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Abstract

In this paper, we study the Combinatorial Pure Exploration problem with the
Bottleneck reward function (CPE-B) under the fixed-confidence (FC) and fixed-
budget (FB) settings. In CPE-B, given a set of base arms and a collection of subsets
of base arms (super arms) following a certain combinatorial constraint, a learner
sequentially plays a base arm and observes its random reward, with the objective
of finding the optimal super arm with the maximum bottleneck value, defined as
the minimum expected reward of the base arms contained in the super arm. CPE-B
captures a variety of practical scenarios such as network routing in communication
networks, and its unique challenges fall on how to utilize the bottleneck property to
save samples and achieve the statistical optimality. None of the existing CPE studies
(most of them assume linear rewards) can be adapted to solve such challenges,
and thus we develop brand-new techniques to handle them. For the FC setting,
we propose novel algorithms with optimal sample complexity for a broad family
of instances and establish a matching lower bound to demonstrate the optimality
(within a logarithmic factor). For the FB setting, we design an algorithm which
achieves the state-of-the-art error probability guarantee and is the first to run
efficiently on fixed-budget path instances, compared to existing CPE algorithms.
Our experimental results on the top-k, path and matching instances validate the
empirical superiority of the proposed algorithms over their baselines.

1 Introduction

The Multi-Armed Bandit (MAB) problem [25, 30, 4, 2] is a classic model to solve the exploration-
exploitation trade-off in online decision making. Pure exploration [3, 21, 7, 26] is an important
variant of the MAB problem, which aims to identify the best arm under a given confidence or
a given sample budget. There are various works studying pure exploration, such as top-k arm
identification [17, 21, 7, 24], top-k arm under matriod constraints [9] and multi-bandit best arm
identification [18, 7].

The Combinatorial Pure Exploration (CPE) framework, firstly proposed by Chen et al. [11], encom-
passes a rich class of pure exploration problems [3, 21, 9]. In CPE, there are a set of base arms, each
associated with an unknown reward distribution. A subset of base arms is called a super arm, which
follows a certain combinatorial structure. At each timestep, a learner plays a base arm and observes a
random reward sampled from its distribution, with the objective to identify the optimal super arm
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with the maximum expected reward. While Chen et al. [11] provide this general CPE framework,
their algorithms and analytical techniques only work under the linear reward function and cannot be
applied to other nonlinear reward cases.1

However, in many real-world scenarios, the expected reward function is not necessarily linear. One of
the common and important cases is the bottleneck reward function, i.e., the expected reward of a super
arm is the minimum expected reward of the base arms contained in it. For example, in communication
networks [5], the transmission speed of a path is usually determined by the link with the lowest rate,
and a learner samples the links in order to find the optimal transmission path which maximizes its
bottleneck link rate. In traffic scheduling [31], a scheduling system collects the information of road
segments in order to plan an efficient route which optimizes its most congested (bottleneck) road
segment. In neural architecture search [32], the overall efficiency of a network architecture is usually
constrained by its worst module, and an agent samples the available modules with the objective to
identify the best network architecture in combinatorial search space.

In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) which aims to identify the optimal super arm with the maximum bottleneck value by
querying the base arm rewards, where the bottleneck value of a super arm is defined as the minimum
expected reward of its containing base arms. We consider two popular settings in pure exploration, i.e,
fixed-confidence (FC), where given confidence parameter δ, the learner aims to identify the optimal
super arm with probability 1− δ and minimize the number of used samples (sample complexity), and
fixed-budget (FB), where the learner needs to use a given sample budget to find the optimal super arm
and minimize the error probability.

Figure 1: Illustrating example.

Challenges of CPE-B. Compared to prior CPE works [11,
10, 20], our CPE-B aims at utilizing the bottleneck prop-
erty to save samples and achieve the statistical optimality.
It faces with two unique challenges, i.e., how to (i) achieve
the tight base-arm-gap dependent sample complexity and
(ii) avoid the dependence on unnecessary base arms in
the results, while running in polynomial time. We use a
simple example in Figure 1 to illustrate our challenges.
In Figure 1, there are six edges (base arms) and three s-t
paths (super arms), and the base arm reward w(ei), base
arm gap ∆ei,ej and super arm gap ∆M∗,Msub are as shown
in the figure. In order to identify the optimal path, all we
need is to pull e1, e2, e4 to determine that e1 is worse than e2 and e4, and e3, e5, e6 are useless for
revealing the sub-optimality of M1 and M2. In this case, the optimal sample complexity should be
O(( 2

∆2
e2,e1

+ 1
∆2

e4,e1

) ln δ−1), which depends on the tight base arm gaps and only includes the critical
base arms (e1, e2, e4). However, if one naively adapts existing CPE algorithms [11, 12, 16] to work
with bottleneck reward function, an inferior sample complexity of O(

∑
ei,i∈[6]

1
∆2

M∗,Msub

ln δ−1) is

incurred, which depends on the loose super arm gaps and contains a summation over all base arms
(including the unnecessary e3, e5, e6). Hence, our challenge falls on how to achieve such efficient
sampling in an online environment, where we do not know which are critical base arms e1, e2, e4 but
want to gather just enough information to identify the optimal super arm. We remark that, none of
existing CPE studies can be applied to solve the unique challenges of CPE-B, and thus we develop
brand-new techniques to handle them and attain the optimal results (up to a logarithmic factor).

Contributions. For CPE-B in the FC setting, (i) we first develop a novel algorithm BLUCB, which
employs a bottleneck-adaptive sample strategy and achieves the tight base-arm-gap dependent sample
complexity. (ii) We further propose an improved algorithm BLUCB-Parallel in high confidence
regime, which adopts an efficient “bottleneck-searching” offline procedure and a novel “check-near-
bottleneck” stopping condition. The sample complexity of BLUCB-Parallel drops the dependence
on unnecessary base arms and achieves the optimality (within a logarithmic factor) under small
enough δ. (iii) A matching sample complexity lower bound for the FC setting is also provided, which
demonstrates the optimality of our algorithms. For the FB setting, (iv) we propose a novel algorithm
BSAR with a special acceptance scheme for the bottleneck identification task. BSAR achieves the
state-of-the-art error probability and is the first to run efficiently on fixed-budget path instances,

1The algorithmic designs and analytical tools (e.g., symmetric difference and exchange set) in [11] all rely
on the linear property and cannot be applied to nonlinear reward cases, e.g, the bottleneck reward problem.
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compared to existing CPE algorithms. All our proposed algorithms run in polynomial time.2 The
experimental results demonstrate that our algorithms significantly outperform the baselines. Due to
space limit, we defer all the proofs to the supplementary material.

1.1 Related Work

In the following we briefly review the related work in the CPE literature. Chen et al. [11] firstly
propose the CPE model and only consider the linear reward function (CPE-L), and their results for
CPE-L are further improved by [19, 10]. Huang et al. [20] investigate the continuous and separable
reward functions (CPE-CS), but their algorithm only runs efficiently on simple cardinality constraint
instances. All these works consider directly sampling base arms and getting their feedback. There
are also several CPE studies which consider other forms of sampling and feedback. Chen et al. [12]
propose the CPE for dueling bandit setting, where at each timestep the learner pulls a duel between
two base arms and observes their comparison outcome. Kuroki et al. [23] study an online densest
subgraph problem, where the decision is a subgraph and the feedback is the reward sum of the edges
in the chosen subgraph (i.e., full-bandit feedback). Du et al. [16] investigate CPE with the full-bandit
or partial linear feedback. All of the above studies consider the pure exploration setting, while in
combinatorial bandits there are other works [13, 15, 14] studying the regret minimization setting
(CMAB). In CMAB, the learner plays a super arm and observes the rewards from all base arms
contained in it, with goal of minimizing the regret, which is significantly different from our setting.
Note that none of the above studies covers our CPE-B problem or can be adapted to solve the unique
challenges of CPE-B, and thus CPE-B demands a new investigation.

2 Problem Formulation

In this section, we give the formal formulation of CPE-B. In this problem, a learner is given n
base arms numbered by 1, 2, . . . , n. Each base arm e ∈ [n] is associated with an unknown reward
distribution with the mean of w(e) and an R-sub-Gaussian tail, which is a standard assumption
in bandits [1, 11, 26, 29]. Let w = (w(1), . . . , w(n))> be the expected reward vector of base
arms. The learner is also given a decision class M ⊆ 2[n], which is a collection of super arms
(subsets of base arms) and generated from a certain combinatorial structure, such as s-t paths,
maximum cardinality matchings, and spanning trees. For each super arm M ∈ M, we define its
expected reward (also called bottleneck value) as MinW(M,w) = mine∈M w(e),3 i.e., the minimum
expected reward of its constituent base arms, which is so called bottleneck reward function. Let
M∗ = argmaxM∈M MinW(M,w) be the optimal super arm with the maximum bottleneck value, and
OPT = MinW(M∗,w) be the optimal value. Following the pure exploration literature [17, 11, 10, 12],
we assume that M∗ is unique, and this assumption can be removed in our extension to the PAC
learning setting (see the supplementary material).

At each timestep, the learner plays (or samples) a base arm pt ∈ [n] and observes a random reward
sampled from its reward distribution, where the sample is independent among different timestep t.
The learner’s objective is to identify the optimal super arm M∗ fromM.

For this identification task, we study two common metrics in pure exploration [21, 7, 26, 10], i.e.,
fixed-confidence (FC) and fixed-budget (FB) settings. In the FC setting, given a confidence parameter
δ ∈ (0, 1), the learner needs to identify M∗ with probability at least 1− δ and minimize the sample
complexity, i.e., the number of samples used. In the FB setting, the learner is given a fixed sample
budget T , and needs to identify M∗ within T samples and minimize the error probability, i.e., the
probability of returning a wrong answer.

3 Algorithms for the Fixed-Confidence Setting

In this section, we first propose a simple algorithm BLUCB for the FC setting, which adopts a novel
bottleneck-adaptive sample strategy to obtain the tight base-arm-gap dependent sample complexity.

2Here “polynomial time” refers to polynomial time in the number of base arms n (which is equal to the
number of edges E in our considered instances such as s-t paths, matchings and spanning trees).

3In general, the second input of function MinW can be any vector: for any M ∈ M and v ∈ Rn,
MinW(M,v) = mine∈M v(e).
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Algorithm 1 BLUCB, algorithm for CPE-B in the FC setting

1: Input:M, δ ∈ (0, 1) and MaxOracle.
2: Initialize: play each e ∈ [n] once, and update

empirical means ŵn+1 and Tn+1

3: for t = n+ 1, n+ 2, . . . do
4: radt(e) ←

√
2 ln( 4nt3

δ )/Tt(e), ∀e ∈ [n]

5: wt(e)← ŵt(e)− radt(e), ∀e ∈ [n]
6: w̄t(e)← ŵt(e) + radt(e), ∀e ∈ [n]
7: Mt ← MaxOracle(M,wt)

8: M̃t ← MaxOracle(M\ S(Mt), w̄t)

9: if MinW(Mt,wt) ≥ MinW(M̃t, w̄t) then
10: return Mt

11: end if
12: ct ← argmine∈Mt

wt(e)
13: dt ← argmine∈M̃t

wt(e)

14: pt ← argmaxe∈{ct,dt} radt(e)
15: Play pt, and observe the reward
16: Update empirical means ŵt+1(pt)
17: Update the number of samples Tt+1(pt)
18: end for

We further develop an improvement BLUCB-Parallel in high confidence regime, whose sample
complexity drops the dependence on unnecessary base arms for small enough δ. Both algorithms
achieve the optimal sample complexity for a family of instances (within a logarithmic factor).

3.1 Algorithm BLUCB with Base-arm-gap Dependent Results

Algorithm 1 illustrates the proposed algorithm BLUCB for CPE-B in the FC setting. Here S(Mt)
denotes the set of all supersets of super arm Mt (Line 8). Since the bottleneck reward function is
monotonically decreasing, for any M ′ ∈ S(Mt), we have MinW(M ′,w) ≤ MinW(Mt,w). Hence, to
verify the optimality of Mt, we only need to compare Mt against super arms inM\S(Mt), and this
property will also be used in the later algorithm BLUCB-Parallel.

BLUCB is allowed to access an efficient bottleneck maximization oracle MaxOracle(F ,v),
which returns an optimal super arm from F with respect to v, i.e., MaxOracle(F ,v) ∈
argmaxM∈F MinW(M,v). For F =M (Line 7), such an efficient oracle exists for many decision
classes, such as the bottleneck shortest path [27], bottleneck bipartite matching [28] and minimum
bottleneck spanning tree [8] algorithms. For F =M\ S(Mt) (Line 8), we can also efficiently find
the best super arm (excluding the supersets of Mt) by repeatedly removing each base arm in Mt and
calling the basic maximization oracle, and then selecting the one with the maximum bottleneck value.

We describe the procedure of BLUCB as follows: at each timestep t, we calculate the lower and
upper confidence bounds of base arm rewards, denoted by wt and w̄t, respectively. Then, we call
MaxOracle to find the super arm Mt with the maximum pessimistic bottleneck value fromM using
wt (Line 7), and the super arm M̃t with the maximum optimistic bottleneck value fromM\ S(Mt)

using w̄t (Line 8). Mt and M̃t are two critical super arms that determine when the algorithm should
stop or not. If the pessimistic bottleneck value of Mt is higher than the optimistic bottleneck value of
M̃t (Line 9), we can determine that Mt has the higher bottleneck value than any other super arm with
high confidence, and then the algorithm can stop and output Mt. Otherwise, we select two base arms
ct and dt with the minimum lower reward confidence bounds in Mt and M̃t respectively, and play
the one with the larger confidence radius (Lines 12-14).

Bottleneck-adaptive sample strategy. The “select-minimum” sample strategy in Lines 12-14 comes
from an insight for the bottleneck problem: to determine that Mt has a higher bottleneck value than
M̃t, it suffices to find a base arm from M̃t which is worse than any base arm (the bottleneck base
arm) in Mt. To achieve this, base arms ct and dt, which have the most potential to be the bottlenecks
of Mt and M̃t, are the most necessary ones to be sampled. This bottleneck-adaptive sample strategy
is crucial for BLUCB to achieve the tight base-arm-gap dependent sample complexity. In contrast, the
sample strategy of prior CPE algorithms [11, 12, 16] treats all base arms in critical super arms (Mt

and M̃t) equally and does a uniform choice. If one naively adapts those algorithms with the current
reward function MinW(M,w), a loose super-arm-gap dependent sample complexity is incurred.

To formally state the sample complexity of BLUCB, we introduce some notation and gap definition.
Let N = {e | e /∈ M∗, w(e) < OPT} and Ñ = {e | e /∈ M∗, w(e) ≥ OPT}, which stand for the
necessary and unnecessary base arms contained in the sub-optimal super arms, respectively. We
define the reward gap for the FC setting as
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Algorithm 2 BLUCB-Parallel, an improved algorithm for the FC setting under small δ
1: Input: δ ∈ (0, 0.01) and sub-algorithm BLUCB-Verify.
2: For k = 0, 1, . . . , let BLUCB-Verifyk be the sub-algorithm BLUCB-Verify with δk = δ

2k+1

3: for t = 1, 2, . . . do
4: for each k = 0, 1, . . . such that t mod 2k = 0 do
5: Start or resume BLUCB-Verifyk with one sample, and then suspend BLUCB-Verifyk
6: if BLUCB-Verifyk returns an answer Mout, then return Mout
7: end for
8: end for

Algorithm 3 BLUCB-Verify, sub-algorithm of BLUCB-Parallel

1: Input:M, δV ∈(0, 0.01) and MaxOracle.
2: κ← 0.01
3:M̂∗,B̂sub←BLUCB-Explore(M, κ, MaxOracle)
4: Initialize: play each e ∈ [n] once, and update

empirical means ŵn+1 and Tn+1

5: for t = n+ 1, n+ 2, . . . do
6: radt(e)←R

√
2 ln( 4nt3

δV
)/Tt(e),∀e∈ [n]

7: wt(e)← ŵt(e)− radt(e), ∀e ∈ [n]
8: w̄t(e)← ŵt(e) + radt(e), ∀e ∈ [n]

9: M̃t = MaxOracle(M\ S(M̂∗), w̄t)

10: if MinW(M̂∗,wt) ≥ MinW(M̃t, w̄t) then
11: return M̂∗
12: end if
13: ct ← argmine∈M̂∗ wt(e)

14: Ft ← {e ∈ B̂sub : w̄t(e) > wt(ct)}
15: pt ← argmaxe∈Ft∪{ct} radt(e)
16: Play pt, and observe the reward
17: Update empirical means ŵt+1(pt)
18: Update the number of samples Tt+1(pt)
19: end for

Definition 1 (Fixed-confidence Gap).

∆C
e =

 w(e)−maxM 6=M∗ MinW(M,w), if e ∈M∗, (a)
w(e)−maxM∈M:e∈M MinW(M,w), if e ∈ Ñ , (b)
OPT−maxM∈M:e∈M MinW(M,w), if e ∈ N.

Now we present the sample complexity upper bound of BLUCB.
Theorem 1 (Fixed-confidence Upper Bound). With probability at least 1 − δ, algorithm BLUCB
(Algorithm 1) for CPE-B in the FC setting returns the optimal super arm with sample complexity

O

∑
e∈[n]

R2

(∆C
e )2

ln

∑
e∈[n]

R2n

(∆C
e )2δ

 .

Base-arm-gap dependent sample complexity. Owing to the bottleneck-adaptive sample strategy,
the reward gap ∆C

e (Definition 1(a)(b)) is just defined as the difference between some critical
bottleneck value and w(e) itself, instead of the bottleneck gap between two super arms, and thus our
result depends on the tight base-arm-level (instead of super-arm-level) gaps. For example, in Figure 1,
BLUCB only spends Õ(( 2

∆2
e2,e1

+
∑
i=3,4,5,6

1
∆2

ei,e1

) ln δ−1) samples, while a naive adaptation of
prior CPE algorithms [11, 12, 16] with the bottleneck reward function will cause a loose super-arm-
gap dependent result Õ(

∑
ei,i∈[6]

1
∆2

M∗,Msub

ln δ−1). Regarding the optimality, Theorem 1 matches

the lower bound (presented in Section 4) for some family of instances (up to a logarithmic factor).
However, in general cases there still exists a gap on those needless base arms Ñ (e3, e5, e6 in Figure 1),
which are not contained in the lower bound. Next, we show how to bridge this gap.

3.2 Remove Dependence on Unnecessary Base Arms under Small δ

Challenges of avoiding unnecessary base arms. Under the bottleneck reward function, in each
sub-optimal super arm Msub, only the base arms with rewards lower than OPT (base arms in N ) can
determine the relationship of bottleneck values between M∗ and Msub (the bottleneck of Msub is
the most efficient choice to do this), and the others (base arms in Ñ ) are useless for revealing the
sub-optimality of Msub. Hence, to determine M∗, all we need is to sample the base arms in M∗ and
the bottlenecks from all sub-optimal super arms, denoted by Bsub, to see that each sub-optimal super
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Algorithm 4 BLUCB-Explore, sub-algorithm of BLUCB-Verify, the key algorithm

1: Input:M, κ = 0.01 and MaxOracle.
2: Initialize: play each e ∈ [n] once, and update

empirical means ŵn+1 and Tn+1

3: for t = n+ 1, n+ 2, . . . do
4: radt(e)←R

√
2 ln( 4nt3

κ )/Tt(e), ∀e∈ [n]

5: wt(e)← ŵt(e)− radt(e), ∀e ∈ [n]
6: w̄t(e)← ŵt(e) + radt(e), ∀e ∈ [n]
7: Mt ← MaxOracle(M,wt)

8: B̂sub,t←BottleneckSearch(M,Mt,wt)

9: if w̄t(e)≤ 1
2 (MinW(Mt,wt) + wt(e)) for

all e ∈ B̂sub,t then

10: return Mt, B̂sub,t
11: end if
12: ct ← argmine∈Mt

wt(e)

13: B̂′sub,t ← {e ∈ B̂sub,t :

w̄t(e) >
1
2 (MinW(Mt,wt) + wt(e))}

14: pt ← argmaxe∈B̂′sub,t∪{ct}
radt(e)

15: Play pt, and observe the reward
16: Update empirical means ŵt+1(pt)
17: Update the number of samples Tt+1(pt)
18: end for

arm contains at least one base arm that is worse than anyone in M∗. However, before sampling, (i)
we do not know which is M∗ that should be taken as the comparison benchmark, and in each Msub,
which base arm is its bottleneck (included in Bsub). Also, (ii) under combinatorial setting, how to
efficiently collect Bsub from all sub-optimal super arms is another challenge.

To handle these challenges, we propose algorithm BLUCB-Parallel based on the explore-verify-
parallel framework [22, 10]. BLUCB-Parallel (Algorithm 2) simultaneously simulates multiple
BLUCB-Verifyk (Algorithm 3) with confidence δVk = δ/2k+1 for k ∈ N. BLUCB-Verifyk first calls
BLUCB-Explore (Algorithm 4) to guess an optimal super arm M̂∗ and collect a near bottleneck set
B̂sub with constant confidence κ, and then uses the required confidence δVk to verify the correctness
of M̂∗ by only sampling base arms in M̂∗ and B̂sub. Through parallel simulations, BLUCB-Parallel
guarantees the 1− δ correctness.

The key component of this framework is BLUCB-Explore (Algorithm 4), which provides a hypothe-
sized answer M̂∗ and critical base arms B̂sub for verification to accelerate its identification process.
Below we first describe the procedure of BLUCB-Explore, and then explicate its two innovative
techniques, i.e. offline subroutine and stopping condition, developed to handle the challenges (i),(ii).
BLUCB-Explore employs the subroutine BottleneckSearch(M,Mex,v) to return the set of bot-
tleneck base arms from all super arms inM \ S(Mex) with respect to weight vector v. At each
timestep, we first calculate the best super arm Mt under lower reward confidence bound wt, and call
BottleneckSearch to collect the bottlenecks B̂sub,t from all super arms inM\S(Mt) with respect
to wt (Line 8). Then, we use a stopping condition (Line 9) to examine if Mt is correct and B̂sub,t

is close enough to B̂sub (with confidence κ). If so, Mt and B̂sub,t are eligible for verification and
returned; otherwise, we play a base arm fromMt and B̂sub,t, which is most necessary for achieving the
stopping condition. In the following, we explicate the two innovative techniques in BLUCB-Explore.

Efficient “bottleneck-searching” offline subroutine. BottleneckSearch(M,Mex,v) (Line 8)
serves as an efficient offline procedure to collect bottlenecks from all super arms in given decision
classM\S(Mex) with respect to v. To achieve efficiency, the main idea behind BottleneckSearch
is to avoid enumerating super arms in the combinatorial space, but only enumerate base arms e ∈ [n]
to check if e is the bottleneck of some super arm inM\ S(Mex). We achieve this by removing all
base arms with rewards lower than v(e) and examining whether there exists a feasible super arm M
that contains e in the remaining decision class. If so, e is the bottleneck of M and added to the output
(more procedures are designed to exclude S(Mex)). This efficient offline subroutine solves challenge
(ii) on computation complexity (see the supplementary material for its pseudo-codes and details).

Delicate “check-near-bottleneck” stopping condition. The stopping condition (Line 9) aims to
ensure the returned B̂sub,t = B̂sub to satisfy the following Property (1): for each sub-optimal super
arm Msub, some base arm e such that w(e) ≤ 1

2 (MinW(M∗,w) + MinW(Msub,w)) is included in
B̂sub, which implies that e is near to the actual bottleneck of Msub within 1

2∆M∗,Msub , and cannot be
anyone in Ñ . Property (1) is crucial for BLUCB-Verify to achieve the optimal sample complexity,
since it guarantees that in verification using B̂sub to verify M∗ just costs the same order of samples as

6



using Bsub, which matches the lower bound. In the following, we explain why this stopping condition
can guarantee Property (1).

If the stopping condition (Line 9) holds, i.e., ∀e ∈ B̂sub,t, w̄t(e) ≤ 1
2 (MinW(Mt,wt) +wt(e)), using

the definition of BottleneckSearch, we have that for any M ′ ∈M\S(Mt), its bottleneck e′ with
respect to wt is included in B̂sub,t and satisfies that

w(e′) ≤ w̄t(e′)
(a)
≤ 1

2
(MinW(Mt,wt) + MinW(M ′,wt)) ≤

1

2
(MinW(Mt,w) + MinW(M ′,w)),

where inequality (a) comes from w̄t(e
′) ≤ 1

2 (MinW(Mt,wt)+wt(e
′)) andwt(e

′)) = MinW(M ′,wt).
Hence, we can defer that MinW(M ′,w) ≤ w(e′) ≤ 1

2 (MinW(Mt,w) + MinW(M ′,w)) for any
M ′ ∈M \ S(Mt), and thus Mt = M∗ (with confidence κ). In addition, the returned B̂sub,t satisfies
Property (1). This stopping condition offers knowledge of a hypothesized optimal super arm M̂∗
and a near bottleneck set B̂sub for verification, which solves the challenge (i) and enables the overall
sample complexity to achieve the optimality for small enough δ. Note that these two techniques are
new in the literature, which are specially designed for handling the unique challenges of CPE-B.

We formally state the sample complexity of BLUCB-Parallel in Theorem 2.
Theorem 2 (Improved Fixed-confidence Upper Bound). For any δ < 0.01, with probability at least
1− δ, algorithm BLUCB-Parallel (Algorithm 2) for CPE-B in the FC setting returns M∗ and takes
the expected sample complexity

O

( ∑
e∈M∗∪N

R2

(∆C
e )2

ln

(
1

δ

∑
e∈M∗∪N

R2n

(∆C
e )2

)
+
∑
e∈Ñ

R2

(∆C
e )2

ln

(∑
e∈Ñ

R2n

(∆C
e )2

))
.

Results without dependence on Ñ in the dominant term. Let HV =
∑
e∈M∗∪N

R2

(∆C
e)2 and

HE =
∑
e∈[n]

R2

(∆C
e)2 denote the verification and exploration hardness, respectively. Compared to

BLUCB (Theorem 1), the sample complexity of BLUCB-Parallel removes the redundant dependence
on Ñ in the ln δ−1 term, which guarantees better performance when ln δ−1 ≥ HE

HE−HV
, i.e., δ ≤

exp(− HE

HE−HV
). This sample complexity matches the lower bound (within a logarithmic factor)

under small enough δ. For the example in Figure 1, BLUCB-Parallel only requires Õ(( 2
∆2

e2,e1

+
1

∆2
e4,e1

) ln δ−1) samples, which are just enough efforts (optimal) for identifying M∗.

The condition δ < 0.01 in Theorem 2 is due to that the used explore-verify-parallel framework [22, 10]
needs a small δ to guarantee that BLUCB-Parallel can maintain the same order of sample complexity
as its sub-algorithm BLUCB-Verifyk. Prior pure exploration works [22, 10] also have such condition
on δ.

Time Complexity. All our algorithms can run in polynomial time, and the running time mainly
depends on the offline oracles. For example, on s-t path instances with E edges and V vertices, the
used offline procedures MaxOracle and BottleneckSearch only spend O(E) and O(E2(E + V ))
time, respectively. See the supplementary material for more time complexity analysis.

4 Lower Bound for the Fixed-Confidence Setting
In this section, we establish a matching sample complexity lower bound for CPE-B in the FC
setting. To formally state our results, we first define the notion of δ-correct algorithm as follows.
For any confidence parameter δ ∈ (0, 1), we call an algorithm A a δ-correct algorithm if for the
fixed-confidence CPE-B problem, A returns the optimal super arm with probability at least 1− δ.
Theorem 3 (Fixed-confidence Lower Bound). There exists a family of instances for the fixed-
confidence CPE-B problem, for which given any δ ∈ (0, 0.1), any δ-correct algorithm has the
expected sample complexity

Ω

( ∑
e∈M∗∪N

R2

(∆C
e )2

ln

(
1

δ

))
.

This lower bound demonstrates that the sample complexity of BLUCB-Parallel (Theorem 2) is
optimal (within a logarithmic factor) under small enough δ, since its ln δ−1 (dominant) term does
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Algorithm 5 BSAR, algorithm for CPE-B in the FB setting

1: Input: budget T ,M, and AR− Oracle.
2: ˜log(n)←

∑n
i=1

1
i . T̃0←0. A1, R1←∅.

3: for t = 1, . . . , n do
4: T̃t ←

⌈
T−n

˜log(n)(n−t+1)

⌉
5: Ut ← [n] \ (At ∪Rt)
6: Play each e ∈ Ut for T̃t − T̃t−1 times
7: Update empirical mean ŵt(e), ∀e∈Ut
8: ŵt(e)←∞ for all e ∈ At
9: Mt ← AR-Oracle(⊥, Rt, ŵt)

10: for each e ∈ Ut do
11: if e ∈Mt then
12: M̃t,e←AR-Oracle(⊥, Rt∪{e}, ŵt)
13: else
14: M̃t,e ← AR-Oracle(e,Rt, ŵt)

15: end if
16: // AR-Oracle returns⊥ if the calculated

feasible set is empty
17: end for
18: pt←argmax

e∈Ut

MinW(Mt,ŵt)−MinW(M̃t,e,ŵt)

19: // MinW(⊥, ŵt) = −∞
20: if pt ∈Mt then
21: At+1 ← At ∪ {pt}, Rt+1 ← Rt
22: else
23: At+1 ← At, Rt+1 ← Rt ∪ {pt}
24: end if
25: end for
26: return An+1

not depend on unnecessary base arms Ñ either. In addition, if we impose some constraint on the
constructed instances, the sample complexity of BLUCB (Theorem 1) can also match the lower bound
up to a logarithmic factor (see the supplementary material for details). The condition δ < 0.1 comes
from the lower bound analysis, which ensures that the binary entropy of finding a correct or wrong
answer can be lower bounded by ln δ−1. Existing pure exploration works [11, 10] also have such
condition on δ in their lower bounds.

Notice that, both our lower and upper bounds depend on the tight base-arm-level (instead of super-
arm-level) gaps, and capture the bottleneck insight: different base arms in one super arm play distinct
roles in determining its (sub)-optimality and impose different influences on the problem hardness.

5 Algorithm for the Fixed-Budget Setting
For CPE-B in the FB setting, we design a novel algorithm BSAR that adopts a special acceptance
scheme for bottleneck identification. We allow BSAR to access an efficient accept-reject oracle
AR-Oracle, which takes an accepted base arm e or ⊥, a rejected base arm set R and a weight vector
v as inputs, and returns an optimal super arm from the decision classM(e,R) = {M ∈ M : e ∈
M,R ∩M = ∅} with respect to v, i.e., AR-Oracle ∈ argmaxM∈M(e,R) MinW(M,w). IfM(e,R)
is empty, AR-Oracle simply returns ⊥. Such an efficient oracle exists for many decision classes, e.g.,
paths, matchings and spanning trees (see the supplementary material for implementation details).

BSAR allocates the sample budget T to n phases adaptively, and maintains the accepted set At,
rejected set Rt and undetermined set Ut. In each phase, we only sample base arms in Ut and set
the empirical rewards of base arms in At to infinity (Line 8). Then, we call AR-Oracle to compute
the empirical best super arm Mt. For each e ∈ Ut, we forbid Rt and constrain e inside/outside the
calculated super arms and find the empirical best super arm M̃t,e from the restricted decision class
(Lines 12,14). Then, we accept or reject the base arm pt that maximizes the empirical reward gap
between Mt and M̃t,e, i.e., the one that is most likely to be in or out of M∗ (Line 18).

Special acceptance scheme for bottleneck and polynomial running time. The acceptance scheme
ŵt(e)←∞ for all e ∈ At (Line 8) is critical to the correctness and computation efficiency of BSAR.
Since At and Rt are not pulled in phase t and their estimated rewards are not accurate enough, we
need to avoid them to disturb the following calculation of empirical bottleneck values (Lines 9-18).
By setting the empirical rewards of At to infinity, the estimation of bottleneck values for sub-optimal
super arms Msub avoids the disturbance of At, because each Msub has at least one base arm with
reward lower than OPT and this base arm will never be included inAt (conditioned on high probability
events). As for M∗, its empirical bottleneck value can be raised, but this only enlarges the empirical
gap between M∗ and Msub and does not affect the correctness of the choice pt (Line 18). Hence, this
acceptance scheme guarantees the correctness of BSAR in bottleneck identification task.

Compared to existing CPE-L algorithm CSAR [11], they force the whole set At inside the calcu-
lated super arms in the oracle, i.e., replacing Lines 12,14 with AR-Oracle(At, Rt ∪ {e}, ŵt) and
AR-Oracle(At∪{e}, Rt, ŵt), and deleting Line 8. Such acceptance strategy incurs exponential-time
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complexity on s-t path instances,4 and only works for the linear reward function, where the common
partAt between two compared super arms can be canceled out. If one naively applies their acceptance
strategy to our bottleneck problem, the common part At is possible to drag down (dominate) the
empirical bottleneck values of all calculated super arms (Lines 9,12,14) and their empirical gaps will
become all zeros (Line 18), which destroys the correctness of the choice pt in theoretical analysis.

BSAR is the first to run in polynomial time on fixed-budget s-t path instances among existing CPE
algorithms, owing to its skillful acceptance scheme and the simplified AR-Oracle (only work with
one accepted base arm instead of At). Specifically, for E edges and V vertices, the time complexity
of AR-Oracle is O(E(E + V )) and BSAR only spends O(E2(E + V )) time in decision making.

Now we give the definitions of fixed-budget reward gap and problem hardness, and then formally
state the error probability result of BSAR. For e ∈ M∗, ∆B

e = OPT −maxM∈M:e/∈M MinW(M,w),
and for e /∈M∗, ∆B

e = OPT−maxM∈M:e∈M MinW(M,w). Let ∆B
(1), . . . ,∆

B
(n) be the permutation

of ∆B
1 , . . . ,∆

B
n such that ∆B

(1) ≤ · · · ≤ ∆B
(n), and the fixed-budget problem hardness is defined as

HB = maxi∈[n]
i

(∆B
(i)

)2
. Let ˜log(n) =

∑n
i=1

1
i .

Theorem 4 (Fixed-budget Upper Bound). For any T > n, algorithm BSAR (Algorithm 5) for CPE-B
in the FB setting uses at most T samples and returns the optimal super arm with the error probability
bounded by

O

(
n2 exp

(
− T − n

˜log(n)R2HB

))
.

Compared to the uniform sampling algorithm, which plays all base arms equally and has
O(n exp(− T

R2n∆−2
min

)) error probability with ∆min = OPT −maxM 6=M∗ MinW(M,w), Theorem 4

achieves a significantly better correctness guarantee (when ∆B
e > ∆min for most e ∈ [n]). In

addition, when our CPE-B problem reduces to conventional K-armed pure exploration problem [7],
Theorem 4 matches existing state-of-the-art result in [7]. To our best knowledge, the lower bound for
the fixed-budget setting in the CPE literature [11, 20, 23, 16] remains open.

Our error probability analysis falls on taking advantage of the bottleneck property to handle the
disturbance from the accepted arm set (which are not pulled sufficiently) and guaranteeing the
estimation accuracy of bottleneck rewards. The differences between our analysis and prior analysis
for CSAR [11] are highlighted as follows: (i) Prior analysis [11] relies on the linear property to
cancel out the common part between two super arms when calculating their reward gap, in order
to avoid the disturbance of accepted arms. In contrast, to achieve this goal, we utilize the special
acceptance scheme of BSAR to exclude all accepted arms in the calculation of bottleneck rewards,
which effectively addresses the perturbation of inaccurate estimation on accepted arms. (ii) Prior
analysis [11] mainly uses the “exchange sets” technique, which only works for the linear reward
function and leads to the dependence on the parameter of decision class structures. Instead, our
analysis exploits the bottleneck property to establish confidence intervals in the base arm level, and
effectively avoids the dependence on the parameter of decision class structures.

6 Experiments
In this section, we conduct experiments for CPE-B in FC/FB settings on synthetic and real-world
datasets. The synthetic dataset consists of the s-t path and matching instances. For the s-t path
instance, the number of edges (base arms) n = 85, and the expected reward of edges w(e) =
[0, 10.5] (e ∈ [n]). The minimum reward gap of any two edges (which is also the minimum gap
of bottleneck values between two super arms) is denoted by ∆min ∈ [0.4, 0.7]. For the matching
instances, we use a 5× 3 complete bipartite graph, where n = 15, w(e) = [0.1, 1.08] and ∆min ∈
[0.03, 0.07]. We change ∆min to generate a series of instances with different hardness (plotted points
in Figures 2(a),2(b),2(e)). In terms of the real-world dataset, we use the data of American airports
and the number of available seats of flights in 2002, provided by the International Air Transportation
Association database (www.iata.org) [6]. Here we regard an airport as a vertex and a direct flight
connecting two airports as an edge (base arm), and also consider the number of available seats of a
flight as the expected reward of an edge. Our objective is to find an air route connecting the starting
and destination airports which maximizes the minimum number of available seats among its passing

4Finding a s-t path which contains a given edge set is NP-hard. See the supplementary material for its proof.
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Figure 2: Experiments for CPE-B in the FC/FB setting on synthetic and real-world datasets.

flights. In this instance, n = 9 and w(e) ∈ [0.62, 1.84]. We present the detailed graphs with specific
values of w(e) for the s-t path, matching and real-world air route instances in the supplementary
material.

In the FC setting, we set a large δ = 0.005 and a small δ = exp(−1000), and perform 50 independent
runs to plot average sample complexity with 95% confidence intervals. In the FB setting, we set
sample budget T ∈ [6000, 15000], and perform 3000 independent runs to show the error probability
across runs. For all experiments, the random reward of each edge e ∈ [n] is i.i.d. drawn from
Gaussian distribution N (w(e), 1).

Experiments for the FC setting. We compare our BLUCB/BLUCB-Parallel with three baselines.
BLUCB− is an ablation variant of BLUCB, which replaces the sample strategy (Lines 12-14) with the
one that uniformly samples a base arm in critical super arms. CLUCB-B [11] is the state-of-the-art fixed-
confidence CPE-L algorithm run with bottleneck reward function. UniformFC is a fixed-confidence
uniform sampling algorithm. As shown in Figures 2(a)-2(c), BLUCB and BLUCB-Parallel achieve
better performance than the three baselines, which validates the statistical efficiency of our bottleneck-
adaptive sample strategy. Under small δ, BLUCB-Parallel enjoys lower sample complexity than
BLUCB due to its careful algorithmic design to avoid playing unnecessary base arms, which matches
our theoretical results.

Experiments for the FB setting. Our BSAR is compared with four baselines. As an ablation variant
of BSAR, BSR removes the special acceptance scheme of BSAR. CSAR-B [11] is the state-of-the-art
fixed-budget CPE-L algorithm implemented with bottleneck reward function. CUCB-B [14] is a regret
minimization algorithm allowing nonlinear reward functions, and in pure exploration experiments we
let it return the empirical best super arm after T (sample budget) timesteps. UniformFB is a fixed-
budget uniform sampling algorithm. One sees from Figures 2(d)-2(f) that, BSAR achieves significantly
better error probability than all the baselines, which demonstrates that its special acceptance scheme
effectively guarantees the correctness for the bottleneck identification task.

7 Conclusion and Future Work
In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) problem in FC/FB settings. For the FC setting, we propose two novel algorithms, which
achieve the optimal sample complexity for a broad family of instances (within a logarithmic factor),
and establish a matching lower bound to demonstrate their optimality. For the FB setting, we propose
an algorithm whose error probability matches the state-of-the-art result, and it is the first to run
efficiently on fixed-budget path instances among existing CPE algorithms. The empirical evaluation
also validates the superior performance of our algorithms. There are several interesting directions
worth further research. One direction is to derive a lower bound for the FB setting, and another
direction is to investigate the general nonlinear reward functions.
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