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ABSTRACT

Learning prediction models that generalize to related domains is one of the most
fundamental challenges in artificial intelligence. There exists a growing literature
that argues for learning invariant associations using data from multiple source
domains. However, whether invariant predictors generalize to a given target domain
depends crucially on the assumed structural changes between domains. Using the
perspective of transportability theory, we show that invariance learning, and the
settings in which invariant predictors are optimal in terms of worst-case losses, is a
special case of a more general partial transportability task. Specifically, the partial
transportability task seeks to identify / bound a conditional expectation Epx [Y | x|
in an unseen domain 7* using knowledge of qualitative changes across domains in
the form of causal graphs and data from source domains 7', ..., 7*. We show that
solutions to this problem have a much wider generalization guarantee that subsumes
those of invariance learning and other robust optimization methods that are inspired
by causality. For computations in practice, we develop an algorithm that provably
provides tight bounds asymptotically in the number of data samples from source
domains for any partial transportability problem with discrete observables and
illustrate its use on synthetic datasets.

1 INTRODUCTION

Generalization guarantees are central to the design of reliable machine learning models as the
predictions and conclusions obtained in one or several source domains 7, ..., 7% (e.g. in controlled
laboratory circumstances, from a specific study or population, etc.) are transported and applied
elsewhere, in a domain 7* that may differ in several aspects from that of source domains. It is
apparent that what structure and what assumptions are imposed on the relationship between domains
determines whether a model will generalize as intended. For example, if the target environment is
arbitrary, or substantially different from the study environment, transporting predictions is difficult or
even impossible.

A structural account of causation provides suitable semantics for reasoning about the structural
invariances across different domains, and has been studied under the umbrella of transportability
theory (Pearl & Bareinboim, 2011; Bareinboim et al., 2013; Bareinboim & Pearl, 2016). Each
domain 7 is associated with a different structural causal model (SCM) M? that differs in one
or more of its component parts with respect to other domains and defines different distributions
over the observed variables. In practice, the SCMs are usually not fully observable, which leads
to the transportability challenge of using data from one (or more) SCMs to make inference about
distributions from another SCM. A query, e.g. Ep«[Y | x], is said to be point identified if it can
be uniquely computed given available data (from one or more domains) and qualitative knowledge
about the causal changes between domains in the form of selection diagrams. However, in problems
of transportability, especially when no data in the target domain can be collected, the combination
of qualitative assumptions and data often does not permit one to uniquely determine a given query,
which is said to be non-identifiable. In such cases, partial identification methods deal with bounding a
given query e.g. | < Epx[Y | x] < w in non-identifiable problems and may still serve an informative
purpose for decision-making if 0 < ! < u < 1. Both settings have been studied in the literature. In
particular, there exists an extensive set of graphical conditions and algorithms for the identifiability of
observational, interventional, and counterfactuals distributions across domains from a combination of
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datasets in various settings (Pearl & Bareinboim, 2011; Bareinboim et al., 2013; Bareinboim & Pearl,
2014; 2016; Lee et al., 2020; Correa & Bareinboim, 2019). For example, Lee et al. (2020) investigate
the transportability of conditional causal effects, while Correa & Bareinboim (2020) investigate the
transportability of soft interventions or policies, from an arbitrary combination of datasets collected
under different conditions. Several methods exist also for partial identification of causal effects and
counterfactuals (Balke & Pearl, 1997; Chickering & Pearl, 1996; Zhang et al., 2021) that aim at
bounding insead of point-identifying a particular causal effect. Despite the generality of these results,
there is still no treatment or algorithms for the partial identification of transportability queries.

In the machine learning literature, notably, a version of the transportability task is also widely studied
as the problem of domain generalization (Wang et al., 2022). The objective is to learn a prediction
function with a minimum performance guarantee on any distribution in some uncertainty set that
includes potential test / target distributions (Ben-Tal et al., 2009; Gulrajani & Lopez-Paz, 2020). This
problem has implicit connections to causality and SCMs if uncertainty sets of distributions are defined
on the basis of "invariant correlations", such as stable conditional expectations Ep:1[Y | x] = -+ =
Ep«[Y | x] across training domains 7!, ..., 7%, to be used for prediction in a target domain 7* and
that may be learned from data sampled across sufficiently many different domains with statistical
tests (Peters et al., 2016; Subbaswamy et al., 2019; Subbaswamy & Saria, 2020) or custom loss
functions (Magliacane et al., 2018; Arjovsky et al., 2019; Rojas-Carulla et al., 2018; Bellot & van der
Schaar, 2020). For instance, Arjovsky et al. (2019) argue for learning representations that define an
invariant optimal classifier across several training datasets. Subbaswamy et al. (2019); Subbaswamy
& Saria (2020) use causal graphs and identifiable interventional distributions to define invariant
prediction rules across domains. Notwithstanding their wide applicability, there is little theoretical
understanding of the extrapolation guarantees that can be expected from invariant prediction rules
given a finite set of domains. Correlations invariant across source domains need not be invariant in a
target domain; and performance guarantees, in general, depend on the structural invariances assumed
for their respective SCMs.

In this paper, we start by describing the conditions under which invariant prediction rules can be
expected to perform well in an arbitrary target domain from first principles using the semantics of
structural causal models (Pearl, 2009; Pearl & Bareinboim, 2011). We then introduce a broader
optimization problem — the task of partial transportability — whose objective is to bound, instead of
point estimate, a query in an arbitrary target domain of interest, such as Ep«[Y" | x], given data from
one or more source domains and qualitative knowledge about the causal changes between domains
in the form of selection diagrams. We demonstrate that solutions to this problem subsume various
instantiations of invariant predictors (in the conditions where these are adequate) and have a wider
distributional robustness guarantee to any distribution in the target domain that is compatible with the
assumed selection diagrams. For computations in practice, we show that the partial transportability
task can be solved approximately for systems of variables with finite domains with a Markov Chain
Monte Carlo sampling approach. The resulting bounds are sound and tight, and provide the most
informative inference on a target query given the available information.

1.1 PRELIMINARIES

We introduce in this section some basic notations and definitions that will be used throughout the
paper. We use capital letters to denote variables (X), small letters for their values (x), bold letters for
sets of variables (X) and their values (x), and use €2 to denote their domains of definition (x € Q).
A conditional independence statement in distribution P is written as (X 1L Y | Z)p. A d-separation
statement in some graph G is written as (X 1L Y | Z)g. For convenience, we denote by P(x)
probabilities P(X = x), and 1{-} for the indicator function equal to 1 if the statement in {-} evaluates
to true, and equal to 0 otherwise. All proofs are given in the Appendix.

We use the language of structural causal models (SCMs) (Definition 7.1.1 (Pearl, 2009)) to define the
semantics of causality. An SCM M is a tuple M = (V,U, F, P) where V is a set of endogenous
variables and U is a set of exogenous variables. Each exogeneous variable U € U is distributed
according to a probability measure P(u). F is a set of functions where each fy € F determines
the deterministic dependencies of V' on other parts of the system. That is, v := fy(pay,uy),
with Pay < V, and Uy < U, the exogeneous sources of variation that influence V. With this
construction, we define the potential response V (u) to be the solution of V in the model M given
U = u. Moreover, drawing values of exogenous variables U following the probability measure P
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Figure 1: Example of graphs: (a) Causal graph of target domain 7*, (b) selection diagram that compares domains
% with 72, (c) selection diagram that compares domains 7* with 7°, (d) selection diagram that compares
domains @ with 7°.

induces a joint distribution over observables given by,

Pv)=| [] Mfvipav,uv) = v}dP(u). (1)

Qu yev

An SCM induces a causal graph G in which each variable in V is associated with a node; we draw a
directed edge between two variables X — Y if X € Pay appears as an argument of fy in the SCM,
and a bidirected arrow X < Y if Uy n Uy # ¢, thatis X and Y share an unobserved confounder.
The set of parent nodes of X in G is denoted by pa(X)g = | yx pa(X)g. Its capitalized version
Pa includes the argument as well, e.g. Pa(X)g = pa(X)g u X. Similar definitions are used for
children ch, descendants de, etc.

2 DOMAIN GENERALIZATION THROUGH THE LENS OF TRANSPORTABILITY

We adopt the setting of domain generalization. We assume access to k source domains
7t w2, ..., 7" with associated data distributions over a common set of variables V denoted
P(v), P?(v),..., PE(v). Our focus is on a query, such as Epx[Y | x], to be evaluated in a
target domain 7* (potentially) different from source domains, where typically Y is an outcome

variable, X is a set of covariates,and Y u X = V.

For concreteness, consider a medical study where patient data was collected under different treatment
protocols in an attempt to assess, in a target hospital 7*, the prognosis of neurodegenerative diseases
such as Alzheimer’s in patients with a number of existing conditions. In the causal graph in Fig. 1a,
X1 and X, are treatments for hypertension and clinical depression, respectively, both known to be
causes of neurodegenerative diseases Y . In the case of hypertension, the effect is mediated by blood
pressure W, whose effect on neurodegenerative diseases is confounded, since both conditions share
important confounding factors such as physical activity levels and diet patterns (Skoog & Gustafson,
2006) (graphically encoded through the bidirected arrows). Hypertension and clinical depression
are not known to affect each other (no direct link between them), although it’s common for patients
with clinical depression to simultaneously be at risk of hypertension (Meng et al., 2012). In this
example, we have access to an observational study conducted in a hospital 7%, and to hospital 7°
following different guidelines for the administration of X, both of which however are known to have
a different high blood pressure W incidence than that in 7*. These differences are called domain
discrepancies (Pearl & Bareinboim, 2011).

Definition 1 (Domain Discrepancy, (Pearl & Bareinboim, 2011)). Let 7, and m, be domains associ-
ated, respectively, with SCMs M® and M b and causal diagrams G* and GP. We denote by A% =V
a set of variables such that, for every V; € A“®, there might exist a discrepancy if IV, # f‘b, or

P(U;) # PP(U;).

Definition 2 (Selection diagram, (Pearl & Bareinboim, 2011)). Given domain discrepancies A%®
between two domains 7® and 7° and a causal graph G* = (V,E), let S = {Sy : V € A“"} be called
selection nodes. Then, a selection diagram G*° is defined as a graph (V U S,E U {Sy — V}g,es).

Selection nodes locate the mechanisms where structural discrepancies between the two domains
are suspected to take place. The absence of a selection node pointing to a variable represents the
assumption that the mechanism responsible for assigning value to that variable is identical in both
domains. In the medical example above, Fig. 1b shows a selection diagram comparing domains
7% and 7* in which the Sy node indicates a structural difference in the assignment of W, either
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Figure 2: Graphs used in Sec. 2.1.

fi # fi and/ or P*(uw ) # P*(uw ), but not in the assignment of other variables, for instance
f3 = f¢ and P*(uy) = P%(uy). Fig. 1c and Fig. 1d are selection diagrams that compare domains

(7, m*) and (7%, ) respectively.

2.1 INVARIANCE LEARNING FOR DOMAIN GENERALIZATION

It is apparent that there is a degree of unidentifiability in optimal prediction rules in a target domain
depending on the structural differences between it and the available data. A natural objective for a
chosen prediction function is to minimize worst-case losses over an uncertainty set of potential target
distributions that are compatible with a set of selection diagrams {G** : i = 1,...,k}

. _ 2
wgmin | mex | Ep[(¥ — F(XK))7] @

where M (G*) is the family of SCMs compatible with the causal graph G*. In the literature on domain
generalization, selection diagrams {G"* : i = 1,..., k} are mostly implicit, and it is common to
define predictors agnostic of assumptions on the underlying causal structure of the target domain,
and instead exploit invariances with respect to source domains, see e.g. the proposals of (Arjovsky
et al., 2019; Peters et al., 2016; Lu et al., 2021; Rojas-Carulla et al., 2018; Magliacane et al., 2018).
This section studies the generalization guarantees of a common class of invariant predictors in the
language of selection diagrams.

Definition 3 (Invariant predictor). Given selection diagrams {G*/ : i,j = 1,...,k}, an invariant
predictor is given by Ep[Y | z] where (Y AL S| Z)gis fori,j = 1,...,k and the expectation is
taken with respect to any P among source domain distributions.’

Invariant predictors define stable conditional expectations, i.e. Ep1[Y | z] = -+ = Epi[Y | z]. We
use the notion of domain-independent Markov blankets to define optimal invariant predictors.

Definition 4 (Domain-independent Markov blankets). Given a set of selection diagrams {G*/ : i, j =
1,...,k}, the set of domain-independent Markov blankets for Y € V is given by the set of Z = 'V
such that (1) (Y L S | Z)gis ford,j =1,...,kand Q) (W LY | Z\W)gi,; fori,j =1,...,k
and all W € Z.

Domain-independent Markov blankets are designed to be minimal, in the sense that no proper subset
of them satisfies conditions (1) and (2), and informative for predicting Y while defining stable
conditional distributions across source domains. In general, such a set is not guaranteed to exist. For
example, in Fig. 1b there is no set (and by implication no invariant predictor) that separates ¥ from
all selection nodes, i.e. condition (1) in Def. 4 is violated for any subset of V. Moreover, contrary to
the conventional Markov blanket (Pear]l & Paz, 1985), it is not guaranteed to be unique. For example,
in Fig. 2a both { X7, X5, X5} and {X;, X3, X4} are domain invariant Markov blankets. Which one
is most informative to predict Y is undecidable from the graph structure alone, i.e. it depends the
exact functional associations between variables.

Proposition 1 (Optimal invariant predictor). Given selection diagrams {G*7 :i,j = 1,...,k}, the
optimal invariant predictor is defined as the minimizer of Ep:[(Y — f(Z))?] across alli = 1,. ..k,

'Other invariance assumptions have also been made, e.g. (Z 1L S)gi,; and (Y 1L S | X)gi,; for problems
where only the distribution of some covariates is expected to change across domains (Muandet et al., 2013), or
suchas (Z 1L S| Y)gi,; (Lietal, 2018). Problems where the magnitude of changes is assumed to be bounded,
ie. | P*(y | x) — P'(y | x) |< c, instead of restricting the d-separation statements involving S have been
studied by (Rothenhiusler et al., 2021).
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and belongs to the set of invariant predictors for which Z is a domain-independent Markov blanket
forY e 'V.

Invariant predictors may be desirable due to their stability, although, it is apparent that the extent
to which predictors will generalize outside of source domains depends on the structure of M(G*)
and, in particular, differences in structure with respect to source domains. In general, structural
invariances across source domains need not hold outside of source domains. For example, given two
source domains 7!, 72 described by G1*? in Fig. 2b, it holds that Ep: [Y | 21, 22] = Ep2[Y | 21, 22]
is the invariant predictor, which may not be optimal in a target domain 7* if the same invariance
doesn’t hold. For example, for the selection diagrams G*'! and G*:? given in Fig. 2c and Fig. 2d
Epi[Y | 1, x2] # Epx[Y | 21, 22].

In fact, the generalization error of the optimal invariant predictor, here denoted Ep1[Y" | z], can be
written as

E Y —Epm[Y | Z])?] =
MeI.I/\l/Ell(}é*) pu[( pi[Y | Z])7]

s (Epu[(V = Epn[Y | X))+ Epu[Epul | X]-EnlY [2D)7). O

where the first term on the RHS is the expected conditional variance and is in general irreducible, and
the second term on the RHS quantifies the difference between the invariant predictor and the optimal
prediction rule. This second term may be arbitrarily large for a general class of SCMs M (G*) with
arbitrary differences with source domains. As a consequence, optimality of invariant predictors as
solutions to Eq. (2) is limited in general to specific scenarios.

Proposition 2 (Generalization guarantees of optimal invariant predictors). Given a set of selection
diagrams {G%7 :i,j = 1,...,k}, let A = U,l.,j AT be the set of variables in V whose causal
mechanisms differ between any two source domains, and let S = {Sy : V € A}. Consider the robust
optimization problem in Eq. (2). The optimal invariant predictor is a solution if selection nodes in all
selection diagrams {G"* :i = 1,...,k} are given by S with edges {Sy — V}s, es.

In words, an optimal invariant predictor has lowest generalization error in the sense of Eq. (2) only
in the space of target SCMs M (G*) with the same structural invariances observed across source
domains. Otherwise, in general better predictors are achievable. This observation includes predictors
using causal parents as a conditioning set (often understood as desirable for domain generalization)
which, similarly, define robust predictors for a target domain if invariance in the association between
causal parents and outcomes is assumed. For example, in Fig. 1, Ep.[Y | pay] # Eps[Y | pay],
Ep«|Y | pay] # Ep«[Y | pay],and Eps[Y | pay] # Ep+[Y | pay],and thus predictors based
on causal parents may not be robust or optimal, in general. In particular, a prediction function of the
form Ep1[Y | pay] is a solution to the robust optimization problem in Eq. (2) if and only if it is the
optimal invariant predictor and {G** : i = 1,..., k} is defined as in Prop. 2.

Moreover, independently of whether solutions to a worst-case optimization problem can be found,
they say nothing about the range of values optimal prediction functions Ep«[Y | x] may take in
other distributions P* away from the worst-case. In the following section, we attempt to define
predictors and ranges of predictors with guarantees to arbitrary sets M (G*).

3 PARTIAL TRANSPORTABILITY OF STATISTICAL RELATIONS

The uncertainty and inherent under-identifiability of solutions to domain generalization problems
motivates us to define the task of partial transportability, that extends the literature on domain
generalization by considering bounds on the value of arbitrary queries Ep«[Y" | x] in arbitrary target
domains * defined by a set of selection diagrams {G"* :i =1,...,k

Task (Partial Transportability). Derive a tight bound [l, u] over a query of the form Epx[Y | x]
with knowledge of selection diagrams {G** : i = 1,..., k}, a corresponding collection of data
distributions {P*(v) : i = 1,...,k}, and set of intervals {I; : V; € | J, A*"} that define potential
constraints on probabilities in the target domain. Algorithmically, this may be written as a solution
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to the following optimization problem,

rj{ljenj\fl{rglg))( Epm[Y | x], suchthat VYV ¢ A*%: f& = fi, P*(uy) = P'(uy),

and VYV e UA*7i,P*(v | pay) e Iy. 4)

In words, the task is‘to evaluate the minimum and maximum values over all possible SCMs M
compatible with {G** : 4 = 1,..., k} that define the structurally invariant mechanisms in the system
and (potentially uninformative, i.e., Iy € [0, 1]) assumptions about target-specific probabilities.

For example, given the causal description of the protocols presented in the introductory medical
example and Fig. 1, the question might be how to combine these various datasets to predict an
individual’s risk of developing neurodegenerative diseases in 7*? The optimal prediction function is
given by Ep«[Y | w, x1, 2] (under mean squared error losses), which may be written as,

E’P*[Y | ’LU,ZL']_,Z’Q] = Z yP*(yawaajth)/ Z P*(y;wvthQ)a (5)

yEQy yEQY

where P*(y, w, 21, x2) is equal to,

| A ) = 1 @1 000) = 0) U x(02) = 71,32} AP ). (©

~-
matches RCT 7 specific to ¥ matches hospital 7@

This is a mixture of terms for which data from source domains can be leveraged, for example
[ (w, o, Uyy) = fi(w, T2, Uyy) (superscripts denote domain), but also involves unobserved
confounders .,y and u, ,, that cannot be marginalized out, and terms that are specific to 7*. In
addition, although P*(w | x1) is known to differ in our target medical study it may be the case
that we have some domain knowledge that constrains it, e.g. P*(w | x1) € [0.2,0.7] =: I, (if left
undetermined, I, := [0, 1]), and can be used to further inform a target query.

The following proposition show that the solution of the partial transportability task defines an interval
that contains the invariant predictor and, by definition, also the optimal "worst-case" predictor across
M(G*).

Proposition 3. For a given set of selection diagrams, let [I(x),u(x)] denote the solution of the
partial transportability task for the query Epm Y | x|, M € M(G*) and Ep:[Y | z]|,Z < X be
the invariant predictor. Then, Ep:1[Y | z] € [I(x), u(x)]. Moreover, by definition Epn[Y | x] €
[[(x),u(x)] for a particular "worst-case" member M € M(G*).

In general, there is no reason to believe that the invariant predictor has any special performance
guarantee among other solutions in [I(x), u(x)]. For example, the worst-case loss in Eq. (3) is not, in
general, smallest when Epa [Y | x] # Ep:[Y | z]. An alternative is to exploit the solutions to the
partial transportability task to define the median of [{(x), u(x)] as a general predictor for domain
generalization problems.

Proposition 4. For a given set of selection diagrams and data, let [1(x), u(x)] denote the solution of
the partial transportability task for the query Epu [Y | x|, M € M(G*). Then,

ax Epu[(Y— d Epu[Y | X])?
e P ( el pu[Y [ X])7]

1
< e (Ep (7~ Epuly | X))+ {Epul(u(X) - 1))
Under the condition that the irreducible error Epm[(Y — Epnm[Y | X])?] is constant across
M e M(G*), medyepmg+ Epm[Y | X] provably solves the robust optimization problem Eq. (2).

This proposition says that the error of the median is, at most, off from the optimal predictor by "half
the range of possible values of Epa[Y | x] compatible with the data and assumptions" and that
this error is optimal in the worst case (under some assumptions on how the expected conditional
variance is allowed to vary). This result is important because it applies to any set of target causal
graph, source domains, and selection diagrams. Note, however, that this does not mean that the
median is always superior to the optimal invariant predictor: in selected settings where the expected
conditional variance changes across domains we may still have the optimal invariant predictor being
a better worst-case solution.
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4  ALGORITHMS FOR PARTIAL TRANSPORTABILITY

This section presents algorithms to solve the partial transportability task for SCMs with discrete
observables, that is each V € V taking values in a finite space of outcomes, while each U € U
associated with an arbitrary probability density function P(u).

A first step in our argument will be to decompose a chosen query into smaller factors so as to infer
which factors can be matched across domains and point-identified from data, and subsequently
re-parameterize unmatched factors by a special family of SCMs to make the bounding problem
tractable. We use the concept of c-components and C-factors developed by Tian & Pearl (2002).
The set V can be partitioned into c-components such that two variables are assigned to the same set
C c V if and only if they are connected by a bi-directed path in G. In addition let Uc = UV}, cU
denote the set of exogeneous variables that are parents of any V' € C. For example, the graph in
Fig. la induces c-components { X7, X5} and {W,Y'}.

For any set C € 'V, let Q*[C](pa(C)) denote the C-factor of C in domain 7¢ which is defined by,

l(pac) [ | 14 (pav, uy) = v}dP' (uc). (7)
Qug vec
Moreover, let C denote the collection of c-components, then P(v) = [ [ Q[C] and Q[C] =
P(c | pac) (we omit the dependence of each C-factor on pa(C) for readability). This construction
is useful because the joint distribution may be factorized according to the c-components of G and its
factors matched across domains (Tian & Pearl, 2002; Correa & Bareinboim, 2019).

Lemma 1. Let G* be a selection diagram for the SCMs M® and M?, then Q*[C] = Q°[C] if G**
does not contain selection nodes Sy pointing to any variable in V € C.

For example, for the selection diagram in Fig. 1b, P*(v) = Q*[ X1, X2]Q*[W, Y] where by Lem. 1
Q*[ X1, Xo] = Q%[ X1, X2] = P%(z1,x2), since the is no S-node pointing to X; or Xs. In turn,
Q*[W,Y] # Q*[W, Y] because of the selection node pointing to W. Note, however, that Q*[W, Y]
defined as in Eq. (7) involves terms, e.g. 1{fy (w, 1, uwy) = y}, that are invariant across domains
since the absence of an S-node into Y denotes invariance in causal mechanisms, and for which P%(v)
may be used for estimation. We discuss next a re-parameterization of C-factors Q*[C] that cannot
be matched across domains with the goal of defining a tractable constrained optimization problem to
bound Q*[C].

Proposition 5. Let M be an arbitrary SCM with graph G and let C be any c-component. Then,
there exists a corresponding SCM N with finite exogeneous domain compatible with G such that
QM[C] = QN[C], where for every exogenous variable U € Ug, its cardinality dyy = ‘Qpa(c) ’

This proposition shows that SCMs with discretely-valued exogeneous variables are expressive enough
to represent C'-factors Q[C] irrespective of the true underlying data generating mechanism. From an
optimization perspective, this is useful because it allows us to consistently parameterize C-factors
and make inference on its distribution in a well-defined latent variable model (Rosset et al., 2017;
Zhang et al., 2021). As an example, consider the introductory example with { X, X5, Y, W} binary
and causal graphs in Fig. 1. Q*[W, Y] defined using Eq. (7) can also be written as:

Z ]]-{f}‘}(wvx%uwyvuy) = y}]]-{flf[/(xlvuwyauw) = w}Pa(uwyauy)P*(uw)a (8)

Uy, Uy, Uw

where Q| = |Qu,| = [9Qx,| - [Qx,| - |Qw] - [Qy| = 16; the function fy is a mapping
between finite domains Qpa, X Qu, — Qv for V e {WW,Y}. Moreover, we have used the structural
invariances encoded by the selection diagrams in Fig. 1 to match causal mechanisms and exogeneous
probabilities between domains. In particular, P?(u,) = P’(u,) = P*(u,) by definition of the
selection diagrams G%* and G”*. Although discretely-valued causal mechanisms and exogeneous
probabilities imply well-defined parameters to optimize over, the partial transportability task remains

a difficult constrained optimization problem.

4.1 APPROXIMATIONS VIA GIBBS SAMPLING

We follow (Chickering & Pearl, 1996; Zhang et al., 2021; Bellot et al., 2022) and take a Bayesian
perspective to approximating bounds [I(x),u(x)]. We evaluating credible intervals P(l(x) <



Under review as a conference paper at ICLR 2023

Ep«[Y | x] < u(x) | ¥v) = 1 — a on the posterior of Epx[Y | x] by approximating the expectation,

E[1{I(x) < Eps[Y | x] < u(x)} | V] = P(U(x) < Epx[Y |x] <u(x) | ¥) ()
provided with finite samples v := (V1,...,V &), where v = {VS) 2§ =1,...,n;} are n,
independent sampled collected in domain 7% and a set of selection diagrams {G** : i =1,2,...,k}

using Gibbs sampling. Following the arguments in the previous section the query may be reduced to
bounding a C'-factor of the form,

wory = Q*[Cl = D1 D [ uer ) =v) [] bu (10)

UeUc¢ u=1,...,dy VeC UeUc

that are parameterized by & = {f‘(}mv’u‘/) :VeC,Pay c V,Uy c Ugtand @ = {0, : U €
Uc} that represent causal functional assignments and exogeneous probabilities, respectively. We
have dropped the domain indicator ”*” from the definition of parameters for readability.

For every V € V,Vpay , uy, the functional assignment parameters f‘(/p @v-uV) are drawn uniformly

in the discrete domain 2y . For every U € U, exogenous probabilities 8y with dimension dy =
|Q Pa(C) ! are drawn from a prior Dirichlet distribution,

6 = (01, 0a,) ~ Dirichlet (o, ..., @y ), (v

with hyperparameters o, . .., oq,, . The Gibbs sampler starts with some initial value for all latent
quantities (u, &, 0) in the expression of woy;, and iterates over the following sampling steps, each
parameter conditioned on the current values of the remaining terms in the parameter vector.

1. Sample u. Let u € Qy, U € Uc. For each observed data example across all domains v(") e v,
n=1,...,%, n;, we sample corresponding exogeneous variables U € Uc from the conditional
distribution,

(n) (n)
P [ v 6,0) oc Pa™ v | £.0) = [] 1™ 7 =o™) [] 60 a2
VeC UeUc

2. Sample &€ Parameters & define deterministic causal mechanisms. For a given parameter

¢P*vuv) ¢ ¢ s conditional distribution is given by P(¢P*Y )

= v | v,a) = 1 if there
exists a sample (v(”), pag}l), u(”)) for some n, where n iterates over the samples of u from
step 1 and v associated with the subset of domains in which exogeneous probabilities match the

() (™
target domain, such that f‘(,pa" ) — () Otherwise, PP ™) — 4 | v, @) is given by a

uniform discrete distribution over its domain /.

3. Sample 6. Let 8y = (61, ...,0q,) € 6 be the parameters that define the probability vector of
possible values of variables U € Uc. Its conditional distribution is given by,

01,...,04, | v,@ ~ Dirichlet <a1 + Z H{u™ =w},... aq, + Z 1{u™ = udU}> ,

13)

where, similarly, n iterates over the samples of u from step 1 associated with the subset of domains
in which exogeneous probabilities match the target domain.

In the above, we have described the conditional distributions of parameters that can be matched across
domains, and therefore estimated from the subset of relevant available data. By the definition of the
partial transportability task, parameters that are specific to the target domain 7* are constrained to

lie in an assumed interval, e.g. P*(v | pay) = 3, 1{ePavv) — [lyeu, 0u e Iv < [0,1],
or else left unspecified. In the first case, parameters are sampled independently and uniformly in

the space defined by the constraints and in the second case, they are sampled independently and

v)

uniformly in their domain of definition, i.e. 5‘(}’ W) e Q. 0, € Qp, in every step of the sampler.

Iterating this procedure forms a Markov chain with the invariant distribution to be the target posterior
distribution P(u, &, 0 | v). P(wep; | V) is then approximated by plugging the MCMC samples into
Eq. (10). The upper and lower « quantile among 7" samples of P(w,p; | V), when combined with the
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Sw Sn AR
, , N N
Ss W Ss W W E pux [c]¢, w] 1502 (.005)
N a SN I puk [c|t, w, 5] .1448 (.004)
S—>T—>C S—>T—>C S—>T—>C =
- 7 ~. 7 ~__ 7 med(lo, tio) 1361 (.005)
(a) GMRUK (b) GFRSW (c) GSWUK (d) Performance comparisons.

Figure 3: (a-c) selection diagrams that compare domain 7R with 7%, 7™ with 73V, and 75V with 7YX,
respectively. (d) gives mean squared error for cancer prediction on a sample of data from P™®,

identified C-factors that form E p« [y | x], gives us a (1 — ) credible interval I, < Epx[y | X] < g
defined by,

lo(x) = sup{z : > H{Ep:[Y | x]") <z} = 0/2}, (14)
ilo(x) = inf{z: Y H{Ep« [V | x]") <2} = 1—0a/2}. (15)

t

The following Theorem shows that credible intervals [lo(x), @ig(x)] converge to the true bounds
[1(x), u(x)] for the unknown query Epx«[Y" | x] and are, moreover, maximally informative, in the
sense that we can always construct two data generating mechanisms M, M? for the target domain
that are compatible with our current knowledge of the world such that E 1 [Y | x] = [ and
Epare [v | x] =u.

Theorem 1. The solution [I(x), u(x)] to the partial transportability task defined over discrete SCMs
is a tight bound over a target query Ep«[Y | x|. The credible interval [lo(x), o (x)] coincides with
[[(x),u(x)] as n; — o0 in all observable domains 7, i = 1,... k.

5 EXPERIMENTS

5.1 SMOKING AND LUNG CANCER

Our first experiment is inspired by the debate around the relationship between smoking and lung
cancer in the 1950’s (US Department of Health and Human Services, 2014). We use a scientifically-
grounded variation of the front-door graph that includes an individual’s smoking status .S, presence of
tar in the lungs 7', wealth W, and lung cancer status C, using the fact that smoking and lung cancer
may be confounded by an individual’s unobserved genetic profile. In this example, the objective is to
make inference on cancer probability distributions in the French population 7R from corresponding
data in 7YX where the prevalence of smoking is known to be lower. The selection diagram is given in
Fig. 3a and details on the SCMs used to generate data are given in Appendix B.

Probability of cancer among smokers P*R(C = 1 | S = 1) . The C-factor decomposition and
parameterization is given by the following derivations,

PFR(Cv s) _ Zt,w PFR(c,s,t,w) _ Ztﬂu QFR[SaC]QFR[w]QFR[t]

PR = = = 16
) = S5 T S PR ) S @l el @
where QR[] = QYK[t] = PUK(¢ | 5,w) and Q™R [w] = QYK [w] = PV¥(w), and,
QM[s.cl = D) LEG™) = g™ ") = s)o, KoL,

In Fig. 4, we report estimated 100% credible 07 —_— 045
intervals [y < PFR(C =11]5 =1) < 1 as 06 ) oo
a function of the number of samples without 05 038 -
prior information (purple) and with the prior ~ 04{=-smmmmmmmmmmmmmeea- 006 mw
information that P*R (s | w) lies in an interval B{ES———— |
Of Wldth 01 around ltS tme Va]ue ( ). The 2000 4000 B0O0 BOOO 10000 o 200 400 600 8OO 1000

Number of samples MCMC iterations

black and gray dotted lines are the actual values Figure 4: Bounding the probability of cancer.
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PR(C=1|S=1)and PYR(C=1]|S =

1) respectively. Notice that a relatively small

number of samples is required to converge to stable bounds, and that the prior information narrows
the credible interval reflecting this additional constraint. We also show for illustration that our Gibbs
sampler recovers the true values PF/R(C' = 1| S = 1) (7 )and P'R(C = 1| S = 0) (purple)
when trained on data from 7fR, i.e. when probabilities are identified.

Prediction performance across domains. Consider the task of designing cancer prediction rules
for optimal performance in the french population 7F®. We introduce an additional training domain
to be able to define invariant predictors: data from the Swedish population 75W whose structural
differences with 7K and with 7R are given in Fig. 3. Across 7UK and 75V, the optimal invariant
predictor (Def. 3) is given by Epuk [C' | t,w, s] = Epsw[C' | t,w, s] which, however, is not equal to
Epw[C | t,w, s] as no set blocks the open path between the selection node Sg and the cancer variable
C in GFRUK We consider also the common strategy of using causal parents for prediction, i.e. using
the prediction rule Epux [C' | ¢, w] (which, similarly, is not equal to Eprz [C' | ¢, w]). For comparison,
we consider the median value med (o, @) for the optimal prediction rule E pr [C' | ¢, w, 5] computed
using data from 7K and 7SV, We observe in Fig. 3d that indeed the prediction rule Epu[C' | ¢, w), 5]
underperforms in 7R: for reference Epm [C' | ¢, w, s] has a mean error of .1220, cautioning against
naively transporting invariant prediction rules across domains. Similarly, using causal parents for
prediction underperforms. In contrast, the median of the derived bound proves to be a slightly
better predictor in this case and has a guarantee of optimal performance in the "worst-case" domain
compatible with the selection diagrams (Prop. 4).

5.2 PREDICTION OF NEURODEGENERATIVE DISEASES ACROSS HOSPITALS

Our second experiment reconsiders the introductory example that described the design of prediction
rules for the development of neurodegenerative diseases in a target hospital 7* in which no data has
been recorded. Instead, we have access to data from two related studies conducted in hospitals 7
and 7® that, however, are known to differ with respect to the target domain notably in the distribution
of blood pressure W, a known cause of neurodegenerative diseases. The causal protocol is given in
Fig. 1 and is described in more depth in Sec. 2. Details on the SCMs used to generate data are given
in Appendix B.

Given this information, we consider the task of designing a prediction rule for optimal mean squared
error in the target hospital 7w*. Here, invariant predictors are well defined and given by the function
flw,z1,22) = Epa[Y | w,x1,22] = Eps[Y | w, 21, x2] although note that, in this example,
this conditional expectation is not invariant in the target domain due to the difference in the causal
mechanisms associated with blood pressure W, see Fig. 1d. Similarly, we can define causal predictors
as Epa[Y | w, 2] and Eps[Y | w, x2] which in this case are not equal across hospitals 7% and 7
due to the open path between Sx, and Y once we condition on W. The partial transportability task
instead argues for approximating Ep«[Y" | w, 1, 5] which, using the C-factor decomposition, is
parameterized by P*(y, w, 21, x2) = Q*[ X1, X2]|Q*[W, Y] where Q*[ X1, X3] = P%(x1,x2) by
Lem. 1 and

Q W, Y] = > n{et) = gyfelpi ) = wyos, 0%

Uy U
The median value of the resulting interval that encodes the un- ¥
certainty in the computation of Ep« [Y | w, z1, z2] as well as Eps[y|lw, z1,z2] | 3640 (.003)
all baseline predictors are given in Fig. 5. We add the actual Eps [y|w, z2] 4244 (.002)
optimal (not computable) prediction rule Ep«[Y | w, z1, 2] B[], 2] 4013 (002)
for reference. Fig. 5 shows that the median outperforms and med(lo, o) 2961 (.008)
that baselines, although common strategies for prediction, 2 3 3
can result in significantly worse out-of-distribution perfor- | Eps [ylw, w1, 22]] 2434 (002) |
mance in examples where unobserved confounding as well Figure 5: Performance comparisons.

as structural differences between domains play a role.

6 CONCLUSIONS

This paper investigated the problem of domain generalization from the perspective of transportability
theory. We introduced the task of partial transportability that seeks to bound the value of an arbitrary

10
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conditional expectation Ep«[Y | x] in an unseen domain 7* using selection diagrams and data
from source domains. Using this formalism, we showed that invariant predictors and more general
solutions to robust optimization problems derived in the literature are special cases of solutions to
this task. Moreover, in systems of discrete observables, we showed that we can design provably
consistent algorithms for inferring bounds that are sound and tight, and illustrated its performance on
synthetic data.
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A PROOFS
Proposition 6 (Prop. 1 restated). Given selection diagrams {G*J : i,j = 1,...,k}, the optimal
invariant predictor is defined as the minimizer of Ep:[(Y — f(Z))?] across alli = 1, ...k, and

belongs to the set of invariant predictors for which Z is a domain-independent Markov blanket for
YeV.

Proof. Assume not such that there exists an optimal invariant predictor Ep:[Y | Z],i = 1,...,k,
distinct from any invariant predictor defined conditional on a domain-independent Markov blanket,
with Z not a domain-independent Markov blanket for Y € V. Then, by definition of a domain-
independent Markov blanket, either (Y UL S | Z)g:s fori,j = 1,...,k, in which case Ep:[Y | Z]
is not invariant across source domains, or there exists a W € Z such that (W 1L Y | Z\W)gi;
fori,j = 1,...,k, in which case Ep:[Y | Z] = Ep:[Y | Z\W]. Now if Z\W is not a domain-
independent Markov blanket we can continue removing independent variables from Z\W to reach a
domain-independent Markov blanket concluding that Ep:[Y" | Z] is not distinct from an invariant
predictor defined conditional on a domain-independent Markov blanket. O

Proposition 7 (Prop. 2 restated). Given a set of selection diagrams {G"7 : i,j = 1,...,k}, let
A= Ul j AT be the set of variables in V whose causal mechanisms differ between any two source
domains, and let S = {Sy : V € A}. The optimal invariant predictor solves the robust optimization
problem in Eq. (2) if selection nodes in all selection diagrams {G"* :i = 1,...,k} are given by S
with edges {Sy — V}g, es.

Proof. Given a set of selection diagrams {G*/ : i,j = 1,...,k}, let A = U, ; A%J be the set of

variables in 'V whose causal mechanisms differ between any two source domains, and let S = {Sy :
Ve A}

Assume that selection nodes in all selection diagrams {G"* : i = 1, ..., k} are given by S (and with
edges {Sy — V'}s,es). Inthat case, the optimal invariant predictor, written Ep1[Y | Z] = Epum[Y |
Z] for any M € M(G). Any additional variable W in the conditioning set is either irrelevant for
prediction, i.e. Epum[Y | Z] = Epum[Y | Z, W], or breaks the independence between Y and selection
nodes, which implies that Epa [Y | Z, W] varies as a function of M. Since the the functional form
of M (besides the arguments of functions) are not constrained by selection diagrams, for any fixed
prediction function Epwm [Y | Z, W], we can always find a domain M’ € M (G) that makes the error
Epu [(Y —Epm[Y | Z,W])?] arbitrarily large, and thus higher than Epa [(Y — Epum [Y | Z])?]
which is fixed for any M’. O

Proposition 8 (Prop. 3 restated). For a given set of selection diagrams, let [I(x),u(x)] denote
the solution of the partial transportability task for the query Epu[Y | x|,M € M(G*) and
Ep:[Y | 2],Z < X be the invariant predictor. Then, Ep1[Y | z] € [I(x),u(x)]. Moreover, by
definition Epu[Y | x] € [I(x), u(x)] for a particular "worst-case” member M € M(G*).

Proof. The set M(G*) represents all SCMs compatible with a target causal graph G* that is only
constrained by selection diagrams {G** : i = 1,..., k}. A selection node indicates a potential change
between two domains and therefore, in principle all source domain SCMs {M*® :i = 1,... k} are
possible candidates for the target domain and thus M*¢ € M(G*)i = 1,..., k. Then, by the definition
of the partial transportability task, Ep1[Y" | z] € [I(x), u(x)] where z is the value of Z in X. O

Proposition 9 (Prop. 4 restated). For a given set of selection diagrams and data, let [I(x), u(x)]
denote the solution of the partial transportability task for the query Epu[Y | x|, M € M(G*).
Then,

E Y- d Epm[Y | X])?
e par[( el pu[Y [ X])7]

< e (Epu (V= Epuly | X))+ {Epul(u(X) - 1))

Under the condition that the irreducible error Epm[(Y — Epu[Y | X])?] is constant across
M e M(G*), medyemg+ Epm [Y | X] provably solves the robust optimization problem Eq. (2).

13
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Proof. For a given set of selection diagrams and data, let [I(x), u(x)] denote the solution of the
partial transportability task for the query Epnm[Y | x|, M € M(G*). Then,

E Y — d Epu|[Y | X])?
et Bpul(Y = med Ep Y [X])]

2
= M(%é*) <EPM[<Y —Epu[Y | X]+Epu[Y | X] — MGIT,}\?lEjg*)EPM[Y | X]) ])

= max <]EPM [(Y —Epwm [Y | X])Q] +Epum [(EPM [Y | X] —

d Epu[Y |X])?
e P [Y | X)) ])

me
MeM(G*)

1
< Mgl\/i{i()é*) <EPM [(Y —Epwm [Y | X])Q] + ZEPM [(’LL(X) - l(X))Z]) .
The second equality holds because the cross term in the expansion of the square equal 0 as Epa [(Y —
Epm[Y | X])] = 0. The inequality holds because the largest distance between Epa [Y | X] and the
median of values Epn [Y | X] can reach as a function of M € M(G*) is half the distance between
maximum and minimum values of Epn [Y | X] across M € M(G*), thatis (u(X) — I(X))/2.

IfEpm[(Y —Epum[Y | X])?] is equal to a constant value independent of M, it can be taken out of
the maximization and we are left with the optimization problem,

. B 2
arg;mn Mer}\l/zl%()((j*) Epu[(Epu[Y | X] — f(X))?] )

For any z and any f, we can always choose M such that [Epn[Y | x] — f(x)] = |Epu[Y

|
x| - MGH}VGI%*)EPM [Y | x]|. For example, by choosing M such that Epm[Y | x] =

MaX pfe M (G*) Epm [Y ‘ X] or Epm [Y | X] = minMeM(g*) Epm [Y ‘ X] depending on what

distance is larger. Therefore, f(x) := me(d )]EPM [V | x] minimizes the robust optimization
MeM(G*

problem. O

Theorem 2 (Prop. 5 restated). Let M be an arbitrary SCM with graph G and let C be any c-
component. Then, there exists a corresponding SCM N with finite exogeneous domain compatible
with G such that Q y[C] = Qn|[C], where for every exogenous variable U € Ucg, its cardinality

dv = |Qpa(o)|-

Proof. The proof follows from Rosset et al. (2017) and Zhang et al. (2021). We include it below for
completeness.

We first introduce some necessary notations and concepts. The probability distribution for every
exogenous variables U < U is characterized with a probability space. It is frequently designated
{(Qu, Fu, Pyy where Qp is a sample space containing all possible outcomes; Fy; is a o-algebra
containing subsets of )7; Py is a probability measure on Fy; normalized such that Py (Qy) = 1.
Elements of F; are called events, which are closed under operations of set complement and unions
of countably many sets. By means of Py a real number Py (A) € [0, 1] is assigned to every event
A € Fy; it is called the probability of event .A. For an arbitrary set of exogenous variables U,
its realization U = u is an element in the Cartesian product X ;. {2y. We may be interested in
inferring whether a sequence of events A for every U € U occurs. Such an event is represented by a
subset X oy Au S X ey v which in turn generate a product of o-algebras ).y Fv. Define
the product measure (X),,.; P to satisfy the following mutual independence condition given by the
definition of the SCM,

P ( X AU> = |1 Po(Av). (18)

UeU UeU

Such P is a probability measure. Moreover,

< X Qu, ¥ Fu, ¥ PU>, (19)

UeU) UeU UeU
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defines a product of probability spaces {Qy, Fy, Py) that describes measurable events over all
exogeneous variables U partitioned into c-components.

Let C be the collection of all c-components in G. c-components in C form a partition {( ;. Uv |
C e C} over exogenous variables U. Therefore, for every U € U, there must exist a unique c-
component denoted by Cy; containing U. For any c-component C € C, let Uc = |y, Uv the set
of exogenous variables affecting (at least one of) endogenous variables in C. By the definition of
c-components, the exogeneous variables do not overlap between c-components and it holds that,

P(ﬂAU)_ H)PU<ﬂAU>. (20)

UeU CeC(G UeC

For any SCM M compatible with the causal graph G the joint distribution may be factorized into
c-components,

P(v) = | | QIC](c, pac). @1)

CeC
where Q[C] is a C-factor and is a function of (c, pac).

To parameterize this joint distribution it is thus sufficient to look at each C'-factor separately. Let C
be a generic c-component in G. Denote by m = |Ug| the number of exogeneous variables related to
C. For convenience, we consistently write {§2;, F;, P;» as the probability space of i-th exogeneous
variable in C'. The product of these probability spaces is thus written,

<>< QC%?C;%P> (22)
i=1 i=1 i=1

Each C-factor may thus be written,

acl = [ T Wvtpav.uw) = a@ P @3)
Xit1 i yvec i=1

Our goal is to show that all probabilities Q[C], induced by exogenous variables described by arbitrary
probability spaces could be produced by a “simpler” generative process with discrete exogenous
domains. Q[C] defines a mapping between the space of possible realizations of the variables Pa(C)
to the [0, 1] interval. Since Pa(C) are discrete variables with finite domains, the cardinality of the
class of probability assignments that must be defined is also finite. It is given at most by the number
of possible combinations of realizations of Pa(C) whichis given by [ [ ¢ p,(c) [©2v]-

Let P be a vector representing probabilities Q[C](c, pac). Counting all possible combina-
tions of outcomes for all possible conditioning sets, P is therefore a vector of at most size
d = [lvepa(c) [S2v]- And since Q[C](c, pac) is a probability mass function, it only takes a
vector with d — 1 dimensions to uniquely determine it. P may thus be interpreted as a point in the

(d — 1)-dimensional real space. Similarly, (P, 1) is vector in d-dimensional space where the d-th
element is equal to 1.

Now consider sampling a value U; = w4 from the underlying SCM and let Q,,, be the probability
model with Uy = u;.

Qu, [C](c | pac) = (24)

J;< H IL{fV(paV;'UJV) = U}dépﬁ

v Qi veC i=2

U1=U1

and P,, is a (d — 1)-dimensional probability vector representing the probabilities of each one of the
combinations Pa(C) given that U; = u;. We will show that P; may equally well be represented by
a discrete distribution. For this, let i = {P,, : u1 € 1} = R? be the set of probability points that
can be constructed as u; varies in £2;. The average SQI P,,dP is a convex mixture of points in U by

(Rubin & Wesler, 1958) that equals Q since,

P = Ll lL [] 1rvipav,uy) = U}dépi

L2 Qi vec 1=2

dP,. 25)

Ui=uq
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By construction, P itself is a convex mixture of at most d + 1 points in /. That is, by using
Carathéodory’s theorem (Carathéodory, 1911),

B d+1 B
P= > wiPy,,. (26)
k=1
Replacing the definition of P,, , we obtain,
_ d+1 m
P=> w J [ ] Hsvpav,uy) = v}d@ P (27
k=1 XL Qi yec =2 dUi=ui

This means that we can replace the continuous measure P; with a discrete probability set with
outcomes {u11,...,u1 4} and corresponding probabilities {ws, ..., wy} with cardinality d and
obtain a probability model that is equivalent to the original P. This procedure can be repeated for all
m exogeneous variables in the c-component C. We are thus left with a model,

QCle.pac) = [ [ tivipav.uy) = }d QP (28)
Xt Qi yeo i=1
equivalent to its discrete counterpart,
QCl(c,pac) = >, Y. |] Hfvpav,uv) =0} [] Pw), (29)
ueUg u=1,..., dVeC UEUC

where d = [[ycpy(c) Qv ]
O

Theorem 3 (Thm. 1 restated). The solution [l,u] to the partial transportability task defined over
discrete SCMs is a tight bound over a target query Ep [y | x|. The credible interval [lo, io]
coincides with [l,u] as n; — oo in all observable domains 7', i = 1,... k.

Proof. The proof strategy follows (Zhang et al., 2021) and shows convergence of the posterior by way
of convergence of the likelihood of the data given one SCM M € M (G). We look at ’convergence’
in a frequentist way, for increasing sample size the posterior will, with increasing probability, be low
for any parameter configuration, i.e. for any SCM M ¢ M(G).

By the definition of the optimal bounds [I, ] given by the solution to the partial transportability task,
PV |I<Ep_,[y|x] <u)—, 1 (30)

Therefore if the prior on parameters (£, 0) defining SCMs is non-zero for any M € M(G), also the
posterior converges,

Pl <Ep [ylx]<ul|v)—y1, 31)

which is the definition credible intervals [lg, uo] as the 0*" and 100" quantiles of the posterior
distribution which coincide with [, u] asymptotically.

O

B EXPERIMENTAL DETAILS

All experiments use 1000 burn-in MCMC samples that are discarded and 5000 MCMC samples
considered as independent samples from the posterior distribution and used for the approximation of
target queries.
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B.1 SCMS FOR THE SMOKING AND LUNG CANCER EXAMPLE

Using the functional dependencies specified by the selection diagram in Fig. 4, we define the SCMs
for domains 79K, 7R and 7SV as follows.

For 7YX we generate samples from P(u,,), P(us), P(u) and P(us.) given by independent Gaus-

sian distributions with mean 0 and variance 1. Each generated (u,,, us, us, us.) leads to a sample
(w, s,t,c) as follows: w «— L{uy, > 0}, 5 — L{w + uge + us — 2 > 0},¢ — 1{s — 0.5u; — 1 >
0}, ¢« 1{t — 0.5w + usc — 1 > 0}.

For 7fR we generate samples from P(u,,), P(us), P(u;) and P(us.) given by independent Gaus-

sian distributions with mean O and variance 1. Each generated (u,,, us, ut, us.) leads to a sample
(w, s,t,c) as follows: w «— 1{u,, > 0}, s — L{w + uge + 1.5us — 1 > 0}, ¢ «— 1{s — 0.5u; — 1 >
0}, ¢ «— 1{t — 0.5w + ugs. — 1 > 0}. Notice that the causal mechanism for S has changed while
everything else is unchanged.

For 75V we generate samples from P(u,,), P(us), P(u;) and P(us.) given by independent Gaus-
sian distributions with mean 0 and variance 1. Each generated (u,,, us, ut, us.) leads to a sample
(w, s,t,c) as follows: w «— L1{u, > 0.5}, s — L{w + use + us — 2 > 0}, ¢t «— 1{s — 0.5u; — 1 >
0}, ¢ <« 1{t — 0.5w + uge — 1 > 0}.

B.2 SCMS FOR THE NEURODEGENERATIVE DISEASE PREDICTION EXAMPLE

Using the functional dependencies specified by the selection diagrams in Fig. 1, we define the SCMs
for domains 7%, 7%, and 7° as follows.

For the target domain 7* we generate samples from P(uyy), P(Ug,, P(uy) and P(ug, 4,)
given by independent Gaussian distributions with mean 0 and variance 1. Each generated
(Uwy, Uy w0y Uzy, Uy) leads to a sample (x1,x2,w,y) as follows: z1 «— L{u,, > 0},z9 «
Ity oy + Uy > 0}, w «— 1{21 + Upy + 15Uy — 1 > 0}, < I{w — upy + 0.121 — 1 > 0}.

For source domain 7%, the distribution of exogenous as well as structural assignment agree with 7*
except in the assignment of T which is given by w <« 1{x1 + wyy — uy + 1 > 0}.

For source domain 7, the distribution of exogenous as well as structural assignment agree with 7*
except in the assignment of W and X;. The selection diagram specifies that the assignment of W
agrees with 7% and is thus given by w <« 1{z1 + uyy — Uy + 1 > 0} while the assignment of X
changes and is given by 21 «— 1{u,, — 0.5 > 0}. All other components of the SCM are the same.
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