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Abstract

Mixture-of-Experts (MoE) models have become popular in machine learning,
boosting performance by partitioning tasks across multiple experts. However, the
need for several experts often results in high computational costs, limiting their
application on resource-constrained devices with stringent real-time requirements,
such as cochlear implants (CIs). We introduce the Omni-Expert (OE) - a simple
and efficient solution that leverages feature transformations to achieve the ’divide-
and-conquer’ functionality of a full MoE ensemble in a single expert model. We
demonstrate the effectiveness of the OE using phoneme-specific time-frequency
masking for speech dereverberation in a CI. Empirical results show that the OE
delivers statistically significant improvements in objective intelligibility measures
of CI vocoded speech at different levels of reverberation across various speech
datasets at a much reduced computational cost relative to a counterpart MoE.

1 Introduction

Mixture-of-Experts (MoE) models [1, 2] have emerged as powerful and flexible architectures for
machine learning (ML) tasks that require specialized fine-tuning of complex tasks, such as language
modeling and computer vision. However, MoE models pose computational challenges, in terms of
power consumption, processing capability, latency and memory capacity, as the number of experts
increases. Hardware considerations are highly relevant for deployment in resource-constrained edge
devices, especially for applications with real-time inference constraints, such as auditory prostheses.
Thus, there is a need for lightweight adaptations of MoE models or alternative strategies that preserve
performance while meeting resource limitations.

In this work, we focus on the cochlear implant (CI), a medical device that restores hearing to
individuals with profound hearing loss by converting sound to electrical pulses that directly stimulate
an impaired cochlea. Most CI users generally have good speech understanding in quiet conditions;
however, CI users struggle to understand speech in challenging acoustic environments with noise and
reverberation [3]. Some modern hearing aids now incorporate deep neural networks (DNNs) either
for acoustic scene selection to (de)activate specific features, to control channel-specific gains for
noise reduction and for separating noise and speech, enabled by more powerful on-chip processors,
e.g., [4–6]. DNNs have been investigated mostly for speech denoising in CIs [7–11]; however, to our
knowledge, no DNNs have been deployed in current commercially available CI sound processors.
Unlike hearing aids that primarily function to amplify sound, CIs have a higher functional burden
of acoustic-to-electric signal conversion, wireless signal transmission and electrical stimulation. In
addition, real-time CI sound processing must be causal with time delays that are within tolerable
limits of audiovisual asynchrony for CI users; preferably <10 ms [12].
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Real-time speech enhancement models in CI systems must strike a balance between computational
efficiency, performance and latency, making scaling with traditional MoE-based solutions potentially
impractical. We propose a novel network architecture that eliminates the need for multiple experts
while retaining the specialization benefits of MoE models. Our contributions are as follows:

• We introduce the Omni-Expert (OE), a computationally efficient alternative to MoE. The
OE model achieves the effectiveness of a full MoE ensemble in a single network by using
subtask-specific transformations to partition the feature space into distinct regions that
correspond to a specialized expertise. This allows a single expert network to maintain
subtask specialization while operating with much reduced computational overhead.

• We demonstrate the effectiveness of the OE in achieving superior performance relative to a
counterpart MoE in a task of phoneme-based speech dereverberation in CIs.

• We conduct additional experiments to analyze the effect of feature transformation compo-
nents on the performance of the OE model in the speech dereverberation task.

2 Related Work

Speech Enhancement in Cochlear Implants. Currently, CIs incorporate several signal processing
solutions for noise management, such as beam-forming and signal-to-noise ratio (SNR)-based noise
reduction [13–15]; however, there is no solution that directly addresses reverberation. Even in
the absence of noise, individuals with auditory prostheses often struggle to understand speech in
reverberation [16], which can negatively impact their quality of life; for example, learning experiences
[17, 18] typically involve single talker scenarios in a classroom/lecture hall. Strategies for noise
reduction are not as effective in fully addressing reverberation due to differences in how noise and
reverberation distort speech signals. Noise distortions are additive and do not depend on the target
speech, while reverberant distortions are delayed and attenuated copies of the target speech.

A common approach for speech enhancement is time-frequency (T-F) masking, where a gain matrix
(or mask) is applied to a T-F representation of the degraded speech to separate segments dominated
by speech and acoustic distortions. An ideal mask is calculated based on a measure of distortion of a
degraded speech signal relative to its clean counterpart. A typical ideal ratio mask (IRM) with mask
values ranging from 0 to 1 is computed according to [19]:

0 ≤ M(t, f) =

(
|S(t, f)|2

|S(t, f)|2 + |N(t, f)|2

)0.5

≤ 1 (1)

Ŝ(t, f) = M(t, f) ·X(t, f) (2)

where M(t, f) represents the ratio mask; S(t, f) and X(t, f) represent the clean and degraded speech
signals, respectively; N(t, f) represents the noise; and Ŝ(t, f) represents the enhanced signal.

Studies have shown ideal T-F masks for dereverberation improve speech intelligibility for hearing-
impaired listeners [20–25]. In real-world settings, the ideal mask needs to be estimated using only
the reverberant speech signal. Traditional mask estimation algorithms for CI applications have
relied on statistical features, such as kurtosis [25], linear prediction residuals [26], or estimated
signal-to-distortion ratios [27], typically require room-specific tuning and do not generalize well
across varying acoustic conditions. Research on speech enhancement in CIs now utilizes DNNs that
offer better robustness and generalization across diverse acoustic conditions. However, improvements
with advanced ML models come at the cost of increased computational complexity and latency.

A main challenge with mitigating reverberation is how to distinguish between wanted vs. unwanted
speech with similar characteristics (i.e., reverberant reflections) from the same target speaker. In
general, the performance of ML algorithms for speech dereverberation is frequency dependent. Mid-
to high-frequency speech regions often include relatively long gaps in between phonemes, which
allows late reverberant reflections to exponentially decay over time; thus, ML models can leverage
features that capture this decaying pattern to better estimate and suppress unwanted reverberant
speech. However, lower-frequency speech regions have more energy and relatively short gaps
between phonemes, so late reverberant reflections are often interrupted by the next phoneme before
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Figure 1: Illustration of (a) the Mixture-of-Experts (MoE) model and (b) our Omni-Expert (OE)
model given an input feature, x. The MoE model uses probabilities (pn) from a gating network to
weight outputs (ŷn) from multiple expert networks. In contrast, the OE model uses a single expert
network and subtask-specific feature transformations (zn) to achieve the functionality of multiple
experts. We train separate models to predict the scale and shift parameters for subtask-specific feature
transformations and use a lookup table based on the subtask label during inference.

they can fully decay. Thus, it is more challenging to differentiate reverberant reflections from target
speech in lower frequency speech regions because of more persistent, higher energy reverberation.

While speech signals exhibit high spectro-temporal variabilities, speech structure is generally pre-
dictable, and this predictability can be useful to inform speech enhancement. The energy of phonemes
tends to be concentrated in specific frequency regions [28]. The presence of energy in other frequency
regions during a phoneme utterance is likely indicative of an acoustic artifact; thus, knowledge of
the current phoneme can be leveraged during mask estimation to better identify and remove acoustic
distortions. Phoneme-based mask estimation models, where separate models are trained for different
phonemes, have shown improved performance in speech denoising for automated speech processing
applications [29–32]. Chu et al. [33] developed a phoneme-based mask estimation model for speech
dereverberation in CIs based on a dense MoE (Figure 1a). Typically, speech enhancement models are
applied as a preprocessing step prior to acoustic signal delivery to the CI. However, the model in [33]
relies on causal features extracted from within the CI processing framework, a design that is feasible
for real-time deployment in CIs.

Mixture-of-Experts. A key limitation of MoE approaches is the computational costs as the number
of experts increases; in [33], the number of experts depends on the number of phonemes. In sparse
MoE models [34–38], only a subset of experts are activated during inference. In [39, 40], the number
of computations at inference in the MoE is reduced by merging experts, aggregating multiple expert
parameters at inference time using gating weights. In sparse and merging of experts variants of the
MoE model, multiple experts must still be trained, stored and maintained. To address this limitation,
we have developed a novel technique that achieves multi-expert functionality in a single network.

Conditional Computation. Prior works [41, 42] have used conditional computation to improve
model performance in multi-task problems. The MTFormer framework [41] employs a multi-task
learning architecture consisting of a shared transformer-based feature extractor (encoder and decoder),
followed task-specific branches for specialization. In conditional batch normalization [42], multilayer
perceptrons are trained to learn additive adjustments to batch normalization scaling and shifting
parameters of a pretrained convolutional neural network based on an external conditioning vector
(e.g., a language embedding). Our approach applies conditional feature transformations directly
to input features to achieve subtask specialization in a single network, and feature transformation
parameters are learned jointly with the expert network.

3 The Omni-Expert (OE)

Our goal is to enable a single expert model to exhibit subtask-specific expertise based on the input
features of the associated subtask. In sparse MoE models, a routing mechanism directs inputs to
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the appropriate expert or set of experts. In contrast, our approach is to encode subtask selection
for specialization implicitly in the feature space. To achieve this, we apply learned subtask-specific
transformations that create homogenous features within a specific subtask and distinct features across
subtasks. The OE model architecture, illustrated in Figure 1b, consists of three core components:

• A feature transformation block to apply subtask specific feature transformations based on
the subtask label.

• A single expert network, which processes the transformed input features and performs the
target task (in this case, mask estimation for speech dereverberation).

• A gating/routing network, which is used to weight the outputs produced by applying the
single-expert network to the transformed features:

ŷ =
∑

n=1:N

pn(x)E(zn) (3)

where x is the input feature; pn(x), is the gating network probability of subtask n; E(zn) is the
subtask-specific output from the single expert model E based on the transformed feature zn.

Instead of a simple linear transformation, an affine transformation offers greater flexibility by allowing
a shift in the origin to better align the feature distribution for each subtask while preserving discrim-
inability across subtasks. For a sparse affine transformation matrix, we restrict linear operations to
scale transformations. The subtask-specific transformed feature zn is defined as:

zn = Anx+ bn (4)

where x is the input feature; An and bn represent scale and shift transformations, respectively, for
subtask n. For scale, An is a diagonal matrix, which simplifies to element-wise multiplication.

4 Methods

We demonstrate the efficiency of our OE over a MoE in the task of real-time speech dereverberation
in CIs. The CI processing pipeline was implemented using the Nucleus MATLAB Toolbox [43]. All
models were implemented in PyTorch [44] on an NVIDIA Titan V GPU.

4.1 Reverberation Model

The reverberant signal is modeled as the convolution of the clean, anechoic speech signal with a room
impulse response (RIR). For proper time alignment with the delayed reverberant signal, the direct
path component of the reverberant signal is used as the reference clean signal; see Appendix A.1.

4.2 Experimental Settings

Datasets. Speech utterances used for training were a randomly selected 8000-utterance subset
(approximately 28 hours) of the 100-hour LibriSpeech corpus [45]. Recorded RIRs used for training
were from the Brno University of Technology@FIT Reverberation Database [46]. Speech utterances
used for testing were from speech datasets that are commonly used in listening studies: Hearing In
Noise Test (HINT) [47]; and the City University of New York (CUNY) Male and Female datasets
[48]. Recorded RIRs used for testing were selected from the Aachen Impulse Response database [49]
to represent diverse rooms: office, stairway, lecture hall and church (Appendix A.1).

Feature Extraction. Causal T-F features were extracted from speech signals following the Advanced
Combination Encoder (ACE) strategy based on the Nucleus CI system [50, 43]. The acoustic signal is
segmented into 8 ms frames with a 2 ms overlap, processed via short-time Fourier transform yielding
65 frequency features, and log-compressed to reduce dynamic range. The log-compressed spectral
features were used as inputs to both the phoneme classification and mask estimation models. Feature
normalization was applied using the global mean and variance calculated from the training set.

Phoneme Label Extraction. The phoneme classes are 39 standard American English phonemes [28]
and a nonphoneme class for silent gaps. Phoneme labels were generated from the direct path signal
using forced alignment based on the LibriSpeech recipe in the Kaldi speech recognition toolkit [51]
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and phoneme time stamps were converted into CI-based time units; example framewise phoneme
labels are provided in Appendix A.2. A one-hot vector was used to encode phoneme labels.

Model Architecture. For real-time feasibility in CIs, we use lightweight recurrent neural networks.
The models include: i) a single layer of 123 unidirectional long short-term memory (LSTM) units
[52]; and ii) a single layer of 117 unidirectional gated recurrent units (GRU) [53] with a multi-head
attention (A) layer [54]. The outputs of the GRU model following layer normalization are fed into
the multi-head attention module (A), a residual connection around the attention block, followed by
layer normalization (to stabilize gradients and accelerate convergence). The attention outputs are
fused with the original GRU hidden state outputs via element-wise multiplication so that the final
representation retains both the sequential encoding and the learned contextual weighting.

Phoneme Classifier. Each model is followed by a fully connected output layer with 40 sigmoidal
units, corresponding to the 40 phoneme class labels [55]. Model parameters were randomly initialized
from a uniform distribution with range [-0.1, 0.1]. Training was performed using stochastic gradient
descent with a learning rate of 1e-5 and momentum of 0.9. Each training batch consisted of a single
speech utterance split into 2-second non-overlapping segments to accommodate memory constraints
and maintain sequence continuity. The model was optimized using cross-entropy loss. Training was
terminated when the validation loss was unchanged for 10 consecutive epochs.

Mask Estimation Models. Models were trained to minimize the T-F signal loss function:

L =
1

TF

∑
t,f

(
M̂(t, f)X(t, f)−M(t, f)X(t, f)

)2

(5)

where X(t, f) represents the magnitude spectrum of the reverberant signal; M̂(t, f) represents the
estimated mask; M(t, f) represents the ideal mask; and T and F represent the number of time and
frequency bins, respectively.

Phoneme Independent. Each model is followed by a fully connected layer, followed by an output
layer with 65 sigmoidal units, representing the 65-dimensional IRM values [33]. The phoneme
independent model was trained on the entire training dataset.

Phoneme-based MoE. The model consists of the phoneme classifier as the gating network and 40
expert networks for phoneme-specific mask estimation. Each expert network is structurally identical
to the phoneme independent model but is trained only on data corresponding to its associated phoneme
group. The phoneme classifier probabilities are used to weight the predictions of the phoneme-specific
mask estimation models to get the final estimated mask.

Phoneme-based OE. The single expert model is structurally identical to the phoneme independent
model. Input features are transformed based on a phoneme-specific transformation:

zn = an ⊙ x + bn (6)

where zn is the transformed feature vector; x is the input feature vector; an and bn are the scale and
shift factor vectors, respectively, for phoneme n; and ⊙ represents element-wise multiplication.

The transformation parameters are predicted by two separate multilayer perceptrons (MLPs) with
the one-hot phoneme encoding as input. Both MLPs have an input size of 40 (number of phoneme
classes) and an output size of 65 (matching the input feature size). The scale MLP uses ReLU
activation, while the shift MLP uses LeakyReLU to introduce nonlinearities [56]. The transformation
parameters are precomputed after training and stored for all 40 phonemes, effectively reducing the
process during inference to a lookup table.

Model Training. The phoneme independent model was initialized using weights drawn from a uniform
[-0.1, 0.1] distribution [57]. The phoneme-specific mask estimation networks of the MoE and OE
models were initialized using pre-trained weights from the phoneme independent model. Models
were trained using the Adam optimizer [58] with a learning rate of 1e-3 and momentum coefficients
of 0.9 and 0.999. Training batches consisted of 16 speech utterances segmented into 2 second chunks.
Training was terminated when no improvement was observed for 10 consecutive epochs.

4.3 Performance Evaluation

CI vocoded speech was generated by acoustic signal resynthesis from CI electrodograms (CI electrical
stimuli patterns) with a sine wave vocoder and used to predict speech intelligibility in CI users.
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(a) the boy broke the wooden fence (b) have you eaten yet

Figure 2: Framewise probabilities of true and predicted phoneme classes of reverberant speech
utterances from (a) HINT and (b) CUNY-Female datasets using the GRU+A classifier. True class
labels are annotated on the x-axis. Shaded regions indicate incorrect predictions.

Objective Intelligibility Metrics. Intelligibility of CI vocoded speech was predicted using objective
metrics that have been shown to be predictive of speech intelligibility in CI listening studies [59]: the
speech-to-reverberation modulation energy ratio for CI users (SRMR-CI) [60, 61]; and the short-time
objective intelligibility (STOI) metric [62] with the direct path signal used as the reference signal
[63]. The STOI metric was developed for evaluating speech intelligibility in noise and excludes
frames with silent gaps in clean speech. Since reverberation occurs in silent speech gaps, the removal
of reverberant reflections in the same silent speech gap will not be captured by the STOI metric.
The SRMR metric was originally developed for evaluating speech intelligibility in reverberation for
normal hearing listeners [60], and later adapted for CI users (SRMR-CI) by using the CI filterbanks
[61]. Thus, the SRMR-CI metric provides a more reliable speech intelligibility predictor for CIs in
reverberation. We include STOI for completeness and to facilitate comparison with prior literature.

Benchmarks. Chu et al. [33] showed improvements in SRMR-CI and STOI scores, as well as
intelligibility of CI vocoded speech in normal hearing listeners, with a phoneme-based MoE model
relative to a (conventional) phoneme independent mask estimation model. The objective here is to
demonstrate that the OE model achieves at a minimum similar performance as the MoE model with
much reduced complexity. Oracle conditions include mask estimation with ideal phoneme knowledge
(i.e., perfect phoneme classification), the IRM and the direct path signal.

Statistical Analysis. Statistical tests were performed in R. A two-way repeated measures ANOVA
was performed with within-utterance fixed factors of room and mask type, interaction between
mask type and room, and a random factor of speech utterance. Mauchly’s test [64] was used to
assess the sphericity assumption; degrees of freedom were adjusted using the Greenhouse-Geisser
correction where necessary. For statistically significant main effects or interactions, post-hoc pairwise
comparisons were performed using estimated marginal means with Tukey’s multiple comparisons
correction. All tests were conducted at a significance level of 0.05.

5 Results

5.1 Phoneme Classification

Figure 2 show frame-wise phoneme classifier predictions using the GRU+A classifier applied to
sample reverberant speech utterances. Frame-wise class balanced phoneme classification accuracies
are summarized in Table 1. The phoneme distributions, classification confusion matrices and
additional framewise classification results are provided in Appendix A.5.

Table 1: Class-Balanced Phoneme Classification Accuracies (%) Across Test Datasets

Dataset Long Short-term Memory Gated Recurrent Unit + Attention

Church Office Lecture Stairway Church Office Lecture Stairway

CUNY-Female 20.98 26.26 25.41 27.65 24.30 35.29 32.89 35.91
CUNY-Male 20.11 26.63 23.41 25.36 27.61 39.52 34.11 36.85
HINT 22.44 31.39 28.38 31.2 33.02 47.82 43.39 46.78
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Figure 3: Average signal loss across frequency bins with phoneme independent mask estimation and
mask estimation with mixture-of-experts (MoE) and Omni-expert (OE) models with predicted (p)
and ideal (k) phoneme knowledge using gated recurrent unit + attention (GRU+A) models.

5.2 Mask Estimation

Figure 3 shows the mean signal loss across frequency bins to visualize the frequency-dependent
impact of mask estimation. In general, signal loss is highest in lower frequency regions (< 1250 Hz),
reflecting the difficulty in mitigating low frequency reverberation. Phonemes typically range from
70-200 ms [65, 66], making phoneme classification based on an 8 ms frame a hard task. Even at
low accuracies (Table 1), predicted phoneme knowledge is still beneficial to mask estimation, with a
progressive increase in performance from phoneme independent to MoE to OE models. Phonemes
with similar time-frequency characteristics are likely to be confused with each other (Appendix A.5).
The weighting of phoneme-specific masks reduces the impact of phoneme misclassifications. With
known phonemes, the OE provides a higher performance upperbound than the MoE. This indicates
that encoding subtask-specific cues via feature transformations is more effective for specialization vs.
specialized experts with subtask partitioning of the original feature space.

5.3 Objective Speech Intelligibility

Sample electrodograms are shown in Figure 4a with annotations of target speech and (late) reverberant
reflections; corresponding spectrograms are shown in Appendix A.3. Room-specific statistical results
of SRMR-CI and STOI scores are shown in Figure 4b; summary statistics are provided in Appendix
A.6. Aggregate statistical results are summarized in Table 2. Performance trends of objective
speech intelligibility measures are generally consistent with those of mask estimation. The higher
performance bound with the OE provides more robustness to the impact of phoneme prediction errors.

Table 2: Objective intelligibility scores (estimated marginal mean ± 95% confidence interval) for the
reverberant signal (Rev), direct path signal (DP), and across different mask estimation methods: ideal
ratio mask (IRM), phoneme independent model (PI), phoneme-based mask predicted by mixture-of-
experts/Omni-Expert with ideal phoneme knowledge (MoEk/ OEk), and using phoneme classifier
probabilities (MoEp/ OEp). Bold indicates the highest performance among the non-oracle models.

Long Short-Term Memory (LSTM)

Metric Rev PI MoEp MoEk OEp OEk IRM DP

SRMR
-CI

1.302
±0.007

1.733
±0.009

1.744
±0.009

1.841
±0.009

1.794
±0.010

1.938
±0.009

2.187
±0.008

2.447
±0.009

STOI 0.719
±0.001

0.797
±0.001

0.807
±0.001

0.822
±0.001

0.807
±0.001

0.836
±0.001

0.972
±0.000

1.000
±0.000

Gated Recurrent Unit+Attention (GRU+A)

Metric Rev PI MoEp MoEk OEp OEk IRM DP

SRMR
-CI

1.302
±0.007

1.873
±0.011

1.948
±0.010

1.945
±0.009

2.014
±0.011

2.113
±0.010

2.187
±0.008

2.447
±0.009

STOI 0.719
±0.001

0.812
±0.001

0.829
±0.001

0.833
±0.001

0.829
±0.001

0.850
±0.001

0.972
±0.000

1.000
±0.000
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(a) Electrodograms of the speech utterance "the boy broke the wooden fence."
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(b) Room-specific estimated marginal means and 95% confidence intervals of speech-to-reverberation modulation
energy ratio for cochlear implant users (SRMR-CI) and short-time objective intelligibility (STOI) scores.

Figure 4: (a) Example electrodograms of a speech utterance and (b) room-specific statistical results
of objective speech intelligibility measures of cochlear implant vocoded speech generated for direct
path (DP), reverberant speech (Rev), enhanced reverberant speech after applying the ideal ratio
mask (IRM) and estimated masks with the phoneme independent (PI) model, mixture-of-experts
model with predicted and known phonemes (MoEp/k) and Omni-Expert model with predicted and
known phonemes (OEp/k) for long short-term memory (LSTM) and gated recurrent unit + attention
(GRU+A) networks.

Figure 5: Visualization of phoneme-specific features from a subset of randomly selected phoneme
frames (N = 1000) of reverberant speech from the CUNY Female speech dataset in the stairway room.
Column panels represent features: before applying transformations; with scale-only; shift-only; and
scale + shift transformations. Arrows indicate an example of a visually discernible impact of a shift
transformation on a phoneme cluster. t-distributed stochastic neighbor embedding (t-SNE) was used.
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5.4 Ablation Analysis

The rest of the paper presents aggregate results. Room-specific results are provided in the Appendix.

Feature Transformation Type. The contribution of each feature transformation was assessed with
isolated (i.e., shift only or scale only) and combined (i.e., shift and scale) transformations. Figure 5
shows visualizations of features with respective transformations. The scale transformation enhances
the separability of phoneme-specific feature clusters, while the shift transformations adjusts the
feature offsets for better alignment. Aggregate statistical results are summarized in Table 3. Overall,
applying scaling or shifting has a significant impact on the objective speech intelligibility metrics to a
similar extent relative the non-transformed features. However, the combined transformation yields
the highest improvements in SRMR-CI and STOI scores, Table 3.

Table 3: Objective intelligibility scores (estimated marginal mean ± 95% confidence interval) with the
Omni-Expert model with predicted phonemes (OEp) across different types of feature transformations,
scale (Sc) only, shift (Sh) only, scale + shift (default) and no transformation. Bold indicates the
highest performance. LSTM, long short-term memory; GRU+A, gated recurrent unit + attention.

Metric OEp-LSTM OEp-GRU+A

None Sh Only Sc Only Sc + Sh None Sh Only Sc Only Sc + Sh

SRMR
-CI

1.683
±0.009

1.711
±0.010

1.706
±0.009

1.794
±0.010

1.923
±0.011

1.987
±0.011

2.000
±0.011

2.014
±0.011

STOI 0.793
±0.001

0.792
±0.001

0.793
±0.001

0.807
±0.001

0.819
±0.001

0.826
±0.001

0.829
±0.001

0.829
±0.001

Feature Transformation Position. We also investigated the impact of applying the feature transfor-
mation at different layer positions during mask estimation: prior to the input of the model (default),
after the hidden layer, and both the input and hidden layers. Aggregate results are summarized in
Table 4. Overall, applying feature transformation at least at the input layer is more effective than
applying the transformation only at the hidden layer.

Table 4: Objective intelligibility scores (estimated marginal mean ±95% confidence interval) with
the Omni-Expert model with predicted and known phonemes (OEp/k) across different feature
transformation positions: after the hidden layer (H), prior to the input to the model (I) (default)
and both the input and hidden layers (I + H). Bold indicates the highest performance among the
non-oracle models. LSTM, long short-term memory; GRU+A, gated recurrent unit + attention.

Metric OEp-LSTM OEk-LSTM

H I I + H H I I + H

SRMR-CI 1.764
±0.009

1.794
±0.010

1.805
±0.010

1.863
±0.009

1.938
±0.009

1.947
±0.009

STOI 0.803
±0.001

0.807
±0.001

0.805
±0.001

0.824
±0.001

0.836
±0.001

0.835
±0.001

Metric OEp-GRU+A OEk-GRU+A

H I I + H H I I + H

SRMR-CI 1.367
±0.008

2.014
±0.011

2.004
±0.010

1.387
±0.006

2.113
±0.010

2.073
± 0.010

STOI 0.693
±0.001

0.829
±0.001

0.822
±0.001

0.621
±0.002

0.850
±0.001

0.842
±0.001

5.5 Model Complexity

Model size and training times are shown in Figure 6; detailed values are provided in Ap-
pendix A.4. The number of parameters and the computation load are obtained using the open-
source ptflops package [67]. The OE model achieves comparable to superior performance
with a much smaller model size and faster training time relative to the MoE model. Each ex-
pert in the MoE model is trained only on phoneme-specific data and the reduced amount of
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training data per expert model results in a longer training time. In contrast, the OE model
uses the full training dataset while still benefiting from sub-task specialization via the feature
transformations. Note that the models for shift and scale factor estimation are only used dur-
ing OE training; in this case, the mapping from phoneme label to feature transformation is
deterministic, so only the subtask-specific transformation factors are needed during inference.

Model0

1

2

3

4

5
1e6

Total #Parameters

Model0.0
2.5
5.0
7.5

10.0
12.5

PC

E(xN)
PC

E

PC

E(xN)

PC

E

Training Time (Hours)

PI-LSTM
PI-GRU+A

MoE-LSTM
MoE-GRU+A

OE-LSTM
OE-GRU+A

Figure 6: Complexity of phoneme independent
(PI), mixture-of-experts (MoE, N = 40 experts)
and Omni-Expert (OE) models using long short-
term memory (LSTM) and gated recurrent unit +
attention (GRU+A) networks for speech derever-
beration in cochlear implants. MoE and OE model
training times are marked by the phoneme classi-
fier (PC, same for MoE and OE) and expert (E)
networks. Training times based on a Titan V GPU.

6 Conclusion

We introduced the Omni-Expert, a high-
performing and compute-efficient alternative to
achieving a mixture of expertise in the same
model. By conditioning feature transformations
on a subtask, the OE model learns to partition
the input space into subtask-specific regions, ef-
fectively scaling the functionality of multiple ex-
perts without incurring the added computational
costs. The current OE configuration assumes the
subtasks are known to determine the number of
experts, as is the case with phonemes. Alterna-
tive variants of the OE may be needed in other
applications where the specialized subtasks are
not as well-defined.

While this work focused on speech dereverber-
ation in cochlear implants, real-world listening
scenarios will also include combinations of reverberation and ambient noise (e.g., multi-talker babble,
equipment noise, etc). Results with the current mask estimation models trained only on reverberant
speech and applied to speech in a variety of noisy reverberant settings are presented in Appendix A.8.
As expected, there is a significant drop in performance across all models as the signal-to-noise ratio
increases. The OE with known phonemes still outperforms the counterpart MoE, indicating that the
learned subtask feature transformations are more robust to training/test data mismatch.

Limitations and Future Work. Performance trends observed with objective speech intelligibility
measures may not necessarily translate to speech understanding in real-world settings; the test datasets
may not fully represent the variety in speech patterns and reverberant room conditions. Additional
performance improvements can be obtained with alternative OE model architectures, more diverse
datasets for training and advanced training techniques. A relatively lightweight OE model for speech
enhancement is more practical for CI deployment and improvements in CI processor chip technology
are expected over time. Further work is needed to evaluate real-time feasibility and real-world utility
in clinical studies with CI users.

Societal Impact. The OE provides a promising solution for developing compact, high-performing
speech enhancement models to increase speech understanding for CI users in challenging listening
environments, which can improve the quality of life of CI users. Real-time speech enhancement is
also relevant for individuals with hearing aids and automatic speech processing applications that
require minimal latency, such as live transcription. More broadly, the computational efficiency and
scalability of the OE technique have the potential to address the computational bottleneck associated
with MoE in other applications. The core architectural design of substituting multi-expert inference
with subtask-specific transformations applied to a single expert is in principle domain-agnostic. In
other applications, there is often latent structure among tokens, tasks, or embeddings (e.g., syntactic
roles, semantic types, or class labels) and MoE have been applied at the embedding, token/sequence
or task level. These can be used to define subtask-specific transformations or input conditioning,
which suggests that our Omni-Expert approach could be applicable.

Acknowledgments and Disclosure of Funding

This work was supported by a grant from the National Institutes of Health (R56DC020267-01A1).
The NVIDIA Titan V GPU was donated by the NVIDIA Corporation. Ojuba was supported by

10



the Duke ECE Research Experience for Undergraduates Program. Mainsah received a Microsoft
Research Faculty Fellowship.

References
[1] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive

mixtures of local experts. Neural Computation, 3:79–87, 1991.

[2] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6:181–214, 1993.

[3] Javier Badajoz-Davila, Jörg M Buchholz, and Richard Van-Hoesel. Effect of noise and rever-
beration on speech intelligibility for cochlear implant recipients in realistic sound environments.
The Journal of the Acoustical Society of America, 147(5):3538–3549, 2020.

[4] S Raufer, P Kohlhauer, F Jehle, V Kühnel, M Preuss, and S Hobi. Spheric Speech Clarity
proven to outperform three key competitors for clear speech in noise. Whitepaper, Phonak Field
Study News, Sonova AG, retrieved from https://www. phonak. com/evidence, 2024.

[5] Charlotte T Jespersen, Lena Dieu, and Thipiha Rubachandran. Organic Hearing drives user
preference for Intelligent Focus. Whitepaper, GN Hearing A/S, 2025.

[6] Sébastien Santurette and Thomas Behrens. The audiology of Oticon More™. Whitepaper,
Centre for Applied Audiology Research, Oticon A/S, 2020.

[7] Enoch Hsin-Ho Huang, Rong Chao, Yu Tsao, and Chao-Min Wu. Electrodenet—a deep-
learning-based sound coding strategy for cochlear implants. IEEE Transactions on Cognitive
and Developmental Systems, 16(1):346–357, 2024. doi: 10.1109/TCDS.2023.3275587.

[8] Agudemu Borjigin, Kostas Kokkinakis, Hari M Bharadwaj, and Joshua S Stohl. Deep learning
restores speech intelligibility in multi-talker interference for cochlear implant users. Scientific
Reports, 14(1):13241, 2024.

[9] Nursadul Mamun and John H L Hansen. Speech enhancement for cochlear implant recipients
using deep complex convolution transformer with frequency transformation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2024.

[10] Tom Gajecki, Yichi Zhang, and Waldo Nogueira. A deep denoising sound coding strategy for
cochlear implants. IEEE Transactions on Biomedical Engineering, 70(9):2700–2709, 2023.

[11] Clément Gaultier and Tobias Goehring. Recovering speech intelligibility with deep learning
and multiple microphones in noisy-reverberant situations for people using cochlear implants.
The Journal of the Acoustical Society of America, 155(6):3833–3847, 2024.

[12] Marcia J Hay-McCutcheon, David B Pisoni, and Kristopher K Hunt. Audiovisual asynchrony
detection and speech perception in hearing-impaired listeners with cochlear implants: a prelimi-
nary analysis. International Journal of Audiology, 48(6):321–333, 2009.

[13] Marian Jones, Chris Warren, Marjan Mashal, Paula Greenham, and Josie Wyss. Speech
understanding in noise for cochlear implant recipients using a spatial noise reduction setting in
an off the ear sound processor with directional microphones. Cochlear Implants International,
24(6):311–324, 2023.

[14] Jace Wolfe, Mila Morais, Erin Schafer, Smita Agrawal, and Dawn Koch. Evaluation of speech
recognition of cochlear implant recipients using adaptive, digital remote microphone technology
and a speech enhancement sound processing algorithm. Journal of the American Academy of
Audiology, 26(05):502–508, 2015.

[15] Anja Kurz, Kristen Rak, and Rudolf Hagen. Improved performance with automatic sound
management 3 in the MED-EL SONNET 2 cochlear implant audio processor. PLOS One, 17
(9):e0274446, 2022.

[16] Pavel Zahorik. Spatial hearing in rooms and effects of reverberation. In Binaural Hearing: With
93 Illustrations, pages 243–280. Springer, 2021.

11



[17] Frank Iglehart. Speech perception in classroom acoustics by children with cochlear implants
and with typical hearing. American Journal of Audiology, 25(2):100–109, 2016. doi: 10.1044/
2016\_AJA-15-0064.

[18] Frank Iglehart. Speech perception in classroom acoustics by children with hearing loss and
wearing hearing aids. American Journal of Audiology, 29(1):6–17, 2020. doi: 10.1044/2019\
_AJA-19-0010.

[19] Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With
Engineering Applications. The MIT Press, 1949. doi: 10.7551/mitpress/2946.001.0001.

[20] Nicoleta Roman and John Woodruff. Speech intelligibility in reverberation with ideal binary
masking: Effects of early reflections and signal-to-noise ratio threshold. The Journal of the
Acoustical Society of America, 133(3), 2013. ISSN 0001-4966. doi: 10.1121/1.4789895.

[21] Kostas Kokkinakis and Joshua S. Stohl. Optimized gain functions in ideal time-frequency masks
and their application to dereverberation for cochlear implants. JASA Express Letters, 1(8), 2021.
ISSN 2691-1191. doi: 10.1121/10.0005740.

[22] Eric W. Healy, Jordan L. Vasko, and DeLiang Wang. The optimal threshold for removing
noise from speech is similar across normal and impaired hearing—a time-frequency masking
study. The Journal of the Acoustical Society of America, 145(6), 2019. ISSN 0001-4966. doi:
10.1121/1.5112828.

[23] Koning, Madhu, and Wouters. Ideal time-frequency masking algorithms lead to different speech
intelligibility and quality in normal-hearing and cochlear implant listeners. IEEE Transactions
on Biomedical Engineering, 62(1), 2015. ISSN 1558-2531. doi: 10.1109/TBME.2014.2351854.

[24] DeLiang Wang. On ideal binary mask as the computational goal of auditory scene analysis. In
Speech Separation by Humans and Machines, pages 181–197. Springer, 2005.

[25] Oldooz Hazrati, Jaewook Lee, and Philipos C. Loizou. Blind binary masking for reverberation
suppression in cochlear implants. The Journal of the Acoustical Society of America, 133(3),
2013/03/01. ISSN 0001-4966. doi: 10.1121/1.4789891.

[26] Oldooz Hazrati and Philipos C. Loizou. Reverberation suppression in cochlear implants using
a blind channel-selection strategy. The Journal of the Acoustical Society of America, 133(6),
2013. ISSN 0001-4966. doi: 10.1121/1.4804313.

[27] Oldooz Hazrati, Seyed Omid Sadjadi, Philipos C Loizou, and John H L Hansen. Simultaneous
suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
The Journal of the Acoustical Society of America, 134(5), 2013. ISSN 0001-4966. doi:
10.1121/1.4823839.

[28] P. Ladefoged and K. Johnson. A Course in Phonetics. Cengage Learning, 2014. ISBN
9781305177185.

[29] Zhong-Qiu Wang, Yan Zhao, and DeLiang Wang. Phoneme-specific speech separation. 2016
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.
doi: 10.1109/ICASSP.2016.7471654.

[30] Shlomo E. Chazan, S. Gannot, and J. Goldberger. A phoneme-based pre-training approach for
deep neural network with application to speech enhancement. In IEEE International Workshop
on Acoustic Signal Enhancement (IWAENC), 2016. doi: 10.1109/IWAENC.2016.7602943.

[31] Shlomo E Chazan, Jacob Goldberger, and Sharon Gannot. Speech enhancement with mixture
of deep experts with clean clustering pre-training. In 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 716–720. IEEE, 2021.

[32] Aswin Sivaraman and Minje Kim. Sparse mixture of local experts for efficient speech enhance-
ment. In Interspeech 2020, pages 4526–4530, 2020. doi: 10.21437/Interspeech.2020-2989.

[33] Kevin Chu, Leslie Collins, and Boyla Mainsah. Suppressing reverberation in cochlear implant
stimulus patterns using time-frequency masks based on phoneme groups. In Proceedings of
Meetings on Acoustics, volume 50, 2022. doi: 10.1121/2.0001698.

12



[34] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, An-
dré Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of
experts. In Advances in Neural Information Processing Systems, volume 34, pages 8583–8595.
Curran Associates Inc., 2021. ISBN 9781713845393.

[35] Barret Zoph. Designing effective sparse expert models. In IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 1044–1044. IEEE, 2022.

[36] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLaM: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547–5569. PMLR, 2022.

[37] Bo Li*, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In International Conference
on Learning Representations, 2023.

[38] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations, 2017.

[39] Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Merging experts
into one: Improving computational efficiency of mixture of experts. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 14685–14691.
Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.907.

[40] Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive
routing. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. Featured
Certification.

[41] Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, and Antonio Torralba.
MTFormer: Multi-task learning via transformer and cross-task reasoning. In European
Conference on Computer Vision (ECCV), pages 304–321. Springer-Verlag, 2022. doi:
10.1007/978-3-031-19812-0_18.

[42] Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C
Courville. Modulating early visual processing by language. Advances in Neural Information
Processing Systems, 30, 2017.

[43] B Swanson and H Mauch. Nucleus Matlab Toolbox 4.20 software user manual. Cochlear Ltd,
2006.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[45] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015. doi: 10.1109/ICASSP.2015.7178964.

[46] Igor Szöke, Miroslav Skácel, Ladislav Mošner, Jakub Paliesek, and J. Černocký. Building and
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly describe the main contributions of
the paper, proposing a novel lightweight alternative to achieving the functionality of a
Mixture-of-Experts (MoE). The primary contributions are as follows: We introduce Omni-
Expert (OE) model which overcomes the computational overhead of MoE using a simple
feature transformations. We provide experimental results from the task of real-time speech
dereverberation in cochlear implants to support these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section of the paper, we have provided a detailed explanation
of the method’s limitations, section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:[NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: The OE architecture is fully described in section 3. Details of methods and
experiment settings to reproduce results are provided in subsection 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code is proprietary and not publicly released. All the datasets and
software packages used in the paper are properly cited. The experimental settings, model
configurations and model complexities needed to reproduce all experimental results have
been described in subsection 4.2. Audio files of vocoded speech signals cannot be shared
due to copyright restriction of source speech datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and testing dataset used, feature extraction process, phoneme
alignment tools, model architectures, optimizer, learning rate, loss functions and activations
used have been described in subsection 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical tests are detailed in Figure 4.3. We report estimated marginal
means and 95% confidence intervals of performance measures in subsection 5.2. Statistical
significance is indicated if confidence bars do not overlap. Table 2 shows the mean and
confidence intervals of the results that support the main claims.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All models were implemented in PyTorch and trained on an NVIDIA Ti-
tan V GPU. The paper clearly specifies the compute resources required to reproduce the
experiments, including the training time and model size as shown in subsection 5.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is consistent with the NeurIPS Code of Ethics. The paper
provided comprehensive details for reproducibility, discussed potential societal impacts,
limitations and future directions.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses positive societal impacts and limitations in section 6,
particularly how the Omni-Expert model could benefit CI users by making the technology
suitable for edge devices.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing resources used in this paper, including the comparative experiments
and the datasets, have been properly cited, subsection 4.2.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[Yes]
Justification: The model architecture of our Omni-Expert for the task of speech dereverbera-
tion and the training details are presented in subsection 4.2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs for the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices

A.1 Reverberation Model and Room Impulse Response (RIR) Characteristics

The reverberant signal xrev(t) is modeled as the convolution of the clean, anechoic speech signal,
s(t), with the room impulse response (RIR), h(t):

xrev(t) = s(t) ∗ h(t) (7)

To isolate the direct-path component, the RIR is decomposed into two parts:

xrev(t) = s(t) ∗ hdirect(t) + s(t) ∗ hreverb(t)

= xdirect(t) + s(t) ∗ hreverb(t) (8)
l(t) = xrev(t)− xdirect(t) (9)

where hdirect(t) represents the RIR function for direct path (and early reflections); hreverb(t) is the
RIR of the remaining late reverberation; xdirect(t) represents the direct path signal; and l(t) represents
the late reverberant reflections, i.e., the difference between the reverberant and direct path signals.

Table A1 lists characteristics of recorded RIRs of four rooms in the Aachen Impulse Response
database [49] used for testing. RIRs were selected from an office, a lecture, a stairway, and a church.
For the stairway and the church, RIRs were selected at an azimuth of 90 degrees, where the source
and receiver are directly facing each other. RIRs were filtered using an anti-aliasing filter and then
downsampled from 48 to 16 kHz before convolution with anechoic speech stimuli. Reverberation
times (RT60s) were calculated using the Schroeder method [68] using the code provided by [69]. The
direct-to-reverberant ratios (DRRs) of the recorded RIRs were calculated using [70].

Table A1: Room impulse response characteristics of test room conditions. RT60(s), reverberation
time; DRR; Direct-to-reverberant ratio.

Dataset Room Dimensions
(L x W x H) (m)

Source
Receiver

Distance (m)
RT60(s) DRR (dB)

Aachen Impulse
Response (AIR)

Office 5.0 x 6.4 x 2.9 3.0 0.6 0.4
Lecture 10.8 x 10.9 x 3.15 5.56 0.9 -0.1
Stairway 7.0 x 5.2 3.0 0.9 1.6
Church 19.0 x 30.0 5.0 6.5 -0.6
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A.2 Frame-wise Phoneme Labels

Figure A2.1: Example annotations of phoneme labels aligned to cochlear implant time bins.
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A.3 Example Spectrograms and Electrodograms - LSTM models

Figure A3.1: Spectrograms of the speech utterance "the boy broke the wooden fence" generated
for direct path speech, reverberant speech, enhanced reverberant speech after applying the ideal
ratio mask and estimated masks with the phoneme independent model, mixture-of-experts (MoE)
model with predicted and known phonemes, and Omni-Expert (OE) model with predicted and known
phonemes.
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Figure A3.2: Electrodograms of the speech utterance "the boy broke the wooden fence" generated for
direct path speech, reverberant speech (Rev), enhanced reverberant speech after applying the ideal
ratio mask (IRM) and estimated masks with the phoneme independent model (PI), mixture-of-experts
model with predicted and known phonemes (MoEp/k), and Omni-Expert model with predicted and
known phonemes (OEp/k).
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A.4 Complexity Analysis

Table A4.1: Summary of complexity of long short-term memory (LSTM) models used for speech
dereverberation in cochlear implants.

Model Parameters Training Time‡ MACs (M) Size (MB)

Phoneme Independent 108,225 2 hrs 58 mins 109.44 0.43
Phoneme Classifier (PC) 98440 3 hrs 99.63 0.39
Mixture of Experts (MoE) 40*108,225 + PC 5 hrs 22 mins 4377.6 + PC 16.51 + PC
Omni-Expert (OE) 113555 + PC 1 hr 57 mins 109.45 + PC 0.45 + PC

Expert 108,225 0.43
Shift + Scale Factors† 2,665 + 2,665 0.1 + 0.1
†Shift and scale multilayer perceptrons are not deployed during inference; ‡NVIDIA Titan V GPU

Table A4.2: Summary of complexity of gated recurrent unit + attention (GRU+A) models used for
speech dereverberation in cochlear implants.

Model Parameters Training Time‡ MACs (M) Size (MB)

Phoneme Independent (PI) 127946 3 hrs 43 mins 127.76 0.51
Phoneme Classifier (PC) 124996 3 hrs 15 mins 124.84 0.5

Mixture of Experts (MoE) 40*127946 + PC 10 hrs 47 mins 5110.58 + PC 19.52 + PC
Omni-Expert (OE) 133276 + PC 1 hr 21 mins 127.77 + PC 0.53 + PC

-Expert 127946 0.51
-Shift + Scale Factors† 2,665 + 2,665 0.1 + 0.1

†Shift and scale multilayer perceptrons are not deployed during inference; ‡NVIDIA Titan V GPU

A.5 Phoneme Analysis

A.5.1 Phoneme Distribution

Figure A5.1: Distribution of phoneme classes in the training and test speech datasets sorted by the
frequency of phonemes in the training dataset. The silence class (sil) has been divided into two
categories: silences occurring at the beginning and end of an utterance, denoted by sil_edge; and
silences occurring in the middle of an utterance, denoted by sil_mid. N is the number of speech files
in each dataset.
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A.5.2 Phoneme Classifier - LSTM

(a) the boy broke the wooden fence

(b) have you eaten yet

Figure A5.2.1: Framewise probabilities of true and predicted phoneme classes of reverberant speech
utterances from (a) HINT and (b) CUNYFemale datasets using the long short-term memory (LSTM)
classifier. True class labels are annotated on the x-axis. Shaded regions indicate incorrect predictions.
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Figure A5.2.2: Confusion matrices of phoneme predictions in test datasets using long short-term
memory (LSTM) classifier. Phonemes are annotated by manner of articulation [71].

A.5.3 Phoneme Classifier - GRU+A
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Figure A5.3.1: Confusion matrices of phoneme predictions with GRU+A phoneme classifier in test
datasets across room conditions. Phonemes are annotated by manner of articulation [71].

A.6 Room-specific Mask Estimation Results

A.6.1 Signal Loss
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Figure A6.1.1: Average signal loss values across frequency bins with phoneme independent mask
estimation and mask estimation with mixture-of-experts (MoE) and Omni-Expert (OE) models with
predicted and ideal phoneme knowledge using long short-term memory (LSTM) models.

A.6.2 Mask Estimation-LSTM models

31



Table A6.2.1: Long short-term memory (LSTM) models. Mean ± 95% confidence interval of
objective speech intelligibility scores for the reverberant signal (Rev), direct path signal (DP), and
across different mask estimation methods: ideal ratio mask (IRM), phoneme independent model (PI),
phoneme-based mask predicted by mixture-of-experts/Omni-Expert with ideal phoneme knowledge
(MoEk/ OEk), and using predicted phoneme classifier probabilities (MoEp/ OEp). Bold indicates the
highest performance among the non-oracle models.

SRMR-CI
Church Office Lecture Stairway

Rev 0.923
±0.005

1.495
±0.010

1.333
±0.008

1.456
±0.010

PI 1.327
±0.010

1.984
±0.015

1.694
±0.012

1.928
±0.015

MoEp 1.351
±0.010

1.956
±0.014

1.731
±0.012

1.939
±0.015

MoEk 1.547
±0.012

1.988
±0.014

1.826
±0.014

2.004
±0.016

OEp 1.370
±0.010

2.029
±0.015

1.787
±0.013

1.990
±0.016

OEk 1.616
±0.013

2.077
±0.015

1.956
±0.015

2.105
±0.017

IRM 2.115
±0.014

2.210
±0.016

2.220
±0.016

2.200
±0.016

DP 2.438
±0.017

2.423
±0.018

2.452
±0.018

2.473
±0.017

STOI
Church Office Lecture Stairway

Rev 0.684
±0.002

0.746
±0.002

0.700
±0.002

0.746
±0.002

PI 0.771
±0.002

0.814
±0.002

0.779
±0.002

0.823
±0.002

MoEp 0.781
±0.002

0.820
±0.002

0.792
±0.002

0.833
±0.002

MoEk 0.806
±0.002

0.831
±0.002

0.804
±0.002

0.845
±0.002

OEp 0.780
±0.002

0.823
±0.002

0.795
±0.002

0.831
±0.002

OEk 0.819
±0.002

0.845
±0.002

0.827
±0.002

0.855
±0.001

IRM 0.975
±0.000

0.970
±0.001

0.974
±0.000

0.969
±0.001

DP 1.000
±0.000

1.000
±0.000

1.000
±0.000

1.000
±0.000

A.6.3 Mask Estimation-GRU+A models
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Figure A6.2.1: Objective intelligibility scores of speech from HINT, CUNYFemale, and CUNYMale
datasets in church, office, lecture, and stairway rooms. Results are shown for enhanced reverberant
speech after applying estimated masks with the phoneme independent model, mixture of experts
(MoE) model with predicted and known phonemes, the Omni-Expert (OE) model with predicted and
known phonemes, the ideal ratio mask, and the direct path signal. SRMR-CI, Speech-to-reverberation
modulation energy ratio for CI users; STOI, short-time objective intelligibility.

A.7 Additional Ablation Analysis-LSTM models

A.7.1 Transformation Type

33



Table A6.3.1: Mean (± 95% confidence interval) of objective speech intelligibility scores across
different mask estimation methods: phoneme independent model (PI), phoneme-based mask predicted
by mixture-of-experts/Omni-Expert with ideal phoneme knowledge (MoEk/OEk), and using phoneme
classifier probabilities (MoEp/OEp). Results are shown for the GRU+Attention (GRU+A) model
architecture aggregated across three test datasets in four room conditions. Bold indicates the highest
performance among the non-oracle models.

SRMR-CI
Church Office Lecture Stairway

PI - GRU+A 1.377 ±0.014 2.113 ±0.016 1.895 ±0.016 2.016 ±0.018
MoEp - GRU+A 1.436 ±0.015 2.133 ±0.016 1.987 ±0.016 2.145 ±0.021
OEp - GRU+A 1.500 ±0.013 2.268 ±0.017 2.059 ±0.017 2.228 ±0.019

MoEk - GRU+A 1.559 ±0.017 2.087 ±0.016 1.971 ±0.015 2.117 ±0.021
OEk - GRU+A 1.747 ±0.014 2.252 ±0.017 2.173 ±0.017 2.280 ±0.019

STOI
Church Office Lecture Stairway

PI - GRU+A 0.771 ±0.003 0.832 ±0.003 0.804 ±0.003 0.843 ±0.002
MoEp - GRU+A 0.774 ±0.002 0.842 ±0.002 0.801 ±0.002 0.846 ±0.002
OEp - GRU+A 0.783 ±0.002 0.847 ±0.002 0.825 ±0.002 0.860 ±0.002

MoEk - GRU+A 0.793 ±0.000 0.843 ±0.001 0.804 ±0.000 0.848 ±0.000
OEk - GRU+A 0.826 ±0.002 0.858 ±0.002 0.845 ±0.002 0.873 ±0.001

Table A7.1: Room-specific Objective intelligibility scores (estimated marginal mean (± 95% con-
fidence interval)) with the Omni-Expert model with predicted phonemes across different types of
feature transformations. Bold indicates the highest performance.

Speech-to-reverberation modulation energy ratio for CI users (SRMR-CI)
Church Office Lecture Stairway

None 1.302 (±0.010) 1.903 (±0.014) 1.647 (±0.012) 1.881 (±0.014)
Shift Only 1.278 (±0.010) 1.968 (±0.015) 1.695 (±0.012) 1.903 (±0.015)
Scale Only 1.288 (±0.009) 1.925 (±0.014) 1.706 (±0.012) 1.906 (±0.015)
Scale + Shift 1.370 (±0.010) 2.029 (±0.015) 1.787 (±0.013) 1.990 (±0.016)

Short-time objective intelligibility (STOI)
Church Office Lecture Stairway

None 0.767 (±0.002) 0.811 (±0.002) 0.774 (±0.003) 0.821 (±0.002)
Shift Only 0.767 (±0.002) 0.809 (±0.002) 0.774 (±0.002) 0.815 (±0.002)
Scale Only 0.766 (±0.002) 0.810 (±0.002) 0.778 (±0.002) 0.819 (±0.002)
Scale + Shift 0.780 (±0.002) 0.823 (±0.002) 0.795 (±0.002) 0.831 (±0.002)

34



0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SR
M

R-
CI

CUNYFemale

0.5

0.6

0.7

0.8

0.9

1.0

ST
OI

CUNYFemale

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SR
M

R-
CI

CUNYMale

0.5

0.6

0.7

0.8

0.9

1.0

ST
OI

CUNYMale

church office lecture stairway0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SR
M

R-
CI

HINT

church office lecture stairway0.5

0.6

0.7

0.8

0.9

1.0

ST
OI

HINT

Reverberant
Phoneme Independent
Phoneme Independent (GRU+Attention)
Phoneme-Predicted-OE
Phoneme-Known-OE

Phoneme-Predicted-OE  (GRU+Attention)
Phoneme-Known-OE  (GRU+Attention)
Ideal Mask
Direct Path

Figure A6.3.1: Boxplots of objective speech intelligibility scores of cochlear implant vocoded speech
evaluated for three test datasets in all four room conditions using ratio masks with baseline LSTM and
a GRU+Attention networks. Objective speech intellibility measures include speech-to-reverberation
modulation energy ratio for CI users (SRMR-CI) and short-time objective intelligibility (STOI).
Results are shown for direct path, reverberant speech, enhanced reverberant speech after applying the
ideal ratio mask and estimated masks with the Phoneme Independent model and Omni-Expert model
(OE) with predicted and known phonemes.
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(a) CUNY Male

(b) HINT

Figure A7.1.1: Visualization of phoneme-specific features from a subset of randomly selected
phoneme frames (N = 1000) of reverberant speech from the CUNY Male and HINT speech datasets
in the stairway room. Column panels represent features: before applying transformations; with
scale-only; shift-only; and scale + shift transformations. Arrows indicate an example of visually
discernable impact of a shift transformation on a phoneme cluster. t-distributed stochastic neighbor
embedding (t-SNE) was used.
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Figure A7.1.2: Boxplots of (a) SRMR-CI and (b) STOI scores evaluated for three test datasets in all
four room conditions without any feature modulation and using three different feature modulation
techniques: shift only, scale only, and scale+shift (default). Results are shown for the Omni-Expert
model with predicted phonemes.
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A.7.2 Position
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Figure A7.2.1: Boxplots of (a) SRMR-CI and (b) STOI scores evaluated for three test datasets in all
four room conditions using ratio masks for an LSTM network of 1 layer. Results are shown for the
Omni-Expert model with predicted phonemes.
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Table A7.2: Performance across different feature transformation locations, Estimated Marginal
Mean (± 95% Confidence interval). Bold indicates the highest performance among the feature
transformation locations.

SRMR-CI
InsertionPoint Church Office Lecture Stairway

Phoneme
-Predicted

-OE

Hidden
Layer (H)

1.364
(±0.010)

1.988
(±0.014)

1.750
(±0.013)

1.952
(±0.015)

Input
Layer (I)

1.370
(±0.010)

2.029
(±0.015)

1.787
(±0.013)

1.990
(±0.016)

I + H 1.385
(±0.010)

2.039
(±0.015)

1.801
(±0.013)

1.996
(±0.015)

Phoneme
-Known

-OE

H 1.544
(±0.013)

2.030
(±0.015)

1.849
(±0.014)

2.028
(±0.016)

I 1.616
(±0.013)

2.077
(±0.015)

1.956
(±0.015)

2.105
(±0.017)

I + H 1.643
(±0.013)

2.076
(±0.015)

1.960
(±0.015)

2.109
(±0.017)

STOI
Insertion Point Church Office Lecture Stairway

Phoneme
-Predicted

-OE

H 0.778
(±0.002)

0.818
(±0.002)

0.789
(±0.002)

0.829
(±0.002)

I 0.780
(±0.002)

0.823
(±0.002)

0.795
(±0.002)

0.831
(±0.002)

I + H 0.778
(±0.002)

0.818
(±0.002)

0.793
(±0.002)

0.833
(±0.002)

Phoneme
-Known

-OE

H 0.808
(±0.002)

0.833
(±0.002)

0.810
(±0.002)

0.845
(±0.002)

I 0.819
(±0.002)

0.845
(±0.002)

0.827
(±0.002)

0.855
(±0.001)

I + H 0.819
(±0.002)

0.841
(±0.002)

0.825
(±0.002)

0.857
(±0.001)

A.8 Robustness in Noise

Noisy-Reverberant Testing Conditions The test datasets were developed by adding noise from
DEMAND [72] and Cocktail Party [73] noise datasets. Two different noise conditions were chosen
from DEMAND - Domestic and Public. Domestic noises include kitchen, living room, and washing
machine noise environments, and Public noises include the interiors of a cafeteria, restaurant, and a
busy subway station. Two-talker Babble (TTB) was selected from Cocktail Party dataset. We used
speech from the HINT dataset. Noise was added at signal-to-noise (SNR) levels: -5, 0, 5, 10, 15, 20,
and noisy speech was convolved with room impulse responses (RIRs) from office, stairway, lecture,
and church room conditions.

A.8.1 Roomwise model performance - LSTM
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Figure A8.1: SRMR-CI and STOI scores for HINT speech with noise conditions, Domestic and Public
noises from DEMAND dataset [72] and Two-Talker Babble (TTB) from Cocktail Party dataset [73]
convolved with office, stairway, lecture, and church room conditions (RIRs), respectively. Results are
shown for unenhanced noisy reverberant speech, mask estimated using phoneme independent models,
phoneme-specific mixture-of-expert model (MoE), phoneme-specific Omni-Expert model (OE), ideal
ratio mask (IRM), and the direct path (DP) of the noisy reverberant signal. Noise was added at SNR
levels: -5, 0, 5, 10, 15, 20. Additionally, results are shown for no noise (only RIR) condition.
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Table A8.1: Performance across different mask estimation methods. Estimated Marginal Mean (±
95% Confidence interval) for unenhanced noisy reverberant (Noisy Rev) speech, mask estimated
using phoneme independent (PI) model, phoneme-specific mixture-of-expert model (MoEp/k) and
phoneme-specific Omni-Expert model (OEp/k) with predicted/known phonemes, ideal ratio mask
(IRM), and the direct path of the noisy reverberant signal ( DPnoisy) across noise conditions (SNR in
dB). Bold indicates the highest performance among the non-oracle models.

SRMR-CI
Model -5 0 5 10 15 20 No noise

Noisy Rev 1.007
±0.015

1.060
±0.014

1.153
±0.015

1.239
±0.017

1.290
±0.018

1.313
±0.018

1.327
±0.018

PI 1.329
±0.022

1.431
±0.022

1.555
±0.023

1.649
±0.024

1.702
±0.024

1.725
±0.024

1.812
±0.025

MoEp 1.294
±0.021

1.388
±0.020

1.518
±0.021

1.621
±0.023

1.680
±0.024

1.708
±0.024

1.825
±0.024

MoEk 1.367
±0.019

1.478
±0.020

1.608
±0.021

1.706
±0.023

1.760
±0.023

1.788
±0.024

1.930
±0.023

OEp 1.295
±0.021

1.387
±0.020

1.522
±0.021

1.634
±0.023

1.701
±0.024

1.734
±0.025

1.848
±0.025

OEk 1.434
±0.021

1.547
±0.021

1.686
±0.022

1.790
±0.023

1.850
±0.024

1.881
±0.024

2.011
±0.024

IRM 2.065
±0.021

2.127
±0.021

2.163
±0.021

2.185
±0.021

2.198
±0.021

2.204
±0.021

2.203
±0.021

DPnoisy
1.487
±0.031

1.637
±0.026

1.856
±0.023

2.053
±0.021

2.181
±0.021

2.249
±0.021

2.303
±0.022

STOI
Model -5 0 5 10 15 20 No noise

Noisy Rev 0.681
±0.002

0.686
±0.003

0.691
±0.003

0.697
±0.003

0.707
±0.003

0.718
±0.003

0.738
±0.003

PI 0.531
±0.009

0.614
±0.008

0.685
±0.006

0.734
±0.005

0.763
±0.004

0.778
±0.003

0.801
±0.003

MoEp 0.545
±0.009

0.629
±0.008

0.701
±0.006

0.752
±0.005

0.780
±0.003

0.794
±0.003

0.814
±0.003

MoEk 0.608
±0.007

0.677
±0.006

0.734
±0.005

0.773
±0.004

0.796
±0.003

0.807
±0.003

0.829
±0.002

OEp 0.546
±0.009

0.629
±0.008

0.700
±0.006

0.750
±0.004

0.779
±0.003

0.793
±0.003

0.812
±0.003

OEk 0.620
±0.007

0.687
±0.006

0.744
±0.005

0.784
±0.004

0.808
±0.003

0.819
±0.002

0.840
±0.002

IRM 0.973
±0.001

0.980
±0.001

0.982
±0.000

0.982
±0.000

0.982
±0.000

0.982
±0.000

0.981
±0.000

DPnoisy
0.642
±0.010

0.759
±0.008

0.859
±0.005

0.928
±0.003

0.968
±0.002

0.987
±0.001

1.000
±0.000
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A.8.2 Roomwise model performance - GRU+A

Table A8.2: Objective speech intelligibility scores (estimated marginal mean (± 95% confidence
interval) for mask estimated using phoneme independent (PI) model, and phoneme-specific Omni-
Expert model with predicted/known phonemes (OEp/k) across varying noise types and signal-to-noise
ratio (SNR in dB). Results are aggregated for HINT speech with domestic noise + office, public noise
+ stairway, two-talker babble (TTB) noise + lecture and TTB + church. Results are shown for the
base LSTM model and the GRU+Attention (GRU+A) model. Bold indicates the highest performance
among the non-oracle models.

SRMR-CI
Model -5 0 5 10 15 20 No noise

PI - LSTM 1.329
±0.022

1.431
±0.022

1.555
±0.023

1.649
±0.024

1.702
±0.024

1.725
±0.024

1.812
±0.025

PI - GRU+A 1.353
±0.024

1.486
± 0.022

1.656
±0.023

1.784
±0.025

1.849
±0.026

1.878
±0.026

1.986
±0.028

OEp - LSTM 1.295
±0.021

1.387
±0.020

1.522
±0.021

1.634
±0.023

1.701
±0.024

1.734
±0.025

1.848
±0.025

OEp - GRU+A 1.368
±0.026

1.499
±0.024

1.685
±0.026

1.826
±0.027

1.902
±0.028

1.936
±0.029

2.119
±0.030

OEk - LSTM 1.434
±0.021

1.547
±0.021

1.686
±0.022

1.790
±0.023

1.850
±0.024

1.881
±0.024

2.011
±0.024

OEk - GRU+A 1.555
±0.023

1.706
±0.023

1.864
±0.025

1.972
±0.026

2.027
±0.027

2.052
±0.027

2.217
±0.027

STOI
Model -5 0 5 10 15 20 No noise

PI - LSTM 0.531
±0.009

0.614
±0.008

0.685
±0.006

0.734
±0.005

0.763
±0.004

0.778
±0.003

0.801
±0.003

PI- GRU+A 0.558
±0.009

0.642
±0.007

0.716
±0.006

0.767
±0.004

0.795
±0.003

0.808
±0.003

0.823
±0.003

OEp - LSTM 0.546
±0.009

0.629
±0.008

0.700
±0.006

0.750
±0.004

0.779
±0.003

0.793
±0.003

0.812
±0.003

OEp - GRU+A 0.559
±0.009

0.645
±0.008

0.720
±0.006

0.773
±0.005

0.804
±0.004

0.818
±0.003

0.836
±0.003

OEk - LSTM 0.620
±0.007

0.687
±0.006

0.744
±0.005

0.784
±0.004

0.808
±0.003

0.819
±0.002

0.840
±0.002

OEk - GRU+A 0.629
±0.007

0.701
±0.006

0.760
±0.005

0.801
±0.004

0.824
±0.003

0.835
±0.002

0.855
±0.002
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Figure A8.2: SRMR-CI and STOI scores for HINT speech with noise conditions, Domestic and
Public noises from DEMAND dataset and Two-Talker Babble (TTB) from Cocktail Party dataset
convolved with office, stairway, lecture, and church room conditions (RIRs), respectively. Results are
shown for unenhanced noisy reverberant speech, mask estimated using phoneme independent models,
phoneme-specific Omni-Expert models (OE) - LSTM and GRU+A, ideal ratio mask (IRM), and the
direct path (DP) of the noisy reverberant signal. Noise was added at signal-to-noise (SNR) levels: -5,
0, 5, 10, 15, 20. Additionally, results are shown for no noise (only RIR) condition.
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A.8.3 Room-specific Phoneme Classifier Performance in Noisy Reverberant Conditions

Table A8.3.1: Phoneme classification accuracies in noisy reverberant test conditions using long short-
term memory (LSTM) model architecture (%). Models are trained in reverberant only conditions.

Dataset -5 0 5 10 15 20
HINT-Domestic-Office 16.4 19.87 23.43 26.04 28.18 29.76
HINT-Public-Stairway 6.08 9.31 14.32 19.71 24.25 27.31

HINT-TTB-Lecture 7.59 10.56 14.15 18.28 22.06 24.81
HINT-TTB-Church 7.57 9.93 12.70 15.78 18.43 20.23

Table A8.3.2: Phoneme Classification Accuracies in noisy reverberant test conditions using gated
recurrent unit + attention (GRU+A) model architecture (%). Models are trained in reverberant only
conditions.

Dataset -5 0 5 10 15 20
HINT-Domestic-Office 24.04 29.46 34.97 40.03 43.26 45.14
HINT-Public-Stairway 6.50 11.65 19.75 28.16 35.36 40.25

HINT-TTB-Lecture 7.91 12.13 18.20 25.15 32.18 37.34
HINT-TTB-Church 7.96 11.50 16.36 21.73 26.67 29.89
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Figure A8.3.1: Phoneme classifier (PC) performance in noisy reverberant room conditions using
the long short-term memory (LSTM) model and the gated recurrent unit + attention (GRU+A)
architecture. TTB, two-talker babble.
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