our semiconvex and convex models are presented in the following subsections.158

3.2 SEMICONVEX GA-PLANES159

For our segmentation experiments (with volumes and videos), we use the GA-Planes architecture in160

eq. (2), with concatenation instead of multiplication of features; we denote this concatenated feature161

vector as f(q), the input to the decoder. Our semiconvex formulation of this model uses a convex162

MLP (Pilanci & Ergen, 2020) as the decoder:163

ỹ(q) =
h∑

i=1

(Wi
⊤f(q))1[W i

⊤
f(q) ≥ 0]. (4)

Here W denotes the trainable hidden layer MLP weights, and W denotes the same weights frozen164

at initialization inside the indicator function. The indicator function, denoted as 1[∗], returns 1 if165

the argument is true, and 0 otherwise. The indicator function here serves as a random gating pattern166

that takes the place of the ReLU in a standard nonconvex MLP, where the gating pattern would be167

optimized rather than fixed in a random pattern. Although this MLP decoder is fully convex, we168

refer to this model as semiconvex (in particular biconvex; see (Sahiner et al., 2024)) because the169

combined grid features f(q) are multiplied by the trainable MLP hidden layer weights W , though170

the objective is separately convex in each of these parameters.171
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3.3 CONVEX GA-PLANES172

For our segmentation experiments (with volumes and videos), we also present a fully convex GA-173

Planes model that is similar to the semiconvex model described above, except that we fuse the174

learnable weights of the MLP decoder with the weights of the feature mapping, to remove the175

product of parameters (which is semiconvex but not convex). Our convex model is:176

ỹ(q) =
∑

c∈{1,2,3,12,13,23,123}

1⊤
d(c)(ec ◦ 1 [ec ≥ 0]), (5)

where the features ec are interpolated from optimizable parameter grids with feature dimension177

d(c) ∈ {d1, d2, d3}, whereas the gating variables ec inside the indicator function are derived from178

the same grids frozen at their initialization values to preserve convexity. Here ◦ denotes elementwise179

product of vectors. These indicator functions take the same role as the ReLU in a nonconvex MLP,180

using a sampling of random activation patterns based on the grid values at initialization.181

4 THEORY182

4.1 EQUIVALENCE TO MATRIX COMPLETION IN 2D183

In three dimensions, the complete set of geometric algebra feature grids are those that we include184

in the GA-Planes family: {g1,g2,g3,g12,g13,g23,g123}. In two dimensions, this reduces to:185

{g1,g2,g12}. In this 2D setting, we can analyze different members of our GA-Planes family and186

show equivalence to various formulations of the classic matrix completion problem.187

Notation. As usual, we use ◦ to denote elementwise multiplication and ⊙ to denote concatenation.188

We use 1a×b to denote the all-ones matrix of size a × b and 1[·] to denote the indicator function,189

which evaluates to 1 when its argument is positive and 0 otherwise. Our theorem statements consider190

equivalence to a matrix completion problem with target matrix M ∈ Rm×n and low-rank compo-191

nents U ∈ Rm×k, V ∈ Rn×k to be optimized. We include theoretical results for 2D GA-Planes192

models that combine features by addition (+), multiplication (◦), or concatenation (⊙) and decode193

features using a linear decoder (as a warmup), a convex MLP, or a nonconvex MLP. The most il-194

luminating results are presented in the theorem statements that follow; the rest (and all proofs) are195

deferred to Appendix A.2.196

Assumptions. Our theorem statements assume that the line feature grids have the same spatial197

resolution as the target matrix, and thus do not specify the type of interpolation. However, the results198

hold even if the dimensions do not match and nearest neighbor interpolation is used; the empirical199

performance is similar or even slightly improved in practice by using (bi)linear interpolation of200

features (see Appendix A.3 and A.2 for a discussion of other interpolation methods). The theorems201

assume that the optimization objective is to minimize the Frobenius norm of the error matrix; this202

is equivalent to minimizing mean squared error measured directly in the representation space. This203

objective function is the one we use for our convex experiments (video and volume segmentation204

fitting), where we have access to direct supervision; our radiance field experiments instead use205

indirect measurements (along rays) that are not equivalent to the setting of the theorems.206

Theorem 1. The two-dimensional representation D(e1 + e2) with linear decoder D(f(q)) =207

αT f(q) is equivalent to a low-rank matrix completion model with the following structure:208

min
U,V

∥M − (U1k×n + 1m×kV
T )∥2F . (6)

These two models are equivalent in the sense that U∗ = g∗
1diag(α∗) and V ∗ = g∗

2diag(α∗) where209

U∗, V ∗ is the optimal solution to the low-rank matrix completion problem in eq. (6) and g∗
1,g

∗
2, α

∗210

are the optimal grid features and linear decoder for the D(e1 + e2) model.211

The two-dimensional representation D(e1 ◦ e2) with the same linear decoder is equivalent to the212

standard low-rank matrix completion model:213

min
U,V

∥M − UV T ∥2F . (7)

These two models are equivalent in the same sense as above, except that V ∗ = g∗
2 .214
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Remark. Using a linear decoder reveals a dramatic difference in representation capacity between215

feature addition (or concatenation) and multiplication. Using addition, the maximum rank of the216

matrix approximation is 2 regardless of the feature dimension k. Using multiplication, the maximum217

rank of the approximation is k. With feature multiplication, the optimal values of the feature grids218

are identical to the rank-thresholded singular value decomposition (SVD) of M , where the feature219

grids g1 and g2 recover the left and right singular vectors and the decoder α learns the singular220

values of M . This is the optimal rank k approximation of a matrix M .221

Theorem 2. The two-dimensional representation D(e1 + e2 + e12) with linear decoder D(f(q)) =222

αT f(q) is equivalent to a low-rank plus low-resolution matrix completion model with the following223

structure:224

min
U,V,L

∥M − (U1k×n + 1m×kV
T + φ(L))∥2F , (8)

where L ∈ Rml×nl is the low-resolution component to be learned, with upsampling (interpolation)225

function φ. These two models are equivalent in the sense that U∗ = g∗
1diag(α∗), V ∗ = g∗

2diag(α∗),226

and L∗ = g∗
12α

∗, where U∗, V ∗, L∗ is the optimal solution to the low-rank plus low-resolution227

matrix completion problem in eq. (8) and g∗
1,g

∗
2,g

∗
12, α

∗ are the optimal grid features and linear228

decoder for the D(e1 + e2 + e12) model.229

The two-dimensional representation D(e1 ◦ e2 + e12) with the same linear decoder is equivalent to230

a low-rank plus low-resolution matrix completion model:231

min
U,V,L

∥M − (UV T + φ(L))∥2F . (9)

These two models are equivalent in the same sense as above, except that V ∗ = g∗
2 .232

Remark. Theorem 2 describes the behavior of a 2D, linear-decoder version of our GA-Planes233

model, both the version with addition/concatenation of features (eq. (2)) and the version with mul-234

tiplication of features (eq. (3)). Extending the same idea to 3D, we can interpret GA-Planes as235

a low-rank plus low-resolution approximation of a 3D tensor (volume). We can understand this236

model as first fitting a low-resolution volume and then finding a low-rank approximation to the237

high-frequency residual volume. When we use multiplication of features, the low-rank residual238

approximation is optimal and analogous to the rank-thresholded SVD.239

Theorem 3. The two-dimensional representation D(e1 ◦ e2) with a two-layer convex MLP decoder240

D(f(q)) =
∑h

i=1 (Wi
⊤f(q))1[W i

⊤
f(q) ≥ 0] is equivalent to a masked low-rank matrix comple-241

tion model:242

min
U,V,W

∥∥∥M −
∑
i,j

Wi,jUjV
⊤
j ◦Bi

∥∥∥2
F
, (10)

where W ∈ Rh×k contains the trainable weights of the convex MLP decoder, with indices j =243

1, . . . , k for the input dimension and i = 1, . . . , h for the hidden layer dimension. Bi ∈ Rm×n244

denotes the binary masking matrix formed by random, fixed gates of the convex MLP decoder;245

Bi = 1[
∑

j W i,jUjV
⊤
j ≥ 0], where W denotes the weight matrix W with values fixed at random246

initialization.247

This matrix completion model and our GA-Planes model D(e1 ◦ e2) with convex MLP decoder are248

equivalent in the sense that U∗ = g∗
1 , V ∗ = g∗

2 , and W ∗ = W ∗, where U∗, V ∗,W ∗ is the optimal249

solution to the masked low-rank matrix completion problem eq. (10) and g∗
1,g

∗
2,W

∗ are the optimal250

grid features and convex MLP decoder weights for the D(e1 ◦ e2) model. The optimal mask matrices251

B∗
i are defined by the fixed random weight initializationW and the optimal singular vector matrices252

U∗, V ∗.253

Remark. We can interpret the matrix completion model of eq. (10) as a sum of h different low-254

rank approximations, where the matrices within each of the h groups are constrained to share the255

same singular vectors Uj , Vj . The binary masks Bi effectively allow each of these h low-rank256

approximations to attend to (or complete) a different part of the matrix M before being linearly257

combined through the weights (singular values) Wi,j . The upper limit of the rank of this matrix258

approximation is thus min(n,m), because the mask matrices can arbitrarily increase the rank beyond259

the constraint faced by models with a linear decoder. Note that if the feature grids g1 and g2 have260

spatial resolution r1 less than min(n,m), the maximum rank will be r1.261

6



Under review as a conference paper at ICLR 2025

Theorem 4. The two-dimensional representation D(e1 ◦ e2) with a standard two-layer MLP de-262

coder D(f(q)) = αT (Wf(q))+ is equivalent to a low-rank matrix completion model with the fol-263

lowing structure:264

min
U,V,W,α

∥∥∥M −
h∑

i=1

αi

( k∑
j=1

Wi,jUjV
⊤
j

)
+

∥∥∥2
F
, (11)

where W ∈ Rh×k is the weight matrix for the MLP decoder’s hidden layer (with width h) and265

α ∈ Rh is the weight vector of the MLP decoder’s output layer.266

This matrix completion model and our GA-Planes model D(e1 ◦ e2) with nonconvex MLP de-267

coder are equivalent in the sense that U∗ = g∗
1 , V ∗ = g∗

2 , W ∗ = W ∗, and α∗ = α∗, where268

U∗, V ∗,W ∗, α∗ is the optimal solution to the masked low-rank matrix completion problem eq. (11)269

and g∗
1,g

∗
2,W

∗, α∗ are the optimal grid features and MLP decoder for the D(e1 ◦ e2) model.270

Remark. The upper limit of the rank of this matrix approximation is min(n,m, r1), the same as271

with a convex MLP decoder.272

We summarize the maximum attainable ranks of different 2D models in Table 1 (see Appendix A.2.3273

and A.2.4 for matrix representations of D(e1 + e2) and D(e1 ⊙ e2) with convex and nonconvex274

MLP decoders). Experimental validation of these theoretical results on the task of 2D image com-275

pression is provided with a comparison of interpolation schemes in Figure 5 in the appendix.276

Model Linear decoder convex MLP decoder MLP decoder
D(e1 + e2) 2 r1 r1
D(e1 ⊙ e2) 2 r1 r1
D(e1 ◦ e2) k r1 r1

Table 1: Maximum attainable ranks of different 2D GA-Planes models, using only line features.
Here k is the feature dimension and r1 is the spatial dimension of the features, which need never
exceed min(m,n). Replacing a linear decoder with a convex or nonconvex MLP can dramatically
increase the rank of the representation.

4.2 INTERPRETATION: LOW RANK + LOW RESOLUTION277

Combining multiple parameterization strategies with complementary representation capacities is a278

time-honored strategy in signal processing. A classic example is the combination of sparse and279

low-rank models used to represent matrices in the compressive sensing literature (Chandrasekaran280

et al., 2009). As shown in Theorem 2, we can view the GA-Planes family as following a similar281

strategy with a combination of low-rank and low-resolution approximations. This low-rank plus282

low-resolution parameterization is generally easier to train, because sparse models must either store283

large numbers of empty values (high memory) or store the locations of nonzero entries and suffer284

from poorly-conditioned spatial gradients (difficult optimization). Indeed there are volume param-285

eterizations that utilize sparsity, such as point clouds, surface meshes, surfels, and Gaussian splats,286

but these tend to be more challenging to optimize (e.g. requiring high memory (Sara Fridovich-Keil287

and Alex Yu et al., 2022) or heuristic updates and good initialization (Kerbl et al., 2023)).288

We illustrate this low-rank plus low-resolution interpretation in Figure 2 with a simple experiment,289

in which we approximate a grayscale image (the astronaut image from SciPy) using either a sum290

of low-rank and low-resolution components (similar to the structure of GA-Planes) or the classic291

sum of low-rank and sparse components. In this experiment we compute the optimal low-rank292

components of each model type using the SVD, which corresponds to multiplication of features.293

5 EXPERIMENTS294

5.1 RADIANCE FIELD MODELING295

Our experiments for the radiance field reconstruction task are built on the NeRFStudio framework296

(Tancik et al., 2023) and use all 8 scenes from NeRF-Blender (Mildenhall et al., 2020). We train each297

volume representation based on the photometric loss that is standard in the NeRF literature (Max,298
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(a) Pareto Frontiers
for Image Compression

(b) Low Rank + Low Res
PSNR 29.60

(c) Low Rank + Sparse
PSNR 26.26

Figure 2: For a natural image, approximation as a sum of low rank and low resolution components
(green points and subfigure b) achieves higher fidelity compared to the classic matrix decomposition
as a sum of low rank and sparse components (blue points and subfigure c), with the same parameter
budget (18.75% of the original image size, for subfigures b and c). The GA-Planes model family
generalizes the idea of a low rank plus low resolution approximation to three dimensions.

1995; Kajiya, 1986; Mildenhall et al., 2020). Our results are summarized in Figure 3, which reports299

PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) for each model as a function of its300

size. We provide per-scene pareto-optimal curves and renderings in Appendix A.6 and A.7.301

Figure 3: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on all 8 scenes from the Blender
dataset, and the average results are shown.

Because the photometric loss function is inherently nonconvex, we use our most expressive GA-302

Planes parameterization as defined in eq. (3). We compare this with several popular models as303

implemented in NeRFStudio: Mip-NeRF (Barron et al., 2021), TensoRF (Chen et al., 2022), and K-304

Planes (Fridovich-Keil et al., 2023). For K-Planes, we include versions with and without proposal305

sampling, a strategy for efficiently allocating ray samples during training and rendering. Proposal306
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sampling is the default for K-Planes, but we include a version without proposal sampling because307

none of the other models in this experiment use proposal sampling. We also include several ablations308

of our GA-Planes model: one with only the volume features (similar to a multiresolution version309

of DVGO (Sun et al., 2022) or Plenoxels (Sara Fridovich-Keil and Alex Yu et al., 2022)), one310

with only the line features (similar to a multiresolution TensoRF-CP), and one with only the line-311

plane products (similar to a multiresolution TensoRF-VM (Chen et al., 2022)). At large model sizes312

(∼10 million parameters) most models including GA-Planes perform well. As model size shrinks,313

only GA-Planes and its line-only ablation reach comparable metrics as the larger models. Detailed314

descriptions of parameter allocations for each model are provided in Appendix A.8.315

5.2 3D SEGMENTATION316

Our experiments for 3D segmentation use the opacity masks from the NeRF-Blender lego scene317

(Mildenhall et al., 2020). The task is to “lift” these 2D segmentation masks to 3D. We compare the318

linear and nonlinear feature combination versions of GA-Planes and Tri-Planes Chan et al. (2022);319

Fridovich-Keil et al. (2023) (models with plane features only).320

2D Supervision. In this experiment we use 2D tomographic supervision, in which we minimize321

the mean squared error between the ground truth 2D object segmentation masks and the average ray322

density at each viewpoint. In Table 2 we report the intersection over union (IOU) metric on thresh-323

olded projections from our trained model on test views. These results validate that the GA-Planes324

architecture in eq. (2) works well regardless of convex, semiconvex, or nonconvex formulation–325

whereas the Tri-Planes model requires a nonconvex decoder for good performance.326

Convex Semiconvex Nonconvex

GA-Planes (with ◦) - - 0.877
GA-Planes (with ⊙) 0.875 0.883 0.880
Tri-Planes (planes with ◦, like K-Planes) - - 0.877
Tri-Planes (planes with +, like (Chan et al., 2022)) 0.681 0.868 0.863

Table 2: Intersection over union (IOU) for recovering novel view object segmentation masks from
segmentation mask training with 2D tomographic supervision.

3D Supervision. Our second set of 3D segmentation experiments leverages direct 3D supervision327

via Space Carving (Kutulakos & Seitz, 1999), using the principle that if any ray passing through a328

given 3D coordinate is transparent, the density at that 3D coordinate must be zero. Our results with329

3D supervision, in Table 3, parallel those with 2D supervision: GA-Planes performs well regardless330

of convex, semiconvex, or nonconvex formulation, whereas the Tri-Planes model performs decently331

with a nonconvex decoder but much worse with convex or semiconvex formulation.332

Convex Semiconvex Nonconvex

GA-Planes (with ◦) - - 0.926
GA-Planes (with ⊙) 0.932 0.957 0.964
Tri-Planes (planes with ◦, like K-Planes) - - 0.881
Tri-Planes (planes with +, like (Chan et al., 2022)) 0.642 0.636 0.941

Table 3: Intersection over union (IOU) for recovering novel view object segmentation masks from
segmentation mask training with 3D Space Carving supervision.

5.3 VIDEO SEGMENTATION333

Our video segmentation task is similar to volume segmentation with 3D supervision: here the vol-334

ume dimensions are x, y, t rather than x, y, z, and the supervision is performed directly in 3D using335

segmentation masks for a subset of the video frames (every third frame is held out for testing). Our336

dataset preparation pipeline uses the skateboarding video and preprocessing steps described at La-337

belbox.com, which involves first extracting a bounding box with YOLOv8 (Jocher et al., 2023) and338

then segmenting the skateboarder with SAM (Kirillov et al., 2023). This is essentially a temporal339

superresolution task on segmentation masks.340
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Our results are summarized in Figure 4 and Table 4. We find that GA-Planes performs well across341

convex, semiconvex, and nonconvex formulations, though its performance is slightly reduced under342

fully convex training, perhaps because the convex model size is slightly reduced due to fusing the343

decoder parameters into the feature grids. In contrast, the simpler Tri-Plane models perform poorly344

on this task regardless of training strategy: they fail to learn the temporal sequence of the video,345

producing masks that focus only on the skateboarder’s less-mobile core.346

G
A

-P
la

ne
s

Tr
i-

Pl
an

es

Convex Semiconvex Nonconvex (⊙ or +) Nonconvex (◦) Ground Truth

Figure 4: Intersection over union (IOU) for predicting segmentation masks for unseen frames within
a video of a segmented skateboarder.

Convex Semiconvex Nonconvex

GA-Planes (with ◦) - - 0.974
GA-Planes (with ⊙) 0.913 0.975 0.981
Tri-Planes (planes with ◦, like K-Planes) - - 0.727
Tri-Planes (planes with +, like Chan et al. (2022)) 0.557 0.647 0.732

Table 4: Intersection over union (IOU) for temporal superresolution of segmentation masks in a
video, computed on held-out test frames. Models that involve multiplication of features can only be
trained by nonconvex optimization.

6 DISCUSSION347

In this work we introduce GA-Planes, a family of volume parameterizations that generalizes many348

existing representations (see Appendix A.1). We specifically focus on two members of the GA-349

Planes family (with concatenation versus multiplication of features), and offer both theoretical in-350

terpretation and empirical evaluation of these models. Our nonconvex GA-Planes model shows351

pareto-optimal performance in terms of model size and quality on fitting a 3D radiance field, while352

our convex and semiconvex GA-Planes formulations are effective on several 3D linear inverse prob-353

lems. In 2D, we show connections between GA-Planes and a low-rank plus low-resolution matrix354

completion model, and derive how this model’s rank capacity is affected by various design decisions.355

Limitations. Here we focus on 3D (or smaller) representations, rather than higher dimensions356

(e.g. dynamic volumes), and we demonstrate GA-Planes for reconstruction rather than generation357

tasks. Both of these extensions are promising avenues for extending GA-Planes. In our experiments,358

we use the same first-order optimization algorithm for all models. However, our convex GA-Planes359

formulation is compatible with any convex solver (e.g. cvxpy), and we expect its performance may360

improve by leveraging these efficient convex optimization algorithms. We demonstrate preliminary361

benefits of convexity and semiconvexity in terms of training stability in Appendix A.5.362

10



Under review as a conference paper at ICLR 2025

REFERENCES363

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and364

Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.365

In ICCV, pp. 5835–5844. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00580. URL https:366

//doi.org/10.1109/ICCV48922.2021.00580.367

Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Chen Yang, Wei Shen, Lingxi Xie, Dongsheng Jiang,368

Xiaopeng Zhang, and Qi Tian. Segment anything in 3d with nerfs. In NeurIPS, 2023.369

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,370

Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon371

Wetzstein. Efficient geometry-aware 3D generative adversarial networks. In CVPR, 2022.372

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Sparse and low-rank373

matrix decompositions. IFAC Proceedings Volumes, 42(10):1493–1498, 2009.374

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance375

fields. In European Conference on Computer Vision (ECCV), 2022.376

V Croce, G Caroti, L De Luca, A Piemonte, and P Véron. Neural radiance fields (nerf): Review and377
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A APPENDIX490

A.1 CONTEXT FOR GA-PLANES491
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Coordinate MLP (NeRF, SRN) ✓ ∼ ✗
Voxels (Space Carving, Plenoxels, DVGO) ✗ ✓ ✓
Tensor Factorization (TensoRF, K-Planes) ∼ ∼ ∼
Hash Embedding (Instant-NGP) ∼ ✓ ∼
Point Cloud / Splat (3D Gaussian Splatting) ∼ ✓ ∼
Mixture of Primitives (MVP, MERF) ∼ ✓ ∼
GA-Planes (Nonconvex) ∼ ✓ ∼
GA-Planes (Convex) ∼ ✓ ✓
GA-Planes (Semi-Convex) ∼ ✓ ✓

Table 5: Context. All volume models face a
tradeoff between memory efficiency, expressive-
ness, and optimizability. The qualitative catego-
rizations here are based on the tradeoffs achieved
by representative example methods listed in each
category. Model Size denotes memory usage dur-
ing training; other methods exist to compress
trained models, e.g. for rendering on mobile hard-
ware. Optimizability denotes both speed and sta-
bility of optimization/training. For example, Co-
ordinate MLPs tend to train slowly, while Splats
train quickly but are sensitive to initialization.

Table 5 summarizes some representative vol-492

ume models popular in computer vision, and493

how they relate to GA-Planes along the three-494

way pareto frontier of model size, expressive-495

ness, and optimizability.496

Implicit Neural Representations (INRs) or Co-497

ordinate Neural Networks (Mildenhall et al.,498

2020; Sitzmann et al., 2019b; Tancik et al.,499

2020; Sitzmann et al., 2020; Saragadam et al.,500

2023) parameterize the volume implicitly501

through the weights of a neural network, typi-502

cally a multilayer perceptron (MLP) with some503

modification to overcome spectral bias and rep-504

resent high frequency content. These models505

tend to provide decent expressiveness with very506

small model size; their main drawback is slow507

optimization.508

Voxel grids (Kutulakos & Seitz, 1999; Sara509

Fridovich-Keil and Alex Yu et al., 2022; Sun510

et al., 2022; Sitzmann et al., 2019a) are perhaps511

the most traditional parameterization of a vol-512

ume, where each parameter denotes the func-513

tion value (density, color, a latent feature, etc.)514

at a specific grid cell location within the vol-515

ume. These voxel values can then be combined516

into a continuous function over the 3D space517

by some form of interpolation, following the518

standard Nyquist sampling and reconstruction519

paradigm of digital signal processing (Oppen-520

heim, 1999). Voxels offer direct control over521

expressivity (via resolution) and are easily op-522

timized; their main drawback is memory usage because the number of parameters grows cubically523

with the spatial resolution.524

Tensor factorizations (Chen et al., 2022; Chan et al., 2022; Fridovich-Keil et al., 2023) parameter-525

ize a 3D volume as a combination of lower-dimension objects, namely vectors and matrices (lines526

and planes). Tensor factorizations tend to balance the three attributes somewhat evenly, offering527

decent expressiveness and optimizability while using more memory than an INR but less than a high528

resolution voxel grid.529

Hash embeddings (Müller et al., 2022; Tancik et al., 2023) are similar to voxels, but replace the530

explicit voxel grid in 3D with a multiresolution 3D hash function followed by a small MLP decoder531

to disambiguate hash collisions. They can optimize very quickly and with better memory efficiency532

compared to voxels; quality is mixed with good high-resolution details but also some high-frequency533

noise likely arising from unresolved hash collisions or sensitivity to random initialization.534

Point clouds / splats (Kerbl et al., 2023; Schönberger & Frahm, 2016; Schönberger et al., 2016)535

represent a volume as a collection of 3D points or blobs, where the points need not be arranged on536

a regular grid. They are highly expressive and less memory-intensive than voxels (but still more so537

than some other methods). They can optimize very quickly but often require heuristic or discrete538

optimization strategies that result in sensitivity to initialization.539

Mixture of primitives (Reiser et al., 2023; Lombardi et al., 2021) models combine multiple of the540

above representation strategies to balance their strengths and weaknesses. For example, combining541

low resolution voxels with a high resolution tensor factorization is an effective strategy to improve542
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on the expressiveness of tensor factorizations without resorting to the cubic memory requirement of543

a high resolution voxel grid; this strategy underlies both MERF (Reiser et al., 2023) and GA-Planes.544

We emphasize that all of these existing methods (except perhaps voxels) require nonconvex opti-545

mization, often for a feature decoder MLP, and thus risk getting stuck in suboptimal local minima546

depending on the randomness of initialization and the trajectory of stochastic gradients. In practice,547

as described above, some of the prior methods exhibit greater optimization stability than others,548

though none (except voxels in limited settings) come with guarantees of convergence to global opti-549

mality. In contrast, both the convex and semiconvex GA-Planes formulations come with guarantees550

that all local optima are also global (Sahiner et al., 2024).551

Relation to Prior Models. Without any convexity restrictions, the GA-Planes family includes552

many previously proposed models as special cases:553

• NeRF (Mildenhall et al., 2020): D554

• Plenoxels (Sara Fridovich-Keil and Alex Yu et al., 2022), DVGO (Sun et al., 2022):555

D(e123)556

• TensoRF (Chen et al., 2022): D((e1 ◦ e23)⊙ (e2 ◦ e13)⊙ (e3 ◦ e12))557

• Tri-Planes (Chan et al., 2022): D(e12 + e13 + e23)558

• K-Planes (Fridovich-Keil et al., 2023): D(e12 ◦ e13 ◦ e23)559

• MERF (Reiser et al., 2023): D(e12 + e13 + e23 + e123)560

Of these, all except for TensoRF and K-Planes are compatible with convex optimization towards561

any convex objective. Note that different models may use different decoder architectures for D,562

including both linear and MLP decoders and additional decoder inputs such as encoded viewing563

direction and/or positionally-encoded coordinates.564

Convex Neural Networks. Given a data matrix X ∈ Rn×d and labels y ∈ Rn, a 2-layer noncon-565

vex ReLU MLP approximates y as566

y ≈
m∑
j=1

(XUj)+αj , (12)

where m is the number of hidden neurons and U and α are the first and second linear layer weights,567

respectively. Pilanci & Ergen (2020) proposed to instead approximate y as568

y ≈
P∑
i=1

DiX(vi − wi), (13)

subject to (2Di − In)Xvi ≥ 0 and (2Di − In)Xwi ≥ 0 for all i. The parameters v and w in569

eq. (13) replace the first and second layer weights U and α from the nonconvex formulation in570

eq. (12) (optimal values of U and α can be recovered from optimal values of v and w). Here Di571

represent different possible activation patterns of the hidden neurons as {Di}Pi=1 := {Diag(1[Xu ≥572

0]) : u ∈ Rd}, which is the finite set of hyperplane arrangement patterns obtained for all possible573

u ∈ Rd. We can sample different u’s to find all distinct activation patterns {Di}Pi=1, where P is574

the number of regions in the partitioned input space. Enumerating all such patterns would yield an575

exact equivalence with the global minimizer of the nonconvex ReLU MLP in eq. (12), but may be576

complicated or intractable due to memory limitations. Subsampling P̃ patterns results in a convex577

program with tractable size, whose solution is one of the stationary points of the original non-convex578

problem (Pilanci & Ergen, 2020). We apply this idea to create convex and semiconvex GA-Planes579

models by convexifying the feature decoder MLP according to this procedure.580

A.2 PROOF OF THEOREMS581

A general note on proofs. In order to represent a matrix M ∈ Rm×n with an implicit model, we582

compute D(f(q)) for q = (k, l), ∀k ∈ {1, . . . ,m}, ∀l ∈ {1, . . . , n}. Considering line feature grids583

with resolutions matching m, n; the features will become e1 = (g1)k, e2 = (g2)l for q = (k, l)584

15



Under review as a conference paper at ICLR 2025

otherwise they will be e1 = φ(g1)k, e2 = φ(g2)l where φ(g1), φ(g2) now have resolutions m,585

n after interpolation through φ. Here φ can be any interpolation scheme with linear weighting of586

inputs, e.g. nearest neighbor, (bi)linear, (bi)cubic, spline, Gaussian, sinc, etc. For the simplicity587

of notation, we omit φ in line feature grids, and only apply it to the plane feature grid g12, which588

has lower resolution by design. The proofs consider g1,g2 ∈ Rr1×d1 and g12 ∈ Rr2×r2×d1 (equal589

feature dimensions, different resolutions), resulting in the matrix representation M̂ ∈ Rr1×r1 (the590

case where m = n = r1). Note that if the interpolation is done by a method other than nearest591

neighbor, this may allow a (convex or nonconvex) MLP decoder to increase the rank beyond r1. We592

derive expressions for M̂ implied by different GA-Planes variations in the parts that follow. The593

coordinate-wise optimization objective (in the case of a directly supervised mean-square-error loss)594

corresponds to minimizing the Frobenius norm of the ground truth matrix M and its approximation595

M̂ .596

A.2.1 PROOF OF THEOREM 1597

The forward mapping of the model D(e1 + e2) is:598

ỹ(q) = D(e1 + e2) = α⊤(e1 + e2) = α⊤((g1)k + (g2)l) =

d1∑
i=1

αi((g1)k,i + (g2)l,i), (14)

where (g1)k, (g1)l ∈ Rd1×1.599

In matrix form,600

M̂ =

d1∑
i=1

αi((g1)i1
⊤ + 1(g2)

⊤
i ) =

d1∑
i=1

αi(g1)i1
⊤ +

d1∑
i=1

αi1(g2)
⊤
i . (15)

Defining U := g1diag(α), U ∈ Rr1×d1 and V := g2diag(α), V ∈ Rr1×d1 , this can be expressed601

as602

M̂ = U1⊤
r1×d1

+ 1r1×d1
V ⊤. (16)

Note that the resulting matrix M̂ ∈ Rr1×r1 has rank at most 2—very limited expressivity—603

regardless of the resolution r1. This is because the all-ones matrix is rank 1, and a product of604

matrices cannot have higher rank than either of its factors.605

Similarly for the multiplicative representation D(e1 ◦ e2), the mapping is606

ỹ(q) = D(e1 ◦ e2) = α⊤(e1 ◦ e2) = α⊤((g1)k ◦ (g2)l) =

d1∑
i=1

αi(g1)k,i(g2)l,i, (17)

where (g1)k, (g1)l ∈ Rd1×1. In matrix form,607

M̂ =

d1∑
i=1

αi(g1)i(g2)
⊤
i = g1diag(α)g

⊤
2 . (18)

Defining U := g1diag(α), U ∈ Rr1×d1 and V := g2, V ∈ Rr1×d1 , this can be expressed as608

M̂ = UV ⊤, (19)

which is the optimal rank-d1 decomposition.609

A.2.2 PROOF OF THEOREM 2610

The forward mapping of the model D(e1 + e2 + e12) becomes:611

ỹ(q) = D(e1 + e2 + e12) = α⊤(e1 + e2 + e12) = α⊤((g1)k + (g2)l + φ(g12)k,l) (20)

=

d1∑
i=1

αi((g1)k,i + (g2)l,i) +

d1∑
i=1

αiφ(g12)k,l,i, (21)
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where (g1)k, (g1)l, φ(g12)k,l ∈ Rd1×1. In matrix form,612

M̂ =

d1∑
i=1

αi((g1)i1
⊤ + 1(g2)

⊤
i ) +

d1∑
i=1

αiφ(g12)i. (22)

Noting that the first term is the same as in eq. (15) and defining L := g12α,L ∈ Rr2×r2 , we reach613

the expression614

M̂ = U1d1×r1 + 1r1×d1
V ⊤ + φ(L), (23)

since
∑d1

i=1 αiφ(g12)i = φ(
∑d1

i=1 αi(g12)i) = φ(g12α), following the linearity of the upsampling615

function φ. Note that in the definition of L there is a tensor-vector product that effectively takes a616

dot product along the last (feature) dimension.617

Similarly for the multiplicative representation D(e1 ◦ e2 + e12), the mapping is618

ỹ(q) = D(e1 ◦ e2 + e12) = α⊤(e1 ◦ e2 + e12) (24)

= α⊤((g1)k ◦ (g2)l + φ(g12)k,l) =

d1∑
i=1

αi(g1)k,i(g2)l,i +

d1∑
i=1

αiφ(g12)k,l,i. (25)

In matrix notation, we have619

M̂ =

d1∑
i=1

αi((g1)i(g2)
⊤
i ) +

d1∑
i=1

αiφ(g12)i. (26)

Following eq. (18) and using the same definition of L, the final expression becomes620

M̂ = UV ⊤ + φ(L). (27)

A.2.3 PROOF OF THEOREM 3621

For a 2-layer convex MLP with hidden size h, denote the trainable first layer weights asW ∈ Rh×d1622

and the gating weights as W ∈ Rh×d1 (which are fixed at random initialization). We will handle623

three different cases for merging the interpolated features: multiplication (◦), addition (+), and624

concatenation (⊙).625

The forward mapping of the multiplicative model using a convex MLP, D(e1 ◦ e2) at q = (k, l) is626

ỹ(q) = 1⊤
h

(
(W ((g1)k ◦ (g2)l)) ◦ 1

[
W ((g1)k ◦ (g2)l) ≥ 0

])
(28)

=
h∑

i=1

 d1∑
j=1

Wi,j(g1)k,j(g2)l,j

1

 d1∑
j=1

W i,j(g1)k,j(g2)l,j ≥ 0

, (29)

where ◦ denotes elementwise multiplication (Hadamard product). The resulting matrix decomposi-627

tion can then be written as628

M̂ =
h∑

i=1

 d1∑
j=1

Wi,j(g1)j(g2)
⊤
j

 ◦ 1

 d1∑
j=1

W i,j(g1)j(g2)
⊤
j ≥ 0

 . (30)

Now, we define the masking matrix Bi = 1
[∑d1

j=1W i,j(g1)j(g2)
⊤
j ≥ 0

]
and the eigenvectors629

Uj = (g1)j , Vj = (g2)j to reach the expression from the theorem statement:630

M̂ =
∑
i,j

Wi,jUjV
⊤
j ◦Bi. (31)

When the model uses additive features as in D(e1 + e2), and D is a convex MLP, the prediction is631

ỹ(q) = 1⊤
h

(
(W ((g1)k + (g2)l)) ◦ 1

[
W ((g1)k + (g2)l) ≥ 0

])
(32)

=
h∑

i=1

 d1∑
j=1

Wi,j((g1)k,j + (g2)l,j)

1

 d1∑
j=1

W i,j((g1)k,j + (g2)l,j) ≥ 0

. (33)
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The resulting matrix decomposition can then be written as632

M̂ =
h∑

i=1

 d1∑
j=1

Wi,j((g1)j1
⊤
r1 + 1r1(g2)

⊤
j )

1
 d1∑
j=1

W i,j((g1)j1
⊤
r1 + 1r1(g2)

⊤
j ) ≥ 0

 . (34)

Defining Bi = 1
[∑d1

j=1W i,j((g1)j1
⊤
r1 + 1r1(g2)

⊤
j ) ≥ 0

]
, Uj = (g1)j , Vj = (g2)j , we reach the633

final expression:634

M̂ =
∑
i,j

Wi,j

(
Uj1

⊤
r1 + 1r1V

⊤
j

)
◦Bi. (35)

Finally, we show that concatenation of features results in a very similar expression to eq. (35).635

When the model uses concatenated features as in D(e1 ⊙ e2), and D is a convex MLP (with trainable636

weights W ∈ Rh×2d1 and fixed gates W ∈ Rh×2d1 ), the prediction at a point q is637

ỹ(q) = 1⊤
h

(
(W ((g1)k ⊙ (g2)l)) ◦ 1

[
W ((g1)k ⊙ (g2)l) ≥ 0

])
. (36)

Denoting the weights and gates each as a concatenation of 2 matrices, W = (W1 ⊙ W2), W =638

(W 1 ⊙W 2), where W1,W2,W 1,W 2 ∈ Rh×d1 , we have the following expression:639

ỹ(q) =

h∑
i=1

 d1∑
j=1

W1i,j(g1)k,j +W2i,j(g2)l,j

1

 d1∑
j=1

W 1i,j(g1)k,j +W 2i,j(g2)l,j ≥ 0

.
(37)

Following similar steps as for the additive case, we express the matrix decomposition as640

M̂ =
∑
i,j

(W1i,jUj1
⊤
r1 +W2i,j1r1V

⊤
j ) ◦Bi, (38)

where Bi = 1
[∑d1

j=1W 1i,j(g1)j1
⊤
r1 +W 2i,j1r1(g2)

⊤
j ≥ 0

]
, Uj = (g1)j , Vj = (g2)j .641

In all these representations, a low-rank matrix is multiplied elementwise with a binary mask Bi,642

which makes the maximum attainable rank r1. Thus, with a convex MLP decoder, rank of M̂ is643

limited by the resolution of the feature grids.644

A.2.4 PROOF OF THEOREM 4645

For a standard 2-layer ReLU MLP with hidden size h, denote the trainable first and second layer646

weights asW ∈ Rh×d1 , α ∈ Rh×1. We will handle three different cases for merging the interpolated647

features: multiplication (◦), addition (+), and concatenation (⊙).648

The forward mapping of the multiplicative model using a standard nonconvex MLP, D(e1 ◦ e2) is:649

ỹ(q) = α⊤ [W ((g1)k ◦ (g2)l)]+ (39)

=
h∑

i=1

αi

 d1∑
j=1

Wi,j(g1)k,j(g2)l,j


+

. (40)

The resulting matrix decomposition can then be written as650

M̂ =
h∑

i=1

αi

 d1∑
j=1

Wi,j(g1)j(g2)
⊤
j


+

=
h∑

i=1

αi

 d1∑
j=1

Wi,jUjV
⊤
j


+

, (41)

with Uj = (g1)j , Vj = (g2)j .651
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When the model uses additive features as in D(e1 + e2), the prediction is652

ỹ(q) = α⊤ [W ((g1)k + (g2)l)]+ (42)

=
h∑

i=1

αi

 d1∑
j=1

Wi,j((g1)k,j + (g2)l,j)


+

. (43)

The resulting matrix decomposition can then be written as653

M̂ =
h∑

i=1

αi

 d1∑
j=1

Wi,j((g1)j1
⊤
r1 + 1r1(g2)

⊤
j )


+

=
h∑

i=1

αi

 d1∑
j=1

Wi,j(Uj1
⊤
r1 + 1r1V

⊤
j )


+

,

(44)

again with Uj = (g1)j , Vj = (g2)j .654

Finally, we show that concatenation of features results in a very similar expression.655

When the model uses concatenated features as in D(e1 ⊙ e2) and D is a standard nonconvex MLP656

(with trainable weights W ∈ Rh×2d1 and α ∈ Rh×1), the prediction at a point q is657

ỹ(q) = α⊤
[
(W ((g1)k ⊙ (g2)l))+

]
. (45)

Denoting the hidden layer weights as a concatenation of 2 matrices, W = (W1 ⊙ W2), where658

W1,W2 ∈ Rh×d1 , we have the following expression:659

ỹ(q) =
h∑

i=1

αi

 d1∑
j=1

W1i,j(g1)k,j +W2i,j(g2)l,j


+

. (46)

Following similar steps, we express the matrix decomposition as660

M̂ =

h∑
i=1

αi

 d1∑
j=1

W1i,j(g1)j1
⊤
r1 +W2i,j1r1(g2)

⊤
j


+

(47)

=
h∑

i=1

αi

 d1∑
j=1

W1i,jUj1
⊤
r1 +W2i,j1r1V

⊤
j


+

, (48)

where Uj = (g1)j , Vj = (g2)j .661

By a similar argument to Appendix A.2.3, the maximum attainable rank of all three representations662

derived here is limited by r1.663

A.3 INTERPOLATION COMPARISON664

We present 2D image fitting experiments with the astronaut image from SciPy, validating ma-665

trix completion analysis summarized in Table 1. We compare 2D GA-Planes models of the form666

D(e1 ◦ e2) (solid colorful lines) and D(e1 + e2) (dotted colorful lines) with the optimal low-rank667

approximation provided by singular value decomposition (solid black line) in Figure 5. The same668

experiment is repeated for linear interpolation into the vector (line) features (left) versus nearest669

neighbor interpolation (right, same as theorems). In this experiment we find qualitatively similar670

results regardless of the type of interpolation, with slightly better performance using linear interpo-671

lation; in our 3D experiments we use (bi/tri)linear interpolation.672

As expected, we find that a linear decoder model with multiplication dramatically outperforms its673

additive counterpart, which does not improve with increasing model size. We also find that 2D GA-674

Planes models with MLP decoders can match or exceed the compression performance of the optimal675

low-rank representation found by singular value decomposition (SVD), especially when using a676

nonconvex MLP. This is a testament to the capacity of an MLP decoder to increase representation677

rank using fewer parameters than a traditional low-rank decomposition, as well as to the resolution678

compressibility of natural images.679
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Figure 5: 2D image fitting experiments matching the setting of our theoretical results, with a GA-
Planes version using only vector (line) features and a decoder as specified in the legend. Solid lines
denote features combined by multiplication; dotted lines use addition. Left: linear interpolation of
features; Right: nearest neighbor interpolation of features. For the SVD baseline we use low-rank
factors whose resolution matches the target image, so no interpolation is needed (this, and the use
of a nonlinear decoder, is why in some cases 2D GA-Planes can outperform SVD).

A.4 LOWER BOUNDS680

Based on the matrix completion theorems and their summary in Table 1, we present lower bounds681

on the Frobenius norm errors of each 2D GA-Planes model. We denote the optimal fitting error of682

the linear and MLP decoder models by Elinear(D(f(q))) and EMLP (D(f(q))) for different feature683

combinations f(q). For models with a linear decoder,684

Elinear(D(e1 + e2)) ≥ σ2(M) (49)
Elinear(D(e1 ◦ e2)) ≥ σk(M) (50)

Elinear(D(e1 ◦ e2 + e12)) ≥ σk(M − φ(L∗)), (51)

where L∗ is a downsampled version of the target M , at the same resolution as the feature grid g12.685

For models with convex or nonconvex MLP decoders,686

EMLP (D(e1 + e2)) ≥ σr1(M) (52)
EMLP (D(e1 ◦ e2)) ≥ σr1(M) (53)

EMLP (D(e1 ◦ e2 + e12)) ≥ σr1(M − φ(L∗)). (54)

We can see from these bounds that the approximation error of a model can be reduced dramatically687

by the introduction of a convex or nonconvex MLP decoder, depending on the singular value decay688

of the target image M .689

A.5 BENEFITS OF CONVEXITY690

In most of our experiments, all models (convex, semiconvex, and nonconvex) are large enough that691

they are able to optimize well. However, we highlight a benefit of our convex and semiconvex mod-692

els that they enjoy more stable optimization even with very small model sizes. In Figure 6 we com-693

pare test intersection-over-union (IoU) curves for very small models for our video fitting task (hid-694

den dimension 4 in the decoder MLP, and feature dimensions [d1, d2, d3] = [4, 4, 2] and resolutions695

[r1, r2, r3] = [32, 32, 16] for line, plane, and volume features, respectively). We repeat optimization696

with 10 different random seeds used to initialize the optimizable parameters (gating weights for the697

convex and semiconvex models are fixed). While the convex and semiconvex models enjoy stable698

training curves across random seeds, we find that the nonconvex model experiences much more699

volatile training behavior (completely failing to optimize with some of the random seeds).700
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Figure 6: Test performance throughout training on our video fitting task, for a very small GA-Planes
model across 10 random seeds. We find that the favorable optimization landscape of our convex and
semiconvex models enables reliable training across seeds, whereas the nonconvex model fails to fit
any test frame with some of the seeds.

On average, the semiconvex model performs best, followed by the convex model, with the noncon-701

vex model performing worst on average. We can also see from the error bars that the convex model702

is extremely stable, with standard deviations that are visually imperceptible; this is also the case703

for the semiconvex model in the latter half of training. In contrast, the nonconvex model is highly704

unstable, with very large standard deviations throughout training. Although with a lucky seed the705

nonconvex model can outperform the (semi)convex ones, the opposite is true on average.706

A.6 RESULTS FOR ALL NERFSTUDIO-BLENDER SCENES707

A.7 EXAMPLE RENDERINGS708

In this section, we provide qualitative rendering comparisons on various scenes from the Blender709

dataset. We highlight the superior performance of GA-Planes with limited number of parameters by710

comparing the smallest K-Planes, TensoRF and GA-Planes models.711

A.8 MODEL CONFIGURATIONS USED FOR EXPERIMENTS712

A.8.1 RADIANCE FIELD MODELING713

In our NeRFStudio experiments, we find that because GA-Planes contains features with different714

dimensionalities (line, plane, and volume), it experiences little loss in quality over a wide range of715

model sizes. For small model sizes, we allocate most of the model memory to the line features,716

since their spatial resolution grows linearly with parameter count. As the parameter budget grows,717

we allocate more parameters to the plane features, whereas the performance of the line-only model718

stagnates with increasing size. Similarly, as model size grows even further we allocate more param-719

eters to the volume features, whose memory footprint grows cubically with spatial resolution.720

The original K-planes model uses 2 proposal networks with different resolutions (as noted in Ta-721

ble 6) and a fixed channel dimension of 8 for both. The resolutions and channel dimensions722

for either K-planes model (with vs. without proposal sampling) refer to r2 and d2, respectively.723

TensoRF model resolutions and channel dimensions can be interpreted in a similar way, since724

their feature combination dictates that d1 = d2 and they initialize the line and plane grids with725

the same resolution. The only nuance is that TensoRF constructs separate features for color and726

density decoding. Hence, the channel dimensions for density and color features are listed. In-727

stead of a multiresolution scheme, TensoRF starts from the base resolution of r1 = r2 = 128728
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Figure 7: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the lego scene.

and upsamples the grids to reach the final resolutions on Table 6. Resolutions listed under GA-729

Planes should be interpreted as [r1, r2, r3]; channel dimensions as [d1, d2, d3]. For all mod-730

els that use the multiresolution scheme, the base resolutions (i.e. [r1, r2, r3]) are multiplied731

with the upsampling factors. For instance, a base resolution [r1, r2, r3] with channel dimensions732

[d1, d2, d3] and multiresolution copies [m1,m2,m3] will generate the grids of GA-Planes as fol-733

lows: Linear feature grids g1,g2,g3 will have the shapes {[m1r1, d1], [m2r1, d1], [m3r1, d1]}, plane734

grids g12,g23,g13 will have the shapes {[m1r2,m1r2, d2], [m2r2,m2r2, d2], [m3r2,m3r2, d2]},735

and the volume grid g123 will have the shape [r3, r3, r3, d3]. Although we don’t use multires-736

olution copies for the volume grid in GA-Planes, we do use multiresolution for the volume-737

only GA-Planes ablation. The resolution for that model refers to r3, and the channel dimen-738

sions are also allowed to vary for each resolution (unlike other variants with multiresolution,739

where the feature dimension is fixed across resolutions). If we denote these varying feature di-740

mensions as [d3a, d3b, d3c], the multiresolution copies of the volume grids will have the shapes741

{[m1r3,m1r3,m1r3, d3a], [m2r3,m2r3,m2r3, d3b], [m3r3,m3r3,m3r3, d3c]}.742

A.8.2 3D SEGMENTATION743

GA-Planes model uses feature dimensions [d1, d2, d3] = [36, 24, 8] (with ⊙) or [d1, d2, d3] =744

[25, 25, 8] (with ◦) and resolutions [r1, r2, r3] = [128, 32, 24]. Multiresolution grids are not used745

for this task since density prediction can be achieved by a simpler architecture. The model size is746

0.22 M. Tri-Planes model has the feature dimension d2 = 4, and resolution r2 = 128 resulting in a747

total number of parameters of 0.2 M. Note that we fix these sizes across (non/semi)convex formu-748

lations, which causes slight variations in the size of the decoder, however, the grids constitute the749

most number of parameters, making this effect negligible.750

A.8.3 VIDEO SEGMENTATION751

GA-Planes model uses feature dimensions [d1, d2, d3] = [32, 16, 8] and resolutions [r1, r2, r3] =752

[128, 128, 64]. When the features are combined by multiplication in the nonconvex model, d1 =753

d2 = 16. Multiresolution grids are not used for this task. The model size is 2.9 M. Tri-Planes754
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Figure 8: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the chair scene.

model has the feature dimension d2 = 59, and resolution r2 = 128 resulting in a total number of755

parameters of 2.9 M.756
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Figure 9: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the mic scene.

Figure 10: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the drums scene.
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Figure 11: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the hotdog scene.

Figure 12: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the materials scene.
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Figure 13: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the ficus scene.

Figure 14: Results on radiance field reconstruction. Nonconvex GA-Planes (with feature multipli-
cation) offers the most efficient representation: when the model is large it performs comparably to
the state of the art models, but when model size is reduced it retains higher performance than other
models. Here all models are trained for the same number of epochs on the ship scene.

26



Under review as a conference paper at ICLR 2025

Figure 15: Rendering comparison for the chair scene: TensoRF on the left (0.32 M parameters),
K-Planes in the middle (0.39 M parameters), GA-Planes on the right (0.25 M parameters).

Figure 16: Rendering comparison for the mic scene: TensoRF on the left (0.32 M parameters),
K-Planes in the middle (0.39 M parameters), GA-Planes on the right (0.25 M parameters).
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Figure 17: Rendering comparison for the lego scene: TensoRF on the left (0.32 M parameters),
K-Planes in the middle (0.39 M parameters), GA-Planes on the right (0.25 M parameters).

Figure 18: Rendering comparison for the materials scene: TensoRF on the left (0.32 M parameters),
K-Planes in the middle (0.39 M parameters), GA-Planes on the right (0.25 M parameters).
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Model Resolutions Channel Dimen-
sions

Multiresolution Proposal Network
Resolutions

Number of model
parameters (M)

K-plane

32 4 [1, 2, 4] [32, 64] 0.390
32 8 [1, 2, 4] [32, 64] 0.649
64 4 [1, 2, 4] [64, 128] 1.533
64 8 [1, 2, 4] [128, 256] 4.041
64 16 [1, 2, 4] [128, 256] 6.107
128 8 [1, 2, 4] [128, 256] 10.234
128 16 [1, 2, 4] [128, 256] 18.493

K-plane without proposal sampling

32 4 [1, 2, 4] - 0.298
40 4 [1, 2, 4] - 0.444
64 4 [1, 2, 4] - 1.073
64 8 [1, 2, 4] - 2.108
100 6 [1, 2, 4] - 3.822
128 10 [1, 2, 4] - 10.367
129 16 [1, 2, 4] - 16.824

TensoRF

128 [2, 4] - - 0.320
256 [2, 4] - - 1.207
256 [6, 8] - - 2.786
256 [12, 12] - - 4.760
300 [12, 16] - - 7.609
300 [16, 24] - - 10.860
300 [32, 32] - - 17.362
300 [16, 48] - - 17.364

GA-plane

[200, 4, 4] [32, 32, 4] [1, 2, 4] - 0.254
[200, 8, 4] [32, 32, 4] [1, 2, 4] - 0.351
[200, 16, 8] [32, 32, 4] [1, 2, 4] - 0.740
[200, 32, 8] [16, 16, 4] [1, 2, 4] - 1.164
[100, 100, 16] [6, 6, 8] [1, 2, 4] - 3.874
[200, 128, 32] [10, 10, 8] [1, 2, 4] - 10.681
[200, 128, 32] [16, 16, 8] [1, 2, 4] - 16.908

GA-plane ablation-VM

32 4 [1, 2, 4] - 0.301
64 4 [1, 2, 4] - 1.078
128 4 [1, 2, 4] - 4.180
128 6 [1, 2, 4] - 6.251
128 12 [1, 2, 4] - 12.465

GA-plane ablation-CP 200 32 [1, 2, 4] - 0.196
200 64 [1, 2, 4] - 0.355

GA-plane ablation-volume

18 [3, 5, 6] [1, 2, 3] - 1.236
24 [4, 4, 6] [1, 2, 3] - 2.778
32 [4, 4, 6] [1, 2, 3] - 6.529
32 [4, 6, 8] [1, 2, 3] - 8.824

Table 6: Model configurations used for the radiance field modeling task on the Blender dataset.
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