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Abstract

Neural Architecture Search (NAS) aims to identify high-performance networks
within a defined search space. Training-free metrics have been proposed to estimate
network performance without actual training, reducing NAS deployment costs.
However, individual training-free metrics often capture only partial architectural
features, and their estimation capabilities are different in various tasks. Combining
multiple training-free metrics has been explored to enhance scalability across tasks.
Yet, these methods typically optimize global metric combinations over the entire
search space, overlooking the varying sensitivities of different architectures to
specific metrics, which may limit the final architectures’ performance. To address
these challenges, we propose the Per-Architecture Training-Free Metric Optimiza-
tion NAS (PO-NAS) algorithm. This algorithm: (a) Integrates multiple training-
free metrics as auxiliary scores, dynamically optimizing their combinations using
limited real-time training data, without relying on benchmarks; (b) Individually
optimizes metric combinations for each architecture; (c) Integrates an evolutionary
algorithm that leverages efficient predictions from the surrogate model, enhancing
search efficiency in large search spaces. Notably, PO-NAS combines the efficiency
of training-free search with the robust performance of training-based evaluations.
Extensive experiments demonstrate the effectiveness of our approach. Our code
has been made publicly available athttps://github.com/LMZ-Zhuo/P0-NAS.

1 Introduction

Neural Architecture Search (NAS) has emerged as a method to automate architecture engineering.
Currently, NAS methods have surpassed many manually designed architectures in various tasks,
such as image classification (1)), object detection (2), and semantic segmentation (3). While many
training-based NAS algorithms have achieved state-of-the-art (SOTA) performance across various
tasks, their search costs are often prohibitively high in resource-constrained scenarios, primarily
due to the necessity of training deep neural networks during the search process. To address this,
numerous training-free metrics have been developed to evaluate candidate architectures’ performance
(45155 65 [7: 185 195 [10), eliminating the need for actual training. For instance, SWAP-NAS (10) achieves
SOTA performance on the ImageNet dataset within the DARTS (11) search space in just 9 minutes
of search time. These metrics are typically computed through a single forward and backward
pass using a small batch of data, rendering their computational overhead negligible compared to
traditional NAS methods. The efficacy of training-free metrics is typically assessed by evaluating the
correlation between the rankings they produce and the actual performance rankings of architectures
12). However, a significant limitation of these metrics lies in their transferability. Studies have
demonstrated considerable variability in the consistency between scores derived from training-free
metrics and actual performance rankings across different tasks (55 [13; 145 [15)).

To address the limited transferability of individual training-free metrics in diverse tasks, researchers
have explored combining multiple such metrics for architecture evaluation. Depending on the methods
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of combination, several studies have emerged. Such as EZNAS (16)), Auto-Prox (17), Auto-GAS (18)
and Auto-DAS (18)), combine various symbolic regression operators to optimize training-free metrics.
These methods optimize the metrics by aligning the combined metrics scores with the performance
rankings across multiple task benchmarks. However, these approaches typically rely on a substantial
amount of training data. Moreover, the optimized training-free metrics are often tailored specifically
for the tasks in the training benchmarks, thereby limiting their applicability to a broader range of
search tasks. Some approaches aim to integrate training-free metrics with training-based search
methods. OMNI (19), ProxyBO (20), HNAS (14), and RoBoT (15)) utilize training-free metrics as
auxiliary information rather than sole evaluation criteria. During the training process, these methods
evaluate the significance of training-free metrics based on actual performance and refine these metrics
through surrogate models. However, these methods typically optimize the metric weights over the
entire search space, neglecting the varying sensitivities of different architectures to each metric. As a
result, the correlation of training-free metrics varies significantly among architectures with different
features, even within the same search space. Our experiments on NAS-Bench-201 (21)) across various
architecture sets confirm this point, with detailed results in Appendix [C.1]

To address the aforementioned challenges, we propose PO-NAS. PO-NAS assigns different weights to
training-free metrics for each architecture, uses the weighted sum of metrics for scoring, and employs
this score as a surrogate model to select the optimal architecture. It also dynamically adjusts the
weight allocation based on performance feedback, which enhances PO-NAS’s transferability across
diverse unknown tasks. Additionally, PO-NAS employs an evolutionary algorithm that efficiently
utilizes the surrogate model’s evaluation capabilities to enhance the exploration of the search space.
Our main contributions are as follows:

* We propose a surrogate modeling method, which assigns training-free metric weights to each
architecture, uses the weighted sum of these metrics as a surrogate model, and dynamically
adjusts the weights according to performance feedback.

* We propose an evolutionary algorithm that employs the surrogate model to efficiently
explore the search space. With particular parental selection mechanism along with crossover
and mutation methods, it enhances the balance between exploration and exploitation.

* We propose PO-NAS, a NAS method that effectively combines the efficiency of training-free
NAS with the robust performance of training-based NAS. Extensive experiments across
various datasets demonstrate PO-NAS’s superior performance and scalability.

2 Related Work

Training-free NAS Recent studies have proposed numerous training-free metrics for evaluating the
performance of different network architectures. Model-dependent training-free metrics are designed
for specific types of network architectures. For example, Zen-NAS (22) uses the Gaussian complexity
of linear classifiers within each linear region to measure the distribution of linear regions. On the
other hand, model-independent metrics exhibit higher transferability across different neural network
structures (23). For example, NASI (22) leverages the ability of Neural Tangent Kernel (NTK) (24)) to
characterize architecture performance at initialization to develop new training-free metrics. However,
many metrics still lack scalability across various architectures and tasks. Recent metrics such as Zico
(8), SWAP (10), and AZ-NAS (9) have demonstrated excellent performance across various search
tasks, but they still struggle to consistently exhibit robust evaluation performance across multiple
tasks. Recent research indicates that training-free metrics are generally complementary to one another,
an appropriate combination of these metrics can enhance rank correlation across multiple tasks (13)).

Hybrid NAS Some studies have attempted to integrate training-free metrics with training-based
neural architecture search methods to better balance efficiency and performance. These approaches
use the ground-truth performance on the target task as a supervisory signal. For example, OMNI
(19) accelerates architecture search by combining training-free metrics with Bayesian Optimization,
while ProxyBO (20) incorporates these metrics as input to the surrogate model to improve search
efficiency. HNAS (14) introduces techniques such as gradient normalization and dynamic weight
adjustment to improve the stability and reliability of gradient-based metrics. However, this approach
remains limited by the intrinsic constraints of single metrics. RoBoT (15) employs a weighted
linear combination to ensemble multiple training-free metrics and uses Bayesian Optimization to
dynamically adjust their weights based on real-time training feedback. However, these methods



typically optimize the metric weights over the entire search space, neglecting the varying sensitivities
of different architectures to each metric. They often settle for suboptimal solutions and struggle to
identify the globally optimal architecture. In contrast to these methodologies, PO-NAS analyzes
the sensitivity of individual architectures to various training-free metrics, assigning distinct metric
weights for each architecture accordingly, which enhances PO-NAS’s evaluation capability.
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Figure 1: Overview of PO-NAS. First, we randomly initialize a large number of architectures as the
initial pool and select several architectures for training to form the trained set. Pre-training stage, we
initialize the attention network and optimize the architecture encoder as well as the metrics predictor
with training-free metrics to generate embeddings that distinguish between different architectures.
Bayesian stage, we use the surrogate model to search for the optimal architecture, and optimize the
network which assigns weights to metrics for each architecture based on performance feedback. We
combine the surrogate model with the evolutionary algorithm to extensively explore the search space.

3 Our Methodology

3.1 Algorithm Principle

An appropriate combination of training-free metrics can enhance rank correlation across multiple
tasks (13). In this section, we explain how PO-NAS leverages training-free metrics to select the best
architecture while using the true performance feedback to optimize the metric weights. Let the search

space be defined as a set containing /N candidate architectures, i.e., A = {Az}ivzl The available
information includes: (a) the architecture graph G(.A); (b) the training-free metrics Z(.A) and (c) the
true performance f(A). When true performance data is limited, it is essential to fully exploit the
available information. G(.A) can be obtained as a prior; Z(.A) can be computed at a low cost; whereas
f(A) is the most valuable but also the most computationally expensive, making it difficult to serve as
large-scale supervision. Thus, we employ Z(.A) and G(.A) to train the architecture encoder, enabling
it to generate embeddings that distinguish architectures with different characteristics. This aspect
will be discussed in detail in Section[3.3] We assign different metric weights for each architecture
based on performance feedback f(.A). Given the constraints of limited search budgets 7', we adopt a
weighted linear combination as the fusion strategy for the metrics. This formulation is not only more
robust but also more efficient to optimize under limited supervision. Let Z7(A), Z2(A), ..., Zx(A)



be K complementary metrics. We define the scoring function for a single architecture A as:

k
S(Awa) =Y wau- Zi(A) e
=1

where w4 € A¥ is the weight vector corresponding to the architecture (satisfying >_ |w4 ;| = 1),
and Z;(A) denotes the normalized value of the i-th metric. To maximize the rank correlation between
the true performance f(.A) and the combined score S(.A;w 4) over a validation set, we formulate the
following weight optimization objective:

Wl = arg Syl ({S(A; wﬁ))}AeAt ; {f(A)}AeAt) @

where 7(+) denotes the Kendall rank correlation coefficient, and A is the set of candidate architectures
selected in iteration ¢t. With the optimized weights wfj), we can evaluate both the entire set of

candidates A, and the architectures discovered through the evolutionary algorithm.

3.2 Overall Framework

Algorithm 1 Pseudo code for PO-NAS

Require: True training performance function f, true training-free metrics function Z, the number of
the candidate architecture V;,,;, the number of the initial trained architecture N;, the pre-training
epochs T}, the BO search budget T’ and the evolution iteration T,
// Initialization (Appendix [B.3)
Candidate architecture set Ay < Generate randomly NN;,,; architectures
Candidate metrics set Zo < Compute the real training-free metrics Z(Ag)
Trained set Qg < Select N; architectures from Ay and obtain (A;,;, f(A;,;)) by training A,
// Pre-training stage (Section [3.3))
forstept =1,...,7, do
Train the architecture encoder and the metrics predictor using Zg and A
Optimize the architecture encoder with the node feature masking reconstruction task.
end for
10: Obtain architecture encoder E and metrics predictor P,
11: // BO search stage (Section [3.4)
12: forstept =1,...,7s do
13: Update the surrogate model M using Q;_1
14: if t > T, then
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15: /1 Evolution stage (Section [3.5)

16: Choose the excellent architecture set A, by M (E(A;—1),Z¢—1) from Ay

17: Select excellent architecture combinations C.; by Spqir(Appendix @ from A,
18: Obtain the offspring set A, by applying crossover and mutation operations to C.,,
19: Choose excellent offspring architectures A, by M (E(Ac), P.(Acp)) from A,y
20: Compute the real training-free metrics Z(Acp,,

21: Obtain At = Atfl @] {AChcz} and Zt = Zt,1 @] {Z(Achcz)}

22: end if

23: Obtain the best architecture Apest by M (E(A), Z;) from A,
24 while Abest € Q;_1do

25: Select next best architecture A, ..+ as Apest

26: end while

27: Obtain the true performance f(Apest) by training Apes:

28: Obtain Q; = Q; 1 U {(Abesta f(-Abest))}

29: end for

30: return the best architecture A, = argmax4 f(A)(a,f(A)eQr,

Bayesian Optimization (25) can effectively refine the surrogate model within a limited training
budget, making it highly suitable for our algorithm. Thus, we employ Bayesian Optimization (BO) to
optimize our surrogate model. The overall framework of PO-NAS is presented in Figure



Algorithm[T|describes our proposed method. (a) Initialization (lines 1-4 of Algorithm([I)): We randomly
initialize a large number of architectures as the candidate set and select several architectures for
training based on the average of all training-free metrics to form the initial trained set (Implementation
details can be found in Appendix[B.3); (b) Pre-training stage (lines 5-10 of Algorithm[I)): We optimize
the architecture encoder and the metric predictor using the initial architecture set and their training-
free metrics (Section [3.3)); (c) BO search stage (lines 11-29 of Algorithm|[I)): At each iteration, we
first update our surrogate model with the actual performance data of the trained architectures. Once
the surrogate model has been trained to a certain loss threshold, we use it to predict the performance
score of each architecture, rank the architecture pool based on these scores, select the highest-scoring
architecture for actual training, and then update the pool of trained architectures (Section [3.4); (d)
Evolution stage (lines 15-21 of Algorithm[I)): We select advantageous offspring based on predicted
scores, calculate the operation costs between them, and choose the best combinations for crossover
and mutation to obtain the offspring set (lines 16-18 of Algorithm [I). Additionally, we use the
surrogate model to forecast the scores of the offspring and select the top-ranked ones to calculate their
training-free metrics and update the initial architecture pool (lines 19-21 of Algorithm([T)) (Section[3.3).
After several cycles of iteration, we identify the optimal architecture.
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Figure 2: Model design of PO-NAS. Pre-training stage includes an architecture encoder, as well
as metric predictor and architecture reconstruction heads for supervised training. Bayesian stage
includes an attention network, which is utilized to generate metric weights by integrating architectural
embeddings with metric embeddings.

3.3 Architecture Encoder

In this section, we will provide a detailed description of the Architecture Encoder component.
The purpose of this component is to learn the structural characteristics of architectures through
training-free metrics, thereby generating embeddings that can distinguish between different types of
architectures. We employ a multi-head graph attention mechanism (GAT) (26)) to perform hierarchical
feature learning on the neural architecture. The model design of the architecture encoder is shown
in Figure[2} We use a two-layer GAT to encode graph features. We employ the Exponential Linear
Unit (ELU) post the GAT, driven by the nature of node connectivity in the topology. GAT processes
connections and operations between nodes, some of which may negatively correlate with predictions.
ELU’s smooth negative region (a(e® —1)) retains these critical negative features. The final graph-level
embedding hg is obtained through global average pooling. To effectively learn the expansion structure
of architectures, inspired by GraphMAE (27), we design a node feature masking reconstruction task
to enhance the robustness of architectural features. Specifically, we randomly mask node features z,,
with a probability ppask, replace them with learnable mask tokens m, and reconstruct the original
features through a linear decoder. The reconstruction loss is defined as follows:

1 .
Lrecon = Z ||xv - Zv”% (3)

|Vm‘ VEV



Where V,,, represents the set of masked nodes, and z,, is the reconstruction result. We define the
metric prediction loss as follows:

1N s
Emetric = E Z ||’P;(hg) - Zl(g)”; (4)
=1

Here, P! (hg) represents the i-th metric prediction value, and Z;(G) is the i-th training-free metric
value. During the pre-training phase, the encoder is optimized through the self-supervised recon-
struction loss and the training-free metric prediction loss. After the pre-training phase, we freeze the
architecture encoder and metric predictor, providing the graph-level embedding hg and the metric
prediction values P:(hg) for subsequent search stages.

3.4 Surrogate Model

Model Design We design a surrogate model based on a multi-head cross-attention network (28)),
aimed at assigning training-free metric weights for each architecture and generating architecture
scores. The design of the attention network is shown in Figure We utilize the multi-head
cross-attention mechanism to establish associations between architectural embeddings and metric
embeddings. Based on this, the network generates metric weights for each architecture, enabling
the surrogate model to generate scores for predicting the performance of each architecture. We
introduce a dynamic gating module to regulate the integration ratio between attention outputs and
original metric embeddings. To improve cross-modal interaction efficiency, each metric embedding
and architectural embedding is equipped with a Linear-GELU-Linear trio, mapping the original
embeddings into a higher-dimensional space. We employ GELU to enhance the representation of
high-level topological features. The linearly transformed features require refined nonlinear processing.
GELU'’s probabilistic gating (z - ®(x)) captures complex node interactions, while its smoothness
aids hierarchical feature propagation. Each metric is transformed into a dense vector through an
embedding layer, with residual connections incorporated to retain original features and enhance
representational capacity. A three-layer MLP network is employed to generate metric weights.

Normalize and Loss Function To fairly evaluate the sensitivity of different architectures to various
metrics, we normalize the training-free metrics and their weights. The spemﬁc implementation details
can be found in Appendix E After obtaining the normalized metrics Z; and the weights w;, we
decompose the normalized weights @ into positive activation weights @ = ReLU(10) and negative
activation w~ = ReLU(—), and construct the scoring function as follows:

(@7 - Zi+ 07 - (1- 2)) ®)

I
)
i
i

Most studies evaluate the performance of training-free metrics by calculating the correlation coeffi-
cient between the ranking of training-free metrics and the actual performance ranking of architectures.
However, in this algorithm, due to the limited availability of real performance data, calculating the
correlation coefficient is not feasible. Therefore, we use the alignment loss between the distribution
of differences in architecture scores and actual performance as the main supervisory signal for the
surrogate model. Due to the model score being ultimately derived from a weighted sum of metrics, it
is challenging to fine-tune the weights to ensure accurate ranking among architectures with closely
matched performance. Hence, we introduce a difference threshold 7Ty, to reduce the impact of archi-
tectures with closely similar performance on the optimization difficulty. We calculate the loss only
for correctly ranked architecture combinations. For the trained set Q; of iteration ¢, where the true
performance of the architecture has been obtained, the alignment loss is defined as follows:

5pred = SA,; - S.Aj7 5true = f(Az) - f(Aj) (Vl,j € C(Qt7 2))

9 if |5true| < TTh
) if 6pred . 6true >0
0, otherwise

lion = |:H |6pred| © M E Hdpred” ‘5true| ®© M ]E |5[rue| H:|
dlgn |6pred|) (|5true|

—_

M:

—_

(6)



E(-) denotes the expectation, o(-) denotes the standard deviation and ® denotes the element-wise
multiplication. Additionally, we incorporate the correlation between scores and performance Lo as
an auxiliary loss and add a direction alignment penalty Lg;, to ensure overall ranking accuracy:

Leor =1~ P ({SA}Ath 7{f(A)}A€Qt) )
where p(-) denotes the Pearson correlation coefficient.
Edir =E [ReLU(_(spred : 6true>] (8)

At the beginning of each iteration, the surrogate model is updated through the alignment loss, the
correlation loss, and the direction alignment loss.

3.5 Evolutionary Algorithm

We develop a novel evolutionary algorithm that employs the surrogate model to efficiently ex-
plore the search space. Detailed methods are provided in Appendix [A] This algorithm employs
matrix encoding to map topological structures into operable matrix forms. To effectively mea-
sure the intrinsic differences between architectures, we compute the shortest operation path and
operation cost between two parent architectures and propose the shortest operation path crossover.
We enumerate the neighborhood space of elite archi-
tectures using a neighborhood mutation strategy and
adopt an adaptive selection mechanism to balance ex-
ploration and exploitation. As shown in Figure[3] in
the early stages of search, it prioritizes offspring com-
binations with higher computational costs to enhance
global search capabilities by increasing architectural
diversity. In the later stages, it shifts to fitness-based
selection, focusing on high-performing individuals to
deepen local optimization. The algorithm leverages Epoch=11 Epoch=23

the efficient evaluation speed of the surrogate model

described in Section [3.4] to efficiently explore the

search space. Through the evolutionary algorithm, Figure 3: These figures represent two-
as illustrated in Figure E], we are able to focus on  dimensional (2-D) embeddings of high-
a large number of samples in the search space with dimensional search space. Red dots: superior
very limited computational cost, thereby identifying architectures; Blue dots: candidate architec-
optimal solutions among the search space. tures; Orange dots: exploration areas.

4 Experiments

4.1 PO-NAS on NAS Benchmark

To validate the robustness and exceptional predictive performance of PO-NAS across various tasks,
we conduct comprehensive experiments on multiple popular NAS benchmarks. These benchmarks
include 20 distinct training tasks: NAS-Bench-201 (21), TransNAS-Bench-101 (34), and DARTS (11).
PO-NAS utilizes 6 metrics outlined by (5)): grad_norm, snip, grasp, fisher, synflow, and jacob_cov.
Implementation details and more empirical results can be found in Appendix [B|and Appendix [C|

Table[T] Table[2] Table [3]and Table [ present the performance results of PO-NAS on NAS-Bench-201,
DARTS and TransNAS-Bench-101. In the large-scale DARTS search space, PO-NAS demonstrates
remarkable performance. This is attributed to its integration of the advantages of both training-free
and training-based NAS methods. It optimizes training-free metrics based on training performance
without relying on training benchmarks and leverages the efficient computational speed of training-
free metrics. By utilizing training-free metrics and the layer-wise evaluation of the surrogate model,
PO-NAS only requires training a small number of architectures (25), yet it can focus on a large
number of architectures (approximately 50000) during the search phase. With a balanced exploration-
exploitation search strategy, PO-NAS can rapidly and effectively explore the large-scale search space
relying solely on limited training. Moreover, the results on NAS-Bench-201 and TransNAS-Bench-
101 indicate that PO-NAS significantly enhances the evaluation capability of the original metrics. By
optimizing the corresponding metric combinations for different types of architectures, PO-NAS gains



Table 1: Comparison of various NAS algorithms in NAS-Bench-201. Results are reported with the
mean =+ standard deviation of 10 runs. "Training-free (Avg./Best)" represent the average value of
metrics and the best individual metrics. The best results are bold, and the second best are underlined.

Test Accuracy (%)

Algorithm Cost Method
C10 C100 IN-16 (GPU Sec.)
ResNet (29) 93.97 70.86 43.63 - manual
REAT 93.92+0.30 71.84+0.99 45.15+0.89 12000 evolution
RS (w/o sharing)? 93.70+£0.36  71.04+1.07 44.57+1.25 12000 random
REINFORCE 93.85+0.37 71.71x1.09 45.24+1.18 12000 RL
BOHB' 93.61+£0.52  70.85+1.28 44.42+1.49 12000 BO-+bandit
DARTS (2nd) (11) 54.30+£0.00 15.61+0.00 16.32+0.00 43277 gradient
DrNAS (30) 93.98+0.58 72.31+1.70 44.02+3.24 14887 gradient
Sharply-NAS (31) 94.05+0.19 73.15+0.26 46.25+0.25 14762 gradient
B-DARTS (32) 94.00+£0.22 72.91+0.43  46.20+0.38 3280 gradient
TE-NAS 4) 93.90+0.47 71.24+0.56 42.38+0.46 1558 training-free
NASI (33) 93.55+0.10 71.20+0.14 44.84+1.41 120 training-free
GradSign (7) 93.31+0.47 70.33+1.28 42.42+2.81 1824 training-free
ZiCo (8) 93.50+0.18  70.62+0.26  42.04+0.82 372 training-free
AZ-NAS (9) 93.53+0.15 70.75+0.48 45.43+0.29 43 training-free
HNAS (14) 94.04+0.21 71.75+1.04 45.91+0.88 3010 hybrid
RoBoT (15) 94.36+0.00 73.51+0.00 46.34+0.00 3051 hybrid
Training-free (Avg.) 92.00 70.66 45.73 - training-free
Training-free (Best) 93.76 71.11 42.60 - training-free
PO-NAS 94.12+0.22  73.51+0.00 46.71+0.12 3162 hybrid
Optimal 94.37 73.51 47.31 - -
tReported by (21)

Table 2: Performance comparison among various NAS algorithms on ImageNet on DARTS search
space. The search costs are evaluated on an Nvidia 1080Ti. The best results are in bold, and the
second best are underlined.

Algorithm Test Error (%) Params +Xx Search Cost
Top-1  Top-5 M) (M) (GPU Days)
Inception-v1 (35) 30.1 10.1 6.6 1448 -
MobileNet (36) 294 10.5 4.2 569 -
AmoebaNet-A (1) 25.5 8.0 5.1 555 3150
PNAS (37) 25.8 8.1 5.1 588 225
MnasNet-92 (38) 25.2 8.0 4.4 388 -
DARTS (11) 26.7 8.7 4.7 574 4.0
ProxylessNAS (39) 24.9 7.5 7.1 465 8.3
SDARTS-ADV (40) 25.2 7.8 5.4 594 1.3
TE-NAS (4) 24.5 7.5 54 - 0.17
NASI-ADA (33) 25.0 7.8 4.9 559 0.01
QE-NAS 41) 25.5 - 3.2 - 0.02
SWAP-NAS (10) 24.0 7.6 5.8 - 0.006
HNAS (14) 24.3 7.4 5.1 575 0.5
RoBoT (15) 24.1 7.3 5.0 556 0.6
PO-NAS 23.9 7.1 6.3 667 0.64




an advantage in exploring the best architecture. However, this optimization also correspondingly in-
creases the difficulty of surrogate model optimization, thereby affecting the stability of its performance
to some extent. Nevertheless, PO-NAS still achieves competitive results.

Table 3: Performance comparison among various NAS algorithms on CIFAR-10/100 on DARTS
search space. The performance of the final architectures selected by PO-NAS is reported with the
mean * standard deviation of 5 runs. The search costs are evaluated on an Nvidia 1080Ti. The best
results are in bold, and the second best are underlined.

Algorithm Test Error (%) Params (M) Search Cost Search Method
C10 C100 C10 C100 (GPU Hours)
DenseNet-BC (42) 3.46* 17.18* 25.6 256 - manual
NASNet-A (43)) 2.65 - 33 - 48000 RL
AmoebaNet-A (1) 3.34+0.06 18.93% 3.2 3.1 75600 evolution
PNAS (37) 3.41+£0.09 19.53* 3.2 32 5400 SMBO
ENAS (44) 2.89 19.43%* 4.6 4.6 12 RL
NAONet (45)) 3.53 - 3.1 - 9.6 NAO
DARTS (2nd) (L1)) 2.76+0.09 17.54% 33 34 24 gradient
GDAS (46) 2.93 18.38 34 34 7.2 gradient
NASP 47) 2.83+0.09 - 33 - 2.4 gradient
DARTS- (avg) (11)  2.59+0.08 17.51£0.25 3.5 33 9.6 gradient
SNAS (48) 2.85+0.02 20.09 2.8 2.8 36 gradient
SETN (49) 2.69 17.25 34 34 432 gradient
SDARTS-ADV (40) 2.61+0.02 - 33 - 31.2 gradient
R-DARTS (L2) (80) 2.95+0.21 18.01+0.26 - - 38.4 gradient
TE-NAS 4) 2.83+0.06 17.42+0.56 3.8 39 1.2 training-free
NASI-ADA (33) 2.90+0.13 16.84+0.40 3.7 3.8 0.24 training-free
HNAS (14) 2.62+0.04 16.29+0.14 3.4 3.8 2.6 hybrid
RoBoT (15) 2.60+0.03 16.52+0.10 3.3 3.8 35 hybrid
PO-NAS 2.5240.03 16.35+0.12 3.8 4.2 39 hybrid

4.2 Ablation Studies

We conduct a series of ablation studies on PO-NAS to investigate the impact of different components
and parameter settings. These factors include ensemble method, pre-training loss, difference threshold
T and loss threshold, the number of combined training-free metrics and evolutionary algorithm.
Implementation details and more detailed experimental results can be found in Appendix
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Figure 4: Ablation study of the surrogate model in TransNAS-Bench-101 regarding the number of
searched architectures. All methods are reported with the mean and standard error of 10 independent
searches. Implementation details and more empirical results are provided in Appendix [D.1]

Ablation Studies on Surrogate Model To investigate the impact of the surrogate model and its
various components on the performance of PO-NAS, we conduct a series of ablation studies on PO-
NAS in TransNAS-Bench-101. These experiments focus on three main aspects: (a) Ablation studies
of global optimization versus per-architecture optimization (GP, w/o encoder); (b) The influence



Table 4: Performance comparison of NAS algorithms in TransNAS-Bench-101. All methods search
for 100 architectures. The results of RoBoT, HNAS and PO-NAS are reported with the mean +
standard deviation of 10 runs, while 50 independent searches for REA, RS, and REINFORCE.
"Training-free (Avg./Best)" represent the average value of metrics and the best individual metrics.

Space  Algorithm Accuracy (%) L2 Loss (x1072)  mloU (%) SSIM (x1072)
Scene Object Jigsaw Layout Segment. Normal Autoenco.
REA 54.63+0.18 44.88+0.31 94.73+0.14 -62.02+0.59 94.56+£0.02  56.76+0.33  56.00+0.71
RS (w/o sharing) 54.53+0.19 44.76+0.45 94.61+0.29 -62.17+0.98 94.5240.03  56.45+0.25 55.27+0.90
REINFORCE 54.49+0.19 44.64+0.38  94.69+0.16 -61.61+0.91 94.53+0.04 57.06+£0.35 55.47+0.72
HNAS 54.29+0.09 44.08+0.00 94.56+0.21 -64.83£1.69 94.5740.00  56.88+0.00 48.66+0.00
Micro RoBoT 54.87+£0.00 45.59+£0.00 94.82+0.06 -61.16+0.86 94.58+0.00 57.44+0.34 55.42+1.05
Training-free (Avg.) 49.10 40.85 83.49 -73.79 94.43 53.42 35.56
Training-free (Best) 53.72 41.78 91.08 -70.25 94.53 55.22 41.77
PO-NAS 54.90+0.03  45.59+0.00 94.91+0.09 -61.55+0.75 94.60+£0.01 57.08+0.14  55.62+0.41
Optimal 54.94 45.59 95.37 -60.10 94.61 58.73 57.72
REA 56.65+0.31 46.87+0.33  96.75+0.08 -60.38+1.12 94.80£0.03  60.57£0.56 71.39+2.76
RS (w/o sharing) 56.69+0.25 46.60£0.36  96.72+0.24 -60.43£1.16 94.76+£0.03  60.61+0.51 71.07+2.75
REINFORCE 56.43+0.29  46.66+0.30 96.80+0.14 -60.36+1.11 94.78+0.04  60.34+0.52 69.21+2.55
HNAS 55.03£0.00 45.00+0.00 96.28+0.18 -61.40+0.11 94.79£0.00  59.27+0.00  57.59+0.00
Macro RoBoT 57.35+0.13  46.94+0.09  96.92+0.02 -58.88+0.70 94.85£0.02  61.66+0.00 73.53+0.06
Training-free (Avg.) 54.50 43.93 95.20 -65.06 94.54 60.93 64.78
Training-free (Best) 56.27 46.05 96.51 -63.41 94.70 60.93 65.11
PO-NAS 57.41£0.00 47.05+0.01 96.97+0.04 -58.44+0.22 94.86+0.00 64.35+0.00 74.19+0.23
Optimal 57.41 47.42 97.02 -58.22 94.86 64.35 74.88

of different normalization methods (w/o Negative, w/o Normal, Rank); (c) Ablation studies of the
surrogate model itself: Eliminate the surrogate model and directly use the average value of all metrics
(Avg) and the best individual metrics (Best) for prediction. "OPTIMAL" denotes the performance of
the optimal architecture on the entire dataset. Partial experimental results are presented in Figure 4]
which fully demonstrate the effectiveness of our surrogate model and its various components.

Ablation Studies on Evolutionary Algorithm We analyze the impact on PO-NAS performance
from: (a) The evolutionary algorithm itself (w/o Evolution, REA); (b) The evolutionary algorithm
components (w/o N, w/o Mutation, w/o Crossover); Figure [5] shows partial experimental results,
indicating our evolutionary algorithm’s robust and excellent search capability across various initial
architecture counts. Implementation details and more empirical results are provided in Appendix
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Figure 5: Ablation study of the evolutionary algorithm on DARTS regarding the number of searched
architectures. All methods are reported with the mean and standard error of 10 independent searches.

5 Conclusion and Future Work

We propose PO-NAS which: (a) Employs a surrogate model to assign training-free metric weights
for each architecture and generate architecture scores, effectively enhancing the capability to select
the best architecture using training-free metrics; (b) Employs a novel evolutionary algorithm that
integrates the surrogate model for rapid architecture evaluation to efficiently explore large-scale search
spaces. Extensive experiments have demonstrated PO-NAS’s superior performance and scalability.
To enhance model stability, we plan to cluster architectures and optimize metrics for each cluster
rather than for individual architectures in the future.
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A More Details about Evolutionary Algorithm

In this section of the appendix, we provide a detailed explanation of the evolutionary search algorithm
employed in PO-NAS. PO-NAS utilizes a cell-based search space, similar to that found in related
work such as DARTS (11). Regarding the search strategy, PO-NAS selects parent architectures based
on operation costs and the scores provided by the surrogate model. The search process involves
a series of candidate offspring rather than a single network at each step. This population-based
approach allows for broader coverage of the search space, thereby increasing the likelihood of
discovering high-performance architectures. Although evolutionary search algorithms are typically
resource-intensive due to the need for multiple evaluations, PO-NAS mitigates this drawback by
leveraging the low assessment costs of the surrogate model. Thus, our aim is to offer an evolutionary
algorithm that is both efficient and effective, enabling extensive exploration of the search space
without incurring excessive computational costs.
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Figure 6: Matrix encoding method of PO-NAS. (a) Matrix encoding method of PO-NAS (DARTS).
(b) Changes in node operation types correspond to changes in matrix elements. (c) Changes in node
connection targets correspond to the swapping of matrix elements.

A.1 Architecture Coding Method

Figure [f]illustrates the cellular matrix encoding representation of PO-NAS within the DARTS search
space. With this encoding, PO-NAS can acquire structural information of specific architectures
for subsequent calculations of minimal operation paths and costs. As shown in Figure[f] a unique
DARTS architecture is encoded as a 4x7 matrix, where each index represents a type of connection,
with specific operations depicted in the figure. The matrix can be adjusted based on the type of
search space. A ’0’ in the matrix indicates the absence of a connection, and the matrix is segmented
according to the connection patterns. In the case of the DARTS search space, since each operational
node is only connected to the two preceding nodes, we allocate corresponding matrix elements based
on the number of connectable nodes for each node, forming an upper triangular matrix. As DARTS
includes both normal cells and reduction cells , combining two upper triangular matrices into one
represents a unique DARTS structure. With this matrix representation, evolutionary searches and
calculations of the shortest operation paths can be performed by simply manipulating the matrix. For
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instance, operation types can be changed by altering the values of specific elements, or the connection
targets of individual nodes can be modified by swapping the positions of elements within the matrix.
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Figure 7: Calculation method of the shortest operation path and the minimum operation cost. This
method operates on a set of nodes (for example, a node vector of length 5), initially expanding two
node vectors into a concatenated matrix, followed by the application of Algorithm 2]to carry out the
specific computation process.

A.2 Minimal Operation Path and Cost

Research indicates that the predictive performance differences between architectures are positively
correlated with their Graph Edit Distance (GED) ((31), (52), (33)), (54)). The Shortest Edit Path
(SEP) effectively encodes the fundamental differences between two architectures. Inspired by
these studies, we employ the shortest operation path and minimum operation cost to measure the
differences between architectures. The shortest operation path is defined as the minimum set of
operations required to transform one architecture into another within a set of architectures through
matrix-based transformations, which include element changes and element swaps. This path not
only considers the direct changes in the elements of the architecture but also the changes in the
relative positions of the elements. In this way, we can more accurately assess the similarity and
differences between architectures. The minimum operation cost refers to the total sum of all operations
in the shortest operation path. The minimum operation cost provides a method for quantifying
structural differences, allowing us to prioritize architectures during the search process that can
achieve significant performance improvements with fewer operations and to measure the extent of
exploration of the search space in the current search process. The specific calculation method is
illustrated in Figure[7)and Algorithm[2]

Specifically, our calculations are based on a set of nodes (for example, node vectors of length 5),
expanding two node vectors into a concatenated matrix. Using this concatenated matrix, we compute
the shortest operation path and minimum operation cost, then sum the shortest operation paths and
minimum operation costs of all nodes to obtain the overall shortest operation path and minimum
operation cost between two different architectures.

In a single concatenated matrix, the elements on the diagonal represent the positional information of
operations in the two node vectors, while the elements within the node vectors represent the type of
operations. Our goal is to align the positional elements of the node vectors (i.e., the two elements on
the diagonal are either both O or neither is 0) and to make the operation types of the node vectors
consistent (i.e., the two elements on the diagonal are equal).
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Let the individual element vector of the concatenated matrix be denoted as A4, ; = (A4, B). To
minimize the operation path, we prioritize positional transformations of elements that have the same
operation type but different positions: select elements off the diagonal where A = B, denote the
column index of these elements as j, and then swap all elements B in that row with all elements
B in row j (lines 2-9 of Algorithm[2). Next, we align the positional elements of the node vectors:
when the number of elements on the diagonal where A = B is less than 2, select elements where
neither A nor B is 0, denote the row index as i and the column index as j; if element A at A, ; is
0 and element B at A; ; is also 0, swap all elements B in row i with all elements B in row j (lines
10-19 of Algorithm 2). Finally, we make the operation types of the node vectors the same: select
elements on the diagonal where A # B, and set B = A (lines 20-27 of Algorithm [2)). We record all
transformation operations and calculate the length of the operation set, thereby obtaining the shortest
operation path and minimum operation cost for the architectural combination.

Algorithm 2 calculation minimal operation path and cost of two nodes

Require: Concatenated matrix A, the number of rows in concatenated matrix R
: C=0,0=0

2: for each pair (i, j) in combinations of rows from 1 to R do

3 if 7 7£ ] and A17J[1] = Ai,j [2] then

4: Swap every A; j[2]a, ;ca, withevery A; ;[2]a, ca,,

5: Record exchange operation as O, (i, j)

6 O0=0U{0Ocx(4,7)}

7 C=C+1

8 end if

9: end for

10: while the length L, of vector a = {4, ;, (i = 7, A; ;[1] # 0,4, ;2] # 0)} < 2do
11: for each pair (i, j) in combinations of rows from 1 to R do

12: if i ;éj , Az,j[l] # 0, Ai,j [2] 7& 0, Azﬂ[l] =0and A]‘J' [2] = 0 then
13: Swap every A; j[2]a, ;ca, . withevery A;;[2]a, ca,.

14: Record exchange operation as O, (i, j)

15: O=0U{0Oc(i,5)}

16: C=C+1

17: end if

18: end for

19: end while

20: for each pair (i, j) in combinations of rows from 1 to R do
21: if i = jand A; ;[1] # A; ;[2| then

22: AL]’ [2} — Ai,j [1]

23: Record change operation as Oy, (A; ;[1], 4; ;[2])
24: 0 =0U{0cn(Ai;[1], A [2])}

25: C=C+1

26: end if

27: end for

28: return the operation set O, the operation cost C

A.3 Crossover and Mutation

By leveraging the low-cost evaluation advantages of the surrogate model and training-free metrics,
PO-NAS is capable of focusing on and assessing a vast number of architectures without incurring
significant additional costs. This approach greatly expands the search scope, allowing the algorithm
to effectively explore a broad architectural space. To more efficiently guide the search process for
these architectures, we introduce a novel crossover and mutation strategy. This strategy is specifically
designed to simultaneously explore unknown subspaces and local optima within large search spaces.

Shortest operation path Crossover PO-NAS employs a novel crossover method to generate
offspring architectures. Specifically, we first calculate the shortest operation path between two
parent architectures, representing the minimum set of operations required to transform one parent
architecture into the other. We then randomly shuffle the operational steps in this shortest operation
path to ensure diversity and exploratory nature in the search process, thereby increasing the coverage
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of the search space. Subsequently, to balance the need to explore new architectural spaces with the
utilization of known effective operations, we randomly select half of the shuffled operational steps for
application. The chosen operations are applied to one of the parent architectures, thereby generating
a new offspring architecture. Shortest operation path crossover is illustrated in Figure ]

Neighborhood Traversal Mutation After completing the crossover operation, to enhance the
exploration capabilities around local optima, we traverse all neighboring architectures that have
an operation cost of 1 with respect to the newly generated offspring architectures. By traversing
these neighboring architectures, we are able to identify subtle changes that may lead to significant
performance improvements, without straying too far from the current architecture. This approach
achieves a balance between maintaining the stability of the solution and exploring new solutions.
Neighborhood traversal mutation is illustrated in Figure|[g]

N ————————————— - -

S ——_
R ——

O e e

Figure 8: Shortest operation path crossover and neighborhood traversal mutation

A.4 Search Strategy

To balance the exploration and exploitation of the search space, we introduce an exploration weight
N € (0,1). During each iteration, we select a subset of superior architectures based on the surrogate
model’s scores. These architectures are then paired, and the operation cost for each pair is calculated

and normalized, denoted as S”cost. Additionally, we compute the sum of surrogate model scores for

these architecture pairs and normalize it, denoted as S’pm. The final score for the architecture pair is
denoted as follows:

Spair = Ngcost + (]- - N)Spre 9

In the early stages of the search, we set a higher exploration weight N to enrich the distribution of
offspring architectures and enhance the exploration of the search space. As the search progresses,
we reduce the exploration weight to focus more on the performance scores of the architecture pairs,
aiming to identify the optimal architecture. All offspring architectures generated by the evolutionary
algorithm are predicted using the surrogate model, combining the training-free metric predictor and
the surrogate model weights to jointly predict scores. Given the potential errors in the training-
free metric predictor, we select the top-performing offspring based on predicted scores and further
calculate their actual training-free metrics to ensure accurate assessment. This approach significantly
reduces the evaluation cost of offspring architectures, allowing PO-NAS to thoroughly explore large
search spaces at a low training cost.
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B Experimental Details

B.1 Benchmark

NAS-Bench-201 NAS-Bench-201 (21) is a widely utilized benchmark for Neural Architecture
Search (NAS), with its search space primarily composed of stacked cellular structures. Each cell
consists of 4 nodes interconnected by 6 edges. The operation on each edge can be one of the
following five types: 3x3 convolution, 1x1 convolution, 3x3 average pooling, zeroize, or skip
connection. Consequently, the search space encompasses a total of 5° = 15,625 distinct neural
architectures. These architectures have been evaluated across three datasets: CIFAR-10 (C10) (55),
CIFAR-100 (C100), and ImageNet-16-120 (IN-16) (56).

TransNAS-Bench-101 TransNAS-Bench-101 (34) offers a variety of search spaces and benchmark
tasks, typically used to assess the transferability of Neural Architecture Search (NAS) algorithms
across different tasks. Unlike NAS-Bench-201, which primarily focuses on cellular structures,
TransNAS-Bench-101 explores both micro cellular structures and macro skeleton structures. The
cellular search space is similar to that of NAS-Bench-201 but includes only four operations (excluding
average pooling), resulting in a total of 4 = 4,096 neural architectures. In the macro search space,
the cell structure is fixed, while the skeleton is variable. The skeleton consists of 4 to 6 modules, each
containing two residual blocks. Each module can choose to downsample the feature map, double the
number of channels, or perform both operations. Throughout the entire architecture, downsampling
may occur 1 to 4 times, and channel doubling may occur 1 to 3 times, yielding a total of 3,256 distinct
architectures. TransNAS-Bench-101 evaluates these architectures on seven different visual tasks,
all using a single dataset of 120K indoor scene images derived from the Taskonomy project (57).
These tasks include scene classification, object detection, jigsaw puzzle solving, room layout analysis,
semantic segmentation, surface normal estimation, and autoencoding.

DARTS DARTS (11) is a well-known example of an extensive search space in the domain of neural
architecture search (NAS). An architecture in DARTS comprises two types of cells: a normal cell
and a reduction cell. Each cell features two input nodes and four intermediate nodes, where each
intermediate node is connected to two randomly chosen preceding nodes via an edge. Across each
edge between the nodes, a selection of seven different operations can be applied. In contrast to other
benchmarks, DARTS boasts an immense search space, encompassing 10*® distinct architectures.

B.2 Training-free Metric

Grad_Norm Abdelfattah et al. (5)) introduced a set of training-free scoring functions, drawing inspi-
ration from the literature on pruning at initialization. Among these, the gradient norm (Grad_Norm)
metric computes the aggregate Euclidean norm of the gradients following the propagation of a single
mini-batch through the network.

Fisher The Fisher metric was initially introduced in (58) to quantify the impact of model parameters
on loss, facilitating the removal of activation channels with minimal loss impact through channel
pruning. Turner et al. (59) aggregated the Fisher metric across all channels within a convolutional
primitive to assess the significance of that primitive when substituted with a more efficient alternative.
It can be formulated as follows:

oL \? M
Su(z) = <azz> s =Y 8.2 (10)
=1

where S, is the saliency per activation z, and M is the length of the vectorized feature map.

SNIP Lee et al. (60) proposed performing parameter pruning based on a saliency metric computed
at initialization using a single minibatch of data. This metric approximates the change in loss when a
specific parameter is removed. SNIP calculates the saliency metric before training with only a single
mini-batch of input data to estimate the loss variation caused by the removal of a particular parameter.
oL
S,(0) =500 11
/0= |55 o9 (1)
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where L is the loss function of a neural network with parameters 6 and © is the Hadamard product.

Grasp Wang et al. (61) aimed to enhance the SNIP metric by approximating the gradient norm
change upon parameter pruning. Grasp measures the gradient norm alteration during neural network
pruning. It can be formulated as follows:

oL
S,(0) = — (Hao) ©0 (12)

where H is the Hessian, S, is the per-parameter saliency.

SynFlow Tanaka et al. (62) generalized synaptic saliency scores and proposed SynFlow, a modified
version that prevents layer collapse during parameter pruning. SynFlow computes a loss based on the
product of all network parameters, eliminating the need for data.

oL
Sp(0) 20 ©f (13)
Jacobian Covariance (Jacob_Cov) Jacob_Cov (63) is specifically designed to evaluate neural
networks in the context of NAS. To put it simply, it reflects the correlation between activations within
a neural network when influenced by different inputs in a minibatch of data. The lower the correlation,
the better the network’s performance, as it indicates the network’s ability to effectively distinguish
between various inputs.

B.3 Implementation Details of PO-NAS

Normalize To equitably assess the sensitivity of various architectures to different metrics, we
normalize the training-free training metrics and metric weights using the following normalization
function to map them into the interval (0,1). For the i-th training-free metric Z; of a single architecture:

N Zi — Zimi

Z, = — (14)

2Zi,max - Zi,min
Zi max and Zj min represent the maximum and minimum values of the i-th metric across all architectures.
For the i-th training-free metric weight w; of a single architecture:
w;

w; = (15)
[[wll

where ||w||; denotes the L1 norm of the weight vector w including the weights of all training-free
metrics for a single architecture. To enable the model to account for both the positive and negative
correlations of metrics, we retain the positive and negative correlations of model weights.

Surrogate Model In this section, we provide a detailed description of the training setup for the
surrogate model in PO-NAS. After a series of experimental tests, we identify an optimal set of training
parameters and apply a uniform training strategy across all datasets. During the pre-training phase,
we divide the training dataset for the architecture encoder into training and test sets in a 1 : 4 ratio and
randomly mask 20% architectures for the mask reconstruction task. We train the architecture encoder
using the initial architectures and their corresponding training-free metrics, employing stochastic
gradient descent (SGD) over 100 epochs. In the first 5 epochs, the learning rate is initially increased
to 5 x 1073 and then gradually reduced to 0 according to a cosine annealing schedule, with a batch
size of 64. In the Bayesian Optimization (BO) phase, we set a loss threshold of 0.1 (for some tasks in
TransNAS-Bench-101, adjustments are made due to the peculiarity of the loss metric values) and a
maximum number of iterations of 100. Each iteration begins with a training period of 100 epochs,
increasing by 10% per iteration, and the model weights are reset after each iteration until the model
reaches the loss threshold or the maximum number of iterations is reached, after which the best
model weights are saved. The loss difference threshold 7y, is set to 0.1 (adjustments are made for
some tasks in TransNAS-Bench-101 due to the peculiarity of the loss metric values). We use the
Adaptive Moment Estimation (Adam) optimizer to train the surrogate model. In the first 10 epochs,
the learning rate is initially increased to 3 x 10~* and then gradually reduced to 0 according to a
cosine annealing schedule, with a weight decay of 0.01. Additionally, we employ gradient clipping
with max norm = 1 to prevent gradient explosion.
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PO-NAS on NAS-Bench-201 and TransNAS-Bench-101 For NAS-Bench-201 and TransNAS-
Bench-101, to assess the effectiveness of our method through ablation studies, we adopt the same
training-free metrics as those used in the RoBoT experiment. These metrics include the six training-
free metrics outlined by (5)): grad_norm, snip, grasp, fisher, synflow, and jacob_cov. To ensure the
reproducibility of the experimental results, we utilize NAS-Bench-Suite-Zero (13)) to calculate these
training-free metrics for both NAS-Bench-201 and TransNAS-Bench-101. Due to the relatively small
search space, we utilize only the surrogate model without employing the evolutionary algorithm. For
NAS-Bench-201, we maintain the experimental conditions consistent with RoBoT and HNAS, using
the CIFAR-10 validation performance after 12 training epochs from the table data in NAS-Bench-201
as the objective evaluation metric for all three datasets, and calculate the search costs displayed in the
same manner (i.e., the training cost of 20 architectures). However, we report the full training test
accuracy of the proposed architectures after 200 epochs. For the training tasks Segmentation, Normal,
and Autoencoding in TransNAS-Bench-101, to maintain consistency in experimental conditions, we
do not use the training-free metric Synflow and only employ the remaining five training-free metrics.
For TransNAS-Bench-101, we only report the validation performance of the architectures identified
through the search process.

PO-NAS on DARTS For the DARTS search space, we establish a pool of 10000 diverse architec-
tures and calculate six training-free metrics for these architectures: grad_norm, snip, grasp, fisher,
synflow, and jacob_cov. These assessments are conducted on the corresponding datasets. For the
CIFAR-10 and CIFAR-100 datasets, we allocate a budget of 25 search attempts for PO-NAS, with
each optimal architecture identified undergoing 10 epochs of training. For the ImageNet dataset, we
set a budget of 10 search attempts, with each optimal architecture undergoing 3 epochs of training.
We select three initial architectures to initialize the surrogate model, which are the top three based on
the average scores of the training-free metrics. (As the surrogate model predicts architecture scores
based on a combination of training-free metrics, it can still demonstrate a certain level of evaluation
performance even with a limited number of initial architectures. Therefore, we do not choose to
initialize more architectures.) We initiate the evolutionary algorithm at the 10th epoch (3rd epoch on
ImageNet) of the Bayesian Optimization (BO) phase. Following the experimental setup of DARTS
(11), we construct a 20-layer network architecture based on the identified cell structures. The initial
number of channels for these architectures is set to 36, with the auxiliary tower weight set to 0.4 for
CIFAR-10, located at the 13th layer; for CIFAR-100, the auxiliary tower weight is set to 0.6. We test
these architectures on CIFAR-10 and CIFAR-100 through 600 epochs of stochastic gradient descent
(SGD). The learning rate starts at 0.025, gradually decreasing to 0 for CIFAR-10 and from 0.035 to
0.001 for CIFAR-100, using a cosine annealing strategy. Momentum is set to 0.9, weight decay to
3 x 10~*, and batch size to 96. Additionally, we employ Cutout (64) and ScheduledDropPath as
regularization techniques, which are linearly increased from 0 to 0.2 for CIFAR-10 and from 0 to 0.3
for CIFAR-100. For ImageNet, we train a 14-layer architecture from scratch for 250 epochs with a
batch size of 1024. In the first five epochs, the learning rate is initially increased to 0.7, then gradually
decreases to zero according to a cosine schedule. When using the SGD optimizer, momentum is 0.9,
and weight decay is 3 x 107°.

Average and Best Training-free Metric Performance (Avg.) (Best) We report on the evaluation
performance of the training-free metrics employed by PO-NAS. We compute the training-free metrics
for all architectures and select the ones with the highest scores for further assessment. Specifically,
"Best" refers to the architecture that demonstrated the most outstanding performance among the
optimal architectures identified by separate evaluations of different metrics, while "Avg." denotes the
architecture with the highest average score across all metrics.

Search Costs of PO-NAS The search cost of PO-NAS is comprised of four primary components:
First, the training cost of the architecture encoder during the pre-training phase; Second, the evaluation
cost of real training performance during the Bayesian Optimization (BO) phase; Third, the prediction
and training cost of the surrogate model in the BO phase; Lastly, the cost associated with crossover and
mutation operations and the computation of offspring’s training-free metrics during the evolutionary
algorithm phase (this cost is omitted for NAS-Bench-201 and TransNAS-Bench-101 as they do not
employ an evolutionary algorithm). For the real training performance evaluation cost of NAS-Bench-
201 and TransNAS-Bench-101, we directly utilize the data provided in the benchmark tables.
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B.4 Other Implementation Details

Classification Details of Architecture Sets in Table|S| The architecture sets are categorized based
on the proportion of operations and the magnitude of parameters. Specifically, Op0 to Op4 denote
architecture sets in which the corresponding operation constitutes at least 50% of the architecture
(each set comprises 1,545 architectures). In contrast, the Mix category represents architecture sets
with evenly distributed operations (consisting of 1,440 architectures). For the parameter magnitude
classification, each category includes 5,208 architectures. The operations are defined as follows: Op0
represents zeroize, Opl represents skip connection, Op2 represents 1x1 convolution, Op3 represents
3x3 convolution, and Op4 represents 3x3 average pooling.

Random Search (RS) We randomly sample network architectures from a predefined search space,
evaluate their performance, and ultimately select the architecture with the best performance. Random
search is highly flexible and makes it a common baseline for NAS algorithms.

Regularized Evolutionary Algorithm (REA) (1) Regularized Evolutionary Algorithm (REA)
is commonly used as a baseline for NAS algorithms. REA initializes the population by randomly
selecting a batch of architectures and evaluating their performance. In our experiments, we use
one-third of the current experimental budget for initialization. Then, the best-performing architecture
is selected from the initial population, mutated to produce a new offspring, which is evaluated and
added back to the population. For cell-based search spaces (e.g., NAS-Bench-201 and TransNAS-
Bench-101-micro), we change the operation type on an edge as the mutation operation. (For
TransNAS-Bench-101-macro, we randomly add or remove a downsampling/doubling operation on
one residual module.)

REINFORCE (65) REINFORCE is a classic policy gradient reinforcement learning algorithm
that directly optimizes the policy to maximize the expected cumulative reward. In our comparative
experiments, REINFORCE is used as one of the baseline algorithms. We adopt the same configuration
as (21) and use the Adam optimizer with a learning rate of 0.01 to update the parameters of the policy
network. Additionally, to stabilize the training process, we introduce an exponential moving average
with a momentum of 0.9 as the reward baseline.

Hybrid Neural Architecture Search (HNAS) (14) HNAS is one of the classic hybrid NAS
algorithms, which we use as a benchmark for comparison in our experiments. HNAS employs
Bayesian Optimization (BO) to optimize training-free metrics based on the true training performance
of architectures. Since the training-free metrics used by HNAS are gradient-based, we follow their
experimental setup and use the gradient norm as the training-free metric in our experiments.

Robustifying and Boosting Training-free Neural Architecture Search (RoBoT) (15) Similar
to PO-NAS, RoBoT employs a weighted linear combination to integrate multiple training-free
metrics, and we use it as a benchmark for comparison in our experiments. RoBoT utilizes Bayesian
Optimization (BO) to dynamically adjust the weights of these metrics based on real-time training
feedback. Following their experimental setup, we use six classic training-free metrics (grad_norm,
snip, grasp, fisher, synflow, and jacob_cov) as the optimized combination.

C More Empirical Results

C.1 Correlation of Different Architecture Sets

We classify architectures in the NAS-Bench-201 (21) dataset based on their structural characteristics
and calculate the Spearman correlation coefficients of several classic metrics across these architectural
classifications. Implementation details can be found in Appendix [B.4]

As shown in Table 3] the results indicate that even within the same search space, due to differences in
operational composition and parameter volume, the correlation coefficients of different training-free
metrics for these architectures can vary significantly. For instance, although Jacob_cov (63)) generally
exhibits strong performance, its correlation drops sharply to 0.33 when evaluating architectures
dominated by 3x3 convolutional operations (Op3). Ignoring the differences in the assessment
performance of these metrics across various types of architectures during the optimization of training-
free metric combinations will inevitably affect the ability of the final metric combination to select
the best architecture. Therefore, optimizing different metric combinations for different types of
architectures can further enhance the evaluation capability of training-free metric combinations.
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Table 5: Spearman correlation coefficients between several classic training-free metrics and the
actual performance of architectures within different architecture sets on the NAS-Bench-201 dataset.
Experimental details can be found in Appendix

Operation Params
Op0 Opl Op2 Op3 Op4d Mix Low Med High
Grad_norm 0.74 0.76 0.06 035 0.71 048 055 034 022 0.59

Metrics All

Snip 076 0.75 0.06 036 0.70 048 056 033 022 0.60
Grasp 0.73 056 0.15 034 049 036 046 030 027 052
Fisher 069 0.65 002 030 069 042 046 027 0.17 0.51

Synflow 0.63 0.85 044 076 072 058 056 046 051 0.73
Jacob_cov  0.88 0.87 0.52 033 089 062 08 074 0.66 0.75

zen 005 086 039 060 022 050 024 0.09 027 035
Nwo 085 085 048 069 083 0.3 077 062 060 0.75
Params 0.70 042 040 079 071 058 043 042 048 0.72
Flops 064 039 032 076 0.69 056 035 028 042 0.70

C.2 PO-NAS on NAS-Bench-201

We evaluate the search performance of PO-NAS on NAS-Bench-201. Due to the relatively small
search space, we utilize only the surrogate model without employing the evolutionary algorithm.
Table[I| Table[6] Table 7] Table [§|and Figure 0] present the performance outcomes on three benchmark
datasets, with "Optimal" indicating the upper limit of this benchmark, corresponding to the archi-
tecture with the highest accuracy within the NAS-Bench-201 search space. PO-NAS demonstrates
excellent performance across all three datasets. We also assess the performance of the training-free
metrics we utilize, including the architectures with the highest average metric scores (Avg.) and the
highest score for a single optimal metric (Best). The results show that PO-NAS significantly enhances
the evaluation capability of the original metrics. As PO-NAS optimizes the metric combinations
corresponding to different types of architectures, it can more effectively explore superior architectures
compared to other training-free NAS methods that use global optimization metric combinations.

Table 6: Comparison of the number of architectures that must be trained for GENNAPE, FLANZ, ,
and PO-NAS to attain the target test accuracy on NAS-Bench-201 on CIFAR - 10.

Algorithm GENNAPE (66) FLAN] ,, (67) PO-NAS
Trained models 50 32 20
Test Accuracy (%) 93.27 93.30 94.12

Table 7: The mean and standard deviation of the test accuracy(%) of BOHB (68)), arch2vec (69)
and PO-NAS under three datasets on NAS-Bench-201. All methods search for 20 architectures. All
results are reported as the mean + standard deviation over 10 runs

. Accuracy (%) Cost
Algorithm C10 C100 IN-16  (GPU Seconds)
BOHB 93.6140.52 72.3740.90 452640.83 12000
arch2vec-RL  94.124042 73.1540.78  46.16:0.38 12000
arch2vec-BO  94.18:0.24 73374030 46274037 12000
PO-NAS 94124022 73.5110.00 46.71+-0.12 3162

C.3 PO-NAS on TransNAS-Bench-101

To verify the robustness of PO-NAS across various training tasks, we conduct a performance evalua-
tion on TransNAS-Bench-101. We design ablation studies to demonstrate the superior performance

23



C10

95 o14
94 u
< 2
293 £
g &
<92 Z
7 S
&
91
22
90
0 0 5 10 15 20
C100
2141 o
74 - N
e i —
r/.—-n-,rj 211 \ MR = s
& i i R, ! \
< ; e ——® o0 i \
> £ é,,e'* K- S I SV
8 gl g 2% ATEs T T T T
5701 i S LR
3 (l i < -4 \ \ S S S
2 i P e e o 1\l
- ! I~ o e & 25 * \
Ses{ | .|
i e
X
22 A
66 >k
10 15 20 0 5 10 15 20
IN-16
48 514
46 B e e
3~
_ e 4N '/’:/ 2u
S #4 7/
> /-4 e | B
5 R S b it 2 28
) 9 - ——— =
3 57 2 ]
< sy Z 5
40 & 1 /
7 Y /i &2
& i/ 4 L}
38 gl/ II 2
i !
361 j !
Wi
0 5 10 15 20 0 5 10 15 20

Number of Searched Architectures

—*- PO-NAS(w/0 Evo.) —®- RoBot —¥- RS REA -#- REINFORCE —#- HNAS —-- AVG — - BEST —- OPTIMAL ‘

Figure 9: Comparison of various NAS algorithms in NAS-Bench-201 regarding the number of
searched architectures. Results are reported with the mean and standard deviation of 10 runs, search
costs are evaluated on an Nvidia 1080Ti. "AVG" and "BEST" represent the average value of metrics
and the best individual metrics. The best results are in bold, and the second best are underlined.

of our architecture embedding-based surrogate model. Due to the relatively small search space,
we utilize only the surrogate model without employing the evolutionary algorithm. We compare
PO-NAS with several other hybrid NAS methods known for their robustness, as well as several
benchmark search methods. Table @] Table [9] Figure [T4] and Figure [I3] present the experimental
results, indicating that PO-NAS achieves excellent performance across 14 different training tasks and
outperforms other hybrid NAS methods in most of these tasks. This is attributed to PO-NAS’s ability
to optimize the corresponding metric combinations for different types of architectures. Notably,
PO-NAS demonstrates significant improvements in handling the search space of macro architectures
(including chain-like architectures) compared to other NAS methods and consistently identifies the
optimal architectures within the search space across multiple training tasks. This confirms the great
potential of PO-NAS in search spaces with regular distributions like macro architectures, as the
surrogate model can more effectively optimize the metric combinations for each architecture.
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Table 8: Test performance ranking comparison among various NAS algorithms on NAS-Bench-201.
All methods search for 20 architectures. The results for RoBoT, HNAS, and PO-NAS are reported as
the mean * standard deviation over 10 runs, while REA, RS, and REINFORCE are evaluated over
50 runs. "Training-free (Avg./Best)" represent the average value of metrics and the best individual
metrics.

Algorithm Test Ranking

C10 C100 IN-16
REA 22594550 2330+£540 23994577
RS (w/o sharing) 1346+413  1194+377 1493+363
REINFORCE 25124400 19194351  2400+300
HNAS 34426 72420 53+10
RoBoT 340 1+0 2440
Training-free (Avg.) 4822 357 82
Training-free (Best) 169 173 1780
PO-NAS 21+17 1+0 7+5

Table 9: Test performance ranking comparison among various NAS algorithms on TransNAS-Bench-
101. All methods search for 100 architectures. The results for RoBoT, HNAS, and PO-NAS are
reported as the mean + standard deviation over 10 runs, while REA, RS, and REINFORCE are
evaluated over 50 runs. "Training-free (Avg./Best)" represent the average value of metrics and the
best individual metrics.

Space  Algorithm Test Ranking

Scene  Object  Jigsaw Layout  Segment. Normal Autoenco.

REA 2116 13+9 26+23 1711 9+7 32+26 16+11
RS (w/o sharing) 30£24  20+12 50423 19+13 33422 80+67 37+11
REINFORCE 40+29 29+4 29+21 14+11 19+16 139 27422
HNAS 96+32  84+15  41£25 3744323 4+0 2243 1329456
Micro  RoBoT 3+0 1+0 1943 7+4 3+0 6+4 29+7
Training-free (Avg.) 2863 2731 2701 2654 324 2472 3591
Training-free (Best) 500 2372 1928 1904 22 722 3151
PO-NAS 3+2 1+0 1745 12+4 2+0 12+1 26+10
REA 9+7 8+5 26x15 20+12 10+8 19+14 18+11
RS (w/o sharing) 1411 26+22  31+24 21+13 32+26 18+15 20+13
REINFORCE 2721 20«16 13+9 19+12 36+24 34+27 31422
HNAS 50640 53541 149427 50+7 18+0 202+30 671431
Macro RoBoT 1+0 6+3 5+1 443 1+0 2+0 6+1
Training-free (Avg.) 823 1278 751 1021 908 8 116
Training-free (Best) 54 117 72 366 138 8 98
PO-NAS 1+0 2+0 2+1 2+1 1+0 1+0 31

C.4 PO-NAS on DARTS

We present the results of PO-NAS on DARTS in Table [2| Table [Band Table DARTS cell
architectures found by PO-NAS are presented in Figure [[6] Figure [I7] and Figure [I8] With the
combined efforts of the surrogate model and evolutionary algorithm, PO-NAS utilizes training-
free metrics as auxiliary evaluation tools, effectively exploring the search space and demonstrating
excellent performance under low-cost assessment conditions. Furthermore, PO-NAS relies solely
on immediate training outcomes as supervisory signals, without the need for extensive training
benchmarks, enabling it to easily migrate to large and unknown search spaces that lack substantial
prior knowledge. However, PO-NAS also faces the inherent limitations of training-based NAS
methods: there is still a certain gap between short-term real training performance (10 epochs/3 epochs
on CIFAR-10/100/ImageNet) and the final test performance (600 epochs/250 epochs on CIFAR-
10/100/ImageNet). Thus, PO-NAS is currently primarily limited to quickly searching for optimal
architectures within short training periods, and bridging the gap between short-term performance
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and final test performance is a goal that PO-NAS and training-based NAS methods need to further
improve. Nonetheless, PO-NAS still demonstrates exceptional performance on the DARTS search
space.

Table 10: Comparative results of CATE (70), arch2vec, and PO-NAS on DARTS Search Space with
CIFAR-10. All results are reported as the mean + standard deviation over 10 runs

Algorithm Test Error (%) Params (M) Search Cost

CATE-DNGO-LS (small budget) 2.55+0.08 3.5 3.3 (GPU days)
CATE-DNGO-LS (large budget) 2.46+0.05 4.1 10.3 (GPU days)
arch2vec-RL 2.65+0.05 33 8.3 (GPU days)
arch2vec-BO 2.561+0.05 3.6 9.2 (GPU days)
PO-NAS 2.52+0.03 3.8 3.9 (GPU hours)

D More Ablation Studies

D.1 Ablation Study on Surrogate Model

Ablation Study on Ensemble Method In this ablation study, we thoroughly investigate the impact
of the surrogate model and its various components on the performance of PO-NAS. The experiments
are conducted on the scene, object, jigsaw, and layout tasks in both the TransNAS-Bench-101-micro
and TransNAS-Bench-101-macro datasets. We focus on three main aspects: ablation studies of
global optimization versus per-architecture optimization (GP, w/o encoder), the influence of different
normalization methods (w/o Negative, w/o Normal, Rank), and ablation studies of the surrogate model
itself (Avg, Best). The detailed experimental settings are as follows: (a) PO-NAS: We use the default
experimental settings on TransNAS-Bench-101; (b) GP: We replace the entire surrogate model with a
Gaussian Process (GP) surrogate model to perform training-free metric optimization in the global
search space, using the performance of the searched architectures in each round as the supervision
signal to optimize the surrogate model; (c) w/o Encoder: We set the output of the architecture encoder
to a same-dimensional vector with all elements equal to 1 (i.e., all architectures output the same
architecture embedding), thereby eliminating the influence of the encoder and optimizing the training-
free metric weights using only the attention network in the global search space; (d) w/o Negative:
We eliminate the influence of weight signs, making all weight outputs positive without considering
the potential negative correlation of training-free metrics; (¢) w/o Normal: We directly optimize the
numerical values of the training-free metrics without normalizing them; (f) Rank: Instead of using
the numerical values of the training-free metrics directly, we use the ranking of a single architecture
among all architectures for a particular training-free metric as the training-free metric; (g) Avg: We
eliminate the surrogate model and select architectures using the average value of all training-free
metrics; (h) Best: We eliminate the surrogate model and choose the optimal architecture from those
selected by individual training-free metrics as the result; (i) OPTIMAL: The performance of the
optimal architecture on the entire dataset.

Figure[T0|presents our experimental results, which fully demonstrate the effectiveness of our surrogate
model and its various components. PO-NAS achieves a higher performance ceiling in the global
search space by assigning training-free metric weights to each specific architecture, compared to the
other two methods. As the search progresses, PO-NAS is able to discover architectures with superior
performance. Moreover, distinguishing between the positive and negative correlations of training-free
metrics allows PO-NAS to leverage potentially negative-correlated metrics to enhance performance.
Normalizing the metrics can effectively reduce the optimization difficulty of the surrogate model.
However, since ranking metrics forces uniformity in metric value differences, while the actual
differences in training-free metric values among architectures with similar rankings may vary, using
metric ranking as a proxy metric may hinder the surrogate model’s ability to accurately measure the
performance of different architectures. Nevertheless, in certain tasks (such as macro-jigsaw), the
Rank method exhibits unexpected performance. Therefore, in practical applications, we recommend
experimenting with different combinations based on the specific training task, which may lead to
unexpected performance improvements.
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Figure 10: Comparison between different ensemble methods on 8 tasks in TransNAS-Bench-101
regarding the number of searched architectures. Note that all methods are reported with the mean and
standard error of 10 independent searches.

Ablation Study on Pre-training Loss To delve into the performance of the architecture encoder
and the training-free metric predictor, we calculate the predicted loss of various training-free metrics
for scene, object, jigsaw, and layout tasks in TransNAS-Bench-101-micro and TransNAS-Bench-
101-macro. The results, as shown in Table [IT]and Figure[TT] indicate that across different training
tasks, the predicted loss of the metric predictor is concentrated between 0.5 x 1072 and 1.5 x 1073,
which corresponds to an error margin of 2% to 3%. This demonstrates that our metric predictor
possesses a certain level of predictive capability. Therefore, to prevent the impact of prediction
errors on the selection of top-level architectures, PO-NAS utilizes the metric predictor for pre-scoring
during the evolutionary algorithm phase. It selects outstanding offspring from the pre-scoring and
then recalculates the metrics to obtain the final scores. Additionally, in our experiments, we find that
the predicted loss of training-free metrics also varies significantly across different search spaces and
prediction tasks. For instance, Synflow exhibits a considerably larger predicted loss in the micro space
compared to other metrics but has a very small predicted loss in the macro space. The predicted loss
to some extent reflects the connection between training-free metrics and architectural features, which
also affects the predictive accuracy of the subsequent surrogate model in the process. This experiment
provides us with insights: For different search spaces and training tasks, we should selectively choose
different combinations of metrics (with smaller predicted losses), rather than using a fixed single
combination of metrics, which may enhance the predictive performance of PO-NAS. We conduct
a rigorous analysis of the architectural features captured by each metric and employ the sensitivity
analysis methods from DARTS-IM (71) to quantitatively assess the complementarity of the metrics.

Ablation Study on Architecture Encoder Supervision Signals We investigate the impact of
different architecture encoder supervision signals on the performance of PO-NAS. As a comparison,
we employed recently developed architectural encoders that use actual training as supervision signals.
Among them, the experimental setup of arch2Vec on NAS-Bench-201 is most comparable to PO-
NAS. To preserve the original performance of arch2Vec, we retained its official training conditions:
obtaining its fixed embeddings through supervision by actual architecture performance, and then
feeding these embeddings into the attention network for architecture discrimination, followed by
a direct comparison with PO-NAS. The preliminary results are summarized in Table [[2] The
results indicate that replacing PO-NAS’s encoder with existing SOTA architectural encoders yields
only marginal improvements on certain datasets, while the overall performance remains virtually
unchanged. This further corroborates the excellence of PO-NAS’s encoder and demonstrates that
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Table 11: Test loss of the metric predictor for various metrics on § tasks in TransNAS-Bench-101 with
a 1:4 training-to-testing set ratio over 100 epochs. The results are reported as the mean + standard
deviation over 10 runs.

Mse Loss (x1073)
Grad_norm Snip Grasp Fisher Synflow  Jabcob_cov Total

Scene 0.58+0.05 0.67+0.05 0.63+0.03 0.16+0.04 1.48+0.38  0.27+0.07  0.63+0.10
Object  0.67+0.12  0.60+0.91 0.91+0.01 0.17+0.04 1.85+0.21  1.83x1.64 1.31+0.49

Space Tasks

Micro pocaw 047001  0.6740.02 0.09:0.00 0.10:0.01 146£027 0.38+0.17  0.53+0.08
Layout 0.86+0.02 0.78+0.01 0.33+0.03 0.20£0.01 1.47+£0.17 0.28+0.16  0.65+0.07
Scene 1.45£0.07 0.74£0.05 2.94+0.03 1.44+0.08 0.10£0.03  2.00+£0.09  1.45+0.06
Macro Object 1.12£0.08  0.70£0.07 0.72+0.02 1.48+0.13 0.10£0.02  1.08+£0.03  0.87+0.06
Jigsaw  0.39£0.08  0.32+0.07 0.82+0.01 0.69+0.07 0.14+0.03  1.34+£0.05  0.62+0.05
Layout 2.01+0.05 1.22+0.03 1.73£0.02 1.41+£0.01 0.11£0.03  1.64+£0.11  1.35+0.04
) Micro )
Scene Object Jigsaw Layout
Pl T T TS T
) J i
a "‘“w '\\ @« ‘\ ™ o :“* 1 -
I
PR % - Ik - :
Soap in) EEEI \e; 34t | 3
4 i \\:i\ \7.\*\ = \h, Xy A H 3 2
T bt | e t—— | ||
0 25 50 75 100 0 25 50 75 100
Macro i
Scene Jigsaw
10 10 10 qu
2 2 2 \u\"»,"‘:‘(_\{ iy
. L e S . ==
0 25 50 75 100 0 25 50 75 100
Pre-training epoch
~%- Grad_norm -®- Snip -¥- Grasp Fisher -m- Synflow - Jacob_cov

Figure 11: Test loss of the metric predictor for various metrics on 8 tasks in TransNAS-Bench-101
with a 1:4 training-to-testing set ratio over 100 epochs. The results are reported as the mean +
standard deviation over 10 runs.

learning architecture representations via training-free metrics is not only feasible but also highly
efficient, significantly reducing the cost of acquiring topological information.

Table 12: Impact of Different Encoders Supervisory Signals on PO-NAS (reported by test accuracy
(%) on NAS-Bench-201). All results are reported as the mean + standard deviation over 10 runs

Encoder CIFAR-10 CIFAR-100 ImageNet-16-120 Supervisory
arch2vec  94.25+0.18 73.5140.00 46.49+0.37 short-term training (10 epochs)
PO-NAS 94.12+0.22  73.51+0.00 46.71+0.12 train-free metrics

Ablation Study on Difference Threshold 7y, and Loss Threshold To investigate the impact of
the difference threshold 7Ty (Section [3.4) and the loss threshold (Appendix [B.3) on the prediction
performance of the surrogate model, we compare the search performance of different parameter
settings (with the difference threshold on the x-axis and the loss threshold on the y-axis) across
the scene, object, jigsaw, and layout tasks in TransNAS-Bench-101-micro and TransNAS-Bench-
101-macro. Table [I3] presents our experimental results. The results demonstrate that different
combinations of thresholds significantly influence the prediction performance of the surrogate model.
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Lower combinations of loss and difference thresholds generally enhance the model’s prediction
accuracy but slow down the training speed. A higher difference threshold allows the surrogate model
to more easily reach a lower loss threshold but increases the number of ranking errors, thereby
affecting the final results. Moreover, a higher loss threshold, regardless of the difference threshold
setting, consistently degrades the model’s prediction accuracy. Therefore, to balance model fitting
speed and prediction accuracy, we recommend setting lower loss and difference thresholds while
maintaining a certain fitting speed, and ensuring that the gap between the two thresholds is not too
large.

Table 13: Comparison of surrogate models with different parameters (X-axis: Difference Threshold,
Y-axis: Loss Threshold) on TransNAS-Bench-101 across 8 tasks regarding the number of searched
architectures. All models search for 100 architecture. The results are reported as the mean + standard
deviation over 10 runs.

Space Loss\Differ. Test Rank
(x107h 1 2 3 4 1 2 3 4
Scene Object
1 342 340 310 443 1+0 1+0 1+0 1+0
2 342 342 3+2 643 1+0 1+0 1+0 10
3 543 543 7£5 7£5 1£0 1+0 1+0 1+0
4 6+3 543 64 75 1£0 1+0 1+0 1£0
Micro Jigsaw Layout
1 1745 1745 1745 1745 12+4 12+4 19411 1244
2 1943 1745 19+£3 1745 12+4 19+¢11 1244  21+8
3 1940 1940 19+£3 1943  19+11 1745 29+12  19+11
4 1943 1745 19+0 1943 112481 51+32 29412 37+16
Scene Object
1 1+0 1+0 1+0 1+0 2+0 2+0 2+0 3+0
2 1+0 1+0 1+0 1+0 2+0 2+0 3+0 2+0
3 1+0 1+0 1+0 1+0 2+0 2+0 2+0 3+0
4 1+0 1+0 1+0 1+0 2+0 2+0 3+0 3+0
Macro Jigsaw Layout
1 2+1 2+1 3+1 342 2+1 2+0 2+0 3+2
2 2+1 2+1 2+1 31 240 2+1 240 342
3 3+2 2+1 2+1 2+1 240 2+1 2+0 240
4 3+1 2+1 342 3+2 2+0 3+2 2+0 3+2

Ablation Study on Number of Training-free Metrics In this ablation study, we investigate
the impact of the number of training-free metrics on the prediction performance of the surrogate
model. We compare the search performance of surrogate models with different numbers of training-
free metrics across the scene, object, jigsaw, and layout tasks in TransNAS-Bench-101-micro and
TransNAS-Bench-101-macro. The specific settings are as follows: (a) 6 Metrics: Consistent with
the original setting of PO-NAS (Appendix , we use six metrics: grad_norm, snip, grasp, fisher,
synflow, and jacob_cov; (b) 8 Metrics: We add two additional metrics (params and flops) to the
original six metrics; (c) 4 Metrics: We remove two metrics with lower relevance (grasp and fisher)
from the original six metrics; Figure [I2] presents our experimental results. The findings indicate
that when more training-free metrics are used, the need to assign different metric weights for each
architecture requires more training samples for surrogate model training. This leads to reduced
stability and prediction performance in the early and middle stages of the search. However, as more
architectures are evaluated during the search, the higher number of metrics provides a greater upper
limit on performance. Conversely, when fewer training-free metrics are used, the surrogate model
quickly achieves a certain level of prediction performance and identifies promising architectures
in the early stages of the search. However, in later stages, especially for more complex tasks, its
performance drops significantly compared to other methods. Therefore, in practical applications, the
number of training-free metrics should be chosen based on the complexity of the training task and
the search cost budget. Given the fitting challenges of the surrogate model, improving the quality
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of metrics (e.g., replacing existing metrics with more relevant ones) is more effective for enhancing
performance than simply increasing the number of metrics.
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Figure 12: Comparison between utilizing different numbers of training-free metrics on 8 tasks in
TransNAS-Bench-101 regarding the number of searched architectures. Note that all methods are
reported with the mean and standard error of 10 independent searches.

D.2 Ablation Study on Evolutionary Algorithm

In this ablation study, we thoroughly investigate the impact of the proposed evolutionary algorithm and
its various components on the performance of PO-NAS. Specifically, we conduct 100 search cycles
in the DARTS search space, using our surrogate model in combination with different evolutionary
algorithm designs. We evaluate their performance based on the test accuracy after 10 training
epochs for comparison. To fully demonstrate the ability of our evolutionary algorithm to explore
and supplement the initial architecture population, we conduct experiments with different initial
population sizes (100, 1000, 10000, and 60000). To avoid the impact of initial population size
on the training performance of the architecture encoder during the pre-training phase, the same
architecture encoder (trained with 10000 architectures) is used for all experiments with different
initial population sizes. The evolutionary algorithm is applied in all 100 search cycles, and we ablate
different components of the evolutionary algorithm while maintaining relatively fair experimental
conditions, as follows: (a) PO-NAS: In each search cycle, we select the top 20 combinations for
crossover operations and perform neighborhood mutation operations (generating 128 offspring),
resulting in a total of 2560 offspring. Finally, we select the top 50 offspring to supplement the initial
population; (b) Without Evolutionary Algorithm (w/o Evolution): In this approach, we do not use the
evolutionary algorithm and rely solely on the surrogate model for prediction. All architectures are
derived from the initial population; (c) Without Exploration Weight N (w/o N): In this method, we
ablate the exploration weight [V. All parent combinations are selected based solely on the surrogate
model’s scores, ignoring the impact of the architectural combination operation cost; (d) Without
Neighborhood Mutation (w/o Mutation): In this method, we ablate the mutation operation. All
offspring are generated through shortest-path crossover operations. To maintain fair experimental
conditions, we select the top 20 combinations in each cycle, with each combination generating 128
offspring, resulting in a total of 2560 offspring. Finally, we select the top 50 offspring to supplement
the initial population; (e) Without Shortest-Path Crossover (w/o Crossover): In this method, we ablate
the crossover operation. All offspring are generated through neighborhood mutation operations. To
maintain fair experimental conditions, we select the top 20 architectures in each cycle, with each
architecture generating 128 offspring through neighborhood mutation, resulting in a total of 2560
offspring. Finally, we select the top 50 offspring to supplement the initial population; (f) Regularized
Evolutionary Algorithm (REA) (1): We use REA as a benchmark for the evolutionary algorithm.
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Following its experimental settings, we select the best architecture for mutation operations in each
cycle. We define the mutation operation as randomly changing the operation type and edge object of
one operation edge. Like the other methods, we generate 2560 offspring in each cycle and select the
top 50 offspring to supplement the initial population.
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Figure 13: Comparison between different evolution methods on CIFAR-10 on DARTS regarding the
number of searched architectures. Note that all methods are reported as the 10-epochs test accuracy
with the mean and standard error of 10 independent searches.

Figure[T3|presents our experimental results. When the initial population size is relatively small, all
evolutionary algorithms show significant performance improvements compared to the method without
an evolutionary algorithm. Among them, the evolutionary algorithm with crossover operations
performs particularly well, outperforming methods that generate offspring solely through mutation
operations. This highlights the potential of crossover operations in exploring unknown search spaces.
The performance of PO-NAS is very close to that of the method without the exploration weight
N. Although the exploration weight N sacrifices some stability, it achieves a higher search upper
limit. When the initial population size reaches a certain scale, the performance gap between different
methods further narrows. At this point, the initial population is sufficiently diverse, covering a wide
range of architectures. Therefore, exploring the local area through mutation operations alone can still
yield good results. Among them, the method with only crossover operations (w/o Mutation) achieves
the highest performance upper limit compared to other methods. At this time, PO-NAS does not
show a clear advantage. Nevertheless, the complete PO-NAS evolutionary algorithm consistently
achieves stable and excellent performance across different initial population sizes, without being
limited by the initial population size.

We conducted experiments to investigate the impact of the evolution starting cycle (7;) and the
number of parents (Np,,) and offspring (IV, ¢ ) per cycle on the performance of the evolution method.
The results in Tables [I4]and Tables|15|demonstrate a clear negative correlation between 7, and final
performance, as accuracy consistently declines when 7, exceeds 10. This indicates the necessity of
reserving a certain search budget for the evolution method to ensure adequate exploration. In terms
of population size, a larger number of N,s; exhibits a weakly positive correlation with accuracy,
suggesting that increasing offspring diversity is beneficial. In contrast, IV,, shows a less systematic
influence. Thus, the optimal strategy should balance the allocation of N, ¢ and T, within the given
computational budget.
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Table 14: Comparison between different T, of evolution method on CIFAR-10/CIFAR-100 on
DARTS. Note that all methods are reported as the 10-epochs test accuracy with the mean and standard
error of 10 independent searches.

Accuracy (%)
0 5 10

CIFAR-10  82.69+0.41 82.71+0.39 82.63+0.33
CIFAR-100 61.31+£0.28 61.26+0.31 61.19+0.27

15 20 25

CIFAR-10  82.48+0.42 82.23+0.28 81.84+0.11
CIFAR-100 60.87£0.44 60.36+0.57 59.27+0.37

DateSet\T.

Table 15: Comparison of evolution method with different parameters (X-axis: Number of offspring
per epoch (Nygr), Y-axis: Number of parent per epoch (Nyar)) on on CIFAR-10/CIFAR-100 on
DARTS. Note that all methods are reported as the 10-epochs test accuracy with the mean and standard
error of 10 independent searches.

Npar\Nofr Accuracy (%)
640 1280 2560 5120
CIFAR-10
5 82.364+0.28 82.43+0.36 82.47+0.36 82.43+0.41

10 82.41£0.35 82.48+0.29 82.52+0.33 82.61£0.26
20 82.39+£0.41 82.404+0.37 82.59+0.26 82.66£0.32
40 82.46£0.36 82.51+0.21 82.65+0.32 82.64£0.22

CIFAR-100

5 61.09+0.21 61.08+£0.36 61.21£0.39 61.144+0.40
10 61.00£0.41 61.08+£0.50 61.17+£0.29 61.234+0.30
20 61.07+0.12 61.19+£0.24 61.11£0.31 61.264+0.26
40 61.16+0.33 61.13+0.22 61.23£0.24 61.1940.32
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Figure 14: Comparison of various NAS algorithms in TransNAS-Bench-101-micro regarding the
number of searched architectures. The results for RoBoT, HNAS, and PO-NAS are reported as the
mean and standard deviation over 10 runs, while REA, RS, and REINFORCE are evaluated over 50
runs. "AVG" and "BEST" represent the average value of metrics and the best individual metrics.
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Figure 15: Comparison of various NAS algorithms in TransNAS-Bench-101-macro regarding the
number of searched architectures. The results for RoBoT, HNAS, and PO-NAS are reported as the
mean and standard deviation over 10 runs, while REA, RS, and REINFORCE are evaluated over 50
runs. "AVG" and "BEST" represent the average value of metrics and the best individual metrics.
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Figure 16: DARTS cell architecture found by PO-NAS on CIFAR-10 dataset with model size 3.85
MB.
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Figure 17: DARTS cell architecture found by PO-NAS on CIFAR-100 dataset with model size 4.22
MB.
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Figure 18: DARTS cell architecture found by PO-NAS on ImageNet dataset with model size 6.25
MB.

35



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our proposed methods and the paper’s contributions have been introduced in
abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In our analysis of the results from various experiments, we have discussed the
limitations of our approach, such as the stability limitation of the surrogate model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not contain any mathematical proofs, only mathematical
demonstrations of relevant concepts.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We conduct experiments using public benchmarks, such as TransNAS-Bench-
101, NAS-Bench-201 and DARTS. All hyperparameters and implementation details can be
found in Appendix [BJand Appendix D]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided comprehensive experimental details in both the paper
and supplementary materials. Our code has been made publicly available at https://
anonymous .4open.science/r/P0-NAS-2953.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the hyperparameters for our experiments, including those
used for training the models in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use common comparison metrics and explain any specialized ones. The
experimental results are obtained from multiple independent runs and reported as the mean
and standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the type and number of GPUs used, and recorded the time
consumed by the entire algorithm in related experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and follow nips rules.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have fully cited the public benchmarks used.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this paper does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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