
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Intelligent Model Update Strategy for Sequential
Recommendation

Anonymous Author(s)

ABSTRACT
Modern online platforms are increasingly employing recommenda-
tion systems to address information overload and improve user en-
gagement. There is an evolving paradigm in this research field that
recommendation network learning occurs both on the cloud and
on edge edges with knowledge transfer in between (i.e., edge-cloud
collaboration). Recent works push this filed further by enabling
edge-specific context-aware adaptivity, where model parameters
are updated in real-time based on incoming on-edge data. However,
we argue that frequent data exchanges between the cloud and edges
often lead to inefficiency and waste of communication/computation
resources, as considerable parameter updates might be redundant.
To investigate this problem, we introduce Intelligent Edge-Cloud
ParameterRequestModel (IntellectReq1). IntellectReq is designed
to operate on edge, evaluating the cost-benefit landscape of pa-
rameter requests with minimal computation and communication
overhead. We formulate this as a novel learning task, aimed at the
detection of out-of-distribution data, thereby fine-tuning adaptive
communication strategies. Further, we employ statistical mapping
techniques to convert real-time user behavior into a normal distri-
bution, thereby employing multi-sample outputs to quantify the
model’s uncertainty and thus its generalization capabilities. Rig-
orous empirical validation on four widely-adopted benchmarks
evaluates our approach, evidencing a marked improvement in the
efficiency and generalizability of edge-cloud collaborative and dy-
namic recommendation systems.

CCS CONCEPTS
• Information systems → Mobile information processing
systems; Personalization; •Human-centered computing→
Mobile computing.

KEYWORDS
Edge-Cloud Collaboration, Mis-Recommendation Detection, Out-
of-Distribution Detection, Sequential Recommendation

1 INTRODUCTION
With the rapid development of e-commerce and social media plat-
forms, recommendation systems have become indispensable tools in
people’s daily life. They can be recognized as various forms depend-
ing on industries, like product suggestions on online e-commerce
websites, e.g., Amazon and Taobao) or playlist generators for video
and music services (e.g., YouTube, Netflix, and Spotify). Among
them, one of the classical recommendation systems in the industry
prefers to trains a universal model with static parameters on a pow-
erful cloud conditioned on rich data collected from different edges,
and then perform edge inference for all users, such as e.g., DIN [20],
SASRec [6], and GRU4Rec [5]. As the first model in Figure 1, this
form of cloud static model lets users share a centralized model that
1Our project is available on https://anonymous.4open.science/r/IntellectReq-0628/

enables real-time inference for all edges, but fails to exploit the
personalized recommendation pattern for each particular edge due
to the data distribution shift between cloud and edge.

To alleviate this issue, existing solutions can be summarized
into two lines: (i) Edge-cloud Collaboration 2 [17, 18]: To access
personalization, the second model in Figure 1(a) enables on-edge
learning given the centralized recommendation model. Such as dis-
tillation [12] and fine-tuning [2] methods can eliminate edge-cloud
distribution shift based on extra training on the edges. However, the
edge retraining incurs numerous calculations on the gradients to
update the model parameters, which is undesirable when the edge
applications typically have the real-time requirement constraint. (ii)
Real-time Dynamic Recommendation: Most recently, to realize the
personalization and real-time requirement, an advanced approach
called dynamic parameters generation [7, 16] (third model in Fig-
ure 1(a)) entails low calculation cost on-edge learning for model per-
sonalization. Specifically, it maps the real-time user’s click sequence
to adaptive parameters through forward propagation of a trained
hypernetwork [4]. The generated parameters can be deployed on
the cloud model that measures the real-time data distribution for
fast recommendation personalization. This recommendation learn-
ing paradigm can be regarded as the Device-Cloud Collaborative
and Dynamic Recommendation system (DC-CDR), which enables
the personalized recommendation pattern for different edges and
efficiently characterizes the real-time data distribution based on
frequent edge-cloud communication.

Despite promising, DC-CDR cannot be easily deployed in the real
environment, due to the two key aspects summarized as follows:
• High Request Frequency. Once a new data sequence is

clicked by the user on the edge, the DC-CDR model will up-
date the model parameters through the edge-cloud commu-
nication. In industrial scenarios, it prohibitively results in a
large number of edges requesting the cloud concurrently. The
situation is further exacerbated when the networking envi-
ronment is unstable, which limits the DC-CDR’s efficiency
under such communication and network constraints.

• Low Communication Revenue. In addition, the edge-cloud
communication is unnecessary when the latest data corre-
sponded to the current model’s parameters and the real-time
data obey the same data distribution, i.e., the distribution
shift occasions are not always consistent with the on-cloud
parameters requests. Those unnecessary communications’
between the cloud and edge would potentially cause the over-
consumption of communication resources with low revenue,
hindering the practicality of the DC-CDR.

To further access the communication problem in DC-CDR, we
analyze the user’s click class (can be regarded as domain) on the
edges. We first collected the item embedding vectors in the user

2This paper considers edge-cloud collaboration from the perspective of on-edge
learning.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Recommendation System Development

Global Data Device

Cloud Static Model

Dynamic Model

Device
Real-time Data

Retraining

Static Model

Cloud
Parameters
Generation

Real-time
Sequence

Cloud Static Model On-device Learning Model DC-CDR Model

Cloud Static
Model

On-device Leaning
Model

DC-CDR
Model

IntellectReq
Model

Model Personalization

Low Device Learning Cost

Low Communication Cost

✗ ✓ ✓
✓

a b

t1 t2 t3

Current
Distribution

∆𝑆

Previous
Distribution

IntellectReq Model

Real-time
Sequence

Controller Distribution Shift Cloud

Parameters
Generation

Dynamic Model

Methods
Characteristics

✓
✗

✓
✓
✓✗

✓
✓

Our Method

c Method Comparison

R
eq

ue
st

 F
re

qu
en

cy

AU
C

t1 t2 t3

t1 t2 t3

Dynamic Model

0

25

50

75

100
DC-CDR IntellectReq

0.850

0.855

0.860

Figure 1: (a) describes the developing trend of recommendation systems that evolved from cloud static model to DC-CDR
model. (b) overviews our proposed high-efficiency DC-CDR, i.e., IntellectReq. (c) shows the comparison of characteristics of
four recommendation systems and the communication cost of DC-CDR and our IntellectReq (Communication Frequency 10%
(IntellectReq) ≪ 100% (DC-CDR)), AUC: 0.8562 (IntellectReq) ≈ 0.8581 (DC-CDR)).

click sequence from four public datasets and then classify them into
50 domains. As shown in Figure 2, only 10∼15 domains are included
in the long user sequence in most cases, which means that users
often repeatedly click on items belonging to some specific domains.
However, DC-CRS cannot detect that the data distribution shift
on the edge, which leads to a highly frequent request of dynamic
parameters, along with the excessive communication consumption.

0 10 20 30 40 50
Domain Number

0.00

0.05

0.10

0.15

0.20

Pr
op

or
tio

n
of

 U
se

rs

CDs
Electronic
Book
Music

Figure 2: Domain numbers of users.

Based on the
aforementioned in-
sights, a valuable op-
timization goal is to
reduce unnecessary
communications,
thereby yielding
a high-efficiency
DC-CDR system. To
access this goal, as
described in 1(b),

we designed an Intelligent DEvice-Cloud PArameter Request
ModeL (IntellectReq) that can be deployed on the edge to measure
the request necessity with low resource consumption, so as to boost
the efficient edge-cloud communication in DC-CDR. Technically,
we design an on-edge Mis-Recommendation Detector (MRD) to
discriminate whether the recommendation model on the edge will
make wrong recommendations (mis-recommendations). When
the distribution of the edge-data change, the recommendation
model on the edge would generalize worse to the current data
and tends to make mis-recommendations. This implies the
communication revenue of updating model parameters is high due
to the updated parameters can appropriately model the current

data distribution. In addition, we design a Distribution Mapper
(DM) that enabling the model perceive the data distribution shift
possibly and determining the uncertainty in the recommendation
model’s understanding of the semantics of the data to further
facilitate MRD module. DM consists of three parts, including
the prior network, posterior network, and next item prediction
network, which map different click sequences to different normal
distributions rather than different features.

However, the existing recommendation datasets cannot directly
train MRD model. Therefore, we reconstruct the existing four
datasets as our MRD datasets without any additional annotation,
which provide supervised information for MRD model training
based on the pre-trained DC-CDR framework at first. After that,
MRD learns the mapping relationship between the sequence used
to request the model parameters last time (𝑠 𝑗 , 𝑗 ∈ {𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑖−1})
and the real-time sequence (𝑠𝑖 , 𝑖 = 𝑡𝑖) to mis-recommendation label
(whether prediction 𝑦=label 𝑦).

To summarize, our contributions are four-fold:
• We propose MRD to determine whether to request param-

eters by detecting mis-recommendation on the edge. MRD
help IntellectReq achieve high revenue under any edge-cloud
communication budgets.

• We designed a Distribution Mapper to determine the uncer-
tainty in the recommendation model’s understanding of the
semantics of the data to further improve IntellectReq.

• We construct four MRD datasets based on the existing recom-
mendation dataset without any additional annotation to train
IntellectReq.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Intelligent Model Update Strategy for Sequential Recommendation Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

• We evaluate our method with extensive experiments. Experi-
ments demonstrate the effectiveness of our method.

2 RELATEDWORK
Edge-cloud Collaboration. Edge-cloud collaboration [19] is play-
ing an increasingly important role in deep learning. Cloud-based
and on-edge machine learning are two distinct approaches with
different benefits and drawbacks. Edge-cloud collaboration can take
advantage of them and make them complement one another. Feder-
ated learning, such as FedAVG [9], is one of the most well-known
forms of edge-cloud collaboration. Federated learning is also often
used for various tasks such as multi-task learning [8, 10], etc. How-
ever, the method of federated learning for edge-cloud collaboration
is relatively simple and cannot meet the needs of many practical
scenarios. [18] designs multiple models with the same functions
but different training processes, and a Meta Controller is used to
determine which model should be used. DUET [7] draws on the
idea of HyperNetwork, which can ensure that the model on the
edge generalizes well to the data distribution of the current data
at each moment without any training on the edge. This paper fo-
cuses on applying these parameters generation-based models to
recommender systems, namely DC-CDR. DC-CDR can significantly
improve the generalization ability of the edge recommendation
model. However, high request frequency and low communication
revenue seriously reduce the practicability.
Sequential Recommendation. Sequential recommendation mod-
els the user’s historical behavior sequence. Previous sequential
recommendation algorithm such as FPMC [11] is non-deep learn-
ing based and uses Markov decision chains to model behavioral se-
quences. To improve the performance of the model, recent works [3,
5, 6, 13, 15, 20] propose the sequence recommendation model based
on deep learning. GRU4Rec [5] uses GRU to model behavior se-
quences and achieves excellent performance. DIN [20] and SAS-
Rec [6] algorithms, respectively, introduce attention and trans-
former into sequence recommendation, which is fast and efficient.
These methods are relatively influential in both academia and in-
dustry. In practical applications, the recommendation model often
needs to be deployed on the edge, which significantly restricts the
number of parameters and complexity. Moreover, the environment
where the recommendation model is deployed is highly real-time,
which makes the edge recommendation model unable to update
the model in real-time using traditional generalization methods.
These restrictions reduce the generalization performance of the
model and also restrict the model’s performance under various data
distributions. This paper studies how to reduce communication
costs to yield a more efficient DC-CDR paradigm.

3 METHODOLOGY
We describe the proposed IntellectReq in this section by presenting
each module and then introduce the learning strategy of Intellec-
tReq.

3.1 Problem Formulation
In DC-CDR, we have access to a set of edges D = {𝑑 (𝑖) }N𝑑

𝑖=1,
where each edge with its personal i.i.d history samples S𝐻 (𝑖) =

{𝑥 (𝑗,𝑡)
𝐻 (𝑖)

= {𝑢 (𝑗)
𝐻 (𝑖)

, 𝑣
(𝑗)
𝐻 (𝑖)

, 𝑠
(𝑗,𝑡)
𝐻 (𝑖)
}, 𝑦 (𝑗)

𝐻 (𝑖)
}N𝐻 (𝑖)
𝑗=1 and real-time samples

S𝑅 (𝑖) = {𝑥
(𝑗,𝑡)
𝑅 (𝑖)

= {𝑢 (𝑗)
𝑅 (𝑖)

, 𝑣
(𝑗)
𝑅 (𝑖)

, 𝑠
(𝑗,𝑡)
𝑅 (𝑖)
}}N𝑅 (𝑖)
𝑗=1 in the current session,

where N𝑑 , N𝐻 (𝑖) and N𝑅 (𝑖) represent the number of edges, history
data, and real-time data, respectively. 𝑢, 𝑣 and 𝑠 represent user,
item and click sequence composed of items. It should be noted
that 𝑠 (𝑗,𝑡) represents the click sequence at moment 𝑡 in the 𝑗-th
sample.The goal of DC-CDR is to generalize a trained global cloud
model M𝑔 (·;Θ𝑔) learned from {S𝐻 (𝑖) }

N𝑑
𝑖=1 to each specific local

edge modelM𝑑 (𝑖) (·;Θ𝑑 (𝑖)) conditioned on real-time samples S𝑅 (𝑖) ,
where Θ𝑔 and Θ𝑑 (𝑖) respectively denote the learned parameters for
the global cloud model and local edge model.

DC-CDR :M𝑔 ({S𝐻 (𝑖) }
N𝑑
𝑖=1;Θ𝑔)︸ ︷︷ ︸

Global Cloud Model

Data←−−−−→
Parameters

M𝑑 (𝑖) (S𝑅 (𝑖) ;Θ𝑑 (𝑖))︸ ︷︷ ︸
Local Edge Model

. (1)

To determine whether to request parameters from the cloud, Intel-
lectReq uses SMRD to learn a Mis-Recommendation Detector, which
decides whether to update the edge model by the DC-CDR frame-
work. SMRD is the dataset constructed based on S𝐻 without any
additional annotations for training IntellectReq. ΘMRD denotes the
learned parameters for the local MRD model.

IntellectReq :M𝑐 (𝑖)𝑡 (SMRD ;ΘMRD)︸ ︷︷ ︸
Local Edge Model

Control−−−−−−→ (M𝑔

Data←−−−−→
Parameters

M𝑑 (𝑖))︸ ︷︷ ︸
DC−CDR

. (2)

Figure 3 illustrates the overview of our IntellectReq framework
which consists of Mis-Recommendation Detector (MRD) and Dis-
tribution Mapper (DM) to achieve high profit under any requested
budget.

3.2 Intelligent Parameter Request Model
We first introduce the base framework of DC-CDR, where the cloud
generator model generates the dynamic parameters of the on-edge
model based on real-time data. To overcome these problems, we pro-
pose Intelligent Edge-Cloud Parameter Request Model to achieve
high communication revenue under any edge-cloud communication
budget in DC-CDR. Specifically, we propose Mis-Recommendation
Detector (MRD), which could determine whether requesting pa-
rameters from the cloud modelM𝑔 or using the on-edge recom-
mendation modelM𝑑 based on the real-time data S𝑅 (𝑖) . And the
Distribution Mapper is proposed to determine the uncertainty in
the recommendation model’s understanding of the semantics of
the data.

3.2.1 The framework of DC-CDR. In this section, we will outline
the edge-cloud collaboration framework DC-CDR.

In DC-CDR, a recommendation model with a backbone and a
classifier will be trained for the global cloud model development.
The goal of the DC-CDR can thus be formulated as the following
optimization problem:

𝑦
(𝑗)
𝐻 (𝑖)

= 𝑓rec (Ω(𝑥 (𝑗)
𝐻 (𝑖)

;Θ𝑏𝑔);Θ𝑐𝑔),

Lrec =
∑N𝑑
𝑖=1

∑N
𝑅 (𝑖)

𝑗=1 𝐷𝑐𝑒 (𝑦 (𝑗)
𝐻 (𝑖)

, 𝑦
(𝑗)
𝐻 (𝑖)
),

(3)

where 𝐷𝑐𝑒 (·;Θ𝑏𝑔) denotes the cross-entropy between two probabil-
ity distributions, 𝑓rec (·) denotes the classifier of the recommenda-
tion model, Ω(𝑥 (𝑗)

𝐻 (𝑖)
;Θ𝑏𝑔) is the backbone extracting features from

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(b) DC-CDR(a) Recommendation Model

(c) Mis-Recommendation Detector (d) Distribution Mapper

𝑧!𝐷!
𝑧!

Others 𝐷!

𝜇!
𝜎!

Distribution Mapper

Sampling

Label

Prediction

Ground-Truth

Mis-Rec ✓

✗

✓ ✗ ✗

Click Prediction

✗

✗

Click Prediction

✗

Click Prediction

✗

Click Prediction

✗

✗

Mis-Rec
Prediction

✓

✗
Repeat 𝑛 times.

✗

Uncertainty
𝑢!

𝛀𝒃

𝛀𝒃 𝛀𝒃

𝛀𝒃

𝑒!

𝑒!
𝑒!

𝑒!

'𝛀𝒄

'𝛀𝒄'𝛀𝒄

𝛀𝒄

𝑠!

𝑠#

Parameters Generation

Θ$%&

𝑠!

𝑠!𝑠!

Uncertainty 𝑢!

Parameters GenerationParameters Generation𝑠#

Figure 3: Overview of the proposed IntellectReq. (a) describes the conventional recommendation model. (b) describes the
DC-CDR. (c) and (d) illustrate the two modules of our IntellectReq, Mis-Recommendation Detector, and Distribution Mapper,
respectively. .

sample 𝑥 (𝑗)
𝐻 (𝑖)

. DC-CDR is decoupledwith a backbone-classifier train-
ing scheme as modeling the “static layers” and “dynamic layers” to
achieve the personalized model generalization. “Dynamic layers” is
the main reason why DC-CDR can improve the generalization abil-
ity of the on-edge model to real-time data. The parameters of the
backbone are fixed after finishing training as Eq. 3 and represented
by Θ𝑏𝑔 . The parameters of the classifier are generated by the cloud
generator model according to the real-time data and represented
by Θ𝑐𝑔 .

In edge inference, the cloud generator model uses the real-time
click sequence 𝑠 (𝑗,𝑡)

𝑅 (𝑖)
∈ S𝑅 (𝑖) to generate the model parameters as

follows,

𝒉(𝑛)
𝑅 (𝑖)

= 𝐿
(𝑛)
layer (𝒆

(𝑗,𝑡)
𝑅 (𝑖)

= 𝐸shared (𝑠
(𝑗,𝑡)
𝑅 (𝑖)
)),∀𝑛 = 1, · · · ,N𝑙 , (4)

where 𝐸share (·) represents the shared encoder. 𝐿 (𝑛)layer (·) is a linear

layer used to adjust 𝒆 (𝑗,𝑡)
𝑅 (𝑖)

which is the output of 𝐸share (·) to the 𝑛𝑡ℎ

dynamic layer features. 𝒆 (𝑗,𝑡)
𝑅 (𝑖)

means embedding vector generated
by the click sequence at the moment 𝑡 .

The cloud generator model treats the parameters of a fully-
connected layer as a matrix 𝐾 (𝑛) ∈ R𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 , where 𝑁𝑖𝑛 and
𝑁𝑜𝑢𝑡 represent the number of input neurons and output neurons
of the 𝑛𝑡ℎ fully-connected layers, respectively. Then the cloud gen-
erator model 𝑔(·) converts the real-time click sequence 𝑠 (𝑗,𝑡)

𝑅 (𝑖)
into

dynamic layers parameters Θ̂𝑐𝑔 by 𝐾 (𝑛)
𝑅 (𝑖)

= 𝑔 (𝑛) (𝒆 (𝑛)
𝑅 (𝑖)
). Since the

following content no longer needs the superscript (𝑛), we simplify
𝑔(·) to 𝑔(·) = 𝐿

(𝑛)
layer (𝐸shared (·)). Then, the edge recommendation

model updates the parameters and makes inference as follows,

𝑦
(𝑗,𝑡)
𝑅 (𝑖)

= 𝑓rec (Ω(𝑥 (𝑗,𝑡)
𝑅 (𝑖)

;Θ𝑏𝑔); Θ̂𝑐𝑔 = 𝑔(𝑠
(𝑗,𝑡)
𝑅 (𝑖)

;Θ𝑝)) . (5)

In cloud training, all layers of the cloud generator model are opti-
mized together with the static layers of the primary model that are

conditioned on the global history data S𝐻 (𝑖) = {𝑥
(𝑗)
𝐻 (𝑖)

, 𝑦
(𝑗)
𝐻 (𝑖)
}N𝐻 (𝑖)
𝑗=1 ,

instead of optimizing the static layers of the primary model first and
then optimizing the cloud generator model. The cloud generator
model loss function is defined as follows:

L =
∑N𝑑
𝑖=1

∑N
𝐻 (𝑖)

𝑗=1 𝐷𝑐𝑒 (𝑦 (𝑗)
𝐻 (𝑖)

, 𝑦
(𝑗)
𝐻 (𝑖)
). (6)

DC-CDR could improve the generalization ability of the edge recom-
mendation model. However, DC-CDR could not be easily deployed
in a real-world environment due to the high request frequency and
low communication revenue. Under the DC-CDR framework, the
moment 𝑡 in Eq. 5 is equal to the current moment 𝑇 , which means
that the edge and the cloud communicate at every moment. In fact,
however, a lot of communication is unnecessary because Θ̂𝑐𝑔 gener-
ated by the sequence earlier may work well enough. To alleviate
this issue, we propose Mis-Recommendation Detector (MRD) and
Distribution Mapper (DM) to solve the problem when the edge
recommendation model should update parameters.

3.2.2 Mis-Recommendation Detector. The training procedure of
MRD can be divided into two stages. The goal of the first stage is
to construct a MRD dataset S𝐶 based on the user’s historical data
without any additional annotation to train the MRD. The cloud
modelM𝑔 and the edge modelM𝑑 are trained in the same way as
the training procedure of DC-CDR.

𝑦
(𝑗,𝑡,𝑡 ′)
𝐻 (𝑖)

= 𝑓rec (Ω(𝑥 (𝑗,𝑡)
𝐻 (𝑖)

;Θ𝑏𝑔); Θ̂𝑐𝑔 = 𝑔(𝑠
(𝑗,𝑡 ′)
𝐻 (𝑖)

;Θ𝑝)) . (7)

Here, we set 𝑡 ′ ≤ 𝑡 = 𝑇 . That is, when generatingmodel parameters,
we use the click sequence 𝑠 (𝑗,𝑡

′)
𝑅 (𝑖)

at the previous moment 𝑡 ′, but this
model is used to predict the current data. Then we can get 𝑐 (𝑗,𝑡,𝑡

′)

that means whether the sample be correctly predicted based on the
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Intelligent Model Update Strategy for Sequential Recommendation Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

prediction 𝑦 (𝑗,𝑡,𝑡
′)

𝑅 (𝑖)
and the ground-truth 𝑦 (𝑗,𝑡)

𝑅 (𝑖)
.

𝑐 (𝑗,𝑡,𝑡
′) =

{
1, 𝑦 (𝑗,𝑡,𝑡

′)
𝑅 (𝑖)

= 𝑦
(𝑗,𝑡)
𝑅 (𝑖)

;
0, 𝑦 (𝑗,𝑡,𝑡

′)
𝑅 (𝑖)

≠ 𝑦
(𝑗,𝑡)
𝑅 (𝑖)

.
, (8)

LMRD =
∑ |S (𝑖)MRD |
𝑗=1

∑𝑇
𝑡 ′=1 𝑙 (𝑦 𝑗 , 𝑦 = 𝑓MRD (𝑠 (𝑗,𝑡) , 𝑠 (𝑗,𝑡

′) ;ΘMRD)) . (9)

Thenwe construct the newmis-recommendation training dataset as
follows: S (𝑖)MRD = {𝑠 (𝑗,𝑡) , 𝑠 (𝑗,𝑡 ′) , 𝑐 (𝑗,𝑡,𝑡 ′) }0≤𝑡 ′≤𝑡=𝑇 . Then, a classifier
𝑓MRD (·) can be trained on S (𝑖)MRD according to the Eq. 9, where 𝑡 = 𝑇
and the loss function 𝑙 (·) is cross entropy.

3.2.3 Distribution Mapper. Although the MRD could determine
when to update edge parameters, it is insufficient to simply map
a click sequence to a certain representation in a high-dimensional
space due to ubiquitous noises in click sequences. So we design
the DistributionMapper (DM) make it possible to directly perceive
the data distribution shift and determine the uncertainty in the rec-
ommendation model’s understanding of the semantics of the data.
The detailed architecture figure can be referred to Appendix.

Inspired by Conditional-VAE, we map click sequences to normal
distributions. Different from the original MRD, the DM module
consider a variable 𝑢 (𝑗,𝑡) to denote the uncertainty in Equation 9
as:

LMRD =
∑ |S (𝑖)MRD |
𝑗=1

∑𝑇
𝑡 ′=1 𝑙 (𝑦 𝑗 , 𝑦 = 𝑓MRD (𝑠 (𝑗,𝑡) , 𝑠 (𝑗,𝑡

′) , 𝑢 (𝑗,𝑡) ;ΘMRD)).
(10)

The uncertainty variable 𝑢 (𝑗,𝑡) shows the recommendation model’s
understanding of the semantics of the data. DM focuses on how to
learn such uncertainty variable 𝑢 (𝑗,𝑡) .

Distribution Mapper consists of three components as shown
in the figure in Appendix, namely the Prior Network 𝑃 (·) (PRN),
the Posterior Network 𝑄 (·) (PON), and the Next-item Prediction
Network 𝑓 (·) (NPN) that includes the backbone Ω(·) and classifier
𝑓NPN (·). Note that Ω(·) here is the same as Ω(·) in section 3.2.1
and 3.2.2, so there is almost no additional resource consumption.
We will first introduce the three components separately, and then
introduce the training procedure and inference procedure.
Prior Network. The Prior Network with weights Θprior and Θ

′
prior

maps the representation of a click sequence 𝑠 (𝑗,𝑡) to a prior prob-
ability distribution. We set this prior probability distribution as a
normal distribution with mean 𝜇 (𝑗,𝑡)prior = Ωprior (𝑠 (𝑗,𝑡) ;Θprior) ∈ R𝑁

and variance 𝜎 (𝑗,𝑡)prior = Ω
′
prior (𝑠

(𝑗,𝑡) ;Θ
′
prior) ∈ R

𝑁 .

z(𝑗,𝑡) ∼ 𝑃 (·|𝑠 (𝑗,𝑡)) = N(𝜇 (𝑗,𝑡)prior, 𝜎
(𝑗,𝑡)
prior) . (11)

Posterior Network. The Posterior Network Ωpost with weights Θpost
and Θ

′
post can assist the training of the Prior Network by introduc-

ing posterior information. It maps the representation concatenated
by the representation of the next-item 𝑟 (𝑗,𝑡) and of the click se-
quence 𝑠 (𝑗,𝑡) to a normal distribution. we set this posterior prob-
ability distribution as a normal distribution with mean 𝜇 (𝑗,𝑡)post =

Ωpost (𝑠 (𝑗,𝑡) ;Θpost) ∈ R𝑁 and variance𝜎 (𝑗,𝑡)post = Ω
′
post (𝑠 (𝑗,𝑡) ;Θ

′
post) ∈

R𝑁 .
z(𝑗,𝑡) ∼ 𝑄 (·|𝑠 (𝑗,𝑡) , 𝑟 (𝑗,𝑡)) = N(𝜇 (𝑗,𝑡)post , 𝜎

(𝑗,𝑡)
post) . (12)

Next-item Prediction Network. The Next-item Prediction Network
with weights Θ𝑐 predicts the embedding of the next item 𝑟 (𝑗,𝑡) to
be clicked based on the user’s click sequence 𝑠 (𝑗,𝑡) as follows,

𝑟 (𝑗,𝑡) = 𝑓𝑐 (𝒆 (𝑗,𝑡) = Ω(𝑠 (𝑗,𝑡) ;Θ𝑏), 𝑧 (𝑗,𝑡) ;Θ𝑐),

𝑦 (𝑗,𝑡) = 𝑓rec (Ω(𝑥 (𝑗,𝑡) ;Θ𝑏𝑔), 𝑟 (𝑗,𝑡) ;𝑔(𝒆 (𝑗,𝑡) ;Θ𝑝)) .
(13)

Training Procedure. In the training procedure, two losses need
to be constructed, one is recommendation prediction loss L𝑟𝑒𝑐 and
the other is distribution difference loss L𝑑𝑖𝑠𝑡 . Like the way that
most recommendation models are trained, L𝑟𝑒𝑐 uses the binary
cross-entropy loss function 𝑙 (·) to penalize the difference between
𝑦 (𝑗,𝑡) and 𝑦 (𝑗,𝑡) . The difference is that here NPN uses the feature
𝑧 sampled from the prior distribution 𝑄 to replace 𝑒 in formula 5
In addition, L𝑑𝑖𝑠𝑡 penalizes the difference between the posterior
distribution 𝑄 and the prior distribution 𝑃 with the help of the
Kullback-Leibler divergence. L𝑑𝑖𝑠𝑡 "pulls" the posterior and prior
distributions towards each other. The formulas for L𝑟𝑒𝑐 and L𝑑𝑖𝑠𝑡
are as follows,

L𝑟𝑒𝑐 = Ez∼𝑄 (· |𝑠 (𝑗,𝑡) ,𝑦 (𝑗,𝑡)) [𝑙 (𝑦
(𝑗,𝑡) |𝑦 (𝑗,𝑡))], (14)

L𝑑𝑖𝑠𝑡 = 𝐷𝐾𝐿 (𝑄 (𝑧 |𝑠 (𝑗,𝑡) , 𝑦 (𝑗,𝑡)) | |𝑃 (𝑧 |𝑠 (𝑗,𝑡))) . (15)

Finally, we optimize the whole DM according to the following
formula,

L(𝑦 (𝑗,𝑡) , 𝑠 (𝑗,𝑡)) = L𝑟𝑒𝑐 + 𝛽 · L𝑑𝑖𝑠𝑡 . (16)

The training procedure is done from scratch using randomly ini-
tialized weights.
Inference Procedure. In the inference procedure, the posterior
network will be removed from DM because there is no posterior
information during the inference procedure. Uncertainty variable
𝑢 (𝑗,𝑡) is calculated by the multi-sampling outputs as follows:

𝑢 (𝑗,𝑡) = var(𝑟𝑖 = 𝑓𝑐 (Ω(𝑠 (𝑗,𝑡) ;Θ𝑏), 𝑧
(𝑗,𝑡)
1∼𝑛 ;Θ𝑐)), (17)

where 𝑛 denotes the sampling times. Specifically, we consider the
dimension of 𝑟 (𝑗,𝑡) is 𝑁 × 1, 𝑟 (𝑗,𝑡),(𝑘)

𝑖
as the 𝑘-th value of the 𝑟 (𝑗,𝑡)

𝑖
vector, and calculate the variance as follows:

var(𝑟𝑖) =
∑𝑁
𝑘=1 var𝑟

(𝑗,𝑡),(𝑘)
1∼𝑛 . (18)

3.2.4 On-device Model Update. Mis-Recommendation Score (MRS)
is a variable calculated based on the output of MRD and DM, which
directly affects whether the model needs to be updated.

MRS = 1 − 𝑓MRD (𝑠 (𝑗,𝑡) , 𝑠 (𝑗,𝑡
′) ;ΘMRD) (19)

Update = 1(MRS ≤Threshold) (20)

In the equation above, 1(·) is the indicator function. To get the
threshold, we need to collect user data for a period of time, then
get the MRS values corresponding to these data on the cloud and
sort them, and then set the threshold according to the load of the
cloud server. For example, if the load of the cloud server needs to be
reduced by 90%, that is, when the load is only 10% of the previous
value, only the minimum 10% position value needs to be sent to each
device as the threshold. During inference, each device determines
whether it needs to update the device model based on equation 19
and 20, that is, whether it needs to request new parameters.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4 EXPERIMENTS
We conducted extensive experiments on three public recommenda-
tion datasets to demonstrate the effectiveness and generalizability
of the proposed Intelligent Edge-Cloud Parameter Request Model.
Due to space limitations, we put part of the experimental setup,
results and analysis in the Appendix.

4.1 Experimental Setup.
Datasets. We evaluate IntellectReq and baselines on Amazon
CDs (CDs), Amazon Electronic (Electronic), Douban
Book (Book), three widely used public benchmarks in the rec-
ommendation tasks. The details of these three datasets and prepro-
cessing methods can be found in the Appendix.
EvaluationMetrics In the experiments, we use the widely adopted
AUC 3, UAUC 3, HitRate andNDCG as themetrics to evaluatemodel
performance. They are defined by the following equations.

AUC =

∑
𝑥0∈D𝑇

∑
𝑥1∈D𝐹 1[𝑓 (𝑥1)<𝑓 (𝑥0)]
|D𝑇 | |D𝐹 | , (21)

UAUC = 1
|U |

∑
𝑢∈U

∑
𝑥0∈D𝑢𝑇

∑
𝑥1∈D𝑢𝐹

1[𝑓 (𝑥1)<𝑓 (𝑥0)]
|D𝑢
𝑇
| |D𝑢

𝐹
| , (22)

NDCG@𝐾 =
∑
𝑢∈U

1
|U |

21(𝑅𝑢,𝑔𝑢 ≤𝐾)−1
log2 (1(𝑅𝑢,𝑔𝑢 ≤𝐾)+1)

, (23)

HitRate@𝐾 = 1
|U |

∑
𝑢∈U 1(𝑅𝑢,𝑔𝑢 ≤ 𝐾), (24)

In the equation above, 1(·) is the indicator function. 𝑓 is the model
to be evaluated. 𝑅𝑢,𝑔𝑢 is the rank predicted by the model for the
ground truth item 𝑔𝑢 and user 𝑢. D𝑇 , D𝐹 is the positive and neg-
ative testing sample set, respectively, and D𝑢

𝑇
, D𝑢

𝐹
is the positive

and negative testing sample set for user 𝑢 respectively.
Baselines. To verify the applicability, the following representative
sequential modeling approaches are implemented and compared
with the counterparts combined with the proposed method.
DUET [7] and APG [16] are SOTA of DC-CDR, which generate
parameters through the edge-cloud collaboration for different tasks.
With the cloud generator model, the on-edge model could gener-
alize well to the current data distribution in each session without
training on the edge.
GRU4Rec [5], DIN [20], and SASRec [6] are three of the most
widely used sequential recommendation methods in the academia
and industry, which respectively introduce GRU, Attention, and
Self-Attention into the recommendation system.
LOF [1] andOC-SVM [14] estimate the density of a given point via
the ratio of the local reachability of its neighbors and itself. They
can be used to detect changes in the distribution of click sequences.
For the IntellectReq framework, we consider SASRec as our back-
bone unless otherwise stated, but note that IntellectReq broadly
applies to all sequential recommendation backbones such as DIN,
GRU4Rec, etc.
EvaluationMetrics. In the experiments, we use thewidely adopted
AUC, HitRate, and NDCG as the metrics to evaluate model perfor-
mance. The detailed definitions of these metrics can be referred to
in the Appendix.

4.2 Experimental Results.

3Note 0.1% absolute AUC gain is regarded as significant for the CTR task [6, 7, 16, 20]

4.2.1 Quantitative Results. Figure 4 and 5 summarize the quan-
titative results of our framework and other methods on CDs and
Electronic datasets. The experiments are based on state-of-the-art
DC-CDR frameworks such as DUET and APG. As shown in Fig-
ure 4-5, we combine the parameter generation framework with
three sequential recommendation models, DIN, GRU4Rec, SASRec.
We evaluate these methods with AUC and UAUC metrics on CDs
and Book datasets. We have the following findings: (1) The DUET
framework (DUET) and the APG framework (APG) can be viewed
as the upper bound of performance for all methods since DUET
and APG are evaluated with fixed 100 request frequency and other
methods are evaluated with increasing frequency. Note that directly
comparing the other methods with DUET and APG is not fair as
DUET and APG use the fixed 100 request frequency, which could
not be deployed in lower request frequency. (2) The random request
method (DUET (Random), APG (Random)) works well with any re-
quest budget. However, it does not give the optimal request scheme
for any request budget in most cases (such as Row.1). The correla-
tion between its performance and Request Frequency tends to be
linear. The performances of random request methods are unstable
and unpredictable, where these methods outperform other methods
in a few cases. (3) LOF (DUET (LOF), APG (LOF)) and OC-SVM
(DUET (OC-SVM), APG (OC-SVM)) are two methods that could
be used as simple baselines to make the optimal request scheme
under a special and specific request budget. However, they have two
weaknesses. One is that they consume a lot of resources and thus
significantly reduce the calculation speed. The other is they can
only work under a specific request budget instead of an arbitrary
request budget. For example, in the first line, the Request Frequency
of OC-SVM can only be 60%. (4) In most cases, our IntellectReq can
make the optimal request scheme under any request budget.

4.2.2 Mis-recommendation score and profit. Figure 6 shows that
the relationship between request frequency and different threshold.
To further study the effectiveness of MDR, we visualize the request
timing and revenue in Figure 7. As shown in Figure 7, we analyze
the relationship between request and revenue. Every 100 users
were assigned to one of 15 groups, which were selected at random.
The Figure is divided into three parts, with the first part used to
assess the request and the second and third parts used to assess
the benefit. The metric used here is Mis-Recommendation Score
(MRS) to evaluate the request revenue. MRS is a metric to measure
whether a recommendation will be made in error. In other words, it
can be viewed as an evaluation of the model’s generalization ability.
The probabilities of a mis-recommendation and requesting model
parameters are higher and the score is lower.
• IntellectReq. The IntellectReq predicts the MRS based on

the uncertainty and the click sequences at the moment 𝑡 and
𝑡 − 1.
• DUET (Random). Due to DUET (Random) request to the

cloud model randomly under the DUET framework, MRS can
be regarded as an arbitrary constant. Here we take the mean
value of the MRS of IntellectReq as the MRS value of DUET
(Random).
• DUET (w. Request) represents the performance curve if the

edges send real-time data to the cloud at the moment 𝑡 and
update the model parameters on the edge.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Intelligent Model Update Strategy for Sequential Recommendation Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

IntellectReq Baseline (LOF) Baseline (OC-SVM) Baseline (Random)

DU
ET

DI
N

G
RU

4R
ec

SA
SR
ec

APG
DIN

G
RU

4Rec
SASRec

DIN
G
RU

4Rec
SASRec

Request frequency compared to DUET

Request frequency compared to DUET

Request frequency compared to DUET
% %

% % % % % %

% % % % % %

% % % % % % % % % % % %% % % % % %

% % % % % % % % % % % % % % % % % %

Request frequency compared to DUET

Request frequency compared to DUET

Request frequency compared to DUET

Request frequency compared to APG

Request frequency compared to APG

Request frequency compared to APG

Request frequency compared to APG

Request frequency compared to APG

Request frequency compared to APG

Figure 4: Performance w.r.t. Request Frequency curve on Amazon-CDs Dataset.

IntellectReq Baseline (LOF) Baseline (OC-SVM) Baseline (Random)

Ba
se

lin
e=

D
U

ET
DI
N

G
RU

4R
ec

SA
SR
ec

Baseline =APG

DIN
G
RU

4Rec
SASRec

G
RU

4Rec
SASRec

Request frequency compared to DUET

Request frequency compared to DUET

Request frequency compared to DUET
% % % % %

% % % % %

% % % % %

%

%

%

Request frequency compared to APG

Request frequency compared to APG

Request frequency compared to APG
% % % % % %

% % % % % %

% % % % % %

Figure 5: Performance w.r.t. Request Frequency curve on
Douban-Book Dataset.

• DUET (w/o Request) represents the performance curve if
no data to be sent and the model parameters is updated at
moment 𝑡 − 1.

• Request Revenue represents the revenue curve, that is,
DUET (w. Request) curve minus DUET (w/o Request).

From Figure 7, we have the following observations: (1) The trends
of MRS and DUET Revenue are typically in the opposite direction,
which means that when the MRS value is low, IntellectReq tends to

Ba
se

lin
e=

D
U

ET
DI
N

G
RU

4R
ec

SA
SR
ec

(%
)

Baseline =APG
DIN

G
RU

4Rec
SASRec

G
RU

4Rec
SASRec

(%
)

(%
)

(%
)

(%
)

(%
)

Figure 6: Request frequency w.r.t. different threshold

believe that the edge’s model cannot generalize well to the current
data distribution. Then, the IntellectReq uses the most recent real-
time data to request model parameters. As a result, the revenue at
this time is frequently positive and relatively high. When the MRS
value is high, IntellectReq tends to continue using the model that
was updated at the previous moment 𝑡 − 1 instead of 𝑡 because it
believes that the model on the edge can generalize well to the cur-
rent data distribution. The revenue is frequently low and negative

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) CDs (b) Electronic

M
R
S

AU
C

AU
C

M
R
S

AU
C

AU
C

IntellectReq Request Revenue DUET (w. Request) DUET (w/o Request)DUET (Random)

Figure 7: Mis-Recommendation Score and Revenue.

if the model parameters are requested at this point. (2) Since the
MRS of DUET (Random) is constant, it cannot predict the revenue
of each request. The performance curve changes randomly because
of the irregular arrangement order of groups.

IntellectReq IntellectReq (w/o DM) IntellectReq (w/o MRD) DUET

C
D
s

El
ec
tr
on
ic

% % % % % % % % % % % %

% % % % % % % % % % % %
Update ratio compared to DUET

Update ratio compared to DUET

Update ratio compared to DUET

Update ratio compared to DUET

Figure 8: Ablation study on model architecture.

4.2.3 Ablation Study. We conducted an ablation study to show the
effectiveness of different components in IntellectReq. The results
are shown in Figure 8 .

We use w/o and w. to denote without and with, respectively.
From the Table, we have the following findings:
• IntellectReq means both DM and MRD are used.
• (w/o DM) means MRD is used but DM is not used.
• (w/o MRD) means DM is used but MRD is not used.

From the Figure and Table, we have the following observations: (1)
Generally, IntellectReq achieves the best performance with different
evaluation metrics in most cases, demonstrating the effectiveness of
IntellectReq. (2) When the request frequency is small, the difference
between IntellectReq and IntellectReq (w/o DM) is not immediately
apparent, as shown in Fig. 8(d). The difference becomes more notice-
able when the Request Frequency increases within a certain range.
In brief, the difference exhibits the traits of first getting smaller,
then larger, and finally smaller.

4.2.4 Time and Space Cost. Most edges have limited storage space,
so the on-edge model must be small and sufficient. The edge’s com-
puting power is rather limited, and the completion of the recom-
mendation task on the edge requires lots of real-time processing, so
the model deployed on the edge must be both simple and fast. There-
fore, we analyze whether these methods are controllable and highly
profitable based on the DUET framework, and additional time and
space resource consumption under this framework is shown in
Table 1. In the time consumption column, signal “/” separates the

Table 1: Extra Time and Space Cost on CDs dataset.

Method Controllable Profitable Time Cost Space Cost (Param.)

LOF % ! 225s/11.3ms ≈ 0
OC-SVM % ! 160s/9.7ms ≈ 0
Random ! % 0s/0.8ms ≈ 0

IntellectReq ! ! 11s/7.9ms ≈ 5.06𝑘

time consumption of cloud preprocessing and edge inference. Cloud
preprocessing means that the cloud server first calculates the MRS
value based on recent user data and then determines the threshold
based on the communication budget of the cloud server and sends
it to the edge. Edge inference refers to the MRS calculated when
the click sequence on the edge is updated. The experimental results
show that: 1) In terms of time consumption, both cloud preprocess-
ing and edge inference are the fastest for random requests, followed
by our IntellectReq. LOF and OC-SVM are the slowest. 2) In terms
of space consumption, random, LOF, and OC-SVM can all be re-
garded as requiring no additional space consumption. In contrast,
our method requires the additional deployment of 5.06k parameters
on the edge. 3) Random and our IntellectReq can be realized in
terms of controllability. It means that edge-cloud communication
can be realized under the condition of an arbitrary communica-
tion budget, while LOF and OC-SVM cannot. 4) In terms of high
yield, LOF, OC-SVM, and our IntellectReq can all be achieved, but
random requests cannot. In general, our IntellectReq only requires
minimal time consumption (does not affect real-time performance)
and space consumption (easy to deploy for smart edges) and can
take into account controllability and high profitability.

5 CONCLUSION
In this paper, we argued that most of the communications under the
DC-CDR framework are unnecessary to request the new parameters
of the recommendation system on the cloud since the on-edge data
distribution not always changing. We designed an IntellectReq that
can be deployed on the edge to calculate the request revenue with
low resource consumption to alleviate this issue and ensure adap-
tive edge-cloud communication with high revenue. We introduce a
new edge intelligence learning task to implement IntellectReq by
detecting whether the data is out-of-domain. Moreover, we map the
user’s real-time behavior to the normal distribution and then calcu-
late the uncertainty by the multi-sampling outputs to measure the
generalization ability of the edge model to the current user behavior.
Extensive experiments demonstrates IntellectReq’s effectiveness
and generalizability on four public benchmarks, yielding a more
efficient edge-cloud collaborative and dynamic recommendation
paradigm.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Intelligent Model Update Strategy for Sequential Recommendation Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. 93–104.

[2] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. Tinytl: Reduce activa-
tions, not trainable parameters for efficient on-device learning. (2020).

[3] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 378–387.

[4] David Ha, Andrew Dai, and Quoc V Le. 2017. Hypernetworks. (2017).
[5] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based recommendations with recurrent neural networks. Interna-
tional Conference on Learning Representations 2016 (2016).

[6] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[7] Zheqi Lv, Wenqiao Zhang, Shengyu Zhang, Kun Kuang, Feng Wang, Yongwei
Wang, Zhengyu Chen, Tao Shen, Hongxia Yang, Beng Chin Ooi, and Fei Wu.
2023. DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation
Framework for Efficient Device Model Generalization. In Proceedings of the ACM
Web Conference 2023.

[8] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. 2021. Federated multi-task learning under a mixture of distributions.
Advances in Neural Information Processing Systems 34 (2021), 15434–15447.

[9] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[10] Jed Mills, Jia Hu, and Geyong Min. 2021. Multi-task federated learning for
personalised deep neural networks in edge computing. IEEE Transactions on
Parallel and Distributed Systems 33, 3 (2021), 630–641.

[11] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Fac-
torizing personalized Markov chains for next-basket recommendation. the web
conference (2010).

[12] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[13] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[14] David Martinus Johannes Tax. 2002. One-class classification: Concept learning
in the absence of counter-examples. (2002).

[15] ShuWu, Yuyuan Tang, Yanqiao Zhu, LiangWang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[16] Bencheng Yan, Pengjie Wang, Kai Zhang, Feng Li, Jian Xu, and Bo Zheng. 2022.
APG: Adaptive Parameter Generation Network for Click-Through Rate Predic-
tion. In Advances in Neural Information Processing Systems.

[17] Yikai Yan, Chaoyue Niu, Renjie Gu, Fan Wu, Shaojie Tang, Lifeng Hua, Chengfei
Lyu, and Guihai Chen. 2022. On-Device Learning for Model Personalization
with Large-Scale Cloud-Coordinated Domain Adaption. In KDD ’22: The 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022. 2180–2190.

[18] Jiangchao Yao, Feng Wang, Xichen Ding, Shaohu Chen, Bo Han, Jingren Zhou,
and Hongxia Yang. 2022. Device-cloud Collaborative Recommendation via Meta
Controller. InKDD ’22: The 28th ACM SIGKDDConference on Knowledge Discovery
and Data Mining, Washington, DC, USA, August 14 - 18, 2022. 4353–4362.

[19] Jiangchao Yao, Shengyu Zhang, Yang Yao, FengWang, JianxinMa, Jianwei Zhang,
Yunfei Chu, Luo Ji, Kunyang Jia, Tao Shen, et al. 2022. Edge-Cloud Polariza-
tion and Collaboration: A Comprehensive Survey for AI. IEEE Transactions on
Knowledge and Data Engineering (2022).

[20] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
This is the Appendix for “Intelligent Model Update Strategy for
Sequential Recommendation”.

A.1 Overview of the proposed Distribution
Mapper

The overview of the proposed Distribution Mapper is shown in
Figure 9

A.2 Supplementary Experimental Results
A.2.1 Datasets. We evaluate IntellectReq and baselines on Amazon
CDs (CDs) 4 , Amazon Electronic (Electronic) 4 , Douban
Book (Book) 5 , three widely used public benchmarks in the rec-
ommendation tasks. Following conventional practice, all user-item
pairs in the dataset are treated as positive samples. In order to
conduct sequential recommendation experiments, we arrange the
items clicked by the user into a sequence in the order of timestamps.
We also refer to [5, 6, 20], which is negatively sampled at 1 : 4 and
1 : 99 in the training set and test set, respectively. Negative sam-
pling considers all user-item pairs that do not exist in the dataset
as negative samples. The statistics of three datasets is shown in 2.

Table 2: Statistics of Datasets.

Amazon CDs Amazon Electronic Douban Books

#User 1,578,597 4,201,696 46,549
#Item 486,360 476,002 212,996

#Interaction 3,749,004 7,824,482 1,861,533
#Density 0.0000049 0.0000039 0.0002746

We further summarize the basic information of the MRD datasets
in Table 3, which shows the accuracy and robustness.

Table 3: Statistics of Mis-Recommendation Datasets.

Amazon CDs Amazon Electronic Douban Books

Accuracy 0.9332±0.0068 0.9321±0.0192 0.9443±0.0009
TPR@FPR=10e-5 0.9998±0.0002 0.9998±0.0002 0.9999±0.0000
TPR@FPR=10e-6 1.0000±0.0001 1.0000±0.0000 1.0000±0.0000

A.3 Training Procedure and Inference
Procedure

In this section, we describe the overall pipeline in detail in conjunc-
tion with Figure 10.

1. Training Procedure
1○ We first pre-trained a DC-CDR framework, and DC-CDR can

use data to generate model parameters.
2○MRD training procedure. 1) Construct the MRD dataset.

We assume that the time at this time is 𝑇 , and then we use the
model parameters generated by the data at moment 𝑡 = 0 under
the DC-CDR framework, and the model is applied to the data at the
current moment 𝑡 = 𝑇 . At this point, we can get a prediction result𝑦,
4https://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-
information

compare𝑦 with𝑦 to get whether themodel domis-recommendation.
We then repeat the data used for parameter generation from 𝑡 = 0
to 𝑡 = 𝑇 − 1, which constructs an MRD dataset. It contains three
columns, namely: the data used for parameter generation (𝑥1), the
current data (𝑥2), and whether it do mis-recommendation (𝑦MRD).
2) Train MRD. MRD is a fully connected neural network that takes
𝑥1 and 𝑥2 as input and fits the mis-recommendation label 𝑦MRD.
And then we get the MRD. MRD can be used to determine whether
the model parameters generated using the data at a certain moment
before are still valid for the current data. The prediction result
output by MRD can be simply considered as Mis-Recommendation
Score (MRS).

3○ DM training procedure. We map the data into a Gaussian
distribution through the Conditional-VAE method, and then sample
the feature vector from the distribution to complete the next-item
prediction task, that is, to predict the item that the user will click
next. Then we can get DM. DM can calculate multiple next-items
by sampling from the distribution multiple times, which can be
used to calculate Uncertainty.

4○ Joint training procedure of MRD and DM. We use a fully
connected neural network, denoted as 𝑓 (·), and use MRS and Un-
certainty as input to fit 𝑦MRD in the MRD dataset, which is the
Mis-Recommendation Label.

2. Inference Procedure
The MRS is calculated using all recent user data on the cloud,

and the threshold of the MRS is determined according to the load.
Then send this threshold to each edge. The edge has updated the
model at a certain moment 𝑡 = 𝑛, 𝑛 < 𝑇 before, and now whether it
is necessary to continue to update the model at moment 𝑡 = 𝑇 , that
is, whether the model is invalid for the current data distribution?
We only need to input the MRD and Uncertainty calculated by the
data at the moment 𝑡 = 𝑛 data and the data at the moment 𝑡 = 𝑇
into 𝑓 (·) for determine. In fact, what we output is a invalid degree,
which is a continuous value between 0 and 1. Whether to update
the edge model depends on the threshold calculated on the cloud
based on the load.

A.4 Hyperparameters and Training Schedules
We summarize the hyperparameters and training schedules of In-
tellectReq on the three datasets in Table 4.

Table 4: Hyperparameters and training schedules of Intellec-
tReq.

Dataset Parameters Setting

Amazon CDs
Amazon Electronic

Douban Book

GPU Tesla A100
Optimizer Adam

Learning rate 0.001
Batch size 1024

Sequence length 30
the Dimension of 𝑧 1×64

𝑁 32
𝑛 10

Table 5 is the supplementary result of the Figure 8.
10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Intelligent Model Update Strategy for Sequential Recommendation Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

(c) Next-item Prediction Network

𝑧!𝐷!
𝑧!

Others 𝐷!

𝜇!
𝜎!

Prior Distribution

(b) Prior Network

(c) Posterior Network

𝐷! 𝑧!

Others𝐷!

𝜇!
𝜎!

Posterior Distribution

KL-divergence

𝑧!

(a) Recommendation
Network 𝑒!

𝑒!

Θ&'()

Θ&*+'*
𝑒!𝑠! 𝛀𝒃

Backbone

Classifier Parameters
Generation

�̂�!

𝑟!
𝑦!

&𝑦!

BCELoss

Training Procedure

Inference
Procedure

𝑒!

𝑧!

�̂�!

Repeat 𝑛 times. 𝑧! ∈ 𝑧!,#, 𝑧!,$, … , 𝑧!,%

Prediction

𝑟!

𝑧!

𝑒!
�̂�!

Ground-Truth

Uncertainty
𝑢!

(d) Next-item Prediction Network

𝑧!

Sampling

𝑧!

Sampling

Figure 9: Overview of the proposed Distribution Mapper. Training procedure: The architecture includes Recommendation
Network, Prior Network, Posterior network and Next-item Perdition Network. Loss consists of the classification loss and the
KL-Divergence loss. Inference procedure: The architecture includes Recommendation Network, Prior Network and Next-item
Perdition Network. The uncertainty is calculated by the multi-sampling output.

Real-time Data

Self-attention
Layers

GRU
Layers

Attention
Layers

t1 t2 t3 t4 t5 t6 t7 t8

Embedding Layer

Feature Extractor with Static Parameters

Classifier with Dynamic Parameters

User
Click Sequence

Personalized
Parameter Generator

Linear Layer

Mis-Recommendation Detector
Large Distribution Shift

Distribution Mapper
No/Small Distribution Shift

In
te

lle
ct

R
eq

 F
ra

m
ew

or
k

D
C

-C
D

R
 Fram

ew
ork

Update Model

Figure 10: The overall pipeline of our proposed IntellectReq.

A.4.1 Training Strategies and Performance. As shown in Table. 6,
we compare the impact of training DM with various loss func-
tions on performance. When training the next-item prediction net-
work of DM, two kinds of losses can be used: Regression Loss
(RL) and Classification Loss (CL). After the DM finished training,
two uncertainty calculation methods can be used, namely Mis-
recommendation score Uncertainty (MU) and Next-item embedding
Uncertainty (NU).

Regression loss directly compares the vector difference be-
tween 𝑟 and 𝑟 , we use the Mean Square Error Loss (MSELoss) as
regression loss. Classification loss converts r and 𝑟 into 𝑦 and 𝑦
respectively with the classifier part of the recommendation model.
We use the Binary Cross Entropy Loss (BCELoss) as classification
loss. Note that only the training process differs between the two
losses, not the inference process.

Mis-recommendation score uncertainty uses vectors sam-
pled multiple times from the distribution of 𝑡 −1 time data mapping,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 5: Ablation study on CDs dataset.

Method AUC UAUC NDCG@10 HR@10 Request
Frequency

IDEAL
(w/o DM)

0.8476 0.8360 0.3361 0.5656 10%
0.8488 0.8374 0.3380 0.5694 30%
0.8498 0.8386 0.3402 0.5721 50%
0.8509 0.8395 0.3421 0.5749 70%
0.8514 0.8401 0.3430 0.5759 90%

IDEAL
(w/o MRD)

0.8474 0.8356 0.3364 0.5665 10%
0.8479 0.8361 0.3373 0.5680 30%
0.8487 0.8368 0.3387 0.5694 50%
0.8496 0.8379 0.3406 0.5733 70%
0.8507 0.8392 0.3424 0.5745 90%

IDEAL

0.8480 0.8364 0.3371 0.5680 10%
0.8491 0.8377 0.3390 0.5693 30%
0.8501 0.8388 0.3410 0.5735 50%
0.8508 0.8395 0.3424 0.5752 70%
0.8513 0.8400 0.3434 0.5766 90%

Table 6: Performance of training strategies on CDs dataset.

Method AUC UAUC NDCG@10 HR@10 Request
Frequency

CL+MU

0.8476 0.8362 0.3371 0.5677 10%
0.8487 0.8372 0.3368 0.5662 30%
0.8493 0.8377 0.3393 0.5710 50%
0.8501 0.8388 0.3421 0.5745 70%
0.8512 0.8398 0.3423 0.5747 90%

RL+NU

0.8474 0.8357 0.3374 0.5680 10%
0.8479 0.8361 0.3365 0.5676 30%
0.8491 0.8374 0.3402 0.5693 50%
0.8496 0.8379 0.3406 0.5710 70%
0.8510 0.8395 0.3423 0.5749 90%

CL+NU

0.8480 0.8364 0.3371 0.5680 10%
0.8491 0.8377 0.3390 0.5693 30%
0.8501 0.8388 0.3410 0.5735 50%
0.8508 0.8395 0.3424 0.5752 70%
0.8513 0.8400 0.3434 0.5766 90%

and vectors sampled multiple times from the distribution of 𝑡 time
data mapping, in order to calculate multiple MRS, and further ob-
tain 𝑢𝑖 . Next-item embedding uncertainty uses vectors sampled
multiple times from the distribution of the data map at time 𝑡 , to
calculate 𝑢𝑖 for multiple vectors.

As shown in Table 6, we compare the performance of CL+MU,
RL+NU, and CL+NU. In most cases, CL+NU achieves the best perfor-
mance, while CL+MU achieves the worst performance. Therefore,
we use the CL+NU training strategy.

Table 7: IDEAL’s Impact on Real World.

Google Alibaba
Bytes FLOPs Bytes FLOPs

DC-CDR 4.69GB 152.46G 152.46G 1.68T
IDEAL 3.79GB 123.49G 152.46G 1.36T

Δ 19.2%

A.4.2 Impact on the Real World. We found some more intuitive
data and examples to show the challenge and IDEAL’s impact on

the real world: (1) We calculate the number of bytes and FLOPs re-
quired to update a parameter. Bytes: 48.5kB, FLOPs: 1.53M. That is,
updating a model on the device requires the transmission of 48.5kB
data through device-cloud communication, and consumes 1.53M
computing power of the cloud model. (2) According to the report,
Google processes 99,000 clicks per second, so it needs to transmit
48.5kB99k=4.69GB per second, and consume 1.53M99k=152.46G of
computing power in the cloud server. Alibaba processes 1,150,000
clicks per second, so it needs to transmit 48.5kB1150k=53.19GB
per second, and consume 1.53M1150k=1.68T of computing power
in the cloud server. These are not the peak value yet. Obviously,
such a huge loan and computing power consumption make it hard
to update the model for devices every moment especially at peak
times. (3) Sometimes, the distributed nature of clouds todaymay can
afford the computational volume, since it can call enough servers
to support device-cloud collaboration. However, the huge resource
consumption is impractical in real-scenario. Besides, according to
our empirical study, our IDEAL can bring 21.4% resource saving
when the performance is the same using the APG framework. Un-
der the DUET framework, IDEAL can bring 16.6% resource saving
when the performance is the same. Summing up, IDEAL can save
19% resources on average, which is very helpful for cost control and
can facilitate the DC-CDR development in practice. The following
table 7 is the comparison between our method IDEAL and DC-CDR
in the amount of transmitted data and the computing power con-
sumed on the cloud. (4) During the peak period, resources will be
tight and cause freezes or even crashes. This is still in the case that
DC-CDR has not been deployed yet, that is, the device-cloud com-
munication only performs the most basic user data transmission.
At this time, IDEAL can achieve better performance than DC-CDR
under any resource limit 𝜖 , or to achieve the performance that
DC-CDR requires 𝜖 + 19% of resources to achieve.

12

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Problem Formulation
	3.2 Intelligent Parameter Request Model

	4 Experiments
	4.1 Experimental Setup.
	4.2 Experimental Results.

	5 Conclusion
	References
	A Appendix
	A.1 Overview of the proposed Distribution Mapper
	A.2 Supplementary Experimental Results
	A.3 Training Procedure and Inference Procedure
	A.4 Hyperparameters and Training Schedules

