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ABSTRACT
Modern online platforms are increasingly employing recommenda-
tion systems to address information overload and improve user en-
gagement. There is an evolving paradigm in this research field that
recommendation network learning occurs both on the cloud and
on edge edges with knowledge transfer in between (i.e., edge-cloud
collaboration). Recent works push this filed further by enabling
edge-specific context-aware adaptivity, where model parameters
are updated in real-time based on incoming on-edge data. However,
we argue that frequent data exchanges between the cloud and edges
often lead to inefficiency and waste of communication/computation
resources, as considerable parameter updates might be redundant.
To investigate this problem, we introduce Intelligent Edge-Cloud
ParameterRequestModel (IntellectReq1). IntellectReq is designed
to operate on edge, evaluating the cost-benefit landscape of pa-
rameter requests with minimal computation and communication
overhead. We formulate this as a novel learning task, aimed at the
detection of out-of-distribution data, thereby fine-tuning adaptive
communication strategies. Further, we employ statistical mapping
techniques to convert real-time user behavior into a normal distri-
bution, thereby employing multi-sample outputs to quantify the
model’s uncertainty and thus its generalization capabilities. Rig-
orous empirical validation on four widely-adopted benchmarks
evaluates our approach, evidencing a marked improvement in the
efficiency and generalizability of edge-cloud collaborative and dy-
namic recommendation systems.

CCS CONCEPTS
• Information systems → Mobile information processing
systems; Personalization; •Human-centered computing→
Mobile computing.

KEYWORDS
Edge-Cloud Collaboration, Mis-Recommendation Detection, Out-
of-Distribution Detection, Sequential Recommendation

1 INTRODUCTION
With the rapid development of e-commerce and social media plat-
forms, recommendation systems have become indispensable tools in
people’s daily life. They can be recognized as various forms depend-
ing on industries, like product suggestions on online e-commerce
websites, e.g., Amazon and Taobao) or playlist generators for video
and music services (e.g., YouTube, Netflix, and Spotify). Among
them, one of the classical recommendation systems in the industry
prefers to trains a universal model with static parameters on a pow-
erful cloud conditioned on rich data collected from different edges,
and then perform edge inference for all users, such as e.g., DIN [20],
SASRec [6], and GRU4Rec [5]. As the first model in Figure 1, this
form of cloud static model lets users share a centralized model that
1Our project is available on https://anonymous.4open.science/r/IntellectReq-0628/

enables real-time inference for all edges, but fails to exploit the
personalized recommendation pattern for each particular edge due
to the data distribution shift between cloud and edge.

To alleviate this issue, existing solutions can be summarized
into two lines: (i) Edge-cloud Collaboration 2 [17, 18]: To access
personalization, the second model in Figure 1(a) enables on-edge
learning given the centralized recommendation model. Such as dis-
tillation [12] and fine-tuning [2] methods can eliminate edge-cloud
distribution shift based on extra training on the edges. However, the
edge retraining incurs numerous calculations on the gradients to
update the model parameters, which is undesirable when the edge
applications typically have the real-time requirement constraint. (ii)
Real-time Dynamic Recommendation: Most recently, to realize the
personalization and real-time requirement, an advanced approach
called dynamic parameters generation [7, 16] (third model in Fig-
ure 1(a)) entails low calculation cost on-edge learning for model per-
sonalization. Specifically, it maps the real-time user’s click sequence
to adaptive parameters through forward propagation of a trained
hypernetwork [4]. The generated parameters can be deployed on
the cloud model that measures the real-time data distribution for
fast recommendation personalization. This recommendation learn-
ing paradigm can be regarded as the Device-Cloud Collaborative
and Dynamic Recommendation system (DC-CDR), which enables
the personalized recommendation pattern for different edges and
efficiently characterizes the real-time data distribution based on
frequent edge-cloud communication.

Despite promising, DC-CDR cannot be easily deployed in the real
environment, due to the two key aspects summarized as follows:
• High Request Frequency. Once a new data sequence is

clicked by the user on the edge, the DC-CDR model will up-
date the model parameters through the edge-cloud commu-
nication. In industrial scenarios, it prohibitively results in a
large number of edges requesting the cloud concurrently. The
situation is further exacerbated when the networking envi-
ronment is unstable, which limits the DC-CDR’s efficiency
under such communication and network constraints.

• Low Communication Revenue. In addition, the edge-cloud
communication is unnecessary when the latest data corre-
sponded to the current model’s parameters and the real-time
data obey the same data distribution, i.e., the distribution
shift occasions are not always consistent with the on-cloud
parameters requests. Those unnecessary communications’
between the cloud and edge would potentially cause the over-
consumption of communication resources with low revenue,
hindering the practicality of the DC-CDR.

To further access the communication problem in DC-CDR, we
analyze the user’s click class (can be regarded as domain) on the
edges. We first collected the item embedding vectors in the user

2This paper considers edge-cloud collaboration from the perspective of on-edge
learning.
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Figure 1: (a) describes the developing trend of recommendation systems that evolved from cloud static model to DC-CDR
model. (b) overviews our proposed high-efficiency DC-CDR, i.e., IntellectReq. (c) shows the comparison of characteristics of
four recommendation systems and the communication cost of DC-CDR and our IntellectReq (Communication Frequency 10%
(IntellectReq) ≪ 100% (DC-CDR)), AUC: 0.8562 (IntellectReq) ≈ 0.8581 (DC-CDR)).

click sequence from four public datasets and then classify them into
50 domains. As shown in Figure 2, only 10∼15 domains are included
in the long user sequence in most cases, which means that users
often repeatedly click on items belonging to some specific domains.
However, DC-CRS cannot detect that the data distribution shift
on the edge, which leads to a highly frequent request of dynamic
parameters, along with the excessive communication consumption.
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Figure 2: Domain numbers of users.

Based on the
aforementioned in-
sights, a valuable op-
timization goal is to
reduce unnecessary
communications,
thereby yielding
a high-efficiency
DC-CDR system. To
access this goal, as
described in 1(b),

we designed an Intelligent DEvice-Cloud PArameter Request
ModeL (IntellectReq) that can be deployed on the edge to measure
the request necessity with low resource consumption, so as to boost
the efficient edge-cloud communication in DC-CDR. Technically,
we design an on-edge Mis-Recommendation Detector (MRD) to
discriminate whether the recommendation model on the edge will
make wrong recommendations (mis-recommendations). When
the distribution of the edge-data change, the recommendation
model on the edge would generalize worse to the current data
and tends to make mis-recommendations. This implies the
communication revenue of updating model parameters is high due
to the updated parameters can appropriately model the current

data distribution. In addition, we design a Distribution Mapper
(DM) that enabling the model perceive the data distribution shift
possibly and determining the uncertainty in the recommendation
model’s understanding of the semantics of the data to further
facilitate MRD module. DM consists of three parts, including
the prior network, posterior network, and next item prediction
network, which map different click sequences to different normal
distributions rather than different features.

However, the existing recommendation datasets cannot directly
train MRD model. Therefore, we reconstruct the existing four
datasets as our MRD datasets without any additional annotation,
which provide supervised information for MRD model training
based on the pre-trained DC-CDR framework at first. After that,
MRD learns the mapping relationship between the sequence used
to request the model parameters last time (𝑠 𝑗 , 𝑗 ∈ {𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑖−1})
and the real-time sequence (𝑠𝑖 , 𝑖 = 𝑡𝑖 ) to mis-recommendation label
(whether prediction 𝑦=label 𝑦).

To summarize, our contributions are four-fold:
• We propose MRD to determine whether to request param-

eters by detecting mis-recommendation on the edge. MRD
help IntellectReq achieve high revenue under any edge-cloud
communication budgets.

• We designed a Distribution Mapper to determine the uncer-
tainty in the recommendation model’s understanding of the
semantics of the data to further improve IntellectReq.

• We construct four MRD datasets based on the existing recom-
mendation dataset without any additional annotation to train
IntellectReq.

2
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• We evaluate our method with extensive experiments. Experi-
ments demonstrate the effectiveness of our method.

2 RELATEDWORK
Edge-cloud Collaboration. Edge-cloud collaboration [19] is play-
ing an increasingly important role in deep learning. Cloud-based
and on-edge machine learning are two distinct approaches with
different benefits and drawbacks. Edge-cloud collaboration can take
advantage of them and make them complement one another. Feder-
ated learning, such as FedAVG [9], is one of the most well-known
forms of edge-cloud collaboration. Federated learning is also often
used for various tasks such as multi-task learning [8, 10], etc. How-
ever, the method of federated learning for edge-cloud collaboration
is relatively simple and cannot meet the needs of many practical
scenarios. [18] designs multiple models with the same functions
but different training processes, and a Meta Controller is used to
determine which model should be used. DUET [7] draws on the
idea of HyperNetwork, which can ensure that the model on the
edge generalizes well to the data distribution of the current data
at each moment without any training on the edge. This paper fo-
cuses on applying these parameters generation-based models to
recommender systems, namely DC-CDR. DC-CDR can significantly
improve the generalization ability of the edge recommendation
model. However, high request frequency and low communication
revenue seriously reduce the practicability.
Sequential Recommendation. Sequential recommendation mod-
els the user’s historical behavior sequence. Previous sequential
recommendation algorithm such as FPMC [11] is non-deep learn-
ing based and uses Markov decision chains to model behavioral se-
quences. To improve the performance of the model, recent works [3,
5, 6, 13, 15, 20] propose the sequence recommendation model based
on deep learning. GRU4Rec [5] uses GRU to model behavior se-
quences and achieves excellent performance. DIN [20] and SAS-
Rec [6] algorithms, respectively, introduce attention and trans-
former into sequence recommendation, which is fast and efficient.
These methods are relatively influential in both academia and in-
dustry. In practical applications, the recommendation model often
needs to be deployed on the edge, which significantly restricts the
number of parameters and complexity. Moreover, the environment
where the recommendation model is deployed is highly real-time,
which makes the edge recommendation model unable to update
the model in real-time using traditional generalization methods.
These restrictions reduce the generalization performance of the
model and also restrict the model’s performance under various data
distributions. This paper studies how to reduce communication
costs to yield a more efficient DC-CDR paradigm.

3 METHODOLOGY
We describe the proposed IntellectReq in this section by presenting
each module and then introduce the learning strategy of Intellec-
tReq.

3.1 Problem Formulation
In DC-CDR, we have access to a set of edges D = {𝑑 (𝑖 ) }N𝑑

𝑖=1,
where each edge with its personal i.i.d history samples S𝐻 (𝑖 ) =

{𝑥 ( 𝑗,𝑡 )
𝐻 (𝑖 )

= {𝑢 ( 𝑗 )
𝐻 (𝑖 )

, 𝑣
( 𝑗 )
𝐻 (𝑖 )

, 𝑠
( 𝑗,𝑡 )
𝐻 (𝑖 )
}, 𝑦 ( 𝑗 )

𝐻 (𝑖 )
}N𝐻 (𝑖 )
𝑗=1 and real-time samples

S𝑅 (𝑖 ) = {𝑥
( 𝑗,𝑡 )
𝑅 (𝑖 )

= {𝑢 ( 𝑗 )
𝑅 (𝑖 )

, 𝑣
( 𝑗 )
𝑅 (𝑖 )

, 𝑠
( 𝑗,𝑡 )
𝑅 (𝑖 )
}}N𝑅 (𝑖 )
𝑗=1 in the current session,

where N𝑑 , N𝐻 (𝑖 ) and N𝑅 (𝑖 ) represent the number of edges, history
data, and real-time data, respectively. 𝑢, 𝑣 and 𝑠 represent user,
item and click sequence composed of items. It should be noted
that 𝑠 ( 𝑗,𝑡 ) represents the click sequence at moment 𝑡 in the 𝑗-th
sample.The goal of DC-CDR is to generalize a trained global cloud
model M𝑔 (·;Θ𝑔) learned from {S𝐻 (𝑖 ) }

N𝑑
𝑖=1 to each specific local

edge modelM𝑑 (𝑖 ) (·;Θ𝑑 (𝑖 ) ) conditioned on real-time samples S𝑅 (𝑖 ) ,
where Θ𝑔 and Θ𝑑 (𝑖 ) respectively denote the learned parameters for
the global cloud model and local edge model.

DC-CDR :M𝑔 ({S𝐻 (𝑖 ) }
N𝑑
𝑖=1;Θ𝑔)︸                    ︷︷                    ︸

Global Cloud Model

Data←−−−−→
Parameters

M𝑑 (𝑖 ) (S𝑅 (𝑖 ) ;Θ𝑑 (𝑖 ) )︸                   ︷︷                   ︸
Local Edge Model

. (1)

To determine whether to request parameters from the cloud, Intel-
lectReq uses SMRD to learn a Mis-Recommendation Detector, which
decides whether to update the edge model by the DC-CDR frame-
work. SMRD is the dataset constructed based on S𝐻 without any
additional annotations for training IntellectReq. ΘMRD denotes the
learned parameters for the local MRD model.

IntellectReq :M𝑐 (𝑖 )𝑡 (SMRD ;ΘMRD )︸                    ︷︷                    ︸
Local Edge Model

Control−−−−−−→ (M𝑔

Data←−−−−→
Parameters

M𝑑 (𝑖 ) )︸                       ︷︷                       ︸
DC−CDR

. (2)

Figure 3 illustrates the overview of our IntellectReq framework
which consists of Mis-Recommendation Detector (MRD) and Dis-
tribution Mapper (DM) to achieve high profit under any requested
budget.

3.2 Intelligent Parameter Request Model
We first introduce the base framework of DC-CDR, where the cloud
generator model generates the dynamic parameters of the on-edge
model based on real-time data. To overcome these problems, we pro-
pose Intelligent Edge-Cloud Parameter Request Model to achieve
high communication revenue under any edge-cloud communication
budget in DC-CDR. Specifically, we propose Mis-Recommendation
Detector (MRD), which could determine whether requesting pa-
rameters from the cloud modelM𝑔 or using the on-edge recom-
mendation modelM𝑑 based on the real-time data S𝑅 (𝑖 ) . And the
Distribution Mapper is proposed to determine the uncertainty in
the recommendation model’s understanding of the semantics of
the data.

3.2.1 The framework of DC-CDR. In this section, we will outline
the edge-cloud collaboration framework DC-CDR.

In DC-CDR, a recommendation model with a backbone and a
classifier will be trained for the global cloud model development.
The goal of the DC-CDR can thus be formulated as the following
optimization problem:

𝑦
( 𝑗 )
𝐻 (𝑖 )

= 𝑓rec (Ω(𝑥 ( 𝑗 )
𝐻 (𝑖 )

;Θ𝑏𝑔 );Θ𝑐𝑔),

Lrec =
∑N𝑑
𝑖=1

∑N
𝑅 (𝑖 )

𝑗=1 𝐷𝑐𝑒 (𝑦 ( 𝑗 )
𝐻 (𝑖 )

, 𝑦
( 𝑗 )
𝐻 (𝑖 )
),

(3)

where 𝐷𝑐𝑒 (·;Θ𝑏𝑔 ) denotes the cross-entropy between two probabil-
ity distributions, 𝑓rec (·) denotes the classifier of the recommenda-
tion model, Ω(𝑥 ( 𝑗 )

𝐻 (𝑖 )
;Θ𝑏𝑔 ) is the backbone extracting features from

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(b) DC-CDR(a) Recommendation Model

(c) Mis-Recommendation Detector (d) Distribution Mapper

𝑧!𝐷!
𝑧!

Others 𝐷!

𝜇!
𝜎!

Distribution Mapper

Sampling

Label

Prediction

Ground-Truth

Mis-Rec ✓

✗

✓ ✗ ✗

Click Prediction

✗

✗

Click Prediction

✗

Click Prediction

✗

Click Prediction

✗

✗

Mis-Rec
Prediction

✓

✗
Repeat 𝑛 times.

✗

Uncertainty
𝑢!

𝛀𝒃

𝛀𝒃 𝛀𝒃

𝛀𝒃

𝑒!

𝑒!
𝑒!

𝑒!

'𝛀𝒄

'𝛀𝒄'𝛀𝒄

𝛀𝒄

𝑠!

𝑠#

Parameters Generation

Θ$%&

𝑠!

𝑠!𝑠!

Uncertainty 𝑢!

Parameters GenerationParameters Generation𝑠#

Figure 3: Overview of the proposed IntellectReq. (a) describes the conventional recommendation model. (b) describes the
DC-CDR. (c) and (d) illustrate the two modules of our IntellectReq, Mis-Recommendation Detector, and Distribution Mapper,
respectively. .

sample 𝑥 ( 𝑗 )
𝐻 (𝑖 )

. DC-CDR is decoupledwith a backbone-classifier train-
ing scheme as modeling the “static layers” and “dynamic layers” to
achieve the personalized model generalization. “Dynamic layers” is
the main reason why DC-CDR can improve the generalization abil-
ity of the on-edge model to real-time data. The parameters of the
backbone are fixed after finishing training as Eq. 3 and represented
by Θ𝑏𝑔 . The parameters of the classifier are generated by the cloud
generator model according to the real-time data and represented
by Θ𝑐𝑔 .

In edge inference, the cloud generator model uses the real-time
click sequence 𝑠 ( 𝑗,𝑡 )

𝑅 (𝑖 )
∈ S𝑅 (𝑖 ) to generate the model parameters as

follows,

𝒉(𝑛)
𝑅 (𝑖 )

= 𝐿
(𝑛)
layer (𝒆

( 𝑗,𝑡 )
𝑅 (𝑖 )

= 𝐸shared (𝑠
( 𝑗,𝑡 )
𝑅 (𝑖 )
)),∀𝑛 = 1, · · · ,N𝑙 , (4)

where 𝐸share (·) represents the shared encoder. 𝐿 (𝑛)layer (·) is a linear

layer used to adjust 𝒆 ( 𝑗,𝑡 )
𝑅 (𝑖 )

which is the output of 𝐸share (·) to the 𝑛𝑡ℎ

dynamic layer features. 𝒆 ( 𝑗,𝑡 )
𝑅 (𝑖 )

means embedding vector generated
by the click sequence at the moment 𝑡 .

The cloud generator model treats the parameters of a fully-
connected layer as a matrix 𝐾 (𝑛) ∈ R𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 , where 𝑁𝑖𝑛 and
𝑁𝑜𝑢𝑡 represent the number of input neurons and output neurons
of the 𝑛𝑡ℎ fully-connected layers, respectively. Then the cloud gen-
erator model 𝑔(·) converts the real-time click sequence 𝑠 ( 𝑗,𝑡 )

𝑅 (𝑖 )
into

dynamic layers parameters Θ̂𝑐𝑔 by 𝐾 (𝑛)
𝑅 (𝑖 )

= 𝑔 (𝑛) (𝒆 (𝑛)
𝑅 (𝑖 )
). Since the

following content no longer needs the superscript (𝑛), we simplify
𝑔(·) to 𝑔(·) = 𝐿

(𝑛)
layer (𝐸shared (·)). Then, the edge recommendation

model updates the parameters and makes inference as follows,

𝑦
( 𝑗,𝑡 )
𝑅 (𝑖 )

= 𝑓rec (Ω(𝑥 ( 𝑗,𝑡 )
𝑅 (𝑖 )

;Θ𝑏𝑔 ); Θ̂𝑐𝑔 = 𝑔(𝑠
( 𝑗,𝑡 )
𝑅 (𝑖 )

;Θ𝑝 )) . (5)

In cloud training, all layers of the cloud generator model are opti-
mized together with the static layers of the primary model that are

conditioned on the global history data S𝐻 (𝑖 ) = {𝑥
( 𝑗 )
𝐻 (𝑖 )

, 𝑦
( 𝑗 )
𝐻 (𝑖 )
}N𝐻 (𝑖 )
𝑗=1 ,

instead of optimizing the static layers of the primary model first and
then optimizing the cloud generator model. The cloud generator
model loss function is defined as follows:

L =
∑N𝑑
𝑖=1

∑N
𝐻 (𝑖 )

𝑗=1 𝐷𝑐𝑒 (𝑦 ( 𝑗 )
𝐻 (𝑖 )

, 𝑦
( 𝑗 )
𝐻 (𝑖 )
). (6)

DC-CDR could improve the generalization ability of the edge recom-
mendation model. However, DC-CDR could not be easily deployed
in a real-world environment due to the high request frequency and
low communication revenue. Under the DC-CDR framework, the
moment 𝑡 in Eq. 5 is equal to the current moment 𝑇 , which means
that the edge and the cloud communicate at every moment. In fact,
however, a lot of communication is unnecessary because Θ̂𝑐𝑔 gener-
ated by the sequence earlier may work well enough. To alleviate
this issue, we propose Mis-Recommendation Detector (MRD) and
Distribution Mapper (DM) to solve the problem when the edge
recommendation model should update parameters.

3.2.2 Mis-Recommendation Detector. The training procedure of
MRD can be divided into two stages. The goal of the first stage is
to construct a MRD dataset S𝐶 based on the user’s historical data
without any additional annotation to train the MRD. The cloud
modelM𝑔 and the edge modelM𝑑 are trained in the same way as
the training procedure of DC-CDR.

𝑦
( 𝑗,𝑡,𝑡 ′ )
𝐻 (𝑖 )

= 𝑓rec (Ω(𝑥 ( 𝑗,𝑡 )
𝐻 (𝑖 )

;Θ𝑏𝑔 ); Θ̂𝑐𝑔 = 𝑔(𝑠
( 𝑗,𝑡 ′ )
𝐻 (𝑖 )

;Θ𝑝 )) . (7)

Here, we set 𝑡 ′ ≤ 𝑡 = 𝑇 . That is, when generatingmodel parameters,
we use the click sequence 𝑠 ( 𝑗,𝑡

′ )
𝑅 (𝑖 )

at the previous moment 𝑡 ′, but this
model is used to predict the current data. Then we can get 𝑐 ( 𝑗,𝑡,𝑡

′ )

that means whether the sample be correctly predicted based on the
4
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prediction 𝑦 ( 𝑗,𝑡,𝑡
′ )

𝑅 (𝑖 )
and the ground-truth 𝑦 ( 𝑗,𝑡 )

𝑅 (𝑖 )
.

𝑐 ( 𝑗,𝑡,𝑡
′ ) =

{
1, 𝑦 ( 𝑗,𝑡,𝑡

′ )
𝑅 (𝑖 )

= 𝑦
( 𝑗,𝑡 )
𝑅 (𝑖 )

;
0, 𝑦 ( 𝑗,𝑡,𝑡

′ )
𝑅 (𝑖 )

≠ 𝑦
( 𝑗,𝑡 )
𝑅 (𝑖 )

.
, (8)

LMRD =
∑ |S (𝑖 )MRD |
𝑗=1

∑𝑇
𝑡 ′=1 𝑙 (𝑦 𝑗 , 𝑦 = 𝑓MRD (𝑠 ( 𝑗,𝑡 ) , 𝑠 ( 𝑗,𝑡

′ ) ;ΘMRD )) . (9)

Thenwe construct the newmis-recommendation training dataset as
follows: S (𝑖 )MRD = {𝑠 ( 𝑗,𝑡 ) , 𝑠 ( 𝑗,𝑡 ′ ) , 𝑐 ( 𝑗,𝑡,𝑡 ′ ) }0≤𝑡 ′≤𝑡=𝑇 . Then, a classifier
𝑓MRD (·) can be trained on S (𝑖 )MRD according to the Eq. 9, where 𝑡 = 𝑇
and the loss function 𝑙 (·) is cross entropy.

3.2.3 Distribution Mapper. Although the MRD could determine
when to update edge parameters, it is insufficient to simply map
a click sequence to a certain representation in a high-dimensional
space due to ubiquitous noises in click sequences. So we design
the DistributionMapper (DM) make it possible to directly perceive
the data distribution shift and determine the uncertainty in the rec-
ommendation model’s understanding of the semantics of the data.
The detailed architecture figure can be referred to Appendix.

Inspired by Conditional-VAE, we map click sequences to normal
distributions. Different from the original MRD, the DM module
consider a variable 𝑢 ( 𝑗,𝑡 ) to denote the uncertainty in Equation 9
as:

LMRD =
∑ |S (𝑖 )MRD |
𝑗=1

∑𝑇
𝑡 ′=1 𝑙 (𝑦 𝑗 , 𝑦 = 𝑓MRD (𝑠 ( 𝑗,𝑡 ) , 𝑠 ( 𝑗,𝑡

′ ) , 𝑢 ( 𝑗,𝑡 ) ;ΘMRD )).
(10)

The uncertainty variable 𝑢 ( 𝑗,𝑡 ) shows the recommendation model’s
understanding of the semantics of the data. DM focuses on how to
learn such uncertainty variable 𝑢 ( 𝑗,𝑡 ) .

Distribution Mapper consists of three components as shown
in the figure in Appendix, namely the Prior Network 𝑃 (·) (PRN),
the Posterior Network 𝑄 (·) (PON), and the Next-item Prediction
Network 𝑓 (·) (NPN) that includes the backbone Ω(·) and classifier
𝑓NPN (·). Note that Ω(·) here is the same as Ω(·) in section 3.2.1
and 3.2.2, so there is almost no additional resource consumption.
We will first introduce the three components separately, and then
introduce the training procedure and inference procedure.
Prior Network. The Prior Network with weights Θprior and Θ

′
prior

maps the representation of a click sequence 𝑠 ( 𝑗,𝑡 ) to a prior prob-
ability distribution. We set this prior probability distribution as a
normal distribution with mean 𝜇 ( 𝑗,𝑡 )prior = Ωprior (𝑠 ( 𝑗,𝑡 ) ;Θprior) ∈ R𝑁

and variance 𝜎 ( 𝑗,𝑡 )prior = Ω
′
prior (𝑠

( 𝑗,𝑡 ) ;Θ
′
prior) ∈ R

𝑁 .

z( 𝑗,𝑡 ) ∼ 𝑃 (·|𝑠 ( 𝑗,𝑡 ) ) = N(𝜇 ( 𝑗,𝑡 )prior, 𝜎
( 𝑗,𝑡 )
prior ) . (11)

Posterior Network. The Posterior Network Ωpost with weights Θpost
and Θ

′
post can assist the training of the Prior Network by introduc-

ing posterior information. It maps the representation concatenated
by the representation of the next-item 𝑟 ( 𝑗,𝑡 ) and of the click se-
quence 𝑠 ( 𝑗,𝑡 ) to a normal distribution. we set this posterior prob-
ability distribution as a normal distribution with mean 𝜇 ( 𝑗,𝑡 )post =

Ωpost (𝑠 ( 𝑗,𝑡 ) ;Θpost) ∈ R𝑁 and variance𝜎 ( 𝑗,𝑡 )post = Ω
′
post (𝑠 ( 𝑗,𝑡 ) ;Θ

′
post) ∈

R𝑁 .
z( 𝑗,𝑡 ) ∼ 𝑄 (·|𝑠 ( 𝑗,𝑡 ) , 𝑟 ( 𝑗,𝑡 ) ) = N(𝜇 ( 𝑗,𝑡 )post , 𝜎

( 𝑗,𝑡 )
post ) . (12)

Next-item Prediction Network. The Next-item Prediction Network
with weights Θ𝑐 predicts the embedding of the next item 𝑟 ( 𝑗,𝑡 ) to
be clicked based on the user’s click sequence 𝑠 ( 𝑗,𝑡 ) as follows,

𝑟 ( 𝑗,𝑡 ) = 𝑓𝑐 (𝒆 ( 𝑗,𝑡 ) = Ω(𝑠 ( 𝑗,𝑡 ) ;Θ𝑏 ), 𝑧 ( 𝑗,𝑡 ) ;Θ𝑐 ),

𝑦 ( 𝑗,𝑡 ) = 𝑓rec (Ω(𝑥 ( 𝑗,𝑡 ) ;Θ𝑏𝑔 ), 𝑟 ( 𝑗,𝑡 ) ;𝑔(𝒆 ( 𝑗,𝑡 ) ;Θ𝑝 )) .
(13)

Training Procedure. In the training procedure, two losses need
to be constructed, one is recommendation prediction loss L𝑟𝑒𝑐 and
the other is distribution difference loss L𝑑𝑖𝑠𝑡 . Like the way that
most recommendation models are trained, L𝑟𝑒𝑐 uses the binary
cross-entropy loss function 𝑙 (·) to penalize the difference between
𝑦 ( 𝑗,𝑡 ) and 𝑦 ( 𝑗,𝑡 ) . The difference is that here NPN uses the feature
𝑧 sampled from the prior distribution 𝑄 to replace 𝑒 in formula 5
In addition, L𝑑𝑖𝑠𝑡 penalizes the difference between the posterior
distribution 𝑄 and the prior distribution 𝑃 with the help of the
Kullback-Leibler divergence. L𝑑𝑖𝑠𝑡 "pulls" the posterior and prior
distributions towards each other. The formulas for L𝑟𝑒𝑐 and L𝑑𝑖𝑠𝑡
are as follows,

L𝑟𝑒𝑐 = Ez∼𝑄 ( · |𝑠 ( 𝑗,𝑡 ) ,𝑦 ( 𝑗,𝑡 ) ) [𝑙 (𝑦
( 𝑗,𝑡 ) |𝑦 ( 𝑗,𝑡 ) )], (14)

L𝑑𝑖𝑠𝑡 = 𝐷𝐾𝐿 (𝑄 (𝑧 |𝑠 ( 𝑗,𝑡 ) , 𝑦 ( 𝑗,𝑡 ) ) | |𝑃 (𝑧 |𝑠 ( 𝑗,𝑡 ) )) . (15)

Finally, we optimize the whole DM according to the following
formula,

L(𝑦 ( 𝑗,𝑡 ) , 𝑠 ( 𝑗,𝑡 ) ) = L𝑟𝑒𝑐 + 𝛽 · L𝑑𝑖𝑠𝑡 . (16)

The training procedure is done from scratch using randomly ini-
tialized weights.
Inference Procedure. In the inference procedure, the posterior
network will be removed from DM because there is no posterior
information during the inference procedure. Uncertainty variable
𝑢 ( 𝑗,𝑡 ) is calculated by the multi-sampling outputs as follows:

𝑢 ( 𝑗,𝑡 ) = var(𝑟𝑖 = 𝑓𝑐 (Ω(𝑠 ( 𝑗,𝑡 ) ;Θ𝑏 ), 𝑧
( 𝑗,𝑡 )
1∼𝑛 ;Θ𝑐 )), (17)

where 𝑛 denotes the sampling times. Specifically, we consider the
dimension of 𝑟 ( 𝑗,𝑡 ) is 𝑁 × 1, 𝑟 ( 𝑗,𝑡 ),(𝑘 )

𝑖
as the 𝑘-th value of the 𝑟 ( 𝑗,𝑡 )

𝑖
vector, and calculate the variance as follows:

var(𝑟𝑖 ) =
∑𝑁
𝑘=1 var𝑟

( 𝑗,𝑡 ),(𝑘 )
1∼𝑛 . (18)

3.2.4 On-device Model Update. Mis-Recommendation Score (MRS)
is a variable calculated based on the output of MRD and DM, which
directly affects whether the model needs to be updated.

MRS = 1 − 𝑓MRD (𝑠 ( 𝑗,𝑡 ) , 𝑠 ( 𝑗,𝑡
′ ) ;ΘMRD ) (19)

Update = 1(MRS ≤Threshold) (20)

In the equation above, 1(·) is the indicator function. To get the
threshold, we need to collect user data for a period of time, then
get the MRS values corresponding to these data on the cloud and
sort them, and then set the threshold according to the load of the
cloud server. For example, if the load of the cloud server needs to be
reduced by 90%, that is, when the load is only 10% of the previous
value, only the minimum 10% position value needs to be sent to each
device as the threshold. During inference, each device determines
whether it needs to update the device model based on equation 19
and 20, that is, whether it needs to request new parameters.
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4 EXPERIMENTS
We conducted extensive experiments on three public recommenda-
tion datasets to demonstrate the effectiveness and generalizability
of the proposed Intelligent Edge-Cloud Parameter Request Model.
Due to space limitations, we put part of the experimental setup,
results and analysis in the Appendix.

4.1 Experimental Setup.
Datasets. We evaluate IntellectReq and baselines on Amazon
CDs (CDs), Amazon Electronic (Electronic), Douban
Book (Book), three widely used public benchmarks in the rec-
ommendation tasks. The details of these three datasets and prepro-
cessing methods can be found in the Appendix.
EvaluationMetrics In the experiments, we use the widely adopted
AUC 3, UAUC 3, HitRate andNDCG as themetrics to evaluatemodel
performance. They are defined by the following equations.

AUC =

∑
𝑥0∈D𝑇

∑
𝑥1∈D𝐹 1[ 𝑓 (𝑥1 )<𝑓 (𝑥0 ) ]
|D𝑇 | |D𝐹 | , (21)

UAUC = 1
|U |

∑
𝑢∈U

∑
𝑥0∈D𝑢𝑇

∑
𝑥1∈D𝑢𝐹

1[ 𝑓 (𝑥1 )<𝑓 (𝑥0 ) ]
|D𝑢
𝑇
| |D𝑢

𝐹
| , (22)

NDCG@𝐾 =
∑
𝑢∈U

1
|U |

21(𝑅𝑢,𝑔𝑢 ≤𝐾 )−1
log2 (1(𝑅𝑢,𝑔𝑢 ≤𝐾 )+1)

, (23)

HitRate@𝐾 = 1
|U |

∑
𝑢∈U 1(𝑅𝑢,𝑔𝑢 ≤ 𝐾), (24)

In the equation above, 1(·) is the indicator function. 𝑓 is the model
to be evaluated. 𝑅𝑢,𝑔𝑢 is the rank predicted by the model for the
ground truth item 𝑔𝑢 and user 𝑢. D𝑇 , D𝐹 is the positive and neg-
ative testing sample set, respectively, and D𝑢

𝑇
, D𝑢

𝐹
is the positive

and negative testing sample set for user 𝑢 respectively.
Baselines. To verify the applicability, the following representative
sequential modeling approaches are implemented and compared
with the counterparts combined with the proposed method.
DUET [7] and APG [16] are SOTA of DC-CDR, which generate
parameters through the edge-cloud collaboration for different tasks.
With the cloud generator model, the on-edge model could gener-
alize well to the current data distribution in each session without
training on the edge.
GRU4Rec [5], DIN [20], and SASRec [6] are three of the most
widely used sequential recommendation methods in the academia
and industry, which respectively introduce GRU, Attention, and
Self-Attention into the recommendation system.
LOF [1] andOC-SVM [14] estimate the density of a given point via
the ratio of the local reachability of its neighbors and itself. They
can be used to detect changes in the distribution of click sequences.
For the IntellectReq framework, we consider SASRec as our back-
bone unless otherwise stated, but note that IntellectReq broadly
applies to all sequential recommendation backbones such as DIN,
GRU4Rec, etc.
EvaluationMetrics. In the experiments, we use thewidely adopted
AUC, HitRate, and NDCG as the metrics to evaluate model perfor-
mance. The detailed definitions of these metrics can be referred to
in the Appendix.

4.2 Experimental Results.

3Note 0.1% absolute AUC gain is regarded as significant for the CTR task [6, 7, 16, 20]

4.2.1 Quantitative Results. Figure 4 and 5 summarize the quan-
titative results of our framework and other methods on CDs and
Electronic datasets. The experiments are based on state-of-the-art
DC-CDR frameworks such as DUET and APG. As shown in Fig-
ure 4-5, we combine the parameter generation framework with
three sequential recommendation models, DIN, GRU4Rec, SASRec.
We evaluate these methods with AUC and UAUC metrics on CDs
and Book datasets. We have the following findings: (1) The DUET
framework (DUET) and the APG framework (APG) can be viewed
as the upper bound of performance for all methods since DUET
and APG are evaluated with fixed 100 request frequency and other
methods are evaluated with increasing frequency. Note that directly
comparing the other methods with DUET and APG is not fair as
DUET and APG use the fixed 100 request frequency, which could
not be deployed in lower request frequency. (2) The random request
method (DUET (Random), APG (Random)) works well with any re-
quest budget. However, it does not give the optimal request scheme
for any request budget in most cases (such as Row.1). The correla-
tion between its performance and Request Frequency tends to be
linear. The performances of random request methods are unstable
and unpredictable, where these methods outperform other methods
in a few cases. (3) LOF (DUET (LOF), APG (LOF)) and OC-SVM
(DUET (OC-SVM), APG (OC-SVM)) are two methods that could
be used as simple baselines to make the optimal request scheme
under a special and specific request budget. However, they have two
weaknesses. One is that they consume a lot of resources and thus
significantly reduce the calculation speed. The other is they can
only work under a specific request budget instead of an arbitrary
request budget. For example, in the first line, the Request Frequency
of OC-SVM can only be 60%. (4) In most cases, our IntellectReq can
make the optimal request scheme under any request budget.

4.2.2 Mis-recommendation score and profit. Figure 6 shows that
the relationship between request frequency and different threshold.
To further study the effectiveness of MDR, we visualize the request
timing and revenue in Figure 7. As shown in Figure 7, we analyze
the relationship between request and revenue. Every 100 users
were assigned to one of 15 groups, which were selected at random.
The Figure is divided into three parts, with the first part used to
assess the request and the second and third parts used to assess
the benefit. The metric used here is Mis-Recommendation Score
(MRS) to evaluate the request revenue. MRS is a metric to measure
whether a recommendation will be made in error. In other words, it
can be viewed as an evaluation of the model’s generalization ability.
The probabilities of a mis-recommendation and requesting model
parameters are higher and the score is lower.
• IntellectReq. The IntellectReq predicts the MRS based on

the uncertainty and the click sequences at the moment 𝑡 and
𝑡 − 1.
• DUET (Random). Due to DUET (Random) request to the

cloud model randomly under the DUET framework, MRS can
be regarded as an arbitrary constant. Here we take the mean
value of the MRS of IntellectReq as the MRS value of DUET
(Random).
• DUET (w. Request) represents the performance curve if the

edges send real-time data to the cloud at the moment 𝑡 and
update the model parameters on the edge.
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Figure 4: Performance w.r.t. Request Frequency curve on Amazon-CDs Dataset.
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Figure 5: Performance w.r.t. Request Frequency curve on
Douban-Book Dataset.

• DUET (w/o Request) represents the performance curve if
no data to be sent and the model parameters is updated at
moment 𝑡 − 1.

• Request Revenue represents the revenue curve, that is,
DUET (w. Request) curve minus DUET (w/o Request).

From Figure 7, we have the following observations: (1) The trends
of MRS and DUET Revenue are typically in the opposite direction,
which means that when the MRS value is low, IntellectReq tends to
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Figure 6: Request frequency w.r.t. different threshold

believe that the edge’s model cannot generalize well to the current
data distribution. Then, the IntellectReq uses the most recent real-
time data to request model parameters. As a result, the revenue at
this time is frequently positive and relatively high. When the MRS
value is high, IntellectReq tends to continue using the model that
was updated at the previous moment 𝑡 − 1 instead of 𝑡 because it
believes that the model on the edge can generalize well to the cur-
rent data distribution. The revenue is frequently low and negative
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Figure 7: Mis-Recommendation Score and Revenue.

if the model parameters are requested at this point. (2) Since the
MRS of DUET (Random) is constant, it cannot predict the revenue
of each request. The performance curve changes randomly because
of the irregular arrangement order of groups.
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Figure 8: Ablation study on model architecture.

4.2.3 Ablation Study. We conducted an ablation study to show the
effectiveness of different components in IntellectReq. The results
are shown in Figure 8 .

We use w/o and w. to denote without and with, respectively.
From the Table, we have the following findings:
• IntellectReq means both DM and MRD are used.
• (w/o DM) means MRD is used but DM is not used.
• (w/o MRD) means DM is used but MRD is not used.

From the Figure and Table, we have the following observations: (1)
Generally, IntellectReq achieves the best performance with different
evaluation metrics in most cases, demonstrating the effectiveness of
IntellectReq. (2) When the request frequency is small, the difference
between IntellectReq and IntellectReq (w/o DM) is not immediately
apparent, as shown in Fig. 8(d). The difference becomes more notice-
able when the Request Frequency increases within a certain range.
In brief, the difference exhibits the traits of first getting smaller,
then larger, and finally smaller.

4.2.4 Time and Space Cost. Most edges have limited storage space,
so the on-edge model must be small and sufficient. The edge’s com-
puting power is rather limited, and the completion of the recom-
mendation task on the edge requires lots of real-time processing, so
the model deployed on the edge must be both simple and fast. There-
fore, we analyze whether these methods are controllable and highly
profitable based on the DUET framework, and additional time and
space resource consumption under this framework is shown in
Table 1. In the time consumption column, signal “/” separates the

Table 1: Extra Time and Space Cost on CDs dataset.

Method Controllable Profitable Time Cost Space Cost (Param.)

LOF % ! 225s/11.3ms ≈ 0
OC-SVM % ! 160s/9.7ms ≈ 0
Random ! % 0s/0.8ms ≈ 0

IntellectReq ! ! 11s/7.9ms ≈ 5.06𝑘

time consumption of cloud preprocessing and edge inference. Cloud
preprocessing means that the cloud server first calculates the MRS
value based on recent user data and then determines the threshold
based on the communication budget of the cloud server and sends
it to the edge. Edge inference refers to the MRS calculated when
the click sequence on the edge is updated. The experimental results
show that: 1) In terms of time consumption, both cloud preprocess-
ing and edge inference are the fastest for random requests, followed
by our IntellectReq. LOF and OC-SVM are the slowest. 2) In terms
of space consumption, random, LOF, and OC-SVM can all be re-
garded as requiring no additional space consumption. In contrast,
our method requires the additional deployment of 5.06k parameters
on the edge. 3) Random and our IntellectReq can be realized in
terms of controllability. It means that edge-cloud communication
can be realized under the condition of an arbitrary communica-
tion budget, while LOF and OC-SVM cannot. 4) In terms of high
yield, LOF, OC-SVM, and our IntellectReq can all be achieved, but
random requests cannot. In general, our IntellectReq only requires
minimal time consumption (does not affect real-time performance)
and space consumption (easy to deploy for smart edges) and can
take into account controllability and high profitability.

5 CONCLUSION
In this paper, we argued that most of the communications under the
DC-CDR framework are unnecessary to request the new parameters
of the recommendation system on the cloud since the on-edge data
distribution not always changing. We designed an IntellectReq that
can be deployed on the edge to calculate the request revenue with
low resource consumption to alleviate this issue and ensure adap-
tive edge-cloud communication with high revenue. We introduce a
new edge intelligence learning task to implement IntellectReq by
detecting whether the data is out-of-domain. Moreover, we map the
user’s real-time behavior to the normal distribution and then calcu-
late the uncertainty by the multi-sampling outputs to measure the
generalization ability of the edge model to the current user behavior.
Extensive experiments demonstrates IntellectReq’s effectiveness
and generalizability on four public benchmarks, yielding a more
efficient edge-cloud collaborative and dynamic recommendation
paradigm.
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A APPENDIX
This is the Appendix for “Intelligent Model Update Strategy for
Sequential Recommendation”.

A.1 Overview of the proposed Distribution
Mapper

The overview of the proposed Distribution Mapper is shown in
Figure 9

A.2 Supplementary Experimental Results
A.2.1 Datasets. We evaluate IntellectReq and baselines on Amazon
CDs (CDs) 4 , Amazon Electronic (Electronic) 4 , Douban
Book (Book) 5 , three widely used public benchmarks in the rec-
ommendation tasks. Following conventional practice, all user-item
pairs in the dataset are treated as positive samples. In order to
conduct sequential recommendation experiments, we arrange the
items clicked by the user into a sequence in the order of timestamps.
We also refer to [5, 6, 20], which is negatively sampled at 1 : 4 and
1 : 99 in the training set and test set, respectively. Negative sam-
pling considers all user-item pairs that do not exist in the dataset
as negative samples. The statistics of three datasets is shown in 2.

Table 2: Statistics of Datasets.

Amazon CDs Amazon Electronic Douban Books

#User 1,578,597 4,201,696 46,549
#Item 486,360 476,002 212,996

#Interaction 3,749,004 7,824,482 1,861,533
#Density 0.0000049 0.0000039 0.0002746

We further summarize the basic information of the MRD datasets
in Table 3, which shows the accuracy and robustness.

Table 3: Statistics of Mis-Recommendation Datasets.

Amazon CDs Amazon Electronic Douban Books

Accuracy 0.9332±0.0068 0.9321±0.0192 0.9443±0.0009
TPR@FPR=10e-5 0.9998±0.0002 0.9998±0.0002 0.9999±0.0000
TPR@FPR=10e-6 1.0000±0.0001 1.0000±0.0000 1.0000±0.0000

A.3 Training Procedure and Inference
Procedure

In this section, we describe the overall pipeline in detail in conjunc-
tion with Figure 10.

1. Training Procedure
1○ We first pre-trained a DC-CDR framework, and DC-CDR can

use data to generate model parameters.
2○MRD training procedure. 1) Construct the MRD dataset.

We assume that the time at this time is 𝑇 , and then we use the
model parameters generated by the data at moment 𝑡 = 0 under
the DC-CDR framework, and the model is applied to the data at the
current moment 𝑡 = 𝑇 . At this point, we can get a prediction result𝑦,
4https://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-
information

compare𝑦 with𝑦 to get whether themodel domis-recommendation.
We then repeat the data used for parameter generation from 𝑡 = 0
to 𝑡 = 𝑇 − 1, which constructs an MRD dataset. It contains three
columns, namely: the data used for parameter generation (𝑥1), the
current data (𝑥2), and whether it do mis-recommendation (𝑦MRD).
2) Train MRD. MRD is a fully connected neural network that takes
𝑥1 and 𝑥2 as input and fits the mis-recommendation label 𝑦MRD.
And then we get the MRD. MRD can be used to determine whether
the model parameters generated using the data at a certain moment
before are still valid for the current data. The prediction result
output by MRD can be simply considered as Mis-Recommendation
Score (MRS).

3○ DM training procedure. We map the data into a Gaussian
distribution through the Conditional-VAE method, and then sample
the feature vector from the distribution to complete the next-item
prediction task, that is, to predict the item that the user will click
next. Then we can get DM. DM can calculate multiple next-items
by sampling from the distribution multiple times, which can be
used to calculate Uncertainty.

4○ Joint training procedure of MRD and DM. We use a fully
connected neural network, denoted as 𝑓 (·), and use MRS and Un-
certainty as input to fit 𝑦MRD in the MRD dataset, which is the
Mis-Recommendation Label.

2. Inference Procedure
The MRS is calculated using all recent user data on the cloud,

and the threshold of the MRS is determined according to the load.
Then send this threshold to each edge. The edge has updated the
model at a certain moment 𝑡 = 𝑛, 𝑛 < 𝑇 before, and now whether it
is necessary to continue to update the model at moment 𝑡 = 𝑇 , that
is, whether the model is invalid for the current data distribution?
We only need to input the MRD and Uncertainty calculated by the
data at the moment 𝑡 = 𝑛 data and the data at the moment 𝑡 = 𝑇
into 𝑓 (·) for determine. In fact, what we output is a invalid degree,
which is a continuous value between 0 and 1. Whether to update
the edge model depends on the threshold calculated on the cloud
based on the load.

A.4 Hyperparameters and Training Schedules
We summarize the hyperparameters and training schedules of In-
tellectReq on the three datasets in Table 4.

Table 4: Hyperparameters and training schedules of Intellec-
tReq.

Dataset Parameters Setting

Amazon CDs
Amazon Electronic

Douban Book

GPU Tesla A100
Optimizer Adam

Learning rate 0.001
Batch size 1024

Sequence length 30
the Dimension of 𝑧 1×64

𝑁 32
𝑛 10

Table 5 is the supplementary result of the Figure 8.
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Figure 9: Overview of the proposed Distribution Mapper. Training procedure: The architecture includes Recommendation
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Figure 10: The overall pipeline of our proposed IntellectReq.

A.4.1 Training Strategies and Performance. As shown in Table. 6,
we compare the impact of training DM with various loss func-
tions on performance. When training the next-item prediction net-
work of DM, two kinds of losses can be used: Regression Loss
(RL) and Classification Loss (CL). After the DM finished training,
two uncertainty calculation methods can be used, namely Mis-
recommendation score Uncertainty (MU) and Next-item embedding
Uncertainty (NU).

Regression loss directly compares the vector difference be-
tween 𝑟 and 𝑟 , we use the Mean Square Error Loss (MSELoss) as
regression loss. Classification loss converts r and 𝑟 into 𝑦 and 𝑦
respectively with the classifier part of the recommendation model.
We use the Binary Cross Entropy Loss (BCELoss) as classification
loss. Note that only the training process differs between the two
losses, not the inference process.

Mis-recommendation score uncertainty uses vectors sam-
pled multiple times from the distribution of 𝑡 −1 time data mapping,
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Table 5: Ablation study on CDs dataset.

Method AUC UAUC NDCG@10 HR@10 Request
Frequency

IDEAL
(w/o DM)

0.8476 0.8360 0.3361 0.5656 10%
0.8488 0.8374 0.3380 0.5694 30%
0.8498 0.8386 0.3402 0.5721 50%
0.8509 0.8395 0.3421 0.5749 70%
0.8514 0.8401 0.3430 0.5759 90%

IDEAL
(w/o MRD)

0.8474 0.8356 0.3364 0.5665 10%
0.8479 0.8361 0.3373 0.5680 30%
0.8487 0.8368 0.3387 0.5694 50%
0.8496 0.8379 0.3406 0.5733 70%
0.8507 0.8392 0.3424 0.5745 90%

IDEAL

0.8480 0.8364 0.3371 0.5680 10%
0.8491 0.8377 0.3390 0.5693 30%
0.8501 0.8388 0.3410 0.5735 50%
0.8508 0.8395 0.3424 0.5752 70%
0.8513 0.8400 0.3434 0.5766 90%

Table 6: Performance of training strategies on CDs dataset.

Method AUC UAUC NDCG@10 HR@10 Request
Frequency

CL+MU

0.8476 0.8362 0.3371 0.5677 10%
0.8487 0.8372 0.3368 0.5662 30%
0.8493 0.8377 0.3393 0.5710 50%
0.8501 0.8388 0.3421 0.5745 70%
0.8512 0.8398 0.3423 0.5747 90%

RL+NU

0.8474 0.8357 0.3374 0.5680 10%
0.8479 0.8361 0.3365 0.5676 30%
0.8491 0.8374 0.3402 0.5693 50%
0.8496 0.8379 0.3406 0.5710 70%
0.8510 0.8395 0.3423 0.5749 90%

CL+NU

0.8480 0.8364 0.3371 0.5680 10%
0.8491 0.8377 0.3390 0.5693 30%
0.8501 0.8388 0.3410 0.5735 50%
0.8508 0.8395 0.3424 0.5752 70%
0.8513 0.8400 0.3434 0.5766 90%

and vectors sampled multiple times from the distribution of 𝑡 time
data mapping, in order to calculate multiple MRS, and further ob-
tain 𝑢𝑖 . Next-item embedding uncertainty uses vectors sampled
multiple times from the distribution of the data map at time 𝑡 , to
calculate 𝑢𝑖 for multiple vectors.

As shown in Table 6, we compare the performance of CL+MU,
RL+NU, and CL+NU. In most cases, CL+NU achieves the best perfor-
mance, while CL+MU achieves the worst performance. Therefore,
we use the CL+NU training strategy.

Table 7: IDEAL’s Impact on Real World.

Google Alibaba
Bytes FLOPs Bytes FLOPs

DC-CDR 4.69GB 152.46G 152.46G 1.68T
IDEAL 3.79GB 123.49G 152.46G 1.36T

Δ 19.2%

A.4.2 Impact on the Real World. We found some more intuitive
data and examples to show the challenge and IDEAL’s impact on

the real world: (1) We calculate the number of bytes and FLOPs re-
quired to update a parameter. Bytes: 48.5kB, FLOPs: 1.53M. That is,
updating a model on the device requires the transmission of 48.5kB
data through device-cloud communication, and consumes 1.53M
computing power of the cloud model. (2) According to the report,
Google processes 99,000 clicks per second, so it needs to transmit
48.5kB99k=4.69GB per second, and consume 1.53M99k=152.46G of
computing power in the cloud server. Alibaba processes 1,150,000
clicks per second, so it needs to transmit 48.5kB1150k=53.19GB
per second, and consume 1.53M1150k=1.68T of computing power
in the cloud server. These are not the peak value yet. Obviously,
such a huge loan and computing power consumption make it hard
to update the model for devices every moment especially at peak
times. (3) Sometimes, the distributed nature of clouds todaymay can
afford the computational volume, since it can call enough servers
to support device-cloud collaboration. However, the huge resource
consumption is impractical in real-scenario. Besides, according to
our empirical study, our IDEAL can bring 21.4% resource saving
when the performance is the same using the APG framework. Un-
der the DUET framework, IDEAL can bring 16.6% resource saving
when the performance is the same. Summing up, IDEAL can save
19% resources on average, which is very helpful for cost control and
can facilitate the DC-CDR development in practice. The following
table 7 is the comparison between our method IDEAL and DC-CDR
in the amount of transmitted data and the computing power con-
sumed on the cloud. (4) During the peak period, resources will be
tight and cause freezes or even crashes. This is still in the case that
DC-CDR has not been deployed yet, that is, the device-cloud com-
munication only performs the most basic user data transmission.
At this time, IDEAL can achieve better performance than DC-CDR
under any resource limit 𝜖 , or to achieve the performance that
DC-CDR requires 𝜖 + 19% of resources to achieve.
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